1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/cardTableRS.hpp"
  28 #include "memory/genCollectedHeap.hpp"
  29 #include "memory/generation.hpp"
  30 #include "memory/space.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "runtime/atomic.inline.hpp"
  33 #include "runtime/java.hpp"
  34 #include "runtime/os.hpp"
  35 #include "utilities/macros.hpp"
  36 #if INCLUDE_ALL_GCS
  37 #include "gc_implementation/g1/concurrentMark.hpp"
  38 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  39 #endif // INCLUDE_ALL_GCS
  40 
  41 CardTableRS::CardTableRS(MemRegion whole_heap,
  42                          int max_covered_regions) :
  43   GenRemSet(),
  44   _cur_youngergen_card_val(youngergenP1_card),
  45   _regions_to_iterate(max_covered_regions - 1)
  46 {
  47 #if INCLUDE_ALL_GCS
  48   if (UseG1GC) {
  49       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
  50                                                   max_covered_regions);
  51   } else {
  52     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
  53   }
  54 #else
  55   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
  56 #endif
  57   set_bs(_ct_bs);
  58   _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, GenCollectedHeap::max_gens + 1,
  59                          mtGC, 0, AllocFailStrategy::RETURN_NULL);
  60   if (_last_cur_val_in_gen == NULL) {
  61     vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
  62   }
  63   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
  64     _last_cur_val_in_gen[i] = clean_card_val();
  65   }
  66   _ct_bs->set_CTRS(this);
  67 }
  68 
  69 CardTableRS::~CardTableRS() {
  70   if (_ct_bs) {
  71     delete _ct_bs;
  72     _ct_bs = NULL;
  73   }
  74   if (_last_cur_val_in_gen) {
  75     FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen, mtInternal);
  76   }
  77 }
  78 
  79 void CardTableRS::resize_covered_region(MemRegion new_region) {
  80   _ct_bs->resize_covered_region(new_region);
  81 }
  82 
  83 jbyte CardTableRS::find_unused_youngergenP_card_value() {
  84   for (jbyte v = youngergenP1_card;
  85        v < cur_youngergen_and_prev_nonclean_card;
  86        v++) {
  87     bool seen = false;
  88     for (int g = 0; g < _regions_to_iterate; g++) {
  89       if (_last_cur_val_in_gen[g] == v) {
  90         seen = true;
  91         break;
  92       }
  93     }
  94     if (!seen) return v;
  95   }
  96   ShouldNotReachHere();
  97   return 0;
  98 }
  99 
 100 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
 101   // Parallel or sequential, we must always set the prev to equal the
 102   // last one written.
 103   if (parallel) {
 104     // Find a parallel value to be used next.
 105     jbyte next_val = find_unused_youngergenP_card_value();
 106     set_cur_youngergen_card_val(next_val);
 107 
 108   } else {
 109     // In an sequential traversal we will always write youngergen, so that
 110     // the inline barrier is  correct.
 111     set_cur_youngergen_card_val(youngergen_card);
 112   }
 113 }
 114 
 115 void CardTableRS::younger_refs_iterate(Generation* g,
 116                                        OopsInGenClosure* blk) {
 117   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
 118   g->younger_refs_iterate(blk);
 119 }
 120 
 121 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
 122   if (_is_par) {
 123     return clear_card_parallel(entry);
 124   } else {
 125     return clear_card_serial(entry);
 126   }
 127 }
 128 
 129 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
 130   while (true) {
 131     // In the parallel case, we may have to do this several times.
 132     jbyte entry_val = *entry;
 133     assert(entry_val != CardTableRS::clean_card_val(),
 134            "We shouldn't be looking at clean cards, and this should "
 135            "be the only place they get cleaned.");
 136     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
 137         || _ct->is_prev_youngergen_card_val(entry_val)) {
 138       jbyte res =
 139         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
 140       if (res == entry_val) {
 141         break;
 142       } else {
 143         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
 144                "The CAS above should only fail if another thread did "
 145                "a GC write barrier.");
 146       }
 147     } else if (entry_val ==
 148                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
 149       // Parallelism shouldn't matter in this case.  Only the thread
 150       // assigned to scan the card should change this value.
 151       *entry = _ct->cur_youngergen_card_val();
 152       break;
 153     } else {
 154       assert(entry_val == _ct->cur_youngergen_card_val(),
 155              "Should be the only possibility.");
 156       // In this case, the card was clean before, and become
 157       // cur_youngergen only because of processing of a promoted object.
 158       // We don't have to look at the card.
 159       return false;
 160     }
 161   }
 162   return true;
 163 }
 164 
 165 
 166 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
 167   jbyte entry_val = *entry;
 168   assert(entry_val != CardTableRS::clean_card_val(),
 169          "We shouldn't be looking at clean cards, and this should "
 170          "be the only place they get cleaned.");
 171   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
 172          "This should be possible in the sequential case.");
 173   *entry = CardTableRS::clean_card_val();
 174   return true;
 175 }
 176 
 177 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
 178   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
 179     _dirty_card_closure(dirty_card_closure), _ct(ct) {
 180     // Cannot yet substitute active_workers for n_par_threads
 181     // in the case where parallelism is being turned off by
 182     // setting n_par_threads to 0.
 183     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
 184     assert(!_is_par ||
 185            (SharedHeap::heap()->n_par_threads() ==
 186             SharedHeap::heap()->workers()->active_workers()), "Mismatch");
 187 }
 188 
 189 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
 190   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
 191 }
 192 
 193 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
 194   assert(mr.word_size() > 0, "Error");
 195   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
 196   // mr.end() may not necessarily be card aligned.
 197   jbyte* cur_entry = _ct->byte_for(mr.last());
 198   const jbyte* limit = _ct->byte_for(mr.start());
 199   HeapWord* end_of_non_clean = mr.end();
 200   HeapWord* start_of_non_clean = end_of_non_clean;
 201   while (cur_entry >= limit) {
 202     HeapWord* cur_hw = _ct->addr_for(cur_entry);
 203     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
 204       // Continue the dirty range by opening the
 205       // dirty window one card to the left.
 206       start_of_non_clean = cur_hw;
 207     } else {
 208       // We hit a "clean" card; process any non-empty
 209       // "dirty" range accumulated so far.
 210       if (start_of_non_clean < end_of_non_clean) {
 211         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 212         _dirty_card_closure->do_MemRegion(mrd);
 213       }
