1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/stringTable.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  35 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  36 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  37 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  38 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  41 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  42 #include "gc_implementation/g1/g1EvacFailure.hpp"
  43 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  44 #include "gc_implementation/g1/g1Log.hpp"
  45 #include "gc_implementation/g1/g1MarkSweep.hpp"
  46 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  47 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  48 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  49 #include "gc_implementation/g1/g1StringDedup.hpp"
  50 #include "gc_implementation/g1/g1YCTypes.hpp"
  51 #include "gc_implementation/g1/heapRegion.inline.hpp"
  52 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  53 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  54 #include "gc_implementation/g1/vm_operations_g1.hpp"
  55 #include "gc_implementation/shared/gcHeapSummary.hpp"
  56 #include "gc_implementation/shared/gcTimer.hpp"
  57 #include "gc_implementation/shared/gcTrace.hpp"
  58 #include "gc_implementation/shared/gcTraceTime.hpp"
  59 #include "gc_implementation/shared/isGCActiveMark.hpp"
  60 #include "memory/allocation.hpp"
  61 #include "memory/gcLocker.inline.hpp"
  62 #include "memory/generationSpec.hpp"
  63 #include "memory/iterator.hpp"
  64 #include "memory/referenceProcessor.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "oops/oop.pcgc.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "utilities/globalDefinitions.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Notes on implementation of parallelism in different tasks.
  91 //
  92 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  93 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  94 // It does use run_task() which sets _n_workers in the task.
  95 // G1ParTask executes g1_process_roots() ->
  96 // SharedHeap::process_roots() which calls eventually to
  97 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  98 // SequentialSubTasksDone.  SharedHeap::process_roots() also
  99 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 100 //
 101 
 102 // Local to this file.
 103 
 104 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 105   bool _concurrent;
 106 public:
 107   RefineCardTableEntryClosure() : _concurrent(true) { }
 108 
 109   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 110     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 111     // This path is executed by the concurrent refine or mutator threads,
 112     // concurrently, and so we do not care if card_ptr contains references
 113     // that point into the collection set.
 114     assert(!oops_into_cset, "should be");
 115 
 116     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 117       // Caller will actually yield.
 118       return false;
 119     }
 120     // Otherwise, we finished successfully; return true.
 121     return true;
 122   }
 123 
 124   void set_concurrent(bool b) { _concurrent = b; }
 125 };
 126 
 127 
 128 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 129   size_t _num_processed;
 130   CardTableModRefBS* _ctbs;
 131   int _histo[256];
 132 
 133  public:
 134   ClearLoggedCardTableEntryClosure() :
 135     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 136   {
 137     for (int i = 0; i < 256; i++) _histo[i] = 0;
 138   }
 139 
 140   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 141     unsigned char* ujb = (unsigned char*)card_ptr;
 142     int ind = (int)(*ujb);
 143     _histo[ind]++;
 144 
 145     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 146     _num_processed++;
 147 
 148     return true;
 149   }
 150 
 151   size_t num_processed() { return _num_processed; }
 152 
 153   void print_histo() {
 154     gclog_or_tty->print_cr("Card table value histogram:");
 155     for (int i = 0; i < 256; i++) {
 156       if (_histo[i] != 0) {
 157         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 158       }
 159     }
 160   }
 161 };
 162 
 163 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 164  private:
 165   size_t _num_processed;
 166 
 167  public:
 168   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 169 
 170   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 171     *card_ptr = CardTableModRefBS::dirty_card_val();
 172     _num_processed++;
 173     return true;
 174   }
 175 
 176   size_t num_processed() const { return _num_processed; }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->cr();
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 #ifdef ASSERT
 438 // A region is added to the collection set as it is retired
 439 // so an address p can point to a region which will be in the
 440 // collection set but has not yet been retired.  This method
 441 // therefore is only accurate during a GC pause after all
 442 // regions have been retired.  It is used for debugging
 443 // to check if an nmethod has references to objects that can
 444 // be move during a partial collection.  Though it can be
 445 // inaccurate, it is sufficient for G1 because the conservative
 446 // implementation of is_scavengable() for G1 will indicate that
 447 // all nmethods must be scanned during a partial collection.
 448 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 449   if (p == NULL) {
 450     return false;
 451   }
 452   return heap_region_containing(p)->in_collection_set();
 453 }
 454 #endif
 455 
 456 // Returns true if the reference points to an object that
 457 // can move in an incremental collection.
 458 bool G1CollectedHeap::is_scavengable(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return !hr->isHumongous();
 461 }
 462 
 463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 465   CardTableModRefBS* ct_bs = g1_barrier_set();
 466 
 467   // Count the dirty cards at the start.
 468   CountNonCleanMemRegionClosure count1(this);
 469   ct_bs->mod_card_iterate(&count1);
 470   int orig_count = count1.n();
 471 
 472   // First clear the logged cards.
 473   ClearLoggedCardTableEntryClosure clear;
 474   dcqs.apply_closure_to_all_completed_buffers(&clear);
 475   dcqs.iterate_closure_all_threads(&clear, false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 489   dcqs.iterate_closure_all_threads(&redirty, false);
 490   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 491                          clear.num_processed(), orig_count);
 492   guarantee(redirty.num_processed() == clear.num_processed(),
 493             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 494                     redirty.num_processed(), clear.num_processed()));
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 }
 504 
 505 // Private class members.
 506 
 507 G1CollectedHeap* G1CollectedHeap::_g1h;
 508 
 509 // Private methods.
 510 
 511 HeapRegion*
 512 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 513   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 514   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 515     if (!_secondary_free_list.is_empty()) {
 516       if (G1ConcRegionFreeingVerbose) {
 517         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 518                                "secondary_free_list has %u entries",
 519                                _secondary_free_list.length());
 520       }
 521       // It looks as if there are free regions available on the
 522       // secondary_free_list. Let's move them to the free_list and try
 523       // again to allocate from it.
 524       append_secondary_free_list();
 525 
 526       assert(_hrs.num_free_regions() > 0, "if the secondary_free_list was not "
 527              "empty we should have moved at least one entry to the free_list");
 528       HeapRegion* res = _hrs.allocate_free_region(is_old);
 529       if (G1ConcRegionFreeingVerbose) {
 530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 531                                "allocated "HR_FORMAT" from secondary_free_list",
 532                                HR_FORMAT_PARAMS(res));
 533       }
 534       return res;
 535     }
 536 
 537     // Wait here until we get notified either when (a) there are no
 538     // more free regions coming or (b) some regions have been moved on
 539     // the secondary_free_list.
 540     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 541   }
 542 
 543   if (G1ConcRegionFreeingVerbose) {
 544     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                            "could not allocate from secondary_free_list");
 546   }
 547   return NULL;
 548 }
 549 
 550 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 551   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 552          "the only time we use this to allocate a humongous region is "
 553          "when we are allocating a single humongous region");
 554 
 555   HeapRegion* res;
 556   if (G1StressConcRegionFreeing) {
 557     if (!_secondary_free_list.is_empty()) {
 558       if (G1ConcRegionFreeingVerbose) {
 559         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 560                                "forced to look at the secondary_free_list");
 561       }
 562       res = new_region_try_secondary_free_list(is_old);
 563       if (res != NULL) {
 564         return res;
 565       }
 566     }
 567   }
 568 
 569   res = _hrs.allocate_free_region(is_old);
 570 
 571   if (res == NULL) {
 572     if (G1ConcRegionFreeingVerbose) {
 573       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                              "res == NULL, trying the secondary_free_list");
 575     }
 576     res = new_region_try_secondary_free_list(is_old);
 577   }
 578   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 579     // Currently, only attempts to allocate GC alloc regions set
 580     // do_expand to true. So, we should only reach here during a
 581     // safepoint. If this assumption changes we might have to
 582     // reconsider the use of _expand_heap_after_alloc_failure.
 583     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 584 
 585     ergo_verbose1(ErgoHeapSizing,
 586                   "attempt heap expansion",
 587                   ergo_format_reason("region allocation request failed")
 588                   ergo_format_byte("allocation request"),
 589                   word_size * HeapWordSize);
 590     if (expand(word_size * HeapWordSize)) {
 591       // Given that expand() succeeded in expanding the heap, and we
 592       // always expand the heap by an amount aligned to the heap
 593       // region size, the free list should in theory not be empty.
 594       // In either case allocate_free_region() will check for NULL.
 595       res = _hrs.allocate_free_region(is_old);
 596     } else {
 597       _expand_heap_after_alloc_failure = false;
 598     }
 599   }
 600   return res;
 601 }
 602 
 603 HeapWord*
 604 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 605                                                            uint num_regions,
 606                                                            size_t word_size) {
 607   assert(first != G1_NO_HRS_INDEX, "pre-condition");
 608   assert(isHumongous(word_size), "word_size should be humongous");
 609   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 610 
 611   // Index of last region in the series + 1.
 612   uint last = first + num_regions;
 613 
 614   // We need to initialize the region(s) we just discovered. This is
 615   // a bit tricky given that it can happen concurrently with
 616   // refinement threads refining cards on these regions and
 617   // potentially wanting to refine the BOT as they are scanning
 618   // those cards (this can happen shortly after a cleanup; see CR
 619   // 6991377). So we have to set up the region(s) carefully and in
 620   // a specific order.
 621 
 622   // The word size sum of all the regions we will allocate.
 623   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 624   assert(word_size <= word_size_sum, "sanity");
 625 
 626   // This will be the "starts humongous" region.
 627   HeapRegion* first_hr = region_at(first);
 628   // The header of the new object will be placed at the bottom of
 629   // the first region.
 630   HeapWord* new_obj = first_hr->bottom();
 631   // This will be the new end of the first region in the series that
 632   // should also match the end of the last region in the series.
 633   HeapWord* new_end = new_obj + word_size_sum;
 634   // This will be the new top of the first region that will reflect
 635   // this allocation.
 636   HeapWord* new_top = new_obj + word_size;
 637 
 638   // First, we need to zero the header of the space that we will be
 639   // allocating. When we update top further down, some refinement
 640   // threads might try to scan the region. By zeroing the header we
 641   // ensure that any thread that will try to scan the region will
 642   // come across the zero klass word and bail out.
 643   //
 644   // NOTE: It would not have been correct to have used
 645   // CollectedHeap::fill_with_object() and make the space look like
 646   // an int array. The thread that is doing the allocation will
 647   // later update the object header to a potentially different array
 648   // type and, for a very short period of time, the klass and length
 649   // fields will be inconsistent. This could cause a refinement
 650   // thread to calculate the object size incorrectly.
 651   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 652 
 653   // We will set up the first region as "starts humongous". This
 654   // will also update the BOT covering all the regions to reflect
 655   // that there is a single object that starts at the bottom of the
 656   // first region.
 657   first_hr->set_startsHumongous(new_top, new_end);
 658 
 659   // Then, if there are any, we will set up the "continues
 660   // humongous" regions.
 661   HeapRegion* hr = NULL;
 662   for (uint i = first + 1; i < last; ++i) {
 663     hr = region_at(i);
 664     hr->set_continuesHumongous(first_hr);
 665   }
 666   // If we have "continues humongous" regions (hr != NULL), then the
 667   // end of the last one should match new_end.
 668   assert(hr == NULL || hr->end() == new_end, "sanity");
 669 
 670   // Up to this point no concurrent thread would have been able to
 671   // do any scanning on any region in this series. All the top
 672   // fields still point to bottom, so the intersection between
 673   // [bottom,top] and [card_start,card_end] will be empty. Before we
 674   // update the top fields, we'll do a storestore to make sure that
 675   // no thread sees the update to top before the zeroing of the
 676   // object header and the BOT initialization.
 677   OrderAccess::storestore();
 678 
 679   // Now that the BOT and the object header have been initialized,
 680   // we can update top of the "starts humongous" region.
 681   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 682          "new_top should be in this region");
 683   first_hr->set_top(new_top);
 684   if (_hr_printer.is_active()) {
 685     HeapWord* bottom = first_hr->bottom();
 686     HeapWord* end = first_hr->orig_end();
 687     if ((first + 1) == last) {
 688       // the series has a single humongous region
 689       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 690     } else {
 691       // the series has more than one humongous regions
 692       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 693     }
 694   }
 695 
 696   // Now, we will update the top fields of the "continues humongous"
 697   // regions. The reason we need to do this is that, otherwise,
 698   // these regions would look empty and this will confuse parts of
 699   // G1. For example, the code that looks for a consecutive number
 700   // of empty regions will consider them empty and try to
 701   // re-allocate them. We can extend is_empty() to also include
 702   // !continuesHumongous(), but it is easier to just update the top
 703   // fields here. The way we set top for all regions (i.e., top ==
 704   // end for all regions but the last one, top == new_top for the
 705   // last one) is actually used when we will free up the humongous
 706   // region in free_humongous_region().
 707   hr = NULL;
 708   for (uint i = first + 1; i < last; ++i) {
 709     hr = region_at(i);
 710     if ((i + 1) == last) {
 711       // last continues humongous region
 712       assert(hr->bottom() < new_top && new_top <= hr->end(),
 713              "new_top should fall on this region");
 714       hr->set_top(new_top);
 715       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 716     } else {
 717       // not last one
 718       assert(new_top > hr->end(), "new_top should be above this region");
 719       hr->set_top(hr->end());
 720       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 721     }
 722   }
 723   // If we have continues humongous regions (hr != NULL), then the
 724   // end of the last one should match new_end and its top should
 725   // match new_top.
 726   assert(hr == NULL ||
 727          (hr->end() == new_end && hr->top() == new_top), "sanity");
 728   check_bitmaps("Humongous Region Allocation", first_hr);
 729 
 730   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 731   _summary_bytes_used += first_hr->used();
 732   _humongous_set.add(first_hr);
 733 
 734   return new_obj;
 735 }
 736 
 737 // If could fit into free regions w/o expansion, try.
 738 // Otherwise, if can expand, do so.
 739 // Otherwise, if using ex regions might help, try with ex given back.
 740 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 741   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 742 
 743   verify_region_sets_optional();
 744 
 745   uint first = G1_NO_HRS_INDEX;
 746   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 747 
 748   if (obj_regions == 1) {
 749     // Only one region to allocate, try to use a fast path by directly allocating
 750     // from the free lists. Do not try to expand here, we will potentially do that
 751     // later.
 752     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 753     if (hr != NULL) {
 754       first = hr->hrs_index();
 755     }
 756   } else {
 757     // We can't allocate humongous regions spanning more than one region while
 758     // cleanupComplete() is running, since some of the regions we find to be
 759     // empty might not yet be added to the free list. It is not straightforward
 760     // to know in which list they are on so that we can remove them. We only
 761     // need to do this if we need to allocate more than one region to satisfy the
 762     // current humongous allocation request. If we are only allocating one region
 763     // we use the one-region region allocation code (see above), or end up here.
 764     wait_while_free_regions_coming();
 765     append_secondary_free_list_if_not_empty_with_lock();
 766 
 767     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 768     // are lucky enough to find some.
 769     first = _hrs.find_contiguous(obj_regions, true);
 770     if (first != G1_NO_HRS_INDEX) {
 771       _hrs.allocate_free_regions_starting_at(first, obj_regions);
 772     }
 773   }
 774 
 775   if (first == G1_NO_HRS_INDEX) {
 776     // Policy: We could not find enough regions for the humongous object in the
 777     // free list. Look through the heap to find a mix of free and uncommitted regions.
 778     // If so, try expansion.
 779     first = _hrs.find_contiguous(obj_regions, false);
 780     if (first != G1_NO_HRS_INDEX) {
 781       // We found something. Make sure these regions are committed, i.e. expand
 782       // the heap. Alternatively we could do a defragmentation GC.
 783       ergo_verbose1(ErgoHeapSizing,
 784                     "attempt heap expansion",
 785                     ergo_format_reason("humongous allocation request failed")
 786                     ergo_format_byte("allocation request"),
 787                     word_size * HeapWordSize);
 788 
 789       _hrs.expand_at(first, obj_regions);
 790       g1_policy()->record_new_heap_size(num_regions());
 791 
 792 #ifdef ASSERT
 793       for (uint i = first; i < first + obj_regions; ++i) {
 794         HeapRegion* hr = region_at(i);
 795         assert(hr->is_empty(), "sanity");
 796         assert(is_on_master_free_list(hr), "sanity");
 797       }
 798 #endif
 799       _hrs.allocate_free_regions_starting_at(first, obj_regions);
 800     } else {
 801       // Policy: Potentially trigger a defragmentation GC.
 802     }
 803   }
 804 
 805   HeapWord* result = NULL;
 806   if (first != G1_NO_HRS_INDEX) {
 807     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 808     assert(result != NULL, "it should always return a valid result");
 809 
 810     // A successful humongous object allocation changes the used space
 811     // information of the old generation so we need to recalculate the
 812     // sizes and update the jstat counters here.
 813     g1mm()->update_sizes();
 814   }
 815 
 816   verify_region_sets_optional();
 817 
 818   return result;
 819 }
 820 
 821 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 822   assert_heap_not_locked_and_not_at_safepoint();
 823   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 824 
 825   unsigned int dummy_gc_count_before;
 826   int dummy_gclocker_retry_count = 0;
 827   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 828 }
 829 
 830 HeapWord*
 831 G1CollectedHeap::mem_allocate(size_t word_size,
 832                               bool*  gc_overhead_limit_was_exceeded) {
 833   assert_heap_not_locked_and_not_at_safepoint();
 834 
 835   // Loop until the allocation is satisfied, or unsatisfied after GC.
 836   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 837     unsigned int gc_count_before;
 838 
 839     HeapWord* result = NULL;
 840     if (!isHumongous(word_size)) {
 841       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 842     } else {
 843       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 844     }
 845     if (result != NULL) {
 846       return result;
 847     }
 848 
 849     // Create the garbage collection operation...
 850     VM_G1CollectForAllocation op(gc_count_before, word_size);
 851     // ...and get the VM thread to execute it.
 852     VMThread::execute(&op);
 853 
 854     if (op.prologue_succeeded() && op.pause_succeeded()) {
 855       // If the operation was successful we'll return the result even
 856       // if it is NULL. If the allocation attempt failed immediately
 857       // after a Full GC, it's unlikely we'll be able to allocate now.
 858       HeapWord* result = op.result();
 859       if (result != NULL && !isHumongous(word_size)) {
 860         // Allocations that take place on VM operations do not do any
 861         // card dirtying and we have to do it here. We only have to do
 862         // this for non-humongous allocations, though.
 863         dirty_young_block(result, word_size);
 864       }
 865       return result;
 866     } else {
 867       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 868         return NULL;
 869       }
 870       assert(op.result() == NULL,
 871              "the result should be NULL if the VM op did not succeed");
 872     }
 873 
 874     // Give a warning if we seem to be looping forever.
 875     if ((QueuedAllocationWarningCount > 0) &&
 876         (try_count % QueuedAllocationWarningCount == 0)) {
 877       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 878     }
 879   }
 880 
 881   ShouldNotReachHere();
 882   return NULL;
 883 }
 884 
 885 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 886                                            unsigned int *gc_count_before_ret,
 887                                            int* gclocker_retry_count_ret) {
 888   // Make sure you read the note in attempt_allocation_humongous().
 889 
 890   assert_heap_not_locked_and_not_at_safepoint();
 891   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 892          "be called for humongous allocation requests");
 893 
 894   // We should only get here after the first-level allocation attempt
 895   // (attempt_allocation()) failed to allocate.
 896 
 897   // We will loop until a) we manage to successfully perform the
 898   // allocation or b) we successfully schedule a collection which
 899   // fails to perform the allocation. b) is the only case when we'll
 900   // return NULL.
 901   HeapWord* result = NULL;
 902   for (int try_count = 1; /* we'll return */; try_count += 1) {
 903     bool should_try_gc;
 904     unsigned int gc_count_before;
 905 
 906     {
 907       MutexLockerEx x(Heap_lock);
 908 
 909       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 910                                                       false /* bot_updates */);
 911       if (result != NULL) {
 912         return result;
 913       }
 914 
 915       // If we reach here, attempt_allocation_locked() above failed to
 916       // allocate a new region. So the mutator alloc region should be NULL.
 917       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 918 
 919       if (GC_locker::is_active_and_needs_gc()) {
 920         if (g1_policy()->can_expand_young_list()) {
 921           // No need for an ergo verbose message here,
 922           // can_expand_young_list() does this when it returns true.
 923           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 924                                                       false /* bot_updates */);
 925           if (result != NULL) {
 926             return result;
 927           }
 928         }
 929         should_try_gc = false;
 930       } else {
 931         // The GCLocker may not be active but the GCLocker initiated
 932         // GC may not yet have been performed (GCLocker::needs_gc()
 933         // returns true). In this case we do not try this GC and
 934         // wait until the GCLocker initiated GC is performed, and
 935         // then retry the allocation.
 936         if (GC_locker::needs_gc()) {
 937           should_try_gc = false;
 938         } else {
 939           // Read the GC count while still holding the Heap_lock.
 940           gc_count_before = total_collections();
 941           should_try_gc = true;
 942         }
 943       }
 944     }
 945 
 946     if (should_try_gc) {
 947       bool succeeded;
 948       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 949           GCCause::_g1_inc_collection_pause);
 950       if (result != NULL) {
 951         assert(succeeded, "only way to get back a non-NULL result");
 952         return result;
 953       }
 954 
 955       if (succeeded) {
 956         // If we get here we successfully scheduled a collection which
 957         // failed to allocate. No point in trying to allocate
 958         // further. We'll just return NULL.
 959         MutexLockerEx x(Heap_lock);
 960         *gc_count_before_ret = total_collections();
 961         return NULL;
 962       }
 963     } else {
 964       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 965         MutexLockerEx x(Heap_lock);
 966         *gc_count_before_ret = total_collections();
 967         return NULL;
 968       }
 969       // The GCLocker is either active or the GCLocker initiated
 970       // GC has not yet been performed. Stall until it is and
 971       // then retry the allocation.
 972       GC_locker::stall_until_clear();
 973       (*gclocker_retry_count_ret) += 1;
 974     }
 975 
 976     // We can reach here if we were unsuccessful in scheduling a
 977     // collection (because another thread beat us to it) or if we were
 978     // stalled due to the GC locker. In either can we should retry the
 979     // allocation attempt in case another thread successfully
 980     // performed a collection and reclaimed enough space. We do the
 981     // first attempt (without holding the Heap_lock) here and the
 982     // follow-on attempt will be at the start of the next loop
 983     // iteration (after taking the Heap_lock).
 984     result = _mutator_alloc_region.attempt_allocation(word_size,
 985                                                       false /* bot_updates */);
 986     if (result != NULL) {
 987       return result;
 988     }
 989 
 990     // Give a warning if we seem to be looping forever.
 991     if ((QueuedAllocationWarningCount > 0) &&
 992         (try_count % QueuedAllocationWarningCount == 0)) {
 993       warning("G1CollectedHeap::attempt_allocation_slow() "
 994               "retries %d times", try_count);
 995     }
 996   }
 997 
 998   ShouldNotReachHere();
 999   return NULL;
1000 }
1001 
1002 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1003                                           unsigned int * gc_count_before_ret,
1004                                           int* gclocker_retry_count_ret) {
1005   // The structure of this method has a lot of similarities to
1006   // attempt_allocation_slow(). The reason these two were not merged
1007   // into a single one is that such a method would require several "if
1008   // allocation is not humongous do this, otherwise do that"
1009   // conditional paths which would obscure its flow. In fact, an early
1010   // version of this code did use a unified method which was harder to
1011   // follow and, as a result, it had subtle bugs that were hard to
1012   // track down. So keeping these two methods separate allows each to
1013   // be more readable. It will be good to keep these two in sync as
1014   // much as possible.
1015 
1016   assert_heap_not_locked_and_not_at_safepoint();
1017   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1018          "should only be called for humongous allocations");
1019 
1020   // Humongous objects can exhaust the heap quickly, so we should check if we
1021   // need to start a marking cycle at each humongous object allocation. We do
1022   // the check before we do the actual allocation. The reason for doing it
1023   // before the allocation is that we avoid having to keep track of the newly
1024   // allocated memory while we do a GC.
1025   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1026                                            word_size)) {
1027     collect(GCCause::_g1_humongous_allocation);
1028   }
1029 
1030   // We will loop until a) we manage to successfully perform the
1031   // allocation or b) we successfully schedule a collection which
1032   // fails to perform the allocation. b) is the only case when we'll
1033   // return NULL.
1034   HeapWord* result = NULL;
1035   for (int try_count = 1; /* we'll return */; try_count += 1) {
1036     bool should_try_gc;
1037     unsigned int gc_count_before;
1038 
1039     {
1040       MutexLockerEx x(Heap_lock);
1041 
1042       // Given that humongous objects are not allocated in young
1043       // regions, we'll first try to do the allocation without doing a
1044       // collection hoping that there's enough space in the heap.
1045       result = humongous_obj_allocate(word_size);
1046       if (result != NULL) {
1047         return result;
1048       }
1049 
1050       if (GC_locker::is_active_and_needs_gc()) {
1051         should_try_gc = false;
1052       } else {
1053          // The GCLocker may not be active but the GCLocker initiated
1054         // GC may not yet have been performed (GCLocker::needs_gc()
1055         // returns true). In this case we do not try this GC and
1056         // wait until the GCLocker initiated GC is performed, and
1057         // then retry the allocation.
1058         if (GC_locker::needs_gc()) {
1059           should_try_gc = false;
1060         } else {
1061           // Read the GC count while still holding the Heap_lock.
1062           gc_count_before = total_collections();
1063           should_try_gc = true;
1064         }
1065       }
1066     }
1067 
1068     if (should_try_gc) {
1069       // If we failed to allocate the humongous object, we should try to
1070       // do a collection pause (if we're allowed) in case it reclaims
1071       // enough space for the allocation to succeed after the pause.
1072 
1073       bool succeeded;
1074       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1075           GCCause::_g1_humongous_allocation);
1076       if (result != NULL) {
1077         assert(succeeded, "only way to get back a non-NULL result");
1078         return result;
1079       }
1080 
1081       if (succeeded) {
1082         // If we get here we successfully scheduled a collection which
1083         // failed to allocate. No point in trying to allocate
1084         // further. We'll just return NULL.
1085         MutexLockerEx x(Heap_lock);
1086         *gc_count_before_ret = total_collections();
1087         return NULL;
1088       }
1089     } else {
1090       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1091         MutexLockerEx x(Heap_lock);
1092         *gc_count_before_ret = total_collections();
1093         return NULL;
1094       }
1095       // The GCLocker is either active or the GCLocker initiated
1096       // GC has not yet been performed. Stall until it is and
1097       // then retry the allocation.
1098       GC_locker::stall_until_clear();
1099       (*gclocker_retry_count_ret) += 1;
1100     }
1101 
1102     // We can reach here if we were unsuccessful in scheduling a
1103     // collection (because another thread beat us to it) or if we were
1104     // stalled due to the GC locker. In either can we should retry the
1105     // allocation attempt in case another thread successfully
1106     // performed a collection and reclaimed enough space.  Give a
1107     // warning if we seem to be looping forever.
1108 
1109     if ((QueuedAllocationWarningCount > 0) &&
1110         (try_count % QueuedAllocationWarningCount == 0)) {
1111       warning("G1CollectedHeap::attempt_allocation_humongous() "
1112               "retries %d times", try_count);
1113     }
1114   }
1115 
1116   ShouldNotReachHere();
1117   return NULL;
1118 }
1119 
1120 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1121                                        bool expect_null_mutator_alloc_region) {
1122   assert_at_safepoint(true /* should_be_vm_thread */);
1123   assert(_mutator_alloc_region.get() == NULL ||
1124                                              !expect_null_mutator_alloc_region,
1125          "the current alloc region was unexpectedly found to be non-NULL");
1126 
1127   if (!isHumongous(word_size)) {
1128     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1129                                                       false /* bot_updates */);
1130   } else {
1131     HeapWord* result = humongous_obj_allocate(word_size);
1132     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1133       g1_policy()->set_initiate_conc_mark_if_possible();
1134     }
1135     return result;
1136   }
1137 
1138   ShouldNotReachHere();
1139 }
1140 
1141 class PostMCRemSetClearClosure: public HeapRegionClosure {
1142   G1CollectedHeap* _g1h;
1143   ModRefBarrierSet* _mr_bs;
1144 public:
1145   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1146     _g1h(g1h), _mr_bs(mr_bs) {}
1147 
1148   bool doHeapRegion(HeapRegion* r) {
1149     HeapRegionRemSet* hrrs = r->rem_set();
1150 
1151     if (r->continuesHumongous()) {
1152       // We'll assert that the strong code root list and RSet is empty
1153       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1154       assert(hrrs->occupied() == 0, "RSet should be empty");
1155       return false;
1156     }
1157 
1158     _g1h->reset_gc_time_stamps(r);
1159     hrrs->clear();
1160     // You might think here that we could clear just the cards
1161     // corresponding to the used region.  But no: if we leave a dirty card
1162     // in a region we might allocate into, then it would prevent that card
1163     // from being enqueued, and cause it to be missed.
1164     // Re: the performance cost: we shouldn't be doing full GC anyway!
1165     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1166 
1167     return false;
1168   }
1169 };
1170 
1171 void G1CollectedHeap::clear_rsets_post_compaction() {
1172   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1173   heap_region_iterate(&rs_clear);
1174 }
1175 
1176 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1177   G1CollectedHeap*   _g1h;
1178   UpdateRSOopClosure _cl;
1179   int                _worker_i;
1180 public:
1181   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1182     _cl(g1->g1_rem_set(), worker_i),
1183     _worker_i(worker_i),
1184     _g1h(g1)
1185   { }
1186 
1187   bool doHeapRegion(HeapRegion* r) {
1188     if (!r->continuesHumongous()) {
1189       _cl.set_from(r);
1190       r->oop_iterate(&_cl);
1191     }
1192     return false;
1193   }
1194 };
1195 
1196 class ParRebuildRSTask: public AbstractGangTask {
1197   G1CollectedHeap* _g1;
1198 public:
1199   ParRebuildRSTask(G1CollectedHeap* g1)
1200     : AbstractGangTask("ParRebuildRSTask"),
1201       _g1(g1)
1202   { }
1203 
1204   void work(uint worker_id) {
1205     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1206     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1207                                           _g1->workers()->active_workers(),
1208                                          HeapRegion::RebuildRSClaimValue);
1209   }
1210 };
1211 
1212 class PostCompactionPrinterClosure: public HeapRegionClosure {
1213 private:
1214   G1HRPrinter* _hr_printer;
1215 public:
1216   bool doHeapRegion(HeapRegion* hr) {
1217     assert(!hr->is_young(), "not expecting to find young regions");
1218     // We only generate output for non-empty regions.
1219     if (!hr->is_empty()) {
1220       if (!hr->isHumongous()) {
1221         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1222       } else if (hr->startsHumongous()) {
1223         if (hr->region_num() == 1) {
1224           // single humongous region
1225           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1226         } else {
1227           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1228         }
1229       } else {
1230         assert(hr->continuesHumongous(), "only way to get here");
1231         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1232       }
1233     }
1234     return false;
1235   }
1236 
1237   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1238     : _hr_printer(hr_printer) { }
1239 };
1240 
1241 void G1CollectedHeap::print_hrs_post_compaction() {
1242   PostCompactionPrinterClosure cl(hr_printer());
1243   heap_region_iterate(&cl);
1244 }
1245 
1246 bool G1CollectedHeap::do_collection(bool explicit_gc,
1247                                     bool clear_all_soft_refs,
1248                                     size_t word_size) {
1249   assert_at_safepoint(true /* should_be_vm_thread */);
1250 
1251   if (GC_locker::check_active_before_gc()) {
1252     return false;
1253   }
1254 
1255   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1256   gc_timer->register_gc_start();
1257 
1258   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1259   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1260 
1261   SvcGCMarker sgcm(SvcGCMarker::FULL);
1262   ResourceMark rm;
1263 
1264   print_heap_before_gc();
1265   trace_heap_before_gc(gc_tracer);
1266 
1267   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1268 
1269   verify_region_sets_optional();
1270 
1271   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1272                            collector_policy()->should_clear_all_soft_refs();
1273 
1274   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1275 
1276   {
1277     IsGCActiveMark x;
1278 
1279     // Timing
1280     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1281     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1282     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1283 
1284     {
1285       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1286       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1287       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1288 
1289       double start = os::elapsedTime();
1290       g1_policy()->record_full_collection_start();
1291 
1292       // Note: When we have a more flexible GC logging framework that
1293       // allows us to add optional attributes to a GC log record we
1294       // could consider timing and reporting how long we wait in the
1295       // following two methods.
1296       wait_while_free_regions_coming();
1297       // If we start the compaction before the CM threads finish
1298       // scanning the root regions we might trip them over as we'll
1299       // be moving objects / updating references. So let's wait until
1300       // they are done. By telling them to abort, they should complete
1301       // early.
1302       _cm->root_regions()->abort();
1303       _cm->root_regions()->wait_until_scan_finished();
1304       append_secondary_free_list_if_not_empty_with_lock();
1305 
1306       gc_prologue(true);
1307       increment_total_collections(true /* full gc */);
1308       increment_old_marking_cycles_started();
1309 
1310       assert(used() == recalculate_used(), "Should be equal");
1311 
1312       verify_before_gc();
1313 
1314       check_bitmaps("Full GC Start");
1315       pre_full_gc_dump(gc_timer);
1316 
1317       COMPILER2_PRESENT(DerivedPointerTable::clear());
1318 
1319       // Disable discovery and empty the discovered lists
1320       // for the CM ref processor.
1321       ref_processor_cm()->disable_discovery();
1322       ref_processor_cm()->abandon_partial_discovery();
1323       ref_processor_cm()->verify_no_references_recorded();
1324 
1325       // Abandon current iterations of concurrent marking and concurrent
1326       // refinement, if any are in progress. We have to do this before
1327       // wait_until_scan_finished() below.
1328       concurrent_mark()->abort();
1329 
1330       // Make sure we'll choose a new allocation region afterwards.
1331       release_mutator_alloc_region();
1332       abandon_gc_alloc_regions();
1333       g1_rem_set()->cleanupHRRS();
1334 
1335       // We should call this after we retire any currently active alloc
1336       // regions so that all the ALLOC / RETIRE events are generated
1337       // before the start GC event.
1338       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1339 
1340       // We may have added regions to the current incremental collection
1341       // set between the last GC or pause and now. We need to clear the
1342       // incremental collection set and then start rebuilding it afresh
1343       // after this full GC.
1344       abandon_collection_set(g1_policy()->inc_cset_head());
1345       g1_policy()->clear_incremental_cset();
1346       g1_policy()->stop_incremental_cset_building();
1347 
1348       tear_down_region_sets(false /* free_list_only */);
1349       g1_policy()->set_gcs_are_young(true);
1350 
1351       // See the comments in g1CollectedHeap.hpp and
1352       // G1CollectedHeap::ref_processing_init() about
1353       // how reference processing currently works in G1.
1354 
1355       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1356       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1357 
1358       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1359       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1360 
1361       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1362       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1363 
1364       // Do collection work
1365       {
1366         HandleMark hm;  // Discard invalid handles created during gc
1367         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1368       }
1369 
1370       assert(num_free_regions() == 0, "we should not have added any free regions");
1371       rebuild_region_sets(false /* free_list_only */);
1372 
1373       // Enqueue any discovered reference objects that have
1374       // not been removed from the discovered lists.
1375       ref_processor_stw()->enqueue_discovered_references();
1376 
1377       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1378 
1379       MemoryService::track_memory_usage();
1380 
1381       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1382       ref_processor_stw()->verify_no_references_recorded();
1383 
1384       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1385       ClassLoaderDataGraph::purge();
1386       MetaspaceAux::verify_metrics();
1387 
1388       // Note: since we've just done a full GC, concurrent
1389       // marking is no longer active. Therefore we need not
1390       // re-enable reference discovery for the CM ref processor.
1391       // That will be done at the start of the next marking cycle.
1392       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1393       ref_processor_cm()->verify_no_references_recorded();
1394 
1395       reset_gc_time_stamp();
1396       // Since everything potentially moved, we will clear all remembered
1397       // sets, and clear all cards.  Later we will rebuild remembered
1398       // sets. We will also reset the GC time stamps of the regions.
1399       clear_rsets_post_compaction();
1400       check_gc_time_stamps();
1401 
1402       // Resize the heap if necessary.
1403       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1404 
1405       if (_hr_printer.is_active()) {
1406         // We should do this after we potentially resize the heap so
1407         // that all the COMMIT / UNCOMMIT events are generated before
1408         // the end GC event.
1409 
1410         print_hrs_post_compaction();
1411         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1412       }
1413 
1414       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1415       if (hot_card_cache->use_cache()) {
1416         hot_card_cache->reset_card_counts();
1417         hot_card_cache->reset_hot_cache();
1418       }
1419 
1420       // Rebuild remembered sets of all regions.
1421       if (G1CollectedHeap::use_parallel_gc_threads()) {
1422         uint n_workers =
1423           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1424                                                   workers()->active_workers(),
1425                                                   Threads::number_of_non_daemon_threads());
1426         assert(UseDynamicNumberOfGCThreads ||
1427                n_workers == workers()->total_workers(),
1428                "If not dynamic should be using all the  workers");
1429         workers()->set_active_workers(n_workers);
1430         // Set parallel threads in the heap (_n_par_threads) only
1431         // before a parallel phase and always reset it to 0 after
1432         // the phase so that the number of parallel threads does
1433         // no get carried forward to a serial phase where there
1434         // may be code that is "possibly_parallel".
1435         set_par_threads(n_workers);
1436 
1437         ParRebuildRSTask rebuild_rs_task(this);
1438         assert(check_heap_region_claim_values(
1439                HeapRegion::InitialClaimValue), "sanity check");
1440         assert(UseDynamicNumberOfGCThreads ||
1441                workers()->active_workers() == workers()->total_workers(),
1442                "Unless dynamic should use total workers");
1443         // Use the most recent number of  active workers
1444         assert(workers()->active_workers() > 0,
1445                "Active workers not properly set");
1446         set_par_threads(workers()->active_workers());
1447         workers()->run_task(&rebuild_rs_task);
1448         set_par_threads(0);
1449         assert(check_heap_region_claim_values(
1450                HeapRegion::RebuildRSClaimValue), "sanity check");
1451         reset_heap_region_claim_values();
1452       } else {
1453         RebuildRSOutOfRegionClosure rebuild_rs(this);
1454         heap_region_iterate(&rebuild_rs);
1455       }
1456 
1457       // Rebuild the strong code root lists for each region
1458       rebuild_strong_code_roots();
1459 
1460       if (true) { // FIXME
1461         MetaspaceGC::compute_new_size();
1462       }
1463 
1464 #ifdef TRACESPINNING
1465       ParallelTaskTerminator::print_termination_counts();
1466 #endif
1467 
1468       // Discard all rset updates
1469       JavaThread::dirty_card_queue_set().abandon_logs();
1470       assert(!G1DeferredRSUpdate
1471              || (G1DeferredRSUpdate &&
1472                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1473 
1474       _young_list->reset_sampled_info();
1475       // At this point there should be no regions in the
1476       // entire heap tagged as young.
1477       assert(check_young_list_empty(true /* check_heap */),
1478              "young list should be empty at this point");
1479 
1480       // Update the number of full collections that have been completed.
1481       increment_old_marking_cycles_completed(false /* concurrent */);
1482 
1483       _hrs.verify_optional();
1484       verify_region_sets_optional();
1485 
1486       verify_after_gc();
1487 
1488       // Clear the previous marking bitmap, if needed for bitmap verification.
1489       // Note we cannot do this when we clear the next marking bitmap in
1490       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1491       // objects marked during a full GC against the previous bitmap.
1492       // But we need to clear it before calling check_bitmaps below since
1493       // the full GC has compacted objects and updated TAMS but not updated
1494       // the prev bitmap.
1495       if (G1VerifyBitmaps) {
1496         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1497       }
1498       check_bitmaps("Full GC End");
1499 
1500       // Start a new incremental collection set for the next pause
1501       assert(g1_policy()->collection_set() == NULL, "must be");
1502       g1_policy()->start_incremental_cset_building();
1503 
1504       clear_cset_fast_test();
1505 
1506       init_mutator_alloc_region();
1507 
1508       double end = os::elapsedTime();
1509       g1_policy()->record_full_collection_end();
1510 
1511       if (G1Log::fine()) {
1512         g1_policy()->print_heap_transition();
1513       }
1514 
1515       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1516       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1517       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1518       // before any GC notifications are raised.
1519       g1mm()->update_sizes();
1520 
1521       gc_epilogue(true);
1522     }
1523 
1524     if (G1Log::finer()) {
1525       g1_policy()->print_detailed_heap_transition(true /* full */);
1526     }
1527 
1528     print_heap_after_gc();
1529     trace_heap_after_gc(gc_tracer);
1530 
1531     post_full_gc_dump(gc_timer);
1532 
1533     gc_timer->register_gc_end();
1534     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1535   }
1536 
1537   return true;
1538 }
1539 
1540 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1541   // do_collection() will return whether it succeeded in performing
1542   // the GC. Currently, there is no facility on the
1543   // do_full_collection() API to notify the caller than the collection
1544   // did not succeed (e.g., because it was locked out by the GC
1545   // locker). So, right now, we'll ignore the return value.
1546   bool dummy = do_collection(true,                /* explicit_gc */
1547                              clear_all_soft_refs,
1548                              0                    /* word_size */);
1549 }
1550 
1551 // This code is mostly copied from TenuredGeneration.
1552 void
1553 G1CollectedHeap::
1554 resize_if_necessary_after_full_collection(size_t word_size) {
1555   // Include the current allocation, if any, and bytes that will be
1556   // pre-allocated to support collections, as "used".
1557   const size_t used_after_gc = used();
1558   const size_t capacity_after_gc = capacity();
1559   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1560 
1561   // This is enforced in arguments.cpp.
1562   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1563          "otherwise the code below doesn't make sense");
1564 
1565   // We don't have floating point command-line arguments
1566   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1567   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1568   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1569   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1570 
1571   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1572   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1573 
1574   // We have to be careful here as these two calculations can overflow
1575   // 32-bit size_t's.
1576   double used_after_gc_d = (double) used_after_gc;
1577   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1578   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1579 
1580   // Let's make sure that they are both under the max heap size, which
1581   // by default will make them fit into a size_t.
1582   double desired_capacity_upper_bound = (double) max_heap_size;
1583   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1584                                     desired_capacity_upper_bound);
1585   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1586                                     desired_capacity_upper_bound);
1587 
1588   // We can now safely turn them into size_t's.
1589   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1590   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1591 
1592   // This assert only makes sense here, before we adjust them
1593   // with respect to the min and max heap size.
1594   assert(minimum_desired_capacity <= maximum_desired_capacity,
1595          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1596                  "maximum_desired_capacity = "SIZE_FORMAT,
1597                  minimum_desired_capacity, maximum_desired_capacity));
1598 
1599   // Should not be greater than the heap max size. No need to adjust
1600   // it with respect to the heap min size as it's a lower bound (i.e.,
1601   // we'll try to make the capacity larger than it, not smaller).
1602   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1603   // Should not be less than the heap min size. No need to adjust it
1604   // with respect to the heap max size as it's an upper bound (i.e.,
1605   // we'll try to make the capacity smaller than it, not greater).
1606   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1607 
1608   if (capacity_after_gc < minimum_desired_capacity) {
1609     // Don't expand unless it's significant
1610     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1611     ergo_verbose4(ErgoHeapSizing,
1612                   "attempt heap expansion",
1613                   ergo_format_reason("capacity lower than "
1614                                      "min desired capacity after Full GC")
1615                   ergo_format_byte("capacity")
1616                   ergo_format_byte("occupancy")
1617                   ergo_format_byte_perc("min desired capacity"),
1618                   capacity_after_gc, used_after_gc,
1619                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1620     expand(expand_bytes);
1621 
1622     // No expansion, now see if we want to shrink
1623   } else if (capacity_after_gc > maximum_desired_capacity) {
1624     // Capacity too large, compute shrinking size
1625     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1626     ergo_verbose4(ErgoHeapSizing,
1627                   "attempt heap shrinking",
1628                   ergo_format_reason("capacity higher than "
1629                                      "max desired capacity after Full GC")
1630                   ergo_format_byte("capacity")
1631                   ergo_format_byte("occupancy")
1632                   ergo_format_byte_perc("max desired capacity"),
1633                   capacity_after_gc, used_after_gc,
1634                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1635     shrink(shrink_bytes);
1636   }
1637 }
1638 
1639 
1640 HeapWord*
1641 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1642                                            bool* succeeded) {
1643   assert_at_safepoint(true /* should_be_vm_thread */);
1644 
1645   *succeeded = true;
1646   // Let's attempt the allocation first.
1647   HeapWord* result =
1648     attempt_allocation_at_safepoint(word_size,
1649                                  false /* expect_null_mutator_alloc_region */);
1650   if (result != NULL) {
1651     assert(*succeeded, "sanity");
1652     return result;
1653   }
1654 
1655   // In a G1 heap, we're supposed to keep allocation from failing by
1656   // incremental pauses.  Therefore, at least for now, we'll favor
1657   // expansion over collection.  (This might change in the future if we can
1658   // do something smarter than full collection to satisfy a failed alloc.)
1659   result = expand_and_allocate(word_size);
1660   if (result != NULL) {
1661     assert(*succeeded, "sanity");
1662     return result;
1663   }
1664 
1665   // Expansion didn't work, we'll try to do a Full GC.
1666   bool gc_succeeded = do_collection(false, /* explicit_gc */
1667                                     false, /* clear_all_soft_refs */
1668                                     word_size);
1669   if (!gc_succeeded) {
1670     *succeeded = false;
1671     return NULL;
1672   }
1673 
1674   // Retry the allocation
1675   result = attempt_allocation_at_safepoint(word_size,
1676                                   true /* expect_null_mutator_alloc_region */);
1677   if (result != NULL) {
1678     assert(*succeeded, "sanity");
1679     return result;
1680   }
1681 
1682   // Then, try a Full GC that will collect all soft references.
1683   gc_succeeded = do_collection(false, /* explicit_gc */
1684                                true,  /* clear_all_soft_refs */
1685                                word_size);
1686   if (!gc_succeeded) {
1687     *succeeded = false;
1688     return NULL;
1689   }
1690 
1691   // Retry the allocation once more
1692   result = attempt_allocation_at_safepoint(word_size,
1693                                   true /* expect_null_mutator_alloc_region */);
1694   if (result != NULL) {
1695     assert(*succeeded, "sanity");
1696     return result;
1697   }
1698 
1699   assert(!collector_policy()->should_clear_all_soft_refs(),
1700          "Flag should have been handled and cleared prior to this point");
1701 
1702   // What else?  We might try synchronous finalization later.  If the total
1703   // space available is large enough for the allocation, then a more
1704   // complete compaction phase than we've tried so far might be
1705   // appropriate.
1706   assert(*succeeded, "sanity");
1707   return NULL;
1708 }
1709 
1710 // Attempting to expand the heap sufficiently
1711 // to support an allocation of the given "word_size".  If
1712 // successful, perform the allocation and return the address of the
1713 // allocated block, or else "NULL".
1714 
1715 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1716   assert_at_safepoint(true /* should_be_vm_thread */);
1717 
1718   verify_region_sets_optional();
1719 
1720   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1721   ergo_verbose1(ErgoHeapSizing,
1722                 "attempt heap expansion",
1723                 ergo_format_reason("allocation request failed")
1724                 ergo_format_byte("allocation request"),
1725                 word_size * HeapWordSize);
1726   if (expand(expand_bytes)) {
1727     _hrs.verify_optional();
1728     verify_region_sets_optional();
1729     return attempt_allocation_at_safepoint(word_size,
1730                                  false /* expect_null_mutator_alloc_region */);
1731   }
1732   return NULL;
1733 }
1734 
1735 bool G1CollectedHeap::expand(size_t expand_bytes) {
1736   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1737   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1738                                        HeapRegion::GrainBytes);
1739   ergo_verbose2(ErgoHeapSizing,
1740                 "expand the heap",
1741                 ergo_format_byte("requested expansion amount")
1742                 ergo_format_byte("attempted expansion amount"),
1743                 expand_bytes, aligned_expand_bytes);
1744 
1745   if (is_maximal_no_gc()) {
1746     ergo_verbose0(ErgoHeapSizing,
1747                       "did not expand the heap",
1748                       ergo_format_reason("heap already fully expanded"));
1749     return false;
1750   }
1751 
1752   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1753   assert(regions_to_expand > 0, "Must expand by at least one region");
1754 
1755   uint expanded_by = _hrs.expand_by(regions_to_expand);
1756 
1757   if (expanded_by > 0) {
1758     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1759     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1760     g1_policy()->record_new_heap_size(num_regions());
1761   } else {
1762     ergo_verbose0(ErgoHeapSizing,
1763                   "did not expand the heap",
1764                   ergo_format_reason("heap expansion operation failed"));
1765     // The expansion of the virtual storage space was unsuccessful.
1766     // Let's see if it was because we ran out of swap.
1767     if (G1ExitOnExpansionFailure &&
1768         _hrs.available() >= regions_to_expand) {
1769       // We had head room...
1770       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1771     }
1772   }
1773   return regions_to_expand > 0;
1774 }
1775 
1776 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1777   size_t aligned_shrink_bytes =
1778     ReservedSpace::page_align_size_down(shrink_bytes);
1779   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1780                                          HeapRegion::GrainBytes);
1781   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1782 
1783   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1784   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1785 
1786   ergo_verbose3(ErgoHeapSizing,
1787                 "shrink the heap",
1788                 ergo_format_byte("requested shrinking amount")
1789                 ergo_format_byte("aligned shrinking amount")
1790                 ergo_format_byte("attempted shrinking amount"),
1791                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1792   if (num_regions_removed > 0) {
1793     g1_policy()->record_new_heap_size(num_regions());
1794   } else {
1795     ergo_verbose0(ErgoHeapSizing,
1796                   "did not shrink the heap",
1797                   ergo_format_reason("heap shrinking operation failed"));
1798   }
1799 }
1800 
1801 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1802   verify_region_sets_optional();
1803 
1804   // We should only reach here at the end of a Full GC which means we
1805   // should not not be holding to any GC alloc regions. The method
1806   // below will make sure of that and do any remaining clean up.
1807   abandon_gc_alloc_regions();
1808 
1809   // Instead of tearing down / rebuilding the free lists here, we
1810   // could instead use the remove_all_pending() method on free_list to
1811   // remove only the ones that we need to remove.
1812   tear_down_region_sets(true /* free_list_only */);
1813   shrink_helper(shrink_bytes);
1814   rebuild_region_sets(true /* free_list_only */);
1815 
1816   _hrs.verify_optional();
1817   verify_region_sets_optional();
1818 }
1819 
1820 // Public methods.
1821 
1822 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1823 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1824 #endif // _MSC_VER
1825 
1826 
1827 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1828   SharedHeap(policy_),
1829   _g1_policy(policy_),
1830   _dirty_card_queue_set(false),
1831   _into_cset_dirty_card_queue_set(false),
1832   _is_alive_closure_cm(this),
1833   _is_alive_closure_stw(this),
1834   _ref_processor_cm(NULL),
1835   _ref_processor_stw(NULL),
1836   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1837   _bot_shared(NULL),
1838   _evac_failure_scan_stack(NULL),
1839   _mark_in_progress(false),
1840   _cg1r(NULL), _summary_bytes_used(0),
1841   _g1mm(NULL),
1842   _refine_cte_cl(NULL),
1843   _full_collection(false),
1844   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1845   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1846   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1847   _humongous_is_live(),
1848   _has_humongous_reclaim_candidates(false),
1849   _free_regions_coming(false),
1850   _young_list(new YoungList(this)),
1851   _gc_time_stamp(0),
1852   _retained_old_gc_alloc_region(NULL),
1853   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1854   _old_plab_stats(OldPLABSize, PLABWeight),
1855   _expand_heap_after_alloc_failure(true),
1856   _surviving_young_words(NULL),
1857   _old_marking_cycles_started(0),
1858   _old_marking_cycles_completed(0),
1859   _concurrent_cycle_started(false),
1860   _in_cset_fast_test(),
1861   _dirty_cards_region_list(NULL),
1862   _worker_cset_start_region(NULL),
1863   _worker_cset_start_region_time_stamp(NULL),
1864   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1865   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1866   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1867   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1868 
1869   _g1h = this;
1870   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1871     vm_exit_during_initialization("Failed necessary allocation.");
1872   }
1873 
1874   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1875 
1876   int n_queues = MAX2((int)ParallelGCThreads, 1);
1877   _task_queues = new RefToScanQueueSet(n_queues);
1878 
1879   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1880   assert(n_rem_sets > 0, "Invariant.");
1881 
1882   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1883   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1884   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1885 
1886   for (int i = 0; i < n_queues; i++) {
1887     RefToScanQueue* q = new RefToScanQueue();
1888     q->initialize();
1889     _task_queues->register_queue(i, q);
1890     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1891   }
1892   clear_cset_start_regions();
1893 
1894   // Initialize the G1EvacuationFailureALot counters and flags.
1895   NOT_PRODUCT(reset_evacuation_should_fail();)
1896 
1897   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1898 }
1899 
1900 jint G1CollectedHeap::initialize() {
1901   CollectedHeap::pre_initialize();
1902   os::enable_vtime();
1903 
1904   G1Log::init();
1905 
1906   // Necessary to satisfy locking discipline assertions.
1907 
1908   MutexLocker x(Heap_lock);
1909 
1910   // We have to initialize the printer before committing the heap, as
1911   // it will be used then.
1912   _hr_printer.set_active(G1PrintHeapRegions);
1913 
1914   // While there are no constraints in the GC code that HeapWordSize
1915   // be any particular value, there are multiple other areas in the
1916   // system which believe this to be true (e.g. oop->object_size in some
1917   // cases incorrectly returns the size in wordSize units rather than
1918   // HeapWordSize).
1919   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1920 
1921   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1922   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1923   size_t heap_alignment = collector_policy()->heap_alignment();
1924 
1925   // Ensure that the sizes are properly aligned.
1926   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1927   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1928   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1929 
1930   _refine_cte_cl = new RefineCardTableEntryClosure();
1931 
1932   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1933 
1934   // Reserve the maximum.
1935 
1936   // When compressed oops are enabled, the preferred heap base
1937   // is calculated by subtracting the requested size from the
1938   // 32Gb boundary and using the result as the base address for
1939   // heap reservation. If the requested size is not aligned to
1940   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1941   // into the ReservedHeapSpace constructor) then the actual
1942   // base of the reserved heap may end up differing from the
1943   // address that was requested (i.e. the preferred heap base).
1944   // If this happens then we could end up using a non-optimal
1945   // compressed oops mode.
1946 
1947   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1948                                                  heap_alignment);
1949 
1950   // It is important to do this in a way such that concurrent readers can't
1951   // temporarily think something is in the heap.  (I've actually seen this
1952   // happen in asserts: DLD.)
1953   _reserved.set_word_size(0);
1954   _reserved.set_start((HeapWord*)heap_rs.base());
1955   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1956 
1957   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
1958 
1959   // Create the gen rem set (and barrier set) for the entire reserved region.
1960   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1961   set_barrier_set(rem_set()->bs());
1962   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1963     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1964     return JNI_ENOMEM;
1965   }
1966 
1967   // Also create a G1 rem set.
1968   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1969 
1970   // Carve out the G1 part of the heap.
1971 
1972   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1973   _hrs.initialize(g1_rs);
1974 
1975   assert(_hrs.max_length() == _expansion_regions,
1976          err_msg("max length: %u expansion regions: %u",
1977                  _hrs.max_length(), _expansion_regions));
1978 
1979   // Do later initialization work for concurrent refinement.
1980   _cg1r->init();
1981 
1982   // 6843694 - ensure that the maximum region index can fit
1983   // in the remembered set structures.
1984   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1985   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1986 
1987   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1988   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1989   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1990             "too many cards per region");
1991 
1992   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1993 
1994   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1995                                              heap_word_size(init_byte_size));
1996 
1997   _g1h = this;
1998 
1999   _in_cset_fast_test.initialize(_hrs.reserved().start(), _hrs.reserved().end(), HeapRegion::GrainBytes);
2000   _humongous_is_live.initialize(_hrs.reserved().start(), _hrs.reserved().end(), HeapRegion::GrainBytes);
2001 
2002   // Create the ConcurrentMark data structure and thread.
2003   // (Must do this late, so that "max_regions" is defined.)
2004   _cm = new ConcurrentMark(this, heap_rs);
2005   if (_cm == NULL || !_cm->completed_initialization()) {
2006     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2007     return JNI_ENOMEM;
2008   }
2009   _cmThread = _cm->cmThread();
2010 
2011   // Initialize the from_card cache structure of HeapRegionRemSet.
2012   HeapRegionRemSet::init_heap(max_regions());
2013 
2014   // Now expand into the initial heap size.
2015   if (!expand(init_byte_size)) {
2016     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2017     return JNI_ENOMEM;
2018   }
2019 
2020   // Perform any initialization actions delegated to the policy.
2021   g1_policy()->init();
2022 
2023   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2024                                                SATB_Q_FL_lock,
2025                                                G1SATBProcessCompletedThreshold,
2026                                                Shared_SATB_Q_lock);
2027 
2028   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2029                                                 DirtyCardQ_CBL_mon,
2030                                                 DirtyCardQ_FL_lock,
2031                                                 concurrent_g1_refine()->yellow_zone(),
2032                                                 concurrent_g1_refine()->red_zone(),
2033                                                 Shared_DirtyCardQ_lock);
2034 
2035   if (G1DeferredRSUpdate) {
2036     dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2037                                       DirtyCardQ_CBL_mon,
2038                                       DirtyCardQ_FL_lock,
2039                                       -1, // never trigger processing
2040                                       -1, // no limit on length
2041                                       Shared_DirtyCardQ_lock,
2042                                       &JavaThread::dirty_card_queue_set());
2043   }
2044 
2045   // Initialize the card queue set used to hold cards containing
2046   // references into the collection set.
2047   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2048                                              DirtyCardQ_CBL_mon,
2049                                              DirtyCardQ_FL_lock,
2050                                              -1, // never trigger processing
2051                                              -1, // no limit on length
2052                                              Shared_DirtyCardQ_lock,
2053                                              &JavaThread::dirty_card_queue_set());
2054 
2055   // In case we're keeping closure specialization stats, initialize those
2056   // counts and that mechanism.
2057   SpecializationStats::clear();
2058 
2059   // Here we allocate the dummy HeapRegion that is required by the
2060   // G1AllocRegion class.
2061 
2062   HeapRegion* dummy_region = _hrs.get_dummy_region();
2063   // We'll re-use the same region whether the alloc region will
2064   // require BOT updates or not and, if it doesn't, then a non-young
2065   // region will complain that it cannot support allocations without
2066   // BOT updates. So we'll tag the dummy region as young to avoid that.
2067   dummy_region->set_young();
2068   // Make sure it's full.
2069   dummy_region->set_top(dummy_region->end());
2070   G1AllocRegion::setup(this, dummy_region);
2071 
2072   init_mutator_alloc_region();
2073 
2074   // Do create of the monitoring and management support so that
2075   // values in the heap have been properly initialized.
2076   _g1mm = new G1MonitoringSupport(this);
2077 
2078   G1StringDedup::initialize();
2079 
2080   return JNI_OK;
2081 }
2082 
2083 void G1CollectedHeap::stop() {
2084   // Stop all concurrent threads. We do this to make sure these threads
2085   // do not continue to execute and access resources (e.g. gclog_or_tty)
2086   // that are destroyed during shutdown.
2087   _cg1r->stop();
2088   _cmThread->stop();
2089   if (G1StringDedup::is_enabled()) {
2090     G1StringDedup::stop();
2091   }
2092 }
2093 
2094 void G1CollectedHeap::clear_humongous_is_live_table() {
2095   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
2096   _humongous_is_live.clear();
2097 }
2098 
2099 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2100   return HeapRegion::max_region_size();
2101 }
2102 
2103 void G1CollectedHeap::ref_processing_init() {
2104   // Reference processing in G1 currently works as follows:
2105   //
2106   // * There are two reference processor instances. One is
2107   //   used to record and process discovered references
2108   //   during concurrent marking; the other is used to
2109   //   record and process references during STW pauses
2110   //   (both full and incremental).
2111   // * Both ref processors need to 'span' the entire heap as
2112   //   the regions in the collection set may be dotted around.
2113   //
2114   // * For the concurrent marking ref processor:
2115   //   * Reference discovery is enabled at initial marking.
2116   //   * Reference discovery is disabled and the discovered
2117   //     references processed etc during remarking.
2118   //   * Reference discovery is MT (see below).
2119   //   * Reference discovery requires a barrier (see below).
2120   //   * Reference processing may or may not be MT
2121   //     (depending on the value of ParallelRefProcEnabled
2122   //     and ParallelGCThreads).
2123   //   * A full GC disables reference discovery by the CM
2124   //     ref processor and abandons any entries on it's
2125   //     discovered lists.
2126   //
2127   // * For the STW processor:
2128   //   * Non MT discovery is enabled at the start of a full GC.
2129   //   * Processing and enqueueing during a full GC is non-MT.
2130   //   * During a full GC, references are processed after marking.
2131   //
2132   //   * Discovery (may or may not be MT) is enabled at the start
2133   //     of an incremental evacuation pause.
2134   //   * References are processed near the end of a STW evacuation pause.
2135   //   * For both types of GC:
2136   //     * Discovery is atomic - i.e. not concurrent.
2137   //     * Reference discovery will not need a barrier.
2138 
2139   SharedHeap::ref_processing_init();
2140   MemRegion mr = reserved_region();
2141 
2142   // Concurrent Mark ref processor
2143   _ref_processor_cm =
2144     new ReferenceProcessor(mr,    // span
2145                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2146                                 // mt processing
2147                            (int) ParallelGCThreads,
2148                                 // degree of mt processing
2149                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2150                                 // mt discovery
2151                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2152                                 // degree of mt discovery
2153                            false,
2154                                 // Reference discovery is not atomic
2155                            &_is_alive_closure_cm);
2156                                 // is alive closure
2157                                 // (for efficiency/performance)
2158 
2159   // STW ref processor
2160   _ref_processor_stw =
2161     new ReferenceProcessor(mr,    // span
2162                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2163                                 // mt processing
2164                            MAX2((int)ParallelGCThreads, 1),
2165                                 // degree of mt processing
2166                            (ParallelGCThreads > 1),
2167                                 // mt discovery
2168                            MAX2((int)ParallelGCThreads, 1),
2169                                 // degree of mt discovery
2170                            true,
2171                                 // Reference discovery is atomic
2172                            &_is_alive_closure_stw);
2173                                 // is alive closure
2174                                 // (for efficiency/performance)
2175 }
2176 
2177 size_t G1CollectedHeap::capacity() const {
2178   return _hrs.length() * HeapRegion::GrainBytes;
2179 }
2180 
2181 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2182   assert(!hr->continuesHumongous(), "pre-condition");
2183   hr->reset_gc_time_stamp();
2184   if (hr->startsHumongous()) {
2185     uint first_index = hr->hrs_index() + 1;
2186     uint last_index = hr->last_hc_index();
2187     for (uint i = first_index; i < last_index; i += 1) {
2188       HeapRegion* chr = region_at(i);
2189       assert(chr->continuesHumongous(), "sanity");
2190       chr->reset_gc_time_stamp();
2191     }
2192   }
2193 }
2194 
2195 #ifndef PRODUCT
2196 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2197 private:
2198   unsigned _gc_time_stamp;
2199   bool _failures;
2200 
2201 public:
2202   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2203     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2204 
2205   virtual bool doHeapRegion(HeapRegion* hr) {
2206     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2207     if (_gc_time_stamp != region_gc_time_stamp) {
2208       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2209                              "expected %d", HR_FORMAT_PARAMS(hr),
2210                              region_gc_time_stamp, _gc_time_stamp);
2211       _failures = true;
2212     }
2213     return false;
2214   }
2215 
2216   bool failures() { return _failures; }
2217 };
2218 
2219 void G1CollectedHeap::check_gc_time_stamps() {
2220   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2221   heap_region_iterate(&cl);
2222   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2223 }
2224 #endif // PRODUCT
2225 
2226 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2227                                                  DirtyCardQueue* into_cset_dcq,
2228                                                  bool concurrent,
2229                                                  uint worker_i) {
2230   // Clean cards in the hot card cache
2231   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2232   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2233 
2234   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2235   int n_completed_buffers = 0;
2236   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2237     n_completed_buffers++;
2238   }
2239   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2240   dcqs.clear_n_completed_buffers();
2241   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2242 }
2243 
2244 
2245 // Computes the sum of the storage used by the various regions.
2246 
2247 size_t G1CollectedHeap::used() const {
2248   assert(Heap_lock->owner() != NULL,
2249          "Should be owned on this thread's behalf.");
2250   size_t result = _summary_bytes_used;
2251   // Read only once in case it is set to NULL concurrently
2252   HeapRegion* hr = _mutator_alloc_region.get();
2253   if (hr != NULL)
2254     result += hr->used();
2255   return result;
2256 }
2257 
2258 size_t G1CollectedHeap::used_unlocked() const {
2259   size_t result = _summary_bytes_used;
2260   return result;
2261 }
2262 
2263 class SumUsedClosure: public HeapRegionClosure {
2264   size_t _used;
2265 public:
2266   SumUsedClosure() : _used(0) {}
2267   bool doHeapRegion(HeapRegion* r) {
2268     if (!r->continuesHumongous()) {
2269       _used += r->used();
2270     }
2271     return false;
2272   }
2273   size_t result() { return _used; }
2274 };
2275 
2276 size_t G1CollectedHeap::recalculate_used() const {
2277   double recalculate_used_start = os::elapsedTime();
2278 
2279   SumUsedClosure blk;
2280   heap_region_iterate(&blk);
2281 
2282   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2283   return blk.result();
2284 }
2285 
2286 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2287   switch (cause) {
2288     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2289     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2290     case GCCause::_g1_humongous_allocation: return true;
2291     default:                                return false;
2292   }
2293 }
2294 
2295 #ifndef PRODUCT
2296 void G1CollectedHeap::allocate_dummy_regions() {
2297   // Let's fill up most of the region
2298   size_t word_size = HeapRegion::GrainWords - 1024;
2299   // And as a result the region we'll allocate will be humongous.
2300   guarantee(isHumongous(word_size), "sanity");
2301 
2302   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2303     // Let's use the existing mechanism for the allocation
2304     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2305     if (dummy_obj != NULL) {
2306       MemRegion mr(dummy_obj, word_size);
2307       CollectedHeap::fill_with_object(mr);
2308     } else {
2309       // If we can't allocate once, we probably cannot allocate
2310       // again. Let's get out of the loop.
2311       break;
2312     }
2313   }
2314 }
2315 #endif // !PRODUCT
2316 
2317 void G1CollectedHeap::increment_old_marking_cycles_started() {
2318   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2319     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2320     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2321     _old_marking_cycles_started, _old_marking_cycles_completed));
2322 
2323   _old_marking_cycles_started++;
2324 }
2325 
2326 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2327   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2328 
2329   // We assume that if concurrent == true, then the caller is a
2330   // concurrent thread that was joined the Suspendible Thread
2331   // Set. If there's ever a cheap way to check this, we should add an
2332   // assert here.
2333 
2334   // Given that this method is called at the end of a Full GC or of a
2335   // concurrent cycle, and those can be nested (i.e., a Full GC can
2336   // interrupt a concurrent cycle), the number of full collections
2337   // completed should be either one (in the case where there was no
2338   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2339   // behind the number of full collections started.
2340 
2341   // This is the case for the inner caller, i.e. a Full GC.
2342   assert(concurrent ||
2343          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2344          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2345          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2346                  "is inconsistent with _old_marking_cycles_completed = %u",
2347                  _old_marking_cycles_started, _old_marking_cycles_completed));
2348 
2349   // This is the case for the outer caller, i.e. the concurrent cycle.
2350   assert(!concurrent ||
2351          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2352          err_msg("for outer caller (concurrent cycle): "
2353                  "_old_marking_cycles_started = %u "
2354                  "is inconsistent with _old_marking_cycles_completed = %u",
2355                  _old_marking_cycles_started, _old_marking_cycles_completed));
2356 
2357   _old_marking_cycles_completed += 1;
2358 
2359   // We need to clear the "in_progress" flag in the CM thread before
2360   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2361   // is set) so that if a waiter requests another System.gc() it doesn't
2362   // incorrectly see that a marking cycle is still in progress.
2363   if (concurrent) {
2364     _cmThread->clear_in_progress();
2365   }
2366 
2367   // This notify_all() will ensure that a thread that called
2368   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2369   // and it's waiting for a full GC to finish will be woken up. It is
2370   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2371   FullGCCount_lock->notify_all();
2372 }
2373 
2374 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2375   _concurrent_cycle_started = true;
2376   _gc_timer_cm->register_gc_start(start_time);
2377 
2378   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2379   trace_heap_before_gc(_gc_tracer_cm);
2380 }
2381 
2382 void G1CollectedHeap::register_concurrent_cycle_end() {
2383   if (_concurrent_cycle_started) {
2384     if (_cm->has_aborted()) {
2385       _gc_tracer_cm->report_concurrent_mode_failure();
2386     }
2387 
2388     _gc_timer_cm->register_gc_end();
2389     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2390 
2391     _concurrent_cycle_started = false;
2392   }
2393 }
2394 
2395 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2396   if (_concurrent_cycle_started) {
2397     trace_heap_after_gc(_gc_tracer_cm);
2398   }
2399 }
2400 
2401 G1YCType G1CollectedHeap::yc_type() {
2402   bool is_young = g1_policy()->gcs_are_young();
2403   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2404   bool is_during_mark = mark_in_progress();
2405 
2406   if (is_initial_mark) {
2407     return InitialMark;
2408   } else if (is_during_mark) {
2409     return DuringMark;
2410   } else if (is_young) {
2411     return Normal;
2412   } else {
2413     return Mixed;
2414   }
2415 }
2416 
2417 void G1CollectedHeap::collect(GCCause::Cause cause) {
2418   assert_heap_not_locked();
2419 
2420   unsigned int gc_count_before;
2421   unsigned int old_marking_count_before;
2422   bool retry_gc;
2423 
2424   do {
2425     retry_gc = false;
2426 
2427     {
2428       MutexLocker ml(Heap_lock);
2429 
2430       // Read the GC count while holding the Heap_lock
2431       gc_count_before = total_collections();
2432       old_marking_count_before = _old_marking_cycles_started;
2433     }
2434 
2435     if (should_do_concurrent_full_gc(cause)) {
2436       // Schedule an initial-mark evacuation pause that will start a
2437       // concurrent cycle. We're setting word_size to 0 which means that
2438       // we are not requesting a post-GC allocation.
2439       VM_G1IncCollectionPause op(gc_count_before,
2440                                  0,     /* word_size */
2441                                  true,  /* should_initiate_conc_mark */
2442                                  g1_policy()->max_pause_time_ms(),
2443                                  cause);
2444 
2445       VMThread::execute(&op);
2446       if (!op.pause_succeeded()) {
2447         if (old_marking_count_before == _old_marking_cycles_started) {
2448           retry_gc = op.should_retry_gc();
2449         } else {
2450           // A Full GC happened while we were trying to schedule the
2451           // initial-mark GC. No point in starting a new cycle given
2452           // that the whole heap was collected anyway.
2453         }
2454 
2455         if (retry_gc) {
2456           if (GC_locker::is_active_and_needs_gc()) {
2457             GC_locker::stall_until_clear();
2458           }
2459         }
2460       }
2461     } else {
2462       if (cause == GCCause::_gc_locker
2463           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2464 
2465         // Schedule a standard evacuation pause. We're setting word_size
2466         // to 0 which means that we are not requesting a post-GC allocation.
2467         VM_G1IncCollectionPause op(gc_count_before,
2468                                    0,     /* word_size */
2469                                    false, /* should_initiate_conc_mark */
2470                                    g1_policy()->max_pause_time_ms(),
2471                                    cause);
2472         VMThread::execute(&op);
2473       } else {
2474         // Schedule a Full GC.
2475         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2476         VMThread::execute(&op);
2477       }
2478     }
2479   } while (retry_gc);
2480 }
2481 
2482 bool G1CollectedHeap::is_in(const void* p) const {
2483   if (_hrs.committed().contains(p)) {
2484     // Given that we know that p is in the committed space,
2485     // heap_region_containing_raw() should successfully
2486     // return the containing region.
2487     HeapRegion* hr = heap_region_containing_raw(p);
2488     return hr->is_in(p);
2489   } else {
2490     return false;
2491   }
2492 }
2493 
2494 // Iteration functions.
2495 
2496 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2497 
2498 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2499   ExtendedOopClosure* _cl;
2500 public:
2501   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2502   bool doHeapRegion(HeapRegion* r) {
2503     if (!r->continuesHumongous()) {
2504       r->oop_iterate(_cl);
2505     }
2506     return false;
2507   }
2508 };
2509 
2510 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2511   IterateOopClosureRegionClosure blk(cl);
2512   heap_region_iterate(&blk);
2513 }
2514 
2515 // Iterates an ObjectClosure over all objects within a HeapRegion.
2516 
2517 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2518   ObjectClosure* _cl;
2519 public:
2520   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2521   bool doHeapRegion(HeapRegion* r) {
2522     if (! r->continuesHumongous()) {
2523       r->object_iterate(_cl);
2524     }
2525     return false;
2526   }
2527 };
2528 
2529 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2530   IterateObjectClosureRegionClosure blk(cl);
2531   heap_region_iterate(&blk);
2532 }
2533 
2534 // Calls a SpaceClosure on a HeapRegion.
2535 
2536 class SpaceClosureRegionClosure: public HeapRegionClosure {
2537   SpaceClosure* _cl;
2538 public:
2539   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2540   bool doHeapRegion(HeapRegion* r) {
2541     _cl->do_space(r);
2542     return false;
2543   }
2544 };
2545 
2546 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2547   SpaceClosureRegionClosure blk(cl);
2548   heap_region_iterate(&blk);
2549 }
2550 
2551 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2552   _hrs.iterate(cl);
2553 }
2554 
2555 void
2556 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2557                                                  uint worker_id,
2558                                                  uint num_workers,
2559                                                  jint claim_value) const {
2560   _hrs.par_iterate(cl, worker_id, num_workers, claim_value);
2561 }
2562 
2563 class ResetClaimValuesClosure: public HeapRegionClosure {
2564 public:
2565   bool doHeapRegion(HeapRegion* r) {
2566     r->set_claim_value(HeapRegion::InitialClaimValue);
2567     return false;
2568   }
2569 };
2570 
2571 void G1CollectedHeap::reset_heap_region_claim_values() {
2572   ResetClaimValuesClosure blk;
2573   heap_region_iterate(&blk);
2574 }
2575 
2576 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2577   ResetClaimValuesClosure blk;
2578   collection_set_iterate(&blk);
2579 }
2580 
2581 #ifdef ASSERT
2582 // This checks whether all regions in the heap have the correct claim
2583 // value. I also piggy-backed on this a check to ensure that the
2584 // humongous_start_region() information on "continues humongous"
2585 // regions is correct.
2586 
2587 class CheckClaimValuesClosure : public HeapRegionClosure {
2588 private:
2589   jint _claim_value;
2590   uint _failures;
2591   HeapRegion* _sh_region;
2592 
2593 public:
2594   CheckClaimValuesClosure(jint claim_value) :
2595     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2596   bool doHeapRegion(HeapRegion* r) {
2597     if (r->claim_value() != _claim_value) {
2598       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2599                              "claim value = %d, should be %d",
2600                              HR_FORMAT_PARAMS(r),
2601                              r->claim_value(), _claim_value);
2602       ++_failures;
2603     }
2604     if (!r->isHumongous()) {
2605       _sh_region = NULL;
2606     } else if (r->startsHumongous()) {
2607       _sh_region = r;
2608     } else if (r->continuesHumongous()) {
2609       if (r->humongous_start_region() != _sh_region) {
2610         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2611                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2612                                HR_FORMAT_PARAMS(r),
2613                                r->humongous_start_region(),
2614                                _sh_region);
2615         ++_failures;
2616       }
2617     }
2618     return false;
2619   }
2620   uint failures() { return _failures; }
2621 };
2622 
2623 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2624   CheckClaimValuesClosure cl(claim_value);
2625   heap_region_iterate(&cl);
2626   return cl.failures() == 0;
2627 }
2628 
2629 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2630 private:
2631   jint _claim_value;
2632   uint _failures;
2633 
2634 public:
2635   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2636     _claim_value(claim_value), _failures(0) { }
2637 
2638   uint failures() { return _failures; }
2639 
2640   bool doHeapRegion(HeapRegion* hr) {
2641     assert(hr->in_collection_set(), "how?");
2642     assert(!hr->isHumongous(), "H-region in CSet");
2643     if (hr->claim_value() != _claim_value) {
2644       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2645                              "claim value = %d, should be %d",
2646                              HR_FORMAT_PARAMS(hr),
2647                              hr->claim_value(), _claim_value);
2648       _failures += 1;
2649     }
2650     return false;
2651   }
2652 };
2653 
2654 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2655   CheckClaimValuesInCSetHRClosure cl(claim_value);
2656   collection_set_iterate(&cl);
2657   return cl.failures() == 0;
2658 }
2659 #endif // ASSERT
2660 
2661 // Clear the cached CSet starting regions and (more importantly)
2662 // the time stamps. Called when we reset the GC time stamp.
2663 void G1CollectedHeap::clear_cset_start_regions() {
2664   assert(_worker_cset_start_region != NULL, "sanity");
2665   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2666 
2667   int n_queues = MAX2((int)ParallelGCThreads, 1);
2668   for (int i = 0; i < n_queues; i++) {
2669     _worker_cset_start_region[i] = NULL;
2670     _worker_cset_start_region_time_stamp[i] = 0;
2671   }
2672 }
2673 
2674 // Given the id of a worker, obtain or calculate a suitable
2675 // starting region for iterating over the current collection set.
2676 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2677   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2678 
2679   HeapRegion* result = NULL;
2680   unsigned gc_time_stamp = get_gc_time_stamp();
2681 
2682   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2683     // Cached starting region for current worker was set
2684     // during the current pause - so it's valid.
2685     // Note: the cached starting heap region may be NULL
2686     // (when the collection set is empty).
2687     result = _worker_cset_start_region[worker_i];
2688     assert(result == NULL || result->in_collection_set(), "sanity");
2689     return result;
2690   }
2691 
2692   // The cached entry was not valid so let's calculate
2693   // a suitable starting heap region for this worker.
2694 
2695   // We want the parallel threads to start their collection
2696   // set iteration at different collection set regions to
2697   // avoid contention.
2698   // If we have:
2699   //          n collection set regions
2700   //          p threads
2701   // Then thread t will start at region floor ((t * n) / p)
2702 
2703   result = g1_policy()->collection_set();
2704   if (G1CollectedHeap::use_parallel_gc_threads()) {
2705     uint cs_size = g1_policy()->cset_region_length();
2706     uint active_workers = workers()->active_workers();
2707     assert(UseDynamicNumberOfGCThreads ||
2708              active_workers == workers()->total_workers(),
2709              "Unless dynamic should use total workers");
2710 
2711     uint end_ind   = (cs_size * worker_i) / active_workers;
2712     uint start_ind = 0;
2713 
2714     if (worker_i > 0 &&
2715         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2716       // Previous workers starting region is valid
2717       // so let's iterate from there
2718       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2719       result = _worker_cset_start_region[worker_i - 1];
2720     }
2721 
2722     for (uint i = start_ind; i < end_ind; i++) {
2723       result = result->next_in_collection_set();
2724     }
2725   }
2726 
2727   // Note: the calculated starting heap region may be NULL
2728   // (when the collection set is empty).
2729   assert(result == NULL || result->in_collection_set(), "sanity");
2730   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2731          "should be updated only once per pause");
2732   _worker_cset_start_region[worker_i] = result;
2733   OrderAccess::storestore();
2734   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2735   return result;
2736 }
2737 
2738 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2739   HeapRegion* r = g1_policy()->collection_set();
2740   while (r != NULL) {
2741     HeapRegion* next = r->next_in_collection_set();
2742     if (cl->doHeapRegion(r)) {
2743       cl->incomplete();
2744       return;
2745     }
2746     r = next;
2747   }
2748 }
2749 
2750 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2751                                                   HeapRegionClosure *cl) {
2752   if (r == NULL) {
2753     // The CSet is empty so there's nothing to do.
2754     return;
2755   }
2756 
2757   assert(r->in_collection_set(),
2758          "Start region must be a member of the collection set.");
2759   HeapRegion* cur = r;
2760   while (cur != NULL) {
2761     HeapRegion* next = cur->next_in_collection_set();
2762     if (cl->doHeapRegion(cur) && false) {
2763       cl->incomplete();
2764       return;
2765     }
2766     cur = next;
2767   }
2768   cur = g1_policy()->collection_set();
2769   while (cur != r) {
2770     HeapRegion* next = cur->next_in_collection_set();
2771     if (cl->doHeapRegion(cur) && false) {
2772       cl->incomplete();
2773       return;
2774     }
2775     cur = next;
2776   }
2777 }
2778 
2779 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2780   HeapRegion* result = _hrs.next_region_in_heap(from);
2781   while (result != NULL && result->isHumongous()) {
2782     result = _hrs.next_region_in_heap(result);
2783   }
2784   return result;
2785 }
2786 
2787 Space* G1CollectedHeap::space_containing(const void* addr) const {
2788   return heap_region_containing(addr);
2789 }
2790 
2791 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2792   Space* sp = space_containing(addr);
2793   return sp->block_start(addr);
2794 }
2795 
2796 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2797   Space* sp = space_containing(addr);
2798   return sp->block_size(addr);
2799 }
2800 
2801 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2802   Space* sp = space_containing(addr);
2803   return sp->block_is_obj(addr);
2804 }
2805 
2806 bool G1CollectedHeap::supports_tlab_allocation() const {
2807   return true;
2808 }
2809 
2810 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2811   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2812 }
2813 
2814 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2815   return young_list()->eden_used_bytes();
2816 }
2817 
2818 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2819 // must be smaller than the humongous object limit.
2820 size_t G1CollectedHeap::max_tlab_size() const {
2821   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2822 }
2823 
2824 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2825   // Return the remaining space in the cur alloc region, but not less than
2826   // the min TLAB size.
2827 
2828   // Also, this value can be at most the humongous object threshold,
2829   // since we can't allow tlabs to grow big enough to accommodate
2830   // humongous objects.
2831 
2832   HeapRegion* hr = _mutator_alloc_region.get();
2833   size_t max_tlab = max_tlab_size() * wordSize;
2834   if (hr == NULL) {
2835     return max_tlab;
2836   } else {
2837     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2838   }
2839 }
2840 
2841 size_t G1CollectedHeap::max_capacity() const {
2842   return _hrs.reserved().byte_size();
2843 }
2844 
2845 jlong G1CollectedHeap::millis_since_last_gc() {
2846   // assert(false, "NYI");
2847   return 0;
2848 }
2849 
2850 void G1CollectedHeap::prepare_for_verify() {
2851   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2852     ensure_parsability(false);
2853   }
2854   g1_rem_set()->prepare_for_verify();
2855 }
2856 
2857 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2858                                               VerifyOption vo) {
2859   switch (vo) {
2860   case VerifyOption_G1UsePrevMarking:
2861     return hr->obj_allocated_since_prev_marking(obj);
2862   case VerifyOption_G1UseNextMarking:
2863     return hr->obj_allocated_since_next_marking(obj);
2864   case VerifyOption_G1UseMarkWord:
2865     return false;
2866   default:
2867     ShouldNotReachHere();
2868   }
2869   return false; // keep some compilers happy
2870 }
2871 
2872 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2873   switch (vo) {
2874   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2875   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2876   case VerifyOption_G1UseMarkWord:    return NULL;
2877   default:                            ShouldNotReachHere();
2878   }
2879   return NULL; // keep some compilers happy
2880 }
2881 
2882 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2883   switch (vo) {
2884   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2885   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2886   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2887   default:                            ShouldNotReachHere();
2888   }
2889   return false; // keep some compilers happy
2890 }
2891 
2892 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2893   switch (vo) {
2894   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2895   case VerifyOption_G1UseNextMarking: return "NTAMS";
2896   case VerifyOption_G1UseMarkWord:    return "NONE";
2897   default:                            ShouldNotReachHere();
2898   }
2899   return NULL; // keep some compilers happy
2900 }
2901 
2902 class VerifyRootsClosure: public OopClosure {
2903 private:
2904   G1CollectedHeap* _g1h;
2905   VerifyOption     _vo;
2906   bool             _failures;
2907 public:
2908   // _vo == UsePrevMarking -> use "prev" marking information,
2909   // _vo == UseNextMarking -> use "next" marking information,
2910   // _vo == UseMarkWord    -> use mark word from object header.
2911   VerifyRootsClosure(VerifyOption vo) :
2912     _g1h(G1CollectedHeap::heap()),
2913     _vo(vo),
2914     _failures(false) { }
2915 
2916   bool failures() { return _failures; }
2917 
2918   template <class T> void do_oop_nv(T* p) {
2919     T heap_oop = oopDesc::load_heap_oop(p);
2920     if (!oopDesc::is_null(heap_oop)) {
2921       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2922       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2923         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2924                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2925         if (_vo == VerifyOption_G1UseMarkWord) {
2926           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2927         }
2928         obj->print_on(gclog_or_tty);
2929         _failures = true;
2930       }
2931     }
2932   }
2933 
2934   void do_oop(oop* p)       { do_oop_nv(p); }
2935   void do_oop(narrowOop* p) { do_oop_nv(p); }
2936 };
2937 
2938 class G1VerifyCodeRootOopClosure: public OopClosure {
2939   G1CollectedHeap* _g1h;
2940   OopClosure* _root_cl;
2941   nmethod* _nm;
2942   VerifyOption _vo;
2943   bool _failures;
2944 
2945   template <class T> void do_oop_work(T* p) {
2946     // First verify that this root is live
2947     _root_cl->do_oop(p);
2948 
2949     if (!G1VerifyHeapRegionCodeRoots) {
2950       // We're not verifying the code roots attached to heap region.
2951       return;
2952     }
2953 
2954     // Don't check the code roots during marking verification in a full GC
2955     if (_vo == VerifyOption_G1UseMarkWord) {
2956       return;
2957     }
2958 
2959     // Now verify that the current nmethod (which contains p) is
2960     // in the code root list of the heap region containing the
2961     // object referenced by p.
2962 
2963     T heap_oop = oopDesc::load_heap_oop(p);
2964     if (!oopDesc::is_null(heap_oop)) {
2965       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2966 
2967       // Now fetch the region containing the object
2968       HeapRegion* hr = _g1h->heap_region_containing(obj);
2969       HeapRegionRemSet* hrrs = hr->rem_set();
2970       // Verify that the strong code root list for this region
2971       // contains the nmethod
2972       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2973         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2974                               "from nmethod "PTR_FORMAT" not in strong "
2975                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2976                               p, _nm, hr->bottom(), hr->end());
2977         _failures = true;
2978       }
2979     }
2980   }
2981 
2982 public:
2983   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2984     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2985 
2986   void do_oop(oop* p) { do_oop_work(p); }
2987   void do_oop(narrowOop* p) { do_oop_work(p); }
2988 
2989   void set_nmethod(nmethod* nm) { _nm = nm; }
2990   bool failures() { return _failures; }
2991 };
2992 
2993 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2994   G1VerifyCodeRootOopClosure* _oop_cl;
2995 
2996 public:
2997   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2998     _oop_cl(oop_cl) {}
2999 
3000   void do_code_blob(CodeBlob* cb) {
3001     nmethod* nm = cb->as_nmethod_or_null();
3002     if (nm != NULL) {
3003       _oop_cl->set_nmethod(nm);
3004       nm->oops_do(_oop_cl);
3005     }
3006   }
3007 };
3008 
3009 class YoungRefCounterClosure : public OopClosure {
3010   G1CollectedHeap* _g1h;
3011   int              _count;
3012  public:
3013   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3014   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3015   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3016 
3017   int count() { return _count; }
3018   void reset_count() { _count = 0; };
3019 };
3020 
3021 class VerifyKlassClosure: public KlassClosure {
3022   YoungRefCounterClosure _young_ref_counter_closure;
3023   OopClosure *_oop_closure;
3024  public:
3025   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3026   void do_klass(Klass* k) {
3027     k->oops_do(_oop_closure);
3028 
3029     _young_ref_counter_closure.reset_count();
3030     k->oops_do(&_young_ref_counter_closure);
3031     if (_young_ref_counter_closure.count() > 0) {
3032       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
3033     }
3034   }
3035 };
3036 
3037 class VerifyLivenessOopClosure: public OopClosure {
3038   G1CollectedHeap* _g1h;
3039   VerifyOption _vo;
3040 public:
3041   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3042     _g1h(g1h), _vo(vo)
3043   { }
3044   void do_oop(narrowOop *p) { do_oop_work(p); }
3045   void do_oop(      oop *p) { do_oop_work(p); }
3046 
3047   template <class T> void do_oop_work(T *p) {
3048     oop obj = oopDesc::load_decode_heap_oop(p);
3049     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3050               "Dead object referenced by a not dead object");
3051   }
3052 };
3053 
3054 class VerifyObjsInRegionClosure: public ObjectClosure {
3055 private:
3056   G1CollectedHeap* _g1h;
3057   size_t _live_bytes;
3058   HeapRegion *_hr;
3059   VerifyOption _vo;
3060 public:
3061   // _vo == UsePrevMarking -> use "prev" marking information,
3062   // _vo == UseNextMarking -> use "next" marking information,
3063   // _vo == UseMarkWord    -> use mark word from object header.
3064   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3065     : _live_bytes(0), _hr(hr), _vo(vo) {
3066     _g1h = G1CollectedHeap::heap();
3067   }
3068   void do_object(oop o) {
3069     VerifyLivenessOopClosure isLive(_g1h, _vo);
3070     assert(o != NULL, "Huh?");
3071     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3072       // If the object is alive according to the mark word,
3073       // then verify that the marking information agrees.
3074       // Note we can't verify the contra-positive of the
3075       // above: if the object is dead (according to the mark
3076       // word), it may not be marked, or may have been marked
3077       // but has since became dead, or may have been allocated
3078       // since the last marking.
3079       if (_vo == VerifyOption_G1UseMarkWord) {
3080         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3081       }
3082 
3083       o->oop_iterate_no_header(&isLive);
3084       if (!_hr->obj_allocated_since_prev_marking(o)) {
3085         size_t obj_size = o->size();    // Make sure we don't overflow
3086         _live_bytes += (obj_size * HeapWordSize);
3087       }
3088     }
3089   }
3090   size_t live_bytes() { return _live_bytes; }
3091 };
3092 
3093 class PrintObjsInRegionClosure : public ObjectClosure {
3094   HeapRegion *_hr;
3095   G1CollectedHeap *_g1;
3096 public:
3097   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3098     _g1 = G1CollectedHeap::heap();
3099   };
3100 
3101   void do_object(oop o) {
3102     if (o != NULL) {
3103       HeapWord *start = (HeapWord *) o;
3104       size_t word_sz = o->size();
3105       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3106                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3107                           (void*) o, word_sz,
3108                           _g1->isMarkedPrev(o),
3109                           _g1->isMarkedNext(o),
3110                           _hr->obj_allocated_since_prev_marking(o));
3111       HeapWord *end = start + word_sz;
3112       HeapWord *cur;
3113       int *val;
3114       for (cur = start; cur < end; cur++) {
3115         val = (int *) cur;
3116         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3117       }
3118     }
3119   }
3120 };
3121 
3122 class VerifyRegionClosure: public HeapRegionClosure {
3123 private:
3124   bool             _par;
3125   VerifyOption     _vo;
3126   bool             _failures;
3127 public:
3128   // _vo == UsePrevMarking -> use "prev" marking information,
3129   // _vo == UseNextMarking -> use "next" marking information,
3130   // _vo == UseMarkWord    -> use mark word from object header.
3131   VerifyRegionClosure(bool par, VerifyOption vo)
3132     : _par(par),
3133       _vo(vo),
3134       _failures(false) {}
3135 
3136   bool failures() {
3137     return _failures;
3138   }
3139 
3140   bool doHeapRegion(HeapRegion* r) {
3141     if (!r->continuesHumongous()) {
3142       bool failures = false;
3143       r->verify(_vo, &failures);
3144       if (failures) {
3145         _failures = true;
3146       } else {
3147         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3148         r->object_iterate(&not_dead_yet_cl);
3149         if (_vo != VerifyOption_G1UseNextMarking) {
3150           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3151             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3152                                    "max_live_bytes "SIZE_FORMAT" "
3153                                    "< calculated "SIZE_FORMAT,
3154                                    r->bottom(), r->end(),
3155                                    r->max_live_bytes(),
3156                                  not_dead_yet_cl.live_bytes());
3157             _failures = true;
3158           }
3159         } else {
3160           // When vo == UseNextMarking we cannot currently do a sanity
3161           // check on the live bytes as the calculation has not been
3162           // finalized yet.
3163         }
3164       }
3165     }
3166     return false; // stop the region iteration if we hit a failure
3167   }
3168 };
3169 
3170 // This is the task used for parallel verification of the heap regions
3171 
3172 class G1ParVerifyTask: public AbstractGangTask {
3173 private:
3174   G1CollectedHeap* _g1h;
3175   VerifyOption     _vo;
3176   bool             _failures;
3177 
3178 public:
3179   // _vo == UsePrevMarking -> use "prev" marking information,
3180   // _vo == UseNextMarking -> use "next" marking information,
3181   // _vo == UseMarkWord    -> use mark word from object header.
3182   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3183     AbstractGangTask("Parallel verify task"),
3184     _g1h(g1h),
3185     _vo(vo),
3186     _failures(false) { }
3187 
3188   bool failures() {
3189     return _failures;
3190   }
3191 
3192   void work(uint worker_id) {
3193     HandleMark hm;
3194     VerifyRegionClosure blk(true, _vo);
3195     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3196                                           _g1h->workers()->active_workers(),
3197                                           HeapRegion::ParVerifyClaimValue);
3198     if (blk.failures()) {
3199       _failures = true;
3200     }
3201   }
3202 };
3203 
3204 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3205   if (SafepointSynchronize::is_at_safepoint()) {
3206     assert(Thread::current()->is_VM_thread(),
3207            "Expected to be executed serially by the VM thread at this point");
3208 
3209     if (!silent) { gclog_or_tty->print("Roots "); }
3210     VerifyRootsClosure rootsCl(vo);
3211     VerifyKlassClosure klassCl(this, &rootsCl);
3212     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3213 
3214     // We apply the relevant closures to all the oops in the
3215     // system dictionary, class loader data graph, the string table
3216     // and the nmethods in the code cache.
3217     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3218     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3219 
3220     process_all_roots(true,            // activate StrongRootsScope
3221                       SO_AllCodeCache, // roots scanning options
3222                       &rootsCl,
3223                       &cldCl,
3224                       &blobsCl);
3225 
3226     bool failures = rootsCl.failures() || codeRootsCl.failures();
3227 
3228     if (vo != VerifyOption_G1UseMarkWord) {
3229       // If we're verifying during a full GC then the region sets
3230       // will have been torn down at the start of the GC. Therefore
3231       // verifying the region sets will fail. So we only verify
3232       // the region sets when not in a full GC.
3233       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3234       verify_region_sets();
3235     }
3236 
3237     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3238     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3239       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3240              "sanity check");
3241 
3242       G1ParVerifyTask task(this, vo);
3243       assert(UseDynamicNumberOfGCThreads ||
3244         workers()->active_workers() == workers()->total_workers(),
3245         "If not dynamic should be using all the workers");
3246       int n_workers = workers()->active_workers();
3247       set_par_threads(n_workers);
3248       workers()->run_task(&task);
3249       set_par_threads(0);
3250       if (task.failures()) {
3251         failures = true;
3252       }
3253 
3254       // Checks that the expected amount of parallel work was done.
3255       // The implication is that n_workers is > 0.
3256       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3257              "sanity check");
3258 
3259       reset_heap_region_claim_values();
3260 
3261       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3262              "sanity check");
3263     } else {
3264       VerifyRegionClosure blk(false, vo);
3265       heap_region_iterate(&blk);
3266       if (blk.failures()) {
3267         failures = true;
3268       }
3269     }
3270     if (!silent) gclog_or_tty->print("RemSet ");
3271     rem_set()->verify();
3272 
3273     if (G1StringDedup::is_enabled()) {
3274       if (!silent) gclog_or_tty->print("StrDedup ");
3275       G1StringDedup::verify();
3276     }
3277 
3278     if (failures) {
3279       gclog_or_tty->print_cr("Heap:");
3280       // It helps to have the per-region information in the output to
3281       // help us track down what went wrong. This is why we call
3282       // print_extended_on() instead of print_on().
3283       print_extended_on(gclog_or_tty);
3284       gclog_or_tty->cr();
3285 #ifndef PRODUCT
3286       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3287         concurrent_mark()->print_reachable("at-verification-failure",
3288                                            vo, false /* all */);
3289       }
3290 #endif
3291       gclog_or_tty->flush();
3292     }
3293     guarantee(!failures, "there should not have been any failures");
3294   } else {
3295     if (!silent) {
3296       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3297       if (G1StringDedup::is_enabled()) {
3298         gclog_or_tty->print(", StrDedup");
3299       }
3300       gclog_or_tty->print(") ");
3301     }
3302   }
3303 }
3304 
3305 void G1CollectedHeap::verify(bool silent) {
3306   verify(silent, VerifyOption_G1UsePrevMarking);
3307 }
3308 
3309 double G1CollectedHeap::verify(bool guard, const char* msg) {
3310   double verify_time_ms = 0.0;
3311 
3312   if (guard && total_collections() >= VerifyGCStartAt) {
3313     double verify_start = os::elapsedTime();
3314     HandleMark hm;  // Discard invalid handles created during verification
3315     prepare_for_verify();
3316     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3317     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3318   }
3319 
3320   return verify_time_ms;
3321 }
3322 
3323 void G1CollectedHeap::verify_before_gc() {
3324   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3325   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3326 }
3327 
3328 void G1CollectedHeap::verify_after_gc() {
3329   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3330   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3331 }
3332 
3333 class PrintRegionClosure: public HeapRegionClosure {
3334   outputStream* _st;
3335 public:
3336   PrintRegionClosure(outputStream* st) : _st(st) {}
3337   bool doHeapRegion(HeapRegion* r) {
3338     r->print_on(_st);
3339     return false;
3340   }
3341 };
3342 
3343 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3344                                        const HeapRegion* hr,
3345                                        const VerifyOption vo) const {
3346   switch (vo) {
3347   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3348   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3349   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3350   default:                            ShouldNotReachHere();
3351   }
3352   return false; // keep some compilers happy
3353 }
3354 
3355 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3356                                        const VerifyOption vo) const {
3357   switch (vo) {
3358   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3359   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3360   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3361   default:                            ShouldNotReachHere();
3362   }
3363   return false; // keep some compilers happy
3364 }
3365 
3366 void G1CollectedHeap::print_on(outputStream* st) const {
3367   st->print(" %-20s", "garbage-first heap");
3368   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3369             capacity()/K, used_unlocked()/K);
3370   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3371             _hrs.committed().start(),
3372             _hrs.committed().end(),
3373             _hrs.reserved().end());
3374   st->cr();
3375   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3376   uint young_regions = _young_list->length();
3377   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3378             (size_t) young_regions * HeapRegion::GrainBytes / K);
3379   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3380   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3381             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3382   st->cr();
3383   MetaspaceAux::print_on(st);
3384 }
3385 
3386 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3387   print_on(st);
3388 
3389   // Print the per-region information.
3390   st->cr();
3391   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3392                "HS=humongous(starts), HC=humongous(continues), "
3393                "CS=collection set, F=free, TS=gc time stamp, "
3394                "PTAMS=previous top-at-mark-start, "
3395                "NTAMS=next top-at-mark-start)");
3396   PrintRegionClosure blk(st);
3397   heap_region_iterate(&blk);
3398 }
3399 
3400 void G1CollectedHeap::print_on_error(outputStream* st) const {
3401   this->CollectedHeap::print_on_error(st);
3402 
3403   if (_cm != NULL) {
3404     st->cr();
3405     _cm->print_on_error(st);
3406   }
3407 }
3408 
3409 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3410   if (G1CollectedHeap::use_parallel_gc_threads()) {
3411     workers()->print_worker_threads_on(st);
3412   }
3413   _cmThread->print_on(st);
3414   st->cr();
3415   _cm->print_worker_threads_on(st);
3416   _cg1r->print_worker_threads_on(st);
3417   if (G1StringDedup::is_enabled()) {
3418     G1StringDedup::print_worker_threads_on(st);
3419   }
3420 }
3421 
3422 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3423   if (G1CollectedHeap::use_parallel_gc_threads()) {
3424     workers()->threads_do(tc);
3425   }
3426   tc->do_thread(_cmThread);
3427   _cg1r->threads_do(tc);
3428   if (G1StringDedup::is_enabled()) {
3429     G1StringDedup::threads_do(tc);
3430   }
3431 }
3432 
3433 void G1CollectedHeap::print_tracing_info() const {
3434   // We'll overload this to mean "trace GC pause statistics."
3435   if (TraceYoungGenTime || TraceOldGenTime) {
3436     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3437     // to that.
3438     g1_policy()->print_tracing_info();
3439   }
3440   if (G1SummarizeRSetStats) {
3441     g1_rem_set()->print_summary_info();
3442   }
3443   if (G1SummarizeConcMark) {
3444     concurrent_mark()->print_summary_info();
3445   }
3446   g1_policy()->print_yg_surv_rate_info();
3447   SpecializationStats::print();
3448 }
3449 
3450 #ifndef PRODUCT
3451 // Helpful for debugging RSet issues.
3452 
3453 class PrintRSetsClosure : public HeapRegionClosure {
3454 private:
3455   const char* _msg;
3456   size_t _occupied_sum;
3457 
3458 public:
3459   bool doHeapRegion(HeapRegion* r) {
3460     HeapRegionRemSet* hrrs = r->rem_set();
3461     size_t occupied = hrrs->occupied();
3462     _occupied_sum += occupied;
3463 
3464     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3465                            HR_FORMAT_PARAMS(r));
3466     if (occupied == 0) {
3467       gclog_or_tty->print_cr("  RSet is empty");
3468     } else {
3469       hrrs->print();
3470     }
3471     gclog_or_tty->print_cr("----------");
3472     return false;
3473   }
3474 
3475   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3476     gclog_or_tty->cr();
3477     gclog_or_tty->print_cr("========================================");
3478     gclog_or_tty->print_cr("%s", msg);
3479     gclog_or_tty->cr();
3480   }
3481 
3482   ~PrintRSetsClosure() {
3483     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3484     gclog_or_tty->print_cr("========================================");
3485     gclog_or_tty->cr();
3486   }
3487 };
3488 
3489 void G1CollectedHeap::print_cset_rsets() {
3490   PrintRSetsClosure cl("Printing CSet RSets");
3491   collection_set_iterate(&cl);
3492 }
3493 
3494 void G1CollectedHeap::print_all_rsets() {
3495   PrintRSetsClosure cl("Printing All RSets");;
3496   heap_region_iterate(&cl);
3497 }
3498 #endif // PRODUCT
3499 
3500 G1CollectedHeap* G1CollectedHeap::heap() {
3501   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3502          "not a garbage-first heap");
3503   return _g1h;
3504 }
3505 
3506 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3507   // always_do_update_barrier = false;
3508   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3509   // Fill TLAB's and such
3510   accumulate_statistics_all_tlabs();
3511   ensure_parsability(true);
3512 
3513   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3514       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3515     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3516   }
3517 }
3518 
3519 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3520 
3521   if (G1SummarizeRSetStats &&
3522       (G1SummarizeRSetStatsPeriod > 0) &&
3523       // we are at the end of the GC. Total collections has already been increased.
3524       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3525     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3526   }
3527 
3528   // FIXME: what is this about?
3529   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3530   // is set.
3531   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3532                         "derived pointer present"));
3533   // always_do_update_barrier = true;
3534 
3535   resize_all_tlabs();
3536 
3537   // We have just completed a GC. Update the soft reference
3538   // policy with the new heap occupancy
3539   Universe::update_heap_info_at_gc();
3540 }
3541 
3542 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3543                                                unsigned int gc_count_before,
3544                                                bool* succeeded,
3545                                                GCCause::Cause gc_cause) {
3546   assert_heap_not_locked_and_not_at_safepoint();
3547   g1_policy()->record_stop_world_start();
3548   VM_G1IncCollectionPause op(gc_count_before,
3549                              word_size,
3550                              false, /* should_initiate_conc_mark */
3551                              g1_policy()->max_pause_time_ms(),
3552                              gc_cause);
3553   VMThread::execute(&op);
3554 
3555   HeapWord* result = op.result();
3556   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3557   assert(result == NULL || ret_succeeded,
3558          "the result should be NULL if the VM did not succeed");
3559   *succeeded = ret_succeeded;
3560 
3561   assert_heap_not_locked();
3562   return result;
3563 }
3564 
3565 void
3566 G1CollectedHeap::doConcurrentMark() {
3567   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3568   if (!_cmThread->in_progress()) {
3569     _cmThread->set_started();
3570     CGC_lock->notify();
3571   }
3572 }
3573 
3574 size_t G1CollectedHeap::pending_card_num() {
3575   size_t extra_cards = 0;
3576   JavaThread *curr = Threads::first();
3577   while (curr != NULL) {
3578     DirtyCardQueue& dcq = curr->dirty_card_queue();
3579     extra_cards += dcq.size();
3580     curr = curr->next();
3581   }
3582   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3583   size_t buffer_size = dcqs.buffer_size();
3584   size_t buffer_num = dcqs.completed_buffers_num();
3585 
3586   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3587   // in bytes - not the number of 'entries'. We need to convert
3588   // into a number of cards.
3589   return (buffer_size * buffer_num + extra_cards) / oopSize;
3590 }
3591 
3592 size_t G1CollectedHeap::cards_scanned() {
3593   return g1_rem_set()->cardsScanned();
3594 }
3595 
3596 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3597   HeapRegion* region = region_at(index);
3598   assert(region->startsHumongous(), "Must start a humongous object");
3599   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3600 }
3601 
3602 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3603  private:
3604   size_t _total_humongous;
3605   size_t _candidate_humongous;
3606  public:
3607   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
3608   }
3609 
3610   virtual bool doHeapRegion(HeapRegion* r) {
3611     if (!r->startsHumongous()) {
3612       return false;
3613     }
3614     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3615 
3616     uint region_idx = r->hrs_index();
3617     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
3618     // Is_candidate already filters out humongous regions with some remembered set.
3619     // This will not lead to humongous object that we mistakenly keep alive because
3620     // during young collection the remembered sets will only be added to.
3621     if (is_candidate) {
3622       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3623       _candidate_humongous++;
3624     }
3625     _total_humongous++;
3626 
3627     return false;
3628   }
3629 
3630   size_t total_humongous() const { return _total_humongous; }
3631   size_t candidate_humongous() const { return _candidate_humongous; }
3632 };
3633 
3634 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3635   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
3636     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
3637     return;
3638   }
3639 
3640   RegisterHumongousWithInCSetFastTestClosure cl;
3641   heap_region_iterate(&cl);
3642   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
3643                                                                   cl.candidate_humongous());
3644   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3645 
3646   if (_has_humongous_reclaim_candidates) {
3647     clear_humongous_is_live_table();
3648   }
3649 }
3650 
3651 void
3652 G1CollectedHeap::setup_surviving_young_words() {
3653   assert(_surviving_young_words == NULL, "pre-condition");
3654   uint array_length = g1_policy()->young_cset_region_length();
3655   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3656   if (_surviving_young_words == NULL) {
3657     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3658                           "Not enough space for young surv words summary.");
3659   }
3660   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3661 #ifdef ASSERT
3662   for (uint i = 0;  i < array_length; ++i) {
3663     assert( _surviving_young_words[i] == 0, "memset above" );
3664   }
3665 #endif // !ASSERT
3666 }
3667 
3668 void
3669 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3670   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3671   uint array_length = g1_policy()->young_cset_region_length();
3672   for (uint i = 0; i < array_length; ++i) {
3673     _surviving_young_words[i] += surv_young_words[i];
3674   }
3675 }
3676 
3677 void
3678 G1CollectedHeap::cleanup_surviving_young_words() {
3679   guarantee( _surviving_young_words != NULL, "pre-condition" );
3680   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3681   _surviving_young_words = NULL;
3682 }
3683 
3684 #ifdef ASSERT
3685 class VerifyCSetClosure: public HeapRegionClosure {
3686 public:
3687   bool doHeapRegion(HeapRegion* hr) {
3688     // Here we check that the CSet region's RSet is ready for parallel
3689     // iteration. The fields that we'll verify are only manipulated
3690     // when the region is part of a CSet and is collected. Afterwards,
3691     // we reset these fields when we clear the region's RSet (when the
3692     // region is freed) so they are ready when the region is
3693     // re-allocated. The only exception to this is if there's an
3694     // evacuation failure and instead of freeing the region we leave
3695     // it in the heap. In that case, we reset these fields during
3696     // evacuation failure handling.
3697     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3698 
3699     // Here's a good place to add any other checks we'd like to
3700     // perform on CSet regions.
3701     return false;
3702   }
3703 };
3704 #endif // ASSERT
3705 
3706 #if TASKQUEUE_STATS
3707 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3708   st->print_raw_cr("GC Task Stats");
3709   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3710   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3711 }
3712 
3713 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3714   print_taskqueue_stats_hdr(st);
3715 
3716   TaskQueueStats totals;
3717   const int n = workers() != NULL ? workers()->total_workers() : 1;
3718   for (int i = 0; i < n; ++i) {
3719     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3720     totals += task_queue(i)->stats;
3721   }
3722   st->print_raw("tot "); totals.print(st); st->cr();
3723 
3724   DEBUG_ONLY(totals.verify());
3725 }
3726 
3727 void G1CollectedHeap::reset_taskqueue_stats() {
3728   const int n = workers() != NULL ? workers()->total_workers() : 1;
3729   for (int i = 0; i < n; ++i) {
3730     task_queue(i)->stats.reset();
3731   }
3732 }
3733 #endif // TASKQUEUE_STATS
3734 
3735 void G1CollectedHeap::log_gc_header() {
3736   if (!G1Log::fine()) {
3737     return;
3738   }
3739 
3740   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3741 
3742   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3743     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3744     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3745 
3746   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3747 }
3748 
3749 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3750   if (!G1Log::fine()) {
3751     return;
3752   }
3753 
3754   if (G1Log::finer()) {
3755     if (evacuation_failed()) {
3756       gclog_or_tty->print(" (to-space exhausted)");
3757     }
3758     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3759     g1_policy()->phase_times()->note_gc_end();
3760     g1_policy()->phase_times()->print(pause_time_sec);
3761     g1_policy()->print_detailed_heap_transition();
3762   } else {
3763     if (evacuation_failed()) {
3764       gclog_or_tty->print("--");
3765     }
3766     g1_policy()->print_heap_transition();
3767     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3768   }
3769   gclog_or_tty->flush();
3770 }
3771 
3772 bool
3773 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3774   assert_at_safepoint(true /* should_be_vm_thread */);
3775   guarantee(!is_gc_active(), "collection is not reentrant");
3776 
3777   if (GC_locker::check_active_before_gc()) {
3778     return false;
3779   }
3780 
3781   _gc_timer_stw->register_gc_start();
3782 
3783   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3784 
3785   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3786   ResourceMark rm;
3787 
3788   print_heap_before_gc();
3789   trace_heap_before_gc(_gc_tracer_stw);
3790 
3791   verify_region_sets_optional();
3792   verify_dirty_young_regions();
3793 
3794   // This call will decide whether this pause is an initial-mark
3795   // pause. If it is, during_initial_mark_pause() will return true
3796   // for the duration of this pause.
3797   g1_policy()->decide_on_conc_mark_initiation();
3798 
3799   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3800   assert(!g1_policy()->during_initial_mark_pause() ||
3801           g1_policy()->gcs_are_young(), "sanity");
3802 
3803   // We also do not allow mixed GCs during marking.
3804   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3805 
3806   // Record whether this pause is an initial mark. When the current
3807   // thread has completed its logging output and it's safe to signal
3808   // the CM thread, the flag's value in the policy has been reset.
3809   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3810 
3811   // Inner scope for scope based logging, timers, and stats collection
3812   {
3813     EvacuationInfo evacuation_info;
3814 
3815     if (g1_policy()->during_initial_mark_pause()) {
3816       // We are about to start a marking cycle, so we increment the
3817       // full collection counter.
3818       increment_old_marking_cycles_started();
3819       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3820     }
3821 
3822     _gc_tracer_stw->report_yc_type(yc_type());
3823 
3824     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3825 
3826     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3827                                 workers()->active_workers() : 1);
3828     double pause_start_sec = os::elapsedTime();
3829     g1_policy()->phase_times()->note_gc_start(active_workers);
3830     log_gc_header();
3831 
3832     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3833     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3834 
3835     // If the secondary_free_list is not empty, append it to the
3836     // free_list. No need to wait for the cleanup operation to finish;
3837     // the region allocation code will check the secondary_free_list
3838     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3839     // set, skip this step so that the region allocation code has to
3840     // get entries from the secondary_free_list.
3841     if (!G1StressConcRegionFreeing) {
3842       append_secondary_free_list_if_not_empty_with_lock();
3843     }
3844 
3845     assert(check_young_list_well_formed(), "young list should be well formed");
3846     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3847            "sanity check");
3848 
3849     // Don't dynamically change the number of GC threads this early.  A value of
3850     // 0 is used to indicate serial work.  When parallel work is done,
3851     // it will be set.
3852 
3853     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3854       IsGCActiveMark x;
3855 
3856       gc_prologue(false);
3857       increment_total_collections(false /* full gc */);
3858       increment_gc_time_stamp();
3859 
3860       verify_before_gc();
3861 
3862       check_bitmaps("GC Start");
3863 
3864       COMPILER2_PRESENT(DerivedPointerTable::clear());
3865 
3866       // Please see comment in g1CollectedHeap.hpp and
3867       // G1CollectedHeap::ref_processing_init() to see how
3868       // reference processing currently works in G1.
3869 
3870       // Enable discovery in the STW reference processor
3871       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3872                                             true /*verify_no_refs*/);
3873 
3874       {
3875         // We want to temporarily turn off discovery by the
3876         // CM ref processor, if necessary, and turn it back on
3877         // on again later if we do. Using a scoped
3878         // NoRefDiscovery object will do this.
3879         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3880 
3881         // Forget the current alloc region (we might even choose it to be part
3882         // of the collection set!).
3883         release_mutator_alloc_region();
3884 
3885         // We should call this after we retire the mutator alloc
3886         // region(s) so that all the ALLOC / RETIRE events are generated
3887         // before the start GC event.
3888         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3889 
3890         // This timing is only used by the ergonomics to handle our pause target.
3891         // It is unclear why this should not include the full pause. We will
3892         // investigate this in CR 7178365.
3893         //
3894         // Preserving the old comment here if that helps the investigation:
3895         //
3896         // The elapsed time induced by the start time below deliberately elides
3897         // the possible verification above.
3898         double sample_start_time_sec = os::elapsedTime();
3899 
3900 #if YOUNG_LIST_VERBOSE
3901         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3902         _young_list->print();
3903         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3904 #endif // YOUNG_LIST_VERBOSE
3905 
3906         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3907 
3908         double scan_wait_start = os::elapsedTime();
3909         // We have to wait until the CM threads finish scanning the
3910         // root regions as it's the only way to ensure that all the
3911         // objects on them have been correctly scanned before we start
3912         // moving them during the GC.
3913         bool waited = _cm->root_regions()->wait_until_scan_finished();
3914         double wait_time_ms = 0.0;
3915         if (waited) {
3916           double scan_wait_end = os::elapsedTime();
3917           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3918         }
3919         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3920 
3921 #if YOUNG_LIST_VERBOSE
3922         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3923         _young_list->print();
3924 #endif // YOUNG_LIST_VERBOSE
3925 
3926         if (g1_policy()->during_initial_mark_pause()) {
3927           concurrent_mark()->checkpointRootsInitialPre();
3928         }
3929 
3930 #if YOUNG_LIST_VERBOSE
3931         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3932         _young_list->print();
3933         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3934 #endif // YOUNG_LIST_VERBOSE
3935 
3936         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3937 
3938         register_humongous_regions_with_in_cset_fast_test();
3939 
3940         _cm->note_start_of_gc();
3941         // We should not verify the per-thread SATB buffers given that
3942         // we have not filtered them yet (we'll do so during the
3943         // GC). We also call this after finalize_cset() to
3944         // ensure that the CSet has been finalized.
3945         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3946                                  true  /* verify_enqueued_buffers */,
3947                                  false /* verify_thread_buffers */,
3948                                  true  /* verify_fingers */);
3949 
3950         if (_hr_printer.is_active()) {
3951           HeapRegion* hr = g1_policy()->collection_set();
3952           while (hr != NULL) {
3953             G1HRPrinter::RegionType type;
3954             if (!hr->is_young()) {
3955               type = G1HRPrinter::Old;
3956             } else if (hr->is_survivor()) {
3957               type = G1HRPrinter::Survivor;
3958             } else {
3959               type = G1HRPrinter::Eden;
3960             }
3961             _hr_printer.cset(hr);
3962             hr = hr->next_in_collection_set();
3963           }
3964         }
3965 
3966 #ifdef ASSERT
3967         VerifyCSetClosure cl;
3968         collection_set_iterate(&cl);
3969 #endif // ASSERT
3970 
3971         setup_surviving_young_words();
3972 
3973         // Initialize the GC alloc regions.
3974         init_gc_alloc_regions(evacuation_info);
3975 
3976         // Actually do the work...
3977         evacuate_collection_set(evacuation_info);
3978 
3979         // We do this to mainly verify the per-thread SATB buffers
3980         // (which have been filtered by now) since we didn't verify
3981         // them earlier. No point in re-checking the stacks / enqueued
3982         // buffers given that the CSet has not changed since last time
3983         // we checked.
3984         _cm->verify_no_cset_oops(false /* verify_stacks */,
3985                                  false /* verify_enqueued_buffers */,
3986                                  true  /* verify_thread_buffers */,
3987                                  true  /* verify_fingers */);
3988 
3989         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3990 
3991         eagerly_reclaim_humongous_regions();
3992 
3993         g1_policy()->clear_collection_set();
3994 
3995         cleanup_surviving_young_words();
3996 
3997         // Start a new incremental collection set for the next pause.
3998         g1_policy()->start_incremental_cset_building();
3999 
4000         clear_cset_fast_test();
4001 
4002         _young_list->reset_sampled_info();
4003 
4004         // Don't check the whole heap at this point as the
4005         // GC alloc regions from this pause have been tagged
4006         // as survivors and moved on to the survivor list.
4007         // Survivor regions will fail the !is_young() check.
4008         assert(check_young_list_empty(false /* check_heap */),
4009           "young list should be empty");
4010 
4011 #if YOUNG_LIST_VERBOSE
4012         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4013         _young_list->print();
4014 #endif // YOUNG_LIST_VERBOSE
4015 
4016         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4017                                              _young_list->first_survivor_region(),
4018                                              _young_list->last_survivor_region());
4019 
4020         _young_list->reset_auxilary_lists();
4021 
4022         if (evacuation_failed()) {
4023           _summary_bytes_used = recalculate_used();
4024           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4025           for (uint i = 0; i < n_queues; i++) {
4026             if (_evacuation_failed_info_array[i].has_failed()) {
4027               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4028             }
4029           }
4030         } else {
4031           // The "used" of the the collection set have already been subtracted
4032           // when they were freed.  Add in the bytes evacuated.
4033           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4034         }
4035 
4036         if (g1_policy()->during_initial_mark_pause()) {
4037           // We have to do this before we notify the CM threads that
4038           // they can start working to make sure that all the
4039           // appropriate initialization is done on the CM object.
4040           concurrent_mark()->checkpointRootsInitialPost();
4041           set_marking_started();
4042           // Note that we don't actually trigger the CM thread at
4043           // this point. We do that later when we're sure that
4044           // the current thread has completed its logging output.
4045         }
4046 
4047         allocate_dummy_regions();
4048 
4049 #if YOUNG_LIST_VERBOSE
4050         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4051         _young_list->print();
4052         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4053 #endif // YOUNG_LIST_VERBOSE
4054 
4055         init_mutator_alloc_region();
4056 
4057         {
4058           size_t expand_bytes = g1_policy()->expansion_amount();
4059           if (expand_bytes > 0) {
4060             size_t bytes_before = capacity();
4061             // No need for an ergo verbose message here,
4062             // expansion_amount() does this when it returns a value > 0.
4063             if (!expand(expand_bytes)) {
4064               // We failed to expand the heap. Cannot do anything about it.
4065             }
4066           }
4067         }
4068 
4069         // We redo the verification but now wrt to the new CSet which
4070         // has just got initialized after the previous CSet was freed.
4071         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4072                                  true  /* verify_enqueued_buffers */,
4073                                  true  /* verify_thread_buffers */,
4074                                  true  /* verify_fingers */);
4075         _cm->note_end_of_gc();
4076 
4077         // This timing is only used by the ergonomics to handle our pause target.
4078         // It is unclear why this should not include the full pause. We will
4079         // investigate this in CR 7178365.
4080         double sample_end_time_sec = os::elapsedTime();
4081         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4082         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4083 
4084         MemoryService::track_memory_usage();
4085 
4086         // In prepare_for_verify() below we'll need to scan the deferred
4087         // update buffers to bring the RSets up-to-date if
4088         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4089         // the update buffers we'll probably need to scan cards on the
4090         // regions we just allocated to (i.e., the GC alloc
4091         // regions). However, during the last GC we called
4092         // set_saved_mark() on all the GC alloc regions, so card
4093         // scanning might skip the [saved_mark_word()...top()] area of
4094         // those regions (i.e., the area we allocated objects into
4095         // during the last GC). But it shouldn't. Given that
4096         // saved_mark_word() is conditional on whether the GC time stamp
4097         // on the region is current or not, by incrementing the GC time
4098         // stamp here we invalidate all the GC time stamps on all the
4099         // regions and saved_mark_word() will simply return top() for
4100         // all the regions. This is a nicer way of ensuring this rather
4101         // than iterating over the regions and fixing them. In fact, the
4102         // GC time stamp increment here also ensures that
4103         // saved_mark_word() will return top() between pauses, i.e.,
4104         // during concurrent refinement. So we don't need the
4105         // is_gc_active() check to decided which top to use when
4106         // scanning cards (see CR 7039627).
4107         increment_gc_time_stamp();
4108 
4109         verify_after_gc();
4110         check_bitmaps("GC End");
4111 
4112         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4113         ref_processor_stw()->verify_no_references_recorded();
4114 
4115         // CM reference discovery will be re-enabled if necessary.
4116       }
4117 
4118       // We should do this after we potentially expand the heap so
4119       // that all the COMMIT events are generated before the end GC
4120       // event, and after we retire the GC alloc regions so that all
4121       // RETIRE events are generated before the end GC event.
4122       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4123 
4124       if (mark_in_progress()) {
4125         concurrent_mark()->update_heap_boundaries(_hrs.committed());
4126       }
4127 
4128 #ifdef TRACESPINNING
4129       ParallelTaskTerminator::print_termination_counts();
4130 #endif
4131 
4132       gc_epilogue(false);
4133     }
4134 
4135     // Print the remainder of the GC log output.
4136     log_gc_footer(os::elapsedTime() - pause_start_sec);
4137 
4138     // It is not yet to safe to tell the concurrent mark to
4139     // start as we have some optional output below. We don't want the
4140     // output from the concurrent mark thread interfering with this
4141     // logging output either.
4142 
4143     _hrs.verify_optional();
4144     verify_region_sets_optional();
4145 
4146     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4147     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4148 
4149     print_heap_after_gc();
4150     trace_heap_after_gc(_gc_tracer_stw);
4151 
4152     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4153     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4154     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4155     // before any GC notifications are raised.
4156     g1mm()->update_sizes();
4157 
4158     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4159     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4160     _gc_timer_stw->register_gc_end();
4161     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4162   }
4163   // It should now be safe to tell the concurrent mark thread to start
4164   // without its logging output interfering with the logging output
4165   // that came from the pause.
4166 
4167   if (should_start_conc_mark) {
4168     // CAUTION: after the doConcurrentMark() call below,
4169     // the concurrent marking thread(s) could be running
4170     // concurrently with us. Make sure that anything after
4171     // this point does not assume that we are the only GC thread
4172     // running. Note: of course, the actual marking work will
4173     // not start until the safepoint itself is released in
4174     // SuspendibleThreadSet::desynchronize().
4175     doConcurrentMark();
4176   }
4177 
4178   return true;
4179 }
4180 
4181 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4182 {
4183   size_t gclab_word_size;
4184   switch (purpose) {
4185     case GCAllocForSurvived:
4186       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4187       break;
4188     case GCAllocForTenured:
4189       gclab_word_size = _old_plab_stats.desired_plab_sz();
4190       break;
4191     default:
4192       assert(false, "unknown GCAllocPurpose");
4193       gclab_word_size = _old_plab_stats.desired_plab_sz();
4194       break;
4195   }
4196 
4197   // Prevent humongous PLAB sizes for two reasons:
4198   // * PLABs are allocated using a similar paths as oops, but should
4199   //   never be in a humongous region
4200   // * Allowing humongous PLABs needlessly churns the region free lists
4201   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4202 }
4203 
4204 void G1CollectedHeap::init_mutator_alloc_region() {
4205   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4206   _mutator_alloc_region.init();
4207 }
4208 
4209 void G1CollectedHeap::release_mutator_alloc_region() {
4210   _mutator_alloc_region.release();
4211   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4212 }
4213 
4214 void G1CollectedHeap::use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info) {
4215   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4216   _retained_old_gc_alloc_region = NULL;
4217 
4218   // We will discard the current GC alloc region if:
4219   // a) it's in the collection set (it can happen!),
4220   // b) it's already full (no point in using it),
4221   // c) it's empty (this means that it was emptied during
4222   // a cleanup and it should be on the free list now), or
4223   // d) it's humongous (this means that it was emptied
4224   // during a cleanup and was added to the free list, but
4225   // has been subsequently used to allocate a humongous
4226   // object that may be less than the region size).
4227   if (retained_region != NULL &&
4228       !retained_region->in_collection_set() &&
4229       !(retained_region->top() == retained_region->end()) &&
4230       !retained_region->is_empty() &&
4231       !retained_region->isHumongous()) {
4232     retained_region->record_top_and_timestamp();
4233     // The retained region was added to the old region set when it was
4234     // retired. We have to remove it now, since we don't allow regions
4235     // we allocate to in the region sets. We'll re-add it later, when
4236     // it's retired again.
4237     _old_set.remove(retained_region);
4238     bool during_im = g1_policy()->during_initial_mark_pause();
4239     retained_region->note_start_of_copying(during_im);
4240     _old_gc_alloc_region.set(retained_region);
4241     _hr_printer.reuse(retained_region);
4242     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4243   }
4244 }
4245 
4246 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4247   assert_at_safepoint(true /* should_be_vm_thread */);
4248 
4249   _survivor_gc_alloc_region.init();
4250   _old_gc_alloc_region.init();
4251 
4252   use_retained_old_gc_alloc_region(evacuation_info);
4253 }
4254 
4255 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4256   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4257                                          _old_gc_alloc_region.count());
4258   _survivor_gc_alloc_region.release();
4259   // If we have an old GC alloc region to release, we'll save it in
4260   // _retained_old_gc_alloc_region. If we don't
4261   // _retained_old_gc_alloc_region will become NULL. This is what we
4262   // want either way so no reason to check explicitly for either
4263   // condition.
4264   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4265 
4266   if (ResizePLAB) {
4267     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4268     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4269   }
4270 }
4271 
4272 void G1CollectedHeap::abandon_gc_alloc_regions() {
4273   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4274   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4275   _retained_old_gc_alloc_region = NULL;
4276 }
4277 
4278 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4279   _drain_in_progress = false;
4280   set_evac_failure_closure(cl);
4281   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4282 }
4283 
4284 void G1CollectedHeap::finalize_for_evac_failure() {
4285   assert(_evac_failure_scan_stack != NULL &&
4286          _evac_failure_scan_stack->length() == 0,
4287          "Postcondition");
4288   assert(!_drain_in_progress, "Postcondition");
4289   delete _evac_failure_scan_stack;
4290   _evac_failure_scan_stack = NULL;
4291 }
4292 
4293 void G1CollectedHeap::remove_self_forwarding_pointers() {
4294   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4295 
4296   double remove_self_forwards_start = os::elapsedTime();
4297 
4298   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4299 
4300   if (G1CollectedHeap::use_parallel_gc_threads()) {
4301     set_par_threads();
4302     workers()->run_task(&rsfp_task);
4303     set_par_threads(0);
4304   } else {
4305     rsfp_task.work(0);
4306   }
4307 
4308   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4309 
4310   // Reset the claim values in the regions in the collection set.
4311   reset_cset_heap_region_claim_values();
4312 
4313   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4314 
4315   // Now restore saved marks, if any.
4316   assert(_objs_with_preserved_marks.size() ==
4317             _preserved_marks_of_objs.size(), "Both or none.");
4318   while (!_objs_with_preserved_marks.is_empty()) {
4319     oop obj = _objs_with_preserved_marks.pop();
4320     markOop m = _preserved_marks_of_objs.pop();
4321     obj->set_mark(m);
4322   }
4323   _objs_with_preserved_marks.clear(true);
4324   _preserved_marks_of_objs.clear(true);
4325 
4326   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4327 }
4328 
4329 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4330   _evac_failure_scan_stack->push(obj);
4331 }
4332 
4333 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4334   assert(_evac_failure_scan_stack != NULL, "precondition");
4335 
4336   while (_evac_failure_scan_stack->length() > 0) {
4337      oop obj = _evac_failure_scan_stack->pop();
4338      _evac_failure_closure->set_region(heap_region_containing(obj));
4339      obj->oop_iterate_backwards(_evac_failure_closure);
4340   }
4341 }
4342 
4343 oop
4344 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4345                                                oop old) {
4346   assert(obj_in_cs(old),
4347          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4348                  (HeapWord*) old));
4349   markOop m = old->mark();
4350   oop forward_ptr = old->forward_to_atomic(old);
4351   if (forward_ptr == NULL) {
4352     // Forward-to-self succeeded.
4353     assert(_par_scan_state != NULL, "par scan state");
4354     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4355     uint queue_num = _par_scan_state->queue_num();
4356 
4357     _evacuation_failed = true;
4358     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4359     if (_evac_failure_closure != cl) {
4360       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4361       assert(!_drain_in_progress,
4362              "Should only be true while someone holds the lock.");
4363       // Set the global evac-failure closure to the current thread's.
4364       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4365       set_evac_failure_closure(cl);
4366       // Now do the common part.
4367       handle_evacuation_failure_common(old, m);
4368       // Reset to NULL.
4369       set_evac_failure_closure(NULL);
4370     } else {
4371       // The lock is already held, and this is recursive.
4372       assert(_drain_in_progress, "This should only be the recursive case.");
4373       handle_evacuation_failure_common(old, m);
4374     }
4375     return old;
4376   } else {
4377     // Forward-to-self failed. Either someone else managed to allocate
4378     // space for this object (old != forward_ptr) or they beat us in
4379     // self-forwarding it (old == forward_ptr).
4380     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4381            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4382                    "should not be in the CSet",
4383                    (HeapWord*) old, (HeapWord*) forward_ptr));
4384     return forward_ptr;
4385   }
4386 }
4387 
4388 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4389   preserve_mark_if_necessary(old, m);
4390 
4391   HeapRegion* r = heap_region_containing(old);
4392   if (!r->evacuation_failed()) {
4393     r->set_evacuation_failed(true);
4394     _hr_printer.evac_failure(r);
4395   }
4396 
4397   push_on_evac_failure_scan_stack(old);
4398 
4399   if (!_drain_in_progress) {
4400     // prevent recursion in copy_to_survivor_space()
4401     _drain_in_progress = true;
4402     drain_evac_failure_scan_stack();
4403     _drain_in_progress = false;
4404   }
4405 }
4406 
4407 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4408   assert(evacuation_failed(), "Oversaving!");
4409   // We want to call the "for_promotion_failure" version only in the
4410   // case of a promotion failure.
4411   if (m->must_be_preserved_for_promotion_failure(obj)) {
4412     _objs_with_preserved_marks.push(obj);
4413     _preserved_marks_of_objs.push(m);
4414   }
4415 }
4416 
4417 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4418                                                   size_t word_size) {
4419   if (purpose == GCAllocForSurvived) {
4420     HeapWord* result = survivor_attempt_allocation(word_size);
4421     if (result != NULL) {
4422       return result;
4423     } else {
4424       // Let's try to allocate in the old gen in case we can fit the
4425       // object there.
4426       return old_attempt_allocation(word_size);
4427     }
4428   } else {
4429     assert(purpose ==  GCAllocForTenured, "sanity");
4430     HeapWord* result = old_attempt_allocation(word_size);
4431     if (result != NULL) {
4432       return result;
4433     } else {
4434       // Let's try to allocate in the survivors in case we can fit the
4435       // object there.
4436       return survivor_attempt_allocation(word_size);
4437     }
4438   }
4439 
4440   ShouldNotReachHere();
4441   // Trying to keep some compilers happy.
4442   return NULL;
4443 }
4444 
4445 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4446   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4447 
4448 void G1ParCopyHelper::mark_object(oop obj) {
4449   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4450 
4451   // We know that the object is not moving so it's safe to read its size.
4452   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4453 }
4454 
4455 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4456   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4457   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4458   assert(from_obj != to_obj, "should not be self-forwarded");
4459 
4460   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4461   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4462 
4463   // The object might be in the process of being copied by another
4464   // worker so we cannot trust that its to-space image is
4465   // well-formed. So we have to read its size from its from-space
4466   // image which we know should not be changing.
4467   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4468 }
4469 
4470 template <class T>
4471 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4472   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4473     _scanned_klass->record_modified_oops();
4474   }
4475 }
4476 
4477 template <G1Barrier barrier, G1Mark do_mark_object>
4478 template <class T>
4479 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4480   T heap_oop = oopDesc::load_heap_oop(p);
4481 
4482   if (oopDesc::is_null(heap_oop)) {
4483     return;
4484   }
4485 
4486   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4487 
4488   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4489 
4490   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
4491 
4492   if (state == G1CollectedHeap::InCSet) {
4493     oop forwardee;
4494     if (obj->is_forwarded()) {
4495       forwardee = obj->forwardee();
4496     } else {
4497       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4498     }
4499     assert(forwardee != NULL, "forwardee should not be NULL");
4500     oopDesc::encode_store_heap_oop(p, forwardee);
4501     if (do_mark_object != G1MarkNone && forwardee != obj) {
4502       // If the object is self-forwarded we don't need to explicitly
4503       // mark it, the evacuation failure protocol will do so.
4504       mark_forwarded_object(obj, forwardee);
4505     }
4506 
4507     if (barrier == G1BarrierKlass) {
4508       do_klass_barrier(p, forwardee);
4509     }
4510   } else {
4511     if (state == G1CollectedHeap::IsHumongous) {
4512       _g1->set_humongous_is_live(obj);
4513     }
4514     // The object is not in collection set. If we're a root scanning
4515     // closure during an initial mark pause then attempt to mark the object.
4516     if (do_mark_object == G1MarkFromRoot) {
4517       mark_object(obj);
4518     }
4519   }
4520 
4521   if (barrier == G1BarrierEvac) {
4522     _par_scan_state->update_rs(_from, p, _worker_id);
4523   }
4524 }
4525 
4526 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4527 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4528 
4529 class G1ParEvacuateFollowersClosure : public VoidClosure {
4530 protected:
4531   G1CollectedHeap*              _g1h;
4532   G1ParScanThreadState*         _par_scan_state;
4533   RefToScanQueueSet*            _queues;
4534   ParallelTaskTerminator*       _terminator;
4535 
4536   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4537   RefToScanQueueSet*      queues()         { return _queues; }
4538   ParallelTaskTerminator* terminator()     { return _terminator; }
4539 
4540 public:
4541   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4542                                 G1ParScanThreadState* par_scan_state,
4543                                 RefToScanQueueSet* queues,
4544                                 ParallelTaskTerminator* terminator)
4545     : _g1h(g1h), _par_scan_state(par_scan_state),
4546       _queues(queues), _terminator(terminator) {}
4547 
4548   void do_void();
4549 
4550 private:
4551   inline bool offer_termination();
4552 };
4553 
4554 bool G1ParEvacuateFollowersClosure::offer_termination() {
4555   G1ParScanThreadState* const pss = par_scan_state();
4556   pss->start_term_time();
4557   const bool res = terminator()->offer_termination();
4558   pss->end_term_time();
4559   return res;
4560 }
4561 
4562 void G1ParEvacuateFollowersClosure::do_void() {
4563   G1ParScanThreadState* const pss = par_scan_state();
4564   pss->trim_queue();
4565   do {
4566     pss->steal_and_trim_queue(queues());
4567   } while (!offer_termination());
4568 }
4569 
4570 class G1KlassScanClosure : public KlassClosure {
4571  G1ParCopyHelper* _closure;
4572  bool             _process_only_dirty;
4573  int              _count;
4574  public:
4575   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4576       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4577   void do_klass(Klass* klass) {
4578     // If the klass has not been dirtied we know that there's
4579     // no references into  the young gen and we can skip it.
4580    if (!_process_only_dirty || klass->has_modified_oops()) {
4581       // Clean the klass since we're going to scavenge all the metadata.
4582       klass->clear_modified_oops();
4583 
4584       // Tell the closure that this klass is the Klass to scavenge
4585       // and is the one to dirty if oops are left pointing into the young gen.
4586       _closure->set_scanned_klass(klass);
4587 
4588       klass->oops_do(_closure);
4589 
4590       _closure->set_scanned_klass(NULL);
4591     }
4592     _count++;
4593   }
4594 };
4595 
4596 class G1ParTask : public AbstractGangTask {
4597 protected:
4598   G1CollectedHeap*       _g1h;
4599   RefToScanQueueSet      *_queues;
4600   ParallelTaskTerminator _terminator;
4601   uint _n_workers;
4602 
4603   Mutex _stats_lock;
4604   Mutex* stats_lock() { return &_stats_lock; }
4605 
4606 public:
4607   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4608     : AbstractGangTask("G1 collection"),
4609       _g1h(g1h),
4610       _queues(task_queues),
4611       _terminator(0, _queues),
4612       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4613   {}
4614 
4615   RefToScanQueueSet* queues() { return _queues; }
4616 
4617   RefToScanQueue *work_queue(int i) {
4618     return queues()->queue(i);
4619   }
4620 
4621   ParallelTaskTerminator* terminator() { return &_terminator; }
4622 
4623   virtual void set_for_termination(int active_workers) {
4624     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4625     // in the young space (_par_seq_tasks) in the G1 heap
4626     // for SequentialSubTasksDone.
4627     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4628     // both of which need setting by set_n_termination().
4629     _g1h->SharedHeap::set_n_termination(active_workers);
4630     _g1h->set_n_termination(active_workers);
4631     terminator()->reset_for_reuse(active_workers);
4632     _n_workers = active_workers;
4633   }
4634 
4635   // Helps out with CLD processing.
4636   //
4637   // During InitialMark we need to:
4638   // 1) Scavenge all CLDs for the young GC.
4639   // 2) Mark all objects directly reachable from strong CLDs.
4640   template <G1Mark do_mark_object>
4641   class G1CLDClosure : public CLDClosure {
4642     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4643     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4644     G1KlassScanClosure                                _klass_in_cld_closure;
4645     bool                                              _claim;
4646 
4647    public:
4648     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4649                  bool only_young, bool claim)
4650         : _oop_closure(oop_closure),
4651           _oop_in_klass_closure(oop_closure->g1(),
4652                                 oop_closure->pss(),
4653                                 oop_closure->rp()),
4654           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4655           _claim(claim) {
4656 
4657     }
4658 
4659     void do_cld(ClassLoaderData* cld) {
4660       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4661     }
4662   };
4663 
4664   class G1CodeBlobClosure: public CodeBlobClosure {
4665     OopClosure* _f;
4666 
4667    public:
4668     G1CodeBlobClosure(OopClosure* f) : _f(f) {}
4669     void do_code_blob(CodeBlob* blob) {
4670       nmethod* that = blob->as_nmethod_or_null();
4671       if (that != NULL) {
4672         if (!that->test_set_oops_do_mark()) {
4673           that->oops_do(_f);
4674           that->fix_oop_relocations();
4675         }
4676       }
4677     }
4678   };
4679 
4680   void work(uint worker_id) {
4681     if (worker_id >= _n_workers) return;  // no work needed this round
4682 
4683     double start_time_ms = os::elapsedTime() * 1000.0;
4684     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4685 
4686     {
4687       ResourceMark rm;
4688       HandleMark   hm;
4689 
4690       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4691 
4692       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4693       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4694 
4695       pss.set_evac_failure_closure(&evac_failure_cl);
4696 
4697       bool only_young = _g1h->g1_policy()->gcs_are_young();
4698 
4699       // Non-IM young GC.
4700       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4701       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4702                                                                                only_young, // Only process dirty klasses.
4703                                                                                false);     // No need to claim CLDs.
4704       // IM young GC.
4705       //    Strong roots closures.
4706       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4707       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4708                                                                                false, // Process all klasses.
4709                                                                                true); // Need to claim CLDs.
4710       //    Weak roots closures.
4711       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4712       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4713                                                                                     false, // Process all klasses.
4714                                                                                     true); // Need to claim CLDs.
4715 
4716       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4717       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4718       // IM Weak code roots are handled later.
4719 
4720       OopClosure* strong_root_cl;
4721       OopClosure* weak_root_cl;
4722       CLDClosure* strong_cld_cl;
4723       CLDClosure* weak_cld_cl;
4724       CodeBlobClosure* strong_code_cl;
4725 
4726       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4727         // We also need to mark copied objects.
4728         strong_root_cl = &scan_mark_root_cl;
4729         strong_cld_cl  = &scan_mark_cld_cl;
4730         strong_code_cl = &scan_mark_code_cl;
4731         if (ClassUnloadingWithConcurrentMark) {
4732           weak_root_cl = &scan_mark_weak_root_cl;
4733           weak_cld_cl  = &scan_mark_weak_cld_cl;
4734         } else {
4735           weak_root_cl = &scan_mark_root_cl;
4736           weak_cld_cl  = &scan_mark_cld_cl;
4737         }
4738       } else {
4739         strong_root_cl = &scan_only_root_cl;
4740         weak_root_cl   = &scan_only_root_cl;
4741         strong_cld_cl  = &scan_only_cld_cl;
4742         weak_cld_cl    = &scan_only_cld_cl;
4743         strong_code_cl = &scan_only_code_cl;
4744       }
4745 
4746 
4747       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4748 
4749       pss.start_strong_roots();
4750       _g1h->g1_process_roots(strong_root_cl,
4751                              weak_root_cl,
4752                              &push_heap_rs_cl,
4753                              strong_cld_cl,
4754                              weak_cld_cl,
4755                              strong_code_cl,
4756                              worker_id);
4757 
4758       pss.end_strong_roots();
4759 
4760       {
4761         double start = os::elapsedTime();
4762         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4763         evac.do_void();
4764         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4765         double term_ms = pss.term_time()*1000.0;
4766         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4767         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4768       }
4769       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4770       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4771 
4772       if (ParallelGCVerbose) {
4773         MutexLocker x(stats_lock());
4774         pss.print_termination_stats(worker_id);
4775       }
4776 
4777       assert(pss.queue_is_empty(), "should be empty");
4778 
4779       // Close the inner scope so that the ResourceMark and HandleMark
4780       // destructors are executed here and are included as part of the
4781       // "GC Worker Time".
4782     }
4783 
4784     double end_time_ms = os::elapsedTime() * 1000.0;
4785     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4786   }
4787 };
4788 
4789 // *** Common G1 Evacuation Stuff
4790 
4791 // This method is run in a GC worker.
4792 
4793 void
4794 G1CollectedHeap::
4795 g1_process_roots(OopClosure* scan_non_heap_roots,
4796                  OopClosure* scan_non_heap_weak_roots,
4797                  OopsInHeapRegionClosure* scan_rs,
4798                  CLDClosure* scan_strong_clds,
4799                  CLDClosure* scan_weak_clds,
4800                  CodeBlobClosure* scan_strong_code,
4801                  uint worker_i) {
4802 
4803   // First scan the shared roots.
4804   double ext_roots_start = os::elapsedTime();
4805   double closure_app_time_sec = 0.0;
4806 
4807   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4808   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4809 
4810   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4811   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4812 
4813   process_roots(false, // no scoping; this is parallel code
4814                 SharedHeap::SO_None,
4815                 &buf_scan_non_heap_roots,
4816                 &buf_scan_non_heap_weak_roots,
4817                 scan_strong_clds,
4818                 // Unloading Initial Marks handle the weak CLDs separately.
4819                 (trace_metadata ? NULL : scan_weak_clds),
4820                 scan_strong_code);
4821 
4822   // Now the CM ref_processor roots.
4823   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4824     // We need to treat the discovered reference lists of the
4825     // concurrent mark ref processor as roots and keep entries
4826     // (which are added by the marking threads) on them live
4827     // until they can be processed at the end of marking.
4828     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4829   }
4830 
4831   if (trace_metadata) {
4832     // Barrier to make sure all workers passed
4833     // the strong CLD and strong nmethods phases.
4834     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4835 
4836     // Now take the complement of the strong CLDs.
4837     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4838   }
4839 
4840   // Finish up any enqueued closure apps (attributed as object copy time).
4841   buf_scan_non_heap_roots.done();
4842   buf_scan_non_heap_weak_roots.done();
4843 
4844   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4845       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4846 
4847   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4848 
4849   double ext_root_time_ms =
4850     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4851 
4852   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4853 
4854   // During conc marking we have to filter the per-thread SATB buffers
4855   // to make sure we remove any oops into the CSet (which will show up
4856   // as implicitly live).
4857   double satb_filtering_ms = 0.0;
4858   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4859     if (mark_in_progress()) {
4860       double satb_filter_start = os::elapsedTime();
4861 
4862       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4863 
4864       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4865     }
4866   }
4867   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4868 
4869   // Now scan the complement of the collection set.
4870   MarkingCodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots, CodeBlobToOopClosure::FixRelocations);
4871 
4872   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4873 
4874   _process_strong_tasks->all_tasks_completed();
4875 }
4876 
4877 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4878 private:
4879   BoolObjectClosure* _is_alive;
4880   int _initial_string_table_size;
4881   int _initial_symbol_table_size;
4882 
4883   bool  _process_strings;
4884   int _strings_processed;
4885   int _strings_removed;
4886 
4887   bool  _process_symbols;
4888   int _symbols_processed;
4889   int _symbols_removed;
4890 
4891   bool _do_in_parallel;
4892 public:
4893   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4894     AbstractGangTask("String/Symbol Unlinking"),
4895     _is_alive(is_alive),
4896     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4897     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4898     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4899 
4900     _initial_string_table_size = StringTable::the_table()->table_size();
4901     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4902     if (process_strings) {
4903       StringTable::clear_parallel_claimed_index();
4904     }
4905     if (process_symbols) {
4906       SymbolTable::clear_parallel_claimed_index();
4907     }
4908   }
4909 
4910   ~G1StringSymbolTableUnlinkTask() {
4911     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4912               err_msg("claim value %d after unlink less than initial string table size %d",
4913                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4914     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4915               err_msg("claim value %d after unlink less than initial symbol table size %d",
4916                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4917 
4918     if (G1TraceStringSymbolTableScrubbing) {
4919       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4920                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4921                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4922                              strings_processed(), strings_removed(),
4923                              symbols_processed(), symbols_removed());
4924     }
4925   }
4926 
4927   void work(uint worker_id) {
4928     if (_do_in_parallel) {
4929       int strings_processed = 0;
4930       int strings_removed = 0;
4931       int symbols_processed = 0;
4932       int symbols_removed = 0;
4933       if (_process_strings) {
4934         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4935         Atomic::add(strings_processed, &_strings_processed);
4936         Atomic::add(strings_removed, &_strings_removed);
4937       }
4938       if (_process_symbols) {
4939         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4940         Atomic::add(symbols_processed, &_symbols_processed);
4941         Atomic::add(symbols_removed, &_symbols_removed);
4942       }
4943     } else {
4944       if (_process_strings) {
4945         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
4946       }
4947       if (_process_symbols) {
4948         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
4949       }
4950     }
4951   }
4952 
4953   size_t strings_processed() const { return (size_t)_strings_processed; }
4954   size_t strings_removed()   const { return (size_t)_strings_removed; }
4955 
4956   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4957   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4958 };
4959 
4960 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4961 private:
4962   static Monitor* _lock;
4963 
4964   BoolObjectClosure* const _is_alive;
4965   const bool               _unloading_occurred;
4966   const uint               _num_workers;
4967 
4968   // Variables used to claim nmethods.
4969   nmethod* _first_nmethod;
4970   volatile nmethod* _claimed_nmethod;
4971 
4972   // The list of nmethods that need to be processed by the second pass.
4973   volatile nmethod* _postponed_list;
4974   volatile uint     _num_entered_barrier;
4975 
4976  public:
4977   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4978       _is_alive(is_alive),
4979       _unloading_occurred(unloading_occurred),
4980       _num_workers(num_workers),
4981       _first_nmethod(NULL),
4982       _claimed_nmethod(NULL),
4983       _postponed_list(NULL),
4984       _num_entered_barrier(0)
4985   {
4986     nmethod::increase_unloading_clock();
4987     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
4988     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4989   }
4990 
4991   ~G1CodeCacheUnloadingTask() {
4992     CodeCache::verify_clean_inline_caches();
4993 
4994     CodeCache::set_needs_cache_clean(false);
4995     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4996 
4997     CodeCache::verify_icholder_relocations();
4998   }
4999 
5000  private:
5001   void add_to_postponed_list(nmethod* nm) {
5002       nmethod* old;
5003       do {
5004         old = (nmethod*)_postponed_list;
5005         nm->set_unloading_next(old);
5006       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
5007   }
5008 
5009   void clean_nmethod(nmethod* nm) {
5010     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
5011 
5012     if (postponed) {
5013       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
5014       add_to_postponed_list(nm);
5015     }
5016 
5017     // Mark that this thread has been cleaned/unloaded.
5018     // After this call, it will be safe to ask if this nmethod was unloaded or not.
5019     nm->set_unloading_clock(nmethod::global_unloading_clock());
5020   }
5021 
5022   void clean_nmethod_postponed(nmethod* nm) {
5023     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
5024   }
5025 
5026   static const int MaxClaimNmethods = 16;
5027 
5028   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
5029     nmethod* first;
5030     nmethod* last;
5031 
5032     do {
5033       *num_claimed_nmethods = 0;
5034 
5035       first = last = (nmethod*)_claimed_nmethod;
5036 
5037       if (first != NULL) {
5038         for (int i = 0; i < MaxClaimNmethods; i++) {
5039           last = CodeCache::alive_nmethod(CodeCache::next(last));
5040 
5041           if (last == NULL) {
5042             break;
5043           }
5044 
5045           claimed_nmethods[i] = last;
5046           (*num_claimed_nmethods)++;
5047         }
5048       }
5049 
5050     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
5051   }
5052 
5053   nmethod* claim_postponed_nmethod() {
5054     nmethod* claim;
5055     nmethod* next;
5056 
5057     do {
5058       claim = (nmethod*)_postponed_list;
5059       if (claim == NULL) {
5060         return NULL;
5061       }
5062 
5063       next = claim->unloading_next();
5064 
5065     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
5066 
5067     return claim;
5068   }
5069 
5070  public:
5071   // Mark that we're done with the first pass of nmethod cleaning.
5072   void barrier_mark(uint worker_id) {
5073     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5074     _num_entered_barrier++;
5075     if (_num_entered_barrier == _num_workers) {
5076       ml.notify_all();
5077     }
5078   }
5079 
5080   // See if we have to wait for the other workers to
5081   // finish their first-pass nmethod cleaning work.
5082   void barrier_wait(uint worker_id) {
5083     if (_num_entered_barrier < _num_workers) {
5084       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
5085       while (_num_entered_barrier < _num_workers) {
5086           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
5087       }
5088     }
5089   }
5090 
5091   // Cleaning and unloading of nmethods. Some work has to be postponed
5092   // to the second pass, when we know which nmethods survive.
5093   void work_first_pass(uint worker_id) {
5094     // The first nmethods is claimed by the first worker.
5095     if (worker_id == 0 && _first_nmethod != NULL) {
5096       clean_nmethod(_first_nmethod);
5097       _first_nmethod = NULL;
5098     }
5099 
5100     int num_claimed_nmethods;
5101     nmethod* claimed_nmethods[MaxClaimNmethods];
5102 
5103     while (true) {
5104       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
5105 
5106       if (num_claimed_nmethods == 0) {
5107         break;
5108       }
5109 
5110       for (int i = 0; i < num_claimed_nmethods; i++) {
5111         clean_nmethod(claimed_nmethods[i]);
5112       }
5113     }
5114   }
5115 
5116   void work_second_pass(uint worker_id) {
5117     nmethod* nm;
5118     // Take care of postponed nmethods.
5119     while ((nm = claim_postponed_nmethod()) != NULL) {
5120       clean_nmethod_postponed(nm);
5121     }
5122   }
5123 };
5124 
5125 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
5126 
5127 class G1KlassCleaningTask : public StackObj {
5128   BoolObjectClosure*                      _is_alive;
5129   volatile jint                           _clean_klass_tree_claimed;
5130   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
5131 
5132  public:
5133   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5134       _is_alive(is_alive),
5135       _clean_klass_tree_claimed(0),
5136       _klass_iterator() {
5137   }
5138 
5139  private:
5140   bool claim_clean_klass_tree_task() {
5141     if (_clean_klass_tree_claimed) {
5142       return false;
5143     }
5144 
5145     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5146   }
5147 
5148   InstanceKlass* claim_next_klass() {
5149     Klass* klass;
5150     do {
5151       klass =_klass_iterator.next_klass();
5152     } while (klass != NULL && !klass->oop_is_instance());
5153 
5154     return (InstanceKlass*)klass;
5155   }
5156 
5157 public:
5158 
5159   void clean_klass(InstanceKlass* ik) {
5160     ik->clean_implementors_list(_is_alive);
5161     ik->clean_method_data(_is_alive);
5162 
5163     // G1 specific cleanup work that has
5164     // been moved here to be done in parallel.
5165     ik->clean_dependent_nmethods();
5166   }
5167 
5168   void work() {
5169     ResourceMark rm;
5170 
5171     // One worker will clean the subklass/sibling klass tree.
5172     if (claim_clean_klass_tree_task()) {
5173       Klass::clean_subklass_tree(_is_alive);
5174     }
5175 
5176     // All workers will help cleaning the classes,
5177     InstanceKlass* klass;
5178     while ((klass = claim_next_klass()) != NULL) {
5179       clean_klass(klass);
5180     }
5181   }
5182 };
5183 
5184 // To minimize the remark pause times, the tasks below are done in parallel.
5185 class G1ParallelCleaningTask : public AbstractGangTask {
5186 private:
5187   G1StringSymbolTableUnlinkTask _string_symbol_task;
5188   G1CodeCacheUnloadingTask      _code_cache_task;
5189   G1KlassCleaningTask           _klass_cleaning_task;
5190 
5191 public:
5192   // The constructor is run in the VMThread.
5193   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5194       AbstractGangTask("Parallel Cleaning"),
5195       _string_symbol_task(is_alive, process_strings, process_symbols),
5196       _code_cache_task(num_workers, is_alive, unloading_occurred),
5197       _klass_cleaning_task(is_alive) {
5198   }
5199 
5200   // The parallel work done by all worker threads.
5201   void work(uint worker_id) {
5202     // Do first pass of code cache cleaning.
5203     _code_cache_task.work_first_pass(worker_id);
5204 
5205     // Let the threads mark that the first pass is done.
5206     _code_cache_task.barrier_mark(worker_id);
5207 
5208     // Clean the Strings and Symbols.
5209     _string_symbol_task.work(worker_id);
5210 
5211     // Wait for all workers to finish the first code cache cleaning pass.
5212     _code_cache_task.barrier_wait(worker_id);
5213 
5214     // Do the second code cache cleaning work, which realize on
5215     // the liveness information gathered during the first pass.
5216     _code_cache_task.work_second_pass(worker_id);
5217 
5218     // Clean all klasses that were not unloaded.
5219     _klass_cleaning_task.work();
5220   }
5221 };
5222 
5223 
5224 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5225                                         bool process_strings,
5226                                         bool process_symbols,
5227                                         bool class_unloading_occurred) {
5228   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5229                     workers()->active_workers() : 1);
5230 
5231   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5232                                         n_workers, class_unloading_occurred);
5233   if (G1CollectedHeap::use_parallel_gc_threads()) {
5234     set_par_threads(n_workers);
5235     workers()->run_task(&g1_unlink_task);
5236     set_par_threads(0);
5237   } else {
5238     g1_unlink_task.work(0);
5239   }
5240 }
5241 
5242 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5243                                                      bool process_strings, bool process_symbols) {
5244   {
5245     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5246                      _g1h->workers()->active_workers() : 1);
5247     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5248     if (G1CollectedHeap::use_parallel_gc_threads()) {
5249       set_par_threads(n_workers);
5250       workers()->run_task(&g1_unlink_task);
5251       set_par_threads(0);
5252     } else {
5253       g1_unlink_task.work(0);
5254     }
5255   }
5256 
5257   if (G1StringDedup::is_enabled()) {
5258     G1StringDedup::unlink(is_alive);
5259   }
5260 }
5261 
5262 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5263  private:
5264   DirtyCardQueueSet* _queue;
5265  public:
5266   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5267 
5268   virtual void work(uint worker_id) {
5269     double start_time = os::elapsedTime();
5270 
5271     RedirtyLoggedCardTableEntryClosure cl;
5272     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5273       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5274     } else {
5275       _queue->apply_closure_to_all_completed_buffers(&cl);
5276     }
5277 
5278     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5279     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5280     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5281   }
5282 };
5283 
5284 void G1CollectedHeap::redirty_logged_cards() {
5285   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5286   double redirty_logged_cards_start = os::elapsedTime();
5287 
5288   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5289                    _g1h->workers()->active_workers() : 1);
5290 
5291   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5292   dirty_card_queue_set().reset_for_par_iteration();
5293   if (use_parallel_gc_threads()) {
5294     set_par_threads(n_workers);
5295     workers()->run_task(&redirty_task);
5296     set_par_threads(0);
5297   } else {
5298     redirty_task.work(0);
5299   }
5300 
5301   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5302   dcq.merge_bufferlists(&dirty_card_queue_set());
5303   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5304 
5305   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5306 }
5307 
5308 // Weak Reference Processing support
5309 
5310 // An always "is_alive" closure that is used to preserve referents.
5311 // If the object is non-null then it's alive.  Used in the preservation
5312 // of referent objects that are pointed to by reference objects
5313 // discovered by the CM ref processor.
5314 class G1AlwaysAliveClosure: public BoolObjectClosure {
5315   G1CollectedHeap* _g1;
5316 public:
5317   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5318   bool do_object_b(oop p) {
5319     if (p != NULL) {
5320       return true;
5321     }
5322     return false;
5323   }
5324 };
5325 
5326 bool G1STWIsAliveClosure::do_object_b(oop p) {
5327   // An object is reachable if it is outside the collection set,
5328   // or is inside and copied.
5329   return !_g1->obj_in_cs(p) || p->is_forwarded();
5330 }
5331 
5332 // Non Copying Keep Alive closure
5333 class G1KeepAliveClosure: public OopClosure {
5334   G1CollectedHeap* _g1;
5335 public:
5336   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5337   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5338   void do_oop(oop* p) {
5339     oop obj = *p;
5340 
5341     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5342     if (obj == NULL || cset_state == G1CollectedHeap::InNeither) {
5343       return;
5344     }
5345     if (cset_state == G1CollectedHeap::InCSet) {
5346       assert( obj->is_forwarded(), "invariant" );
5347       *p = obj->forwardee();
5348     } else {
5349       assert(!obj->is_forwarded(), "invariant" );
5350       assert(cset_state == G1CollectedHeap::IsHumongous,
5351              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
5352       _g1->set_humongous_is_live(obj);
5353     }
5354   }
5355 };
5356 
5357 // Copying Keep Alive closure - can be called from both
5358 // serial and parallel code as long as different worker
5359 // threads utilize different G1ParScanThreadState instances
5360 // and different queues.
5361 
5362 class G1CopyingKeepAliveClosure: public OopClosure {
5363   G1CollectedHeap*         _g1h;
5364   OopClosure*              _copy_non_heap_obj_cl;
5365   G1ParScanThreadState*    _par_scan_state;
5366 
5367 public:
5368   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5369                             OopClosure* non_heap_obj_cl,
5370                             G1ParScanThreadState* pss):
5371     _g1h(g1h),
5372     _copy_non_heap_obj_cl(non_heap_obj_cl),
5373     _par_scan_state(pss)
5374   {}
5375 
5376   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5377   virtual void do_oop(      oop* p) { do_oop_work(p); }
5378 
5379   template <class T> void do_oop_work(T* p) {
5380     oop obj = oopDesc::load_decode_heap_oop(p);
5381 
5382     if (_g1h->is_in_cset_or_humongous(obj)) {
5383       // If the referent object has been forwarded (either copied
5384       // to a new location or to itself in the event of an
5385       // evacuation failure) then we need to update the reference
5386       // field and, if both reference and referent are in the G1
5387       // heap, update the RSet for the referent.
5388       //
5389       // If the referent has not been forwarded then we have to keep
5390       // it alive by policy. Therefore we have copy the referent.
5391       //
5392       // If the reference field is in the G1 heap then we can push
5393       // on the PSS queue. When the queue is drained (after each
5394       // phase of reference processing) the object and it's followers
5395       // will be copied, the reference field set to point to the
5396       // new location, and the RSet updated. Otherwise we need to
5397       // use the the non-heap or metadata closures directly to copy
5398       // the referent object and update the pointer, while avoiding
5399       // updating the RSet.
5400 
5401       if (_g1h->is_in_g1_reserved(p)) {
5402         _par_scan_state->push_on_queue(p);
5403       } else {
5404         assert(!Metaspace::contains((const void*)p),
5405                err_msg("Unexpectedly found a pointer from metadata: "
5406                               PTR_FORMAT, p));
5407         _copy_non_heap_obj_cl->do_oop(p);
5408       }
5409     }
5410   }
5411 };
5412 
5413 // Serial drain queue closure. Called as the 'complete_gc'
5414 // closure for each discovered list in some of the
5415 // reference processing phases.
5416 
5417 class G1STWDrainQueueClosure: public VoidClosure {
5418 protected:
5419   G1CollectedHeap* _g1h;
5420   G1ParScanThreadState* _par_scan_state;
5421 
5422   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5423 
5424 public:
5425   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5426     _g1h(g1h),
5427     _par_scan_state(pss)
5428   { }
5429 
5430   void do_void() {
5431     G1ParScanThreadState* const pss = par_scan_state();
5432     pss->trim_queue();
5433   }
5434 };
5435 
5436 // Parallel Reference Processing closures
5437 
5438 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5439 // processing during G1 evacuation pauses.
5440 
5441 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5442 private:
5443   G1CollectedHeap*   _g1h;
5444   RefToScanQueueSet* _queues;
5445   FlexibleWorkGang*  _workers;
5446   int                _active_workers;
5447 
5448 public:
5449   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5450                         FlexibleWorkGang* workers,
5451                         RefToScanQueueSet *task_queues,
5452                         int n_workers) :
5453     _g1h(g1h),
5454     _queues(task_queues),
5455     _workers(workers),
5456     _active_workers(n_workers)
5457   {
5458     assert(n_workers > 0, "shouldn't call this otherwise");
5459   }
5460 
5461   // Executes the given task using concurrent marking worker threads.
5462   virtual void execute(ProcessTask& task);
5463   virtual void execute(EnqueueTask& task);
5464 };
5465 
5466 // Gang task for possibly parallel reference processing
5467 
5468 class G1STWRefProcTaskProxy: public AbstractGangTask {
5469   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5470   ProcessTask&     _proc_task;
5471   G1CollectedHeap* _g1h;
5472   RefToScanQueueSet *_task_queues;
5473   ParallelTaskTerminator* _terminator;
5474 
5475 public:
5476   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5477                      G1CollectedHeap* g1h,
5478                      RefToScanQueueSet *task_queues,
5479                      ParallelTaskTerminator* terminator) :
5480     AbstractGangTask("Process reference objects in parallel"),
5481     _proc_task(proc_task),
5482     _g1h(g1h),
5483     _task_queues(task_queues),
5484     _terminator(terminator)
5485   {}
5486 
5487   virtual void work(uint worker_id) {
5488     // The reference processing task executed by a single worker.
5489     ResourceMark rm;
5490     HandleMark   hm;
5491 
5492     G1STWIsAliveClosure is_alive(_g1h);
5493 
5494     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5495     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5496 
5497     pss.set_evac_failure_closure(&evac_failure_cl);
5498 
5499     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5500 
5501     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5502 
5503     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5504 
5505     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5506       // We also need to mark copied objects.
5507       copy_non_heap_cl = &copy_mark_non_heap_cl;
5508     }
5509 
5510     // Keep alive closure.
5511     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5512 
5513     // Complete GC closure
5514     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5515 
5516     // Call the reference processing task's work routine.
5517     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5518 
5519     // Note we cannot assert that the refs array is empty here as not all
5520     // of the processing tasks (specifically phase2 - pp2_work) execute
5521     // the complete_gc closure (which ordinarily would drain the queue) so
5522     // the queue may not be empty.
5523   }
5524 };
5525 
5526 // Driver routine for parallel reference processing.
5527 // Creates an instance of the ref processing gang
5528 // task and has the worker threads execute it.
5529 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5530   assert(_workers != NULL, "Need parallel worker threads.");
5531 
5532   ParallelTaskTerminator terminator(_active_workers, _queues);
5533   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5534 
5535   _g1h->set_par_threads(_active_workers);
5536   _workers->run_task(&proc_task_proxy);
5537   _g1h->set_par_threads(0);
5538 }
5539 
5540 // Gang task for parallel reference enqueueing.
5541 
5542 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5543   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5544   EnqueueTask& _enq_task;
5545 
5546 public:
5547   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5548     AbstractGangTask("Enqueue reference objects in parallel"),
5549     _enq_task(enq_task)
5550   { }
5551 
5552   virtual void work(uint worker_id) {
5553     _enq_task.work(worker_id);
5554   }
5555 };
5556 
5557 // Driver routine for parallel reference enqueueing.
5558 // Creates an instance of the ref enqueueing gang
5559 // task and has the worker threads execute it.
5560 
5561 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5562   assert(_workers != NULL, "Need parallel worker threads.");
5563 
5564   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5565 
5566   _g1h->set_par_threads(_active_workers);
5567   _workers->run_task(&enq_task_proxy);
5568   _g1h->set_par_threads(0);
5569 }
5570 
5571 // End of weak reference support closures
5572 
5573 // Abstract task used to preserve (i.e. copy) any referent objects
5574 // that are in the collection set and are pointed to by reference
5575 // objects discovered by the CM ref processor.
5576 
5577 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5578 protected:
5579   G1CollectedHeap* _g1h;
5580   RefToScanQueueSet      *_queues;
5581   ParallelTaskTerminator _terminator;
5582   uint _n_workers;
5583 
5584 public:
5585   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5586     AbstractGangTask("ParPreserveCMReferents"),
5587     _g1h(g1h),
5588     _queues(task_queues),
5589     _terminator(workers, _queues),
5590     _n_workers(workers)
5591   { }
5592 
5593   void work(uint worker_id) {
5594     ResourceMark rm;
5595     HandleMark   hm;
5596 
5597     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5598     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5599 
5600     pss.set_evac_failure_closure(&evac_failure_cl);
5601 
5602     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5603 
5604     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5605 
5606     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5607 
5608     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5609 
5610     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5611       // We also need to mark copied objects.
5612       copy_non_heap_cl = &copy_mark_non_heap_cl;
5613     }
5614 
5615     // Is alive closure
5616     G1AlwaysAliveClosure always_alive(_g1h);
5617 
5618     // Copying keep alive closure. Applied to referent objects that need
5619     // to be copied.
5620     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5621 
5622     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5623 
5624     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5625     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5626 
5627     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5628     // So this must be true - but assert just in case someone decides to
5629     // change the worker ids.
5630     assert(0 <= worker_id && worker_id < limit, "sanity");
5631     assert(!rp->discovery_is_atomic(), "check this code");
5632 
5633     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5634     for (uint idx = worker_id; idx < limit; idx += stride) {
5635       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5636 
5637       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5638       while (iter.has_next()) {
5639         // Since discovery is not atomic for the CM ref processor, we
5640         // can see some null referent objects.
5641         iter.load_ptrs(DEBUG_ONLY(true));
5642         oop ref = iter.obj();
5643 
5644         // This will filter nulls.
5645         if (iter.is_referent_alive()) {
5646           iter.make_referent_alive();
5647         }
5648         iter.move_to_next();
5649       }
5650     }
5651 
5652     // Drain the queue - which may cause stealing
5653     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5654     drain_queue.do_void();
5655     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5656     assert(pss.queue_is_empty(), "should be");
5657   }
5658 };
5659 
5660 // Weak Reference processing during an evacuation pause (part 1).
5661 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5662   double ref_proc_start = os::elapsedTime();
5663 
5664   ReferenceProcessor* rp = _ref_processor_stw;
5665   assert(rp->discovery_enabled(), "should have been enabled");
5666 
5667   // Any reference objects, in the collection set, that were 'discovered'
5668   // by the CM ref processor should have already been copied (either by
5669   // applying the external root copy closure to the discovered lists, or
5670   // by following an RSet entry).
5671   //
5672   // But some of the referents, that are in the collection set, that these
5673   // reference objects point to may not have been copied: the STW ref
5674   // processor would have seen that the reference object had already
5675   // been 'discovered' and would have skipped discovering the reference,
5676   // but would not have treated the reference object as a regular oop.
5677   // As a result the copy closure would not have been applied to the
5678   // referent object.
5679   //
5680   // We need to explicitly copy these referent objects - the references
5681   // will be processed at the end of remarking.
5682   //
5683   // We also need to do this copying before we process the reference
5684   // objects discovered by the STW ref processor in case one of these
5685   // referents points to another object which is also referenced by an
5686   // object discovered by the STW ref processor.
5687 
5688   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5689            no_of_gc_workers == workers()->active_workers(),
5690            "Need to reset active GC workers");
5691 
5692   set_par_threads(no_of_gc_workers);
5693   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5694                                                  no_of_gc_workers,
5695                                                  _task_queues);
5696 
5697   if (G1CollectedHeap::use_parallel_gc_threads()) {
5698     workers()->run_task(&keep_cm_referents);
5699   } else {
5700     keep_cm_referents.work(0);
5701   }
5702 
5703   set_par_threads(0);
5704 
5705   // Closure to test whether a referent is alive.
5706   G1STWIsAliveClosure is_alive(this);
5707 
5708   // Even when parallel reference processing is enabled, the processing
5709   // of JNI refs is serial and performed serially by the current thread
5710   // rather than by a worker. The following PSS will be used for processing
5711   // JNI refs.
5712 
5713   // Use only a single queue for this PSS.
5714   G1ParScanThreadState            pss(this, 0, NULL);
5715 
5716   // We do not embed a reference processor in the copying/scanning
5717   // closures while we're actually processing the discovered
5718   // reference objects.
5719   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5720 
5721   pss.set_evac_failure_closure(&evac_failure_cl);
5722 
5723   assert(pss.queue_is_empty(), "pre-condition");
5724 
5725   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5726 
5727   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5728 
5729   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5730 
5731   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5732     // We also need to mark copied objects.
5733     copy_non_heap_cl = &copy_mark_non_heap_cl;
5734   }
5735 
5736   // Keep alive closure.
5737   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5738 
5739   // Serial Complete GC closure
5740   G1STWDrainQueueClosure drain_queue(this, &pss);
5741 
5742   // Setup the soft refs policy...
5743   rp->setup_policy(false);
5744 
5745   ReferenceProcessorStats stats;
5746   if (!rp->processing_is_mt()) {
5747     // Serial reference processing...
5748     stats = rp->process_discovered_references(&is_alive,
5749                                               &keep_alive,
5750                                               &drain_queue,
5751                                               NULL,
5752                                               _gc_timer_stw,
5753                                               _gc_tracer_stw->gc_id());
5754   } else {
5755     // Parallel reference processing
5756     assert(rp->num_q() == no_of_gc_workers, "sanity");
5757     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5758 
5759     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5760     stats = rp->process_discovered_references(&is_alive,
5761                                               &keep_alive,
5762                                               &drain_queue,
5763                                               &par_task_executor,
5764                                               _gc_timer_stw,
5765                                               _gc_tracer_stw->gc_id());
5766   }
5767 
5768   _gc_tracer_stw->report_gc_reference_stats(stats);
5769 
5770   // We have completed copying any necessary live referent objects.
5771   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5772 
5773   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5774   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5775 }
5776 
5777 // Weak Reference processing during an evacuation pause (part 2).
5778 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5779   double ref_enq_start = os::elapsedTime();
5780 
5781   ReferenceProcessor* rp = _ref_processor_stw;
5782   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5783 
5784   // Now enqueue any remaining on the discovered lists on to
5785   // the pending list.
5786   if (!rp->processing_is_mt()) {
5787     // Serial reference processing...
5788     rp->enqueue_discovered_references();
5789   } else {
5790     // Parallel reference enqueueing
5791 
5792     assert(no_of_gc_workers == workers()->active_workers(),
5793            "Need to reset active workers");
5794     assert(rp->num_q() == no_of_gc_workers, "sanity");
5795     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5796 
5797     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5798     rp->enqueue_discovered_references(&par_task_executor);
5799   }
5800 
5801   rp->verify_no_references_recorded();
5802   assert(!rp->discovery_enabled(), "should have been disabled");
5803 
5804   // FIXME
5805   // CM's reference processing also cleans up the string and symbol tables.
5806   // Should we do that here also? We could, but it is a serial operation
5807   // and could significantly increase the pause time.
5808 
5809   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5810   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5811 }
5812 
5813 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5814   _expand_heap_after_alloc_failure = true;
5815   _evacuation_failed = false;
5816 
5817   // Should G1EvacuationFailureALot be in effect for this GC?
5818   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5819 
5820   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5821 
5822   // Disable the hot card cache.
5823   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5824   hot_card_cache->reset_hot_cache_claimed_index();
5825   hot_card_cache->set_use_cache(false);
5826 
5827   uint n_workers;
5828   if (G1CollectedHeap::use_parallel_gc_threads()) {
5829     n_workers =
5830       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5831                                      workers()->active_workers(),
5832                                      Threads::number_of_non_daemon_threads());
5833     assert(UseDynamicNumberOfGCThreads ||
5834            n_workers == workers()->total_workers(),
5835            "If not dynamic should be using all the  workers");
5836     workers()->set_active_workers(n_workers);
5837     set_par_threads(n_workers);
5838   } else {
5839     assert(n_par_threads() == 0,
5840            "Should be the original non-parallel value");
5841     n_workers = 1;
5842   }
5843 
5844   G1ParTask g1_par_task(this, _task_queues);
5845 
5846   init_for_evac_failure(NULL);
5847 
5848   rem_set()->prepare_for_younger_refs_iterate(true);
5849 
5850   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5851   double start_par_time_sec = os::elapsedTime();
5852   double end_par_time_sec;
5853 
5854   {
5855     StrongRootsScope srs(this);
5856     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5857     if (g1_policy()->during_initial_mark_pause()) {
5858       ClassLoaderDataGraph::clear_claimed_marks();
5859     }
5860 
5861     if (G1CollectedHeap::use_parallel_gc_threads()) {
5862       // The individual threads will set their evac-failure closures.
5863       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5864       // These tasks use ShareHeap::_process_strong_tasks
5865       assert(UseDynamicNumberOfGCThreads ||
5866              workers()->active_workers() == workers()->total_workers(),
5867              "If not dynamic should be using all the  workers");
5868       workers()->run_task(&g1_par_task);
5869     } else {
5870       g1_par_task.set_for_termination(n_workers);
5871       g1_par_task.work(0);
5872     }
5873     end_par_time_sec = os::elapsedTime();
5874 
5875     // Closing the inner scope will execute the destructor
5876     // for the StrongRootsScope object. We record the current
5877     // elapsed time before closing the scope so that time
5878     // taken for the SRS destructor is NOT included in the
5879     // reported parallel time.
5880   }
5881 
5882   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5883   g1_policy()->phase_times()->record_par_time(par_time_ms);
5884 
5885   double code_root_fixup_time_ms =
5886         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5887   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5888 
5889   set_par_threads(0);
5890 
5891   // Process any discovered reference objects - we have
5892   // to do this _before_ we retire the GC alloc regions
5893   // as we may have to copy some 'reachable' referent
5894   // objects (and their reachable sub-graphs) that were
5895   // not copied during the pause.
5896   process_discovered_references(n_workers);
5897 
5898   // Weak root processing.
5899   {
5900     G1STWIsAliveClosure is_alive(this);
5901     G1KeepAliveClosure keep_alive(this);
5902     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5903     if (G1StringDedup::is_enabled()) {
5904       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5905     }
5906   }
5907 
5908   release_gc_alloc_regions(n_workers, evacuation_info);
5909   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5910 
5911   // Reset and re-enable the hot card cache.
5912   // Note the counts for the cards in the regions in the
5913   // collection set are reset when the collection set is freed.
5914   hot_card_cache->reset_hot_cache();
5915   hot_card_cache->set_use_cache(true);
5916 
5917   // Migrate the strong code roots attached to each region in
5918   // the collection set. Ideally we would like to do this
5919   // after we have finished the scanning/evacuation of the
5920   // strong code roots for a particular heap region.
5921   migrate_strong_code_roots();
5922 
5923   purge_code_root_memory();
5924 
5925   if (g1_policy()->during_initial_mark_pause()) {
5926     // Reset the claim values set during marking the strong code roots
5927     reset_heap_region_claim_values();
5928   }
5929 
5930   finalize_for_evac_failure();
5931 
5932   if (evacuation_failed()) {
5933     remove_self_forwarding_pointers();
5934 
5935     // Reset the G1EvacuationFailureALot counters and flags
5936     // Note: the values are reset only when an actual
5937     // evacuation failure occurs.
5938     NOT_PRODUCT(reset_evacuation_should_fail();)
5939   }
5940 
5941   // Enqueue any remaining references remaining on the STW
5942   // reference processor's discovered lists. We need to do
5943   // this after the card table is cleaned (and verified) as
5944   // the act of enqueueing entries on to the pending list
5945   // will log these updates (and dirty their associated
5946   // cards). We need these updates logged to update any
5947   // RSets.
5948   enqueue_discovered_references(n_workers);
5949 
5950   if (G1DeferredRSUpdate) {
5951     redirty_logged_cards();
5952   }
5953   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5954 }
5955 
5956 void G1CollectedHeap::free_region(HeapRegion* hr,
5957                                   FreeRegionList* free_list,
5958                                   bool par,
5959                                   bool locked) {
5960   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5961   assert(!hr->is_empty(), "the region should not be empty");
5962   assert(_hrs.is_available(hr->hrs_index()), "region should be committed");
5963   assert(free_list != NULL, "pre-condition");
5964 
5965   if (G1VerifyBitmaps) {
5966     MemRegion mr(hr->bottom(), hr->end());
5967     concurrent_mark()->clearRangePrevBitmap(mr);
5968   }
5969 
5970   // Clear the card counts for this region.
5971   // Note: we only need to do this if the region is not young
5972   // (since we don't refine cards in young regions).
5973   if (!hr->is_young()) {
5974     _cg1r->hot_card_cache()->reset_card_counts(hr);
5975   }
5976   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5977   free_list->add_ordered(hr);
5978 }
5979 
5980 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5981                                      FreeRegionList* free_list,
5982                                      bool par) {
5983   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5984   assert(free_list != NULL, "pre-condition");
5985 
5986   size_t hr_capacity = hr->capacity();
5987   // We need to read this before we make the region non-humongous,
5988   // otherwise the information will be gone.
5989   uint last_index = hr->last_hc_index();
5990   hr->set_notHumongous();
5991   free_region(hr, free_list, par);
5992 
5993   uint i = hr->hrs_index() + 1;
5994   while (i < last_index) {
5995     HeapRegion* curr_hr = region_at(i);
5996     assert(curr_hr->continuesHumongous(), "invariant");
5997     curr_hr->set_notHumongous();
5998     free_region(curr_hr, free_list, par);
5999     i += 1;
6000   }
6001 }
6002 
6003 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6004                                        const HeapRegionSetCount& humongous_regions_removed) {
6005   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6006     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6007     _old_set.bulk_remove(old_regions_removed);
6008     _humongous_set.bulk_remove(humongous_regions_removed);
6009   }
6010 
6011 }
6012 
6013 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6014   assert(list != NULL, "list can't be null");
6015   if (!list->is_empty()) {
6016     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6017     _hrs.insert_list_into_free_list(list);
6018   }
6019 }
6020 
6021 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6022   assert(_summary_bytes_used >= bytes,
6023          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6024                   _summary_bytes_used, bytes));
6025   _summary_bytes_used -= bytes;
6026 }
6027 
6028 class G1ParCleanupCTTask : public AbstractGangTask {
6029   G1SATBCardTableModRefBS* _ct_bs;
6030   G1CollectedHeap* _g1h;
6031   HeapRegion* volatile _su_head;
6032 public:
6033   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6034                      G1CollectedHeap* g1h) :
6035     AbstractGangTask("G1 Par Cleanup CT Task"),
6036     _ct_bs(ct_bs), _g1h(g1h) { }
6037 
6038   void work(uint worker_id) {
6039     HeapRegion* r;
6040     while (r = _g1h->pop_dirty_cards_region()) {
6041       clear_cards(r);
6042     }
6043   }
6044 
6045   void clear_cards(HeapRegion* r) {
6046     // Cards of the survivors should have already been dirtied.
6047     if (!r->is_survivor()) {
6048       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6049     }
6050   }
6051 };
6052 
6053 #ifndef PRODUCT
6054 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6055   G1CollectedHeap* _g1h;
6056   G1SATBCardTableModRefBS* _ct_bs;
6057 public:
6058   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6059     : _g1h(g1h), _ct_bs(ct_bs) { }
6060   virtual bool doHeapRegion(HeapRegion* r) {
6061     if (r->is_survivor()) {
6062       _g1h->verify_dirty_region(r);
6063     } else {
6064       _g1h->verify_not_dirty_region(r);
6065     }
6066     return false;
6067   }
6068 };
6069 
6070 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6071   // All of the region should be clean.
6072   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6073   MemRegion mr(hr->bottom(), hr->end());
6074   ct_bs->verify_not_dirty_region(mr);
6075 }
6076 
6077 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6078   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6079   // dirty allocated blocks as they allocate them. The thread that
6080   // retires each region and replaces it with a new one will do a
6081   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6082   // not dirty that area (one less thing to have to do while holding
6083   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6084   // is dirty.
6085   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6086   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6087   if (hr->is_young()) {
6088     ct_bs->verify_g1_young_region(mr);
6089   } else {
6090     ct_bs->verify_dirty_region(mr);
6091   }
6092 }
6093 
6094 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6095   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6096   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6097     verify_dirty_region(hr);
6098   }
6099 }
6100 
6101 void G1CollectedHeap::verify_dirty_young_regions() {
6102   verify_dirty_young_list(_young_list->first_region());
6103 }
6104 
6105 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
6106                                                HeapWord* tams, HeapWord* end) {
6107   guarantee(tams <= end,
6108             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
6109   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
6110   if (result < end) {
6111     gclog_or_tty->cr();
6112     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
6113                            bitmap_name, result);
6114     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
6115                            bitmap_name, tams, end);
6116     return false;
6117   }
6118   return true;
6119 }
6120 
6121 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
6122   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
6123   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
6124 
6125   HeapWord* bottom = hr->bottom();
6126   HeapWord* ptams  = hr->prev_top_at_mark_start();
6127   HeapWord* ntams  = hr->next_top_at_mark_start();
6128   HeapWord* end    = hr->end();
6129 
6130   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6131 
6132   bool res_n = true;
6133   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6134   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6135   // if we happen to be in that state.
6136   if (mark_in_progress() || !_cmThread->in_progress()) {
6137     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6138   }
6139   if (!res_p || !res_n) {
6140     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6141                            HR_FORMAT_PARAMS(hr));
6142     gclog_or_tty->print_cr("#### Caller: %s", caller);
6143     return false;
6144   }
6145   return true;
6146 }
6147 
6148 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6149   if (!G1VerifyBitmaps) return;
6150 
6151   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6152 }
6153 
6154 class G1VerifyBitmapClosure : public HeapRegionClosure {
6155 private:
6156   const char* _caller;
6157   G1CollectedHeap* _g1h;
6158   bool _failures;
6159 
6160 public:
6161   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6162     _caller(caller), _g1h(g1h), _failures(false) { }
6163 
6164   bool failures() { return _failures; }
6165 
6166   virtual bool doHeapRegion(HeapRegion* hr) {
6167     if (hr->continuesHumongous()) return false;
6168 
6169     bool result = _g1h->verify_bitmaps(_caller, hr);
6170     if (!result) {
6171       _failures = true;
6172     }
6173     return false;
6174   }
6175 };
6176 
6177 void G1CollectedHeap::check_bitmaps(const char* caller) {
6178   if (!G1VerifyBitmaps) return;
6179 
6180   G1VerifyBitmapClosure cl(caller, this);
6181   heap_region_iterate(&cl);
6182   guarantee(!cl.failures(), "bitmap verification");
6183 }
6184 #endif // PRODUCT
6185 
6186 void G1CollectedHeap::cleanUpCardTable() {
6187   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6188   double start = os::elapsedTime();
6189 
6190   {
6191     // Iterate over the dirty cards region list.
6192     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6193 
6194     if (G1CollectedHeap::use_parallel_gc_threads()) {
6195       set_par_threads();
6196       workers()->run_task(&cleanup_task);
6197       set_par_threads(0);
6198     } else {
6199       while (_dirty_cards_region_list) {
6200         HeapRegion* r = _dirty_cards_region_list;
6201         cleanup_task.clear_cards(r);
6202         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6203         if (_dirty_cards_region_list == r) {
6204           // The last region.
6205           _dirty_cards_region_list = NULL;
6206         }
6207         r->set_next_dirty_cards_region(NULL);
6208       }
6209     }
6210 #ifndef PRODUCT
6211     if (G1VerifyCTCleanup || VerifyAfterGC) {
6212       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6213       heap_region_iterate(&cleanup_verifier);
6214     }
6215 #endif
6216   }
6217 
6218   double elapsed = os::elapsedTime() - start;
6219   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6220 }
6221 
6222 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6223   size_t pre_used = 0;
6224   FreeRegionList local_free_list("Local List for CSet Freeing");
6225 
6226   double young_time_ms     = 0.0;
6227   double non_young_time_ms = 0.0;
6228 
6229   // Since the collection set is a superset of the the young list,
6230   // all we need to do to clear the young list is clear its
6231   // head and length, and unlink any young regions in the code below
6232   _young_list->clear();
6233 
6234   G1CollectorPolicy* policy = g1_policy();
6235 
6236   double start_sec = os::elapsedTime();
6237   bool non_young = true;
6238 
6239   HeapRegion* cur = cs_head;
6240   int age_bound = -1;
6241   size_t rs_lengths = 0;
6242 
6243   while (cur != NULL) {
6244     assert(!is_on_master_free_list(cur), "sanity");
6245     if (non_young) {
6246       if (cur->is_young()) {
6247         double end_sec = os::elapsedTime();
6248         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6249         non_young_time_ms += elapsed_ms;
6250 
6251         start_sec = os::elapsedTime();
6252         non_young = false;
6253       }
6254     } else {
6255       if (!cur->is_young()) {
6256         double end_sec = os::elapsedTime();
6257         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6258         young_time_ms += elapsed_ms;
6259 
6260         start_sec = os::elapsedTime();
6261         non_young = true;
6262       }
6263     }
6264 
6265     rs_lengths += cur->rem_set()->occupied_locked();
6266 
6267     HeapRegion* next = cur->next_in_collection_set();
6268     assert(cur->in_collection_set(), "bad CS");
6269     cur->set_next_in_collection_set(NULL);
6270     cur->set_in_collection_set(false);
6271 
6272     if (cur->is_young()) {
6273       int index = cur->young_index_in_cset();
6274       assert(index != -1, "invariant");
6275       assert((uint) index < policy->young_cset_region_length(), "invariant");
6276       size_t words_survived = _surviving_young_words[index];
6277       cur->record_surv_words_in_group(words_survived);
6278 
6279       // At this point the we have 'popped' cur from the collection set
6280       // (linked via next_in_collection_set()) but it is still in the
6281       // young list (linked via next_young_region()). Clear the
6282       // _next_young_region field.
6283       cur->set_next_young_region(NULL);
6284     } else {
6285       int index = cur->young_index_in_cset();
6286       assert(index == -1, "invariant");
6287     }
6288 
6289     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6290             (!cur->is_young() && cur->young_index_in_cset() == -1),
6291             "invariant" );
6292 
6293     if (!cur->evacuation_failed()) {
6294       MemRegion used_mr = cur->used_region();
6295 
6296       // And the region is empty.
6297       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6298       pre_used += cur->used();
6299       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6300     } else {
6301       cur->uninstall_surv_rate_group();
6302       if (cur->is_young()) {
6303         cur->set_young_index_in_cset(-1);
6304       }
6305       cur->set_not_young();
6306       cur->set_evacuation_failed(false);
6307       // The region is now considered to be old.
6308       _old_set.add(cur);
6309       evacuation_info.increment_collectionset_used_after(cur->used());
6310     }
6311     cur = next;
6312   }
6313 
6314   evacuation_info.set_regions_freed(local_free_list.length());
6315   policy->record_max_rs_lengths(rs_lengths);
6316   policy->cset_regions_freed();
6317 
6318   double end_sec = os::elapsedTime();
6319   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6320 
6321   if (non_young) {
6322     non_young_time_ms += elapsed_ms;
6323   } else {
6324     young_time_ms += elapsed_ms;
6325   }
6326 
6327   prepend_to_freelist(&local_free_list);
6328   decrement_summary_bytes(pre_used);
6329   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6330   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6331 }
6332 
6333 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6334  private:
6335   FreeRegionList* _free_region_list;
6336   HeapRegionSet* _proxy_set;
6337   HeapRegionSetCount _humongous_regions_removed;
6338   size_t _freed_bytes;
6339  public:
6340 
6341   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6342     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6343   }
6344 
6345   virtual bool doHeapRegion(HeapRegion* r) {
6346     if (!r->startsHumongous()) {
6347       return false;
6348     }
6349 
6350     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6351 
6352     oop obj = (oop)r->bottom();
6353     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6354 
6355     // The following checks whether the humongous object is live are sufficient.
6356     // The main additional check (in addition to having a reference from the roots
6357     // or the young gen) is whether the humongous object has a remembered set entry.
6358     //
6359     // A humongous object cannot be live if there is no remembered set for it
6360     // because:
6361     // - there can be no references from within humongous starts regions referencing
6362     // the object because we never allocate other objects into them.
6363     // (I.e. there are no intra-region references that may be missed by the
6364     // remembered set)
6365     // - as soon there is a remembered set entry to the humongous starts region
6366     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6367     // until the end of a concurrent mark.
6368     //
6369     // It is not required to check whether the object has been found dead by marking
6370     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6371     // all objects allocated during that time are considered live.
6372     // SATB marking is even more conservative than the remembered set.
6373     // So if at this point in the collection there is no remembered set entry,
6374     // nobody has a reference to it.
6375     // At the start of collection we flush all refinement logs, and remembered sets
6376     // are completely up-to-date wrt to references to the humongous object.
6377     //
6378     // Other implementation considerations:
6379     // - never consider object arrays: while they are a valid target, they have not
6380     // been observed to be used as temporary objects.
6381     // - they would also pose considerable effort for cleaning up the the remembered
6382     // sets.
6383     // While this cleanup is not strictly necessary to be done (or done instantly),
6384     // given that their occurrence is very low, this saves us this additional
6385     // complexity.
6386     uint region_idx = r->hrs_index();
6387     if (g1h->humongous_is_live(region_idx) ||
6388         g1h->humongous_region_is_always_live(region_idx)) {
6389 
6390       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6391         gclog_or_tty->print_cr("Live humongous %d region %d with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6392                                r->isHumongous(),
6393                                region_idx,
6394                                r->rem_set()->occupied(),
6395                                r->rem_set()->strong_code_roots_list_length(),
6396                                next_bitmap->isMarked(r->bottom()),
6397                                g1h->humongous_is_live(region_idx),
6398                                obj->is_objArray()
6399                               );
6400       }
6401 
6402       return false;
6403     }
6404 
6405     guarantee(!obj->is_objArray(),
6406               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6407                       r->bottom()));
6408 
6409     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6410       gclog_or_tty->print_cr("Reclaim humongous region %d start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6411                              r->isHumongous(),
6412                              r->bottom(),
6413                              region_idx,
6414                              r->region_num(),
6415                              r->rem_set()->occupied(),
6416                              r->rem_set()->strong_code_roots_list_length(),
6417                              next_bitmap->isMarked(r->bottom()),
6418                              g1h->humongous_is_live(region_idx),
6419                              obj->is_objArray()
6420                             );
6421     }
6422     // Need to clear mark bit of the humongous object if already set.
6423     if (next_bitmap->isMarked(r->bottom())) {
6424       next_bitmap->clear(r->bottom());
6425     }
6426     _freed_bytes += r->used();
6427     r->set_containing_set(NULL);
6428     _humongous_regions_removed.increment(1u, r->capacity());
6429     g1h->free_humongous_region(r, _free_region_list, false);
6430 
6431     return false;
6432   }
6433 
6434   HeapRegionSetCount& humongous_free_count() {
6435     return _humongous_regions_removed;
6436   }
6437 
6438   size_t bytes_freed() const {
6439     return _freed_bytes;
6440   }
6441 
6442   size_t humongous_reclaimed() const {
6443     return _humongous_regions_removed.length();
6444   }
6445 };
6446 
6447 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6448   assert_at_safepoint(true);
6449 
6450   if (!G1ReclaimDeadHumongousObjectsAtYoungGC || !_has_humongous_reclaim_candidates) {
6451     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6452     return;
6453   }
6454 
6455   double start_time = os::elapsedTime();
6456 
6457   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6458 
6459   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6460   heap_region_iterate(&cl);
6461 
6462   HeapRegionSetCount empty_set;
6463   remove_from_old_sets(empty_set, cl.humongous_free_count());
6464 
6465   G1HRPrinter* hr_printer = _g1h->hr_printer();
6466   if (hr_printer->is_active()) {
6467     FreeRegionListIterator iter(&local_cleanup_list);
6468     while (iter.more_available()) {
6469       HeapRegion* hr = iter.get_next();
6470       hr_printer->cleanup(hr);
6471     }
6472   }
6473 
6474   prepend_to_freelist(&local_cleanup_list);
6475   decrement_summary_bytes(cl.bytes_freed());
6476 
6477   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6478                                                                     cl.humongous_reclaimed());
6479 }
6480 
6481 // This routine is similar to the above but does not record
6482 // any policy statistics or update free lists; we are abandoning
6483 // the current incremental collection set in preparation of a
6484 // full collection. After the full GC we will start to build up
6485 // the incremental collection set again.
6486 // This is only called when we're doing a full collection
6487 // and is immediately followed by the tearing down of the young list.
6488 
6489 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6490   HeapRegion* cur = cs_head;
6491 
6492   while (cur != NULL) {
6493     HeapRegion* next = cur->next_in_collection_set();
6494     assert(cur->in_collection_set(), "bad CS");
6495     cur->set_next_in_collection_set(NULL);
6496     cur->set_in_collection_set(false);
6497     cur->set_young_index_in_cset(-1);
6498     cur = next;
6499   }
6500 }
6501 
6502 void G1CollectedHeap::set_free_regions_coming() {
6503   if (G1ConcRegionFreeingVerbose) {
6504     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6505                            "setting free regions coming");
6506   }
6507 
6508   assert(!free_regions_coming(), "pre-condition");
6509   _free_regions_coming = true;
6510 }
6511 
6512 void G1CollectedHeap::reset_free_regions_coming() {
6513   assert(free_regions_coming(), "pre-condition");
6514 
6515   {
6516     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6517     _free_regions_coming = false;
6518     SecondaryFreeList_lock->notify_all();
6519   }
6520 
6521   if (G1ConcRegionFreeingVerbose) {
6522     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6523                            "reset free regions coming");
6524   }
6525 }
6526 
6527 void G1CollectedHeap::wait_while_free_regions_coming() {
6528   // Most of the time we won't have to wait, so let's do a quick test
6529   // first before we take the lock.
6530   if (!free_regions_coming()) {
6531     return;
6532   }
6533 
6534   if (G1ConcRegionFreeingVerbose) {
6535     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6536                            "waiting for free regions");
6537   }
6538 
6539   {
6540     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6541     while (free_regions_coming()) {
6542       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6543     }
6544   }
6545 
6546   if (G1ConcRegionFreeingVerbose) {
6547     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6548                            "done waiting for free regions");
6549   }
6550 }
6551 
6552 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6553   assert(heap_lock_held_for_gc(),
6554               "the heap lock should already be held by or for this thread");
6555   _young_list->push_region(hr);
6556 }
6557 
6558 class NoYoungRegionsClosure: public HeapRegionClosure {
6559 private:
6560   bool _success;
6561 public:
6562   NoYoungRegionsClosure() : _success(true) { }
6563   bool doHeapRegion(HeapRegion* r) {
6564     if (r->is_young()) {
6565       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6566                              r->bottom(), r->end());
6567       _success = false;
6568     }
6569     return false;
6570   }
6571   bool success() { return _success; }
6572 };
6573 
6574 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6575   bool ret = _young_list->check_list_empty(check_sample);
6576 
6577   if (check_heap) {
6578     NoYoungRegionsClosure closure;
6579     heap_region_iterate(&closure);
6580     ret = ret && closure.success();
6581   }
6582 
6583   return ret;
6584 }
6585 
6586 class TearDownRegionSetsClosure : public HeapRegionClosure {
6587 private:
6588   HeapRegionSet *_old_set;
6589 
6590 public:
6591   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6592 
6593   bool doHeapRegion(HeapRegion* r) {
6594     if (r->is_empty()) {
6595       // We ignore empty regions, we'll empty the free list afterwards
6596     } else if (r->is_young()) {
6597       // We ignore young regions, we'll empty the young list afterwards
6598     } else if (r->isHumongous()) {
6599       // We ignore humongous regions, we're not tearing down the
6600       // humongous region set
6601     } else {
6602       // The rest should be old
6603       _old_set->remove(r);
6604     }
6605     return false;
6606   }
6607 
6608   ~TearDownRegionSetsClosure() {
6609     assert(_old_set->is_empty(), "post-condition");
6610   }
6611 };
6612 
6613 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6614   assert_at_safepoint(true /* should_be_vm_thread */);
6615 
6616   if (!free_list_only) {
6617     TearDownRegionSetsClosure cl(&_old_set);
6618     heap_region_iterate(&cl);
6619 
6620     // Note that emptying the _young_list is postponed and instead done as
6621     // the first step when rebuilding the regions sets again. The reason for
6622     // this is that during a full GC string deduplication needs to know if
6623     // a collected region was young or old when the full GC was initiated.
6624   }
6625   _hrs.remove_all_free_regions();
6626 }
6627 
6628 class RebuildRegionSetsClosure : public HeapRegionClosure {
6629 private:
6630   bool            _free_list_only;
6631   HeapRegionSet*   _old_set;
6632   HeapRegionSeq*   _hrs;
6633   size_t          _total_used;
6634 
6635 public:
6636   RebuildRegionSetsClosure(bool free_list_only,
6637                            HeapRegionSet* old_set, HeapRegionSeq* hrs) :
6638     _free_list_only(free_list_only),
6639     _old_set(old_set), _hrs(hrs), _total_used(0) {
6640     assert(_hrs->num_free_regions() == 0, "pre-condition");
6641     if (!free_list_only) {
6642       assert(_old_set->is_empty(), "pre-condition");
6643     }
6644   }
6645 
6646   bool doHeapRegion(HeapRegion* r) {
6647     if (r->continuesHumongous()) {
6648       return false;
6649     }
6650 
6651     if (r->is_empty()) {
6652       // Add free regions to the free list
6653       _hrs->insert_into_free_list(r);
6654     } else if (!_free_list_only) {
6655       assert(!r->is_young(), "we should not come across young regions");
6656 
6657       if (r->isHumongous()) {
6658         // We ignore humongous regions, we left the humongous set unchanged
6659       } else {
6660         // The rest should be old, add them to the old set
6661         _old_set->add(r);
6662       }
6663       _total_used += r->used();
6664     }
6665 
6666     return false;
6667   }
6668 
6669   size_t total_used() {
6670     return _total_used;
6671   }
6672 };
6673 
6674 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6675   assert_at_safepoint(true /* should_be_vm_thread */);
6676 
6677   if (!free_list_only) {
6678     _young_list->empty_list();
6679   }
6680 
6681   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrs);
6682   heap_region_iterate(&cl);
6683 
6684   if (!free_list_only) {
6685     _summary_bytes_used = cl.total_used();
6686   }
6687   assert(_summary_bytes_used == recalculate_used(),
6688          err_msg("inconsistent _summary_bytes_used, "
6689                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6690                  _summary_bytes_used, recalculate_used()));
6691 }
6692 
6693 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6694   _refine_cte_cl->set_concurrent(concurrent);
6695 }
6696 
6697 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6698   HeapRegion* hr = heap_region_containing(p);
6699   return hr->is_in(p);
6700 }
6701 
6702 // Methods for the mutator alloc region
6703 
6704 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6705                                                       bool force) {
6706   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6707   assert(!force || g1_policy()->can_expand_young_list(),
6708          "if force is true we should be able to expand the young list");
6709   bool young_list_full = g1_policy()->is_young_list_full();
6710   if (force || !young_list_full) {
6711     HeapRegion* new_alloc_region = new_region(word_size,
6712                                               false /* is_old */,
6713                                               false /* do_expand */);
6714     if (new_alloc_region != NULL) {
6715       set_region_short_lived_locked(new_alloc_region);
6716       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6717       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6718       return new_alloc_region;
6719     }
6720   }
6721   return NULL;
6722 }
6723 
6724 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6725                                                   size_t allocated_bytes) {
6726   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6727   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6728 
6729   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6730   _summary_bytes_used += allocated_bytes;
6731   _hr_printer.retire(alloc_region);
6732   // We update the eden sizes here, when the region is retired,
6733   // instead of when it's allocated, since this is the point that its
6734   // used space has been recored in _summary_bytes_used.
6735   g1mm()->update_eden_size();
6736 }
6737 
6738 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6739                                                     bool force) {
6740   return _g1h->new_mutator_alloc_region(word_size, force);
6741 }
6742 
6743 void G1CollectedHeap::set_par_threads() {
6744   // Don't change the number of workers.  Use the value previously set
6745   // in the workgroup.
6746   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6747   uint n_workers = workers()->active_workers();
6748   assert(UseDynamicNumberOfGCThreads ||
6749            n_workers == workers()->total_workers(),
6750       "Otherwise should be using the total number of workers");
6751   if (n_workers == 0) {
6752     assert(false, "Should have been set in prior evacuation pause.");
6753     n_workers = ParallelGCThreads;
6754     workers()->set_active_workers(n_workers);
6755   }
6756   set_par_threads(n_workers);
6757 }
6758 
6759 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6760                                        size_t allocated_bytes) {
6761   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6762 }
6763 
6764 // Methods for the GC alloc regions
6765 
6766 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6767                                                  uint count,
6768                                                  GCAllocPurpose ap) {
6769   assert(FreeList_lock->owned_by_self(), "pre-condition");
6770 
6771   if (count < g1_policy()->max_regions(ap)) {
6772     bool survivor = (ap == GCAllocForSurvived);
6773     HeapRegion* new_alloc_region = new_region(word_size,
6774                                               !survivor,
6775                                               true /* do_expand */);
6776     if (new_alloc_region != NULL) {
6777       // We really only need to do this for old regions given that we
6778       // should never scan survivors. But it doesn't hurt to do it
6779       // for survivors too.
6780       new_alloc_region->record_top_and_timestamp();
6781       if (survivor) {
6782         new_alloc_region->set_survivor();
6783         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6784         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6785       } else {
6786         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6787         check_bitmaps("Old Region Allocation", new_alloc_region);
6788       }
6789       bool during_im = g1_policy()->during_initial_mark_pause();
6790       new_alloc_region->note_start_of_copying(during_im);
6791       return new_alloc_region;
6792     } else {
6793       g1_policy()->note_alloc_region_limit_reached(ap);
6794     }
6795   }
6796   return NULL;
6797 }
6798 
6799 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6800                                              size_t allocated_bytes,
6801                                              GCAllocPurpose ap) {
6802   bool during_im = g1_policy()->during_initial_mark_pause();
6803   alloc_region->note_end_of_copying(during_im);
6804   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6805   if (ap == GCAllocForSurvived) {
6806     young_list()->add_survivor_region(alloc_region);
6807   } else {
6808     _old_set.add(alloc_region);
6809   }
6810   _hr_printer.retire(alloc_region);
6811 }
6812 
6813 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6814                                                        bool force) {
6815   assert(!force, "not supported for GC alloc regions");
6816   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6817 }
6818 
6819 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6820                                           size_t allocated_bytes) {
6821   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6822                                GCAllocForSurvived);
6823 }
6824 
6825 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6826                                                   bool force) {
6827   assert(!force, "not supported for GC alloc regions");
6828   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6829 }
6830 
6831 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6832                                      size_t allocated_bytes) {
6833   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6834                                GCAllocForTenured);
6835 }
6836 // Heap region set verification
6837 
6838 class VerifyRegionListsClosure : public HeapRegionClosure {
6839 private:
6840   HeapRegionSet*   _old_set;
6841   HeapRegionSet*   _humongous_set;
6842   HeapRegionSeq*   _hrs;
6843 
6844 public:
6845   HeapRegionSetCount _old_count;
6846   HeapRegionSetCount _humongous_count;
6847   HeapRegionSetCount _free_count;
6848 
6849   VerifyRegionListsClosure(HeapRegionSet* old_set,
6850                            HeapRegionSet* humongous_set,
6851                            HeapRegionSeq* hrs) :
6852     _old_set(old_set), _humongous_set(humongous_set), _hrs(hrs),
6853     _old_count(), _humongous_count(), _free_count(){ }
6854 
6855   bool doHeapRegion(HeapRegion* hr) {
6856     if (hr->continuesHumongous()) {
6857       return false;
6858     }
6859 
6860     if (hr->is_young()) {
6861       // TODO
6862     } else if (hr->startsHumongous()) {
6863       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
6864       _humongous_count.increment(1u, hr->capacity());
6865     } else if (hr->is_empty()) {
6866       assert(_hrs->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
6867       _free_count.increment(1u, hr->capacity());
6868     } else {
6869       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
6870       _old_count.increment(1u, hr->capacity());
6871     }
6872     return false;
6873   }
6874 
6875   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionSeq* free_list) {
6876     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6877     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6878         old_set->total_capacity_bytes(), _old_count.capacity()));
6879 
6880     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6881     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6882         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6883 
6884     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6885     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6886         free_list->total_capacity_bytes(), _free_count.capacity()));
6887   }
6888 };
6889 
6890 void G1CollectedHeap::verify_region_sets() {
6891   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6892 
6893   // First, check the explicit lists.
6894   _hrs.verify();
6895   {
6896     // Given that a concurrent operation might be adding regions to
6897     // the secondary free list we have to take the lock before
6898     // verifying it.
6899     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6900     _secondary_free_list.verify_list();
6901   }
6902 
6903   // If a concurrent region freeing operation is in progress it will
6904   // be difficult to correctly attributed any free regions we come
6905   // across to the correct free list given that they might belong to
6906   // one of several (free_list, secondary_free_list, any local lists,
6907   // etc.). So, if that's the case we will skip the rest of the
6908   // verification operation. Alternatively, waiting for the concurrent
6909   // operation to complete will have a non-trivial effect on the GC's
6910   // operation (no concurrent operation will last longer than the
6911   // interval between two calls to verification) and it might hide
6912   // any issues that we would like to catch during testing.
6913   if (free_regions_coming()) {
6914     return;
6915   }
6916 
6917   // Make sure we append the secondary_free_list on the free_list so
6918   // that all free regions we will come across can be safely
6919   // attributed to the free_list.
6920   append_secondary_free_list_if_not_empty_with_lock();
6921 
6922   // Finally, make sure that the region accounting in the lists is
6923   // consistent with what we see in the heap.
6924 
6925   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrs);
6926   heap_region_iterate(&cl);
6927   cl.verify_counts(&_old_set, &_humongous_set, &_hrs);
6928 }
6929 
6930 // Optimized nmethod scanning
6931 
6932 class RegisterNMethodOopClosure: public OopClosure {
6933   G1CollectedHeap* _g1h;
6934   nmethod* _nm;
6935 
6936   template <class T> void do_oop_work(T* p) {
6937     T heap_oop = oopDesc::load_heap_oop(p);
6938     if (!oopDesc::is_null(heap_oop)) {
6939       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6940       HeapRegion* hr = _g1h->heap_region_containing(obj);
6941       assert(!hr->continuesHumongous(),
6942              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6943                      " starting at "HR_FORMAT,
6944                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6945 
6946       // HeapRegion::add_strong_code_root() avoids adding duplicate
6947       // entries but having duplicates is  OK since we "mark" nmethods
6948       // as visited when we scan the strong code root lists during the GC.
6949       hr->add_strong_code_root(_nm);
6950       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6951              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6952                      _nm, HR_FORMAT_PARAMS(hr)));
6953     }
6954   }
6955 
6956 public:
6957   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6958     _g1h(g1h), _nm(nm) {}
6959 
6960   void do_oop(oop* p)       { do_oop_work(p); }
6961   void do_oop(narrowOop* p) { do_oop_work(p); }
6962 };
6963 
6964 class UnregisterNMethodOopClosure: public OopClosure {
6965   G1CollectedHeap* _g1h;
6966   nmethod* _nm;
6967 
6968   template <class T> void do_oop_work(T* p) {
6969     T heap_oop = oopDesc::load_heap_oop(p);
6970     if (!oopDesc::is_null(heap_oop)) {
6971       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6972       HeapRegion* hr = _g1h->heap_region_containing(obj);
6973       assert(!hr->continuesHumongous(),
6974              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6975                      " starting at "HR_FORMAT,
6976                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6977 
6978       hr->remove_strong_code_root(_nm);
6979       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6980              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6981                      _nm, HR_FORMAT_PARAMS(hr)));
6982     }
6983   }
6984 
6985 public:
6986   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6987     _g1h(g1h), _nm(nm) {}
6988 
6989   void do_oop(oop* p)       { do_oop_work(p); }
6990   void do_oop(narrowOop* p) { do_oop_work(p); }
6991 };
6992 
6993 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6994   CollectedHeap::register_nmethod(nm);
6995 
6996   guarantee(nm != NULL, "sanity");
6997   RegisterNMethodOopClosure reg_cl(this, nm);
6998   nm->oops_do(&reg_cl);
6999 }
7000 
7001 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
7002   CollectedHeap::unregister_nmethod(nm);
7003 
7004   guarantee(nm != NULL, "sanity");
7005   UnregisterNMethodOopClosure reg_cl(this, nm);
7006   nm->oops_do(&reg_cl, true);
7007 }
7008 
7009 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
7010 public:
7011   bool doHeapRegion(HeapRegion *hr) {
7012     assert(!hr->isHumongous(),
7013            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
7014                    HR_FORMAT_PARAMS(hr)));
7015     hr->migrate_strong_code_roots();
7016     return false;
7017   }
7018 };
7019 
7020 void G1CollectedHeap::migrate_strong_code_roots() {
7021   MigrateCodeRootsHeapRegionClosure cl;
7022   double migrate_start = os::elapsedTime();
7023   collection_set_iterate(&cl);
7024   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
7025   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
7026 }
7027 
7028 void G1CollectedHeap::purge_code_root_memory() {
7029   double purge_start = os::elapsedTime();
7030   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
7031   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
7032   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
7033 }
7034 
7035 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
7036   G1CollectedHeap* _g1h;
7037 
7038 public:
7039   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
7040     _g1h(g1h) {}
7041 
7042   void do_code_blob(CodeBlob* cb) {
7043     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
7044     if (nm == NULL) {
7045       return;
7046     }
7047 
7048     if (ScavengeRootsInCode) {
7049       _g1h->register_nmethod(nm);
7050     }
7051   }
7052 };
7053 
7054 void G1CollectedHeap::rebuild_strong_code_roots() {
7055   RebuildStrongCodeRootClosure blob_cl(this);
7056   CodeCache::blobs_do(&blob_cl);
7057 }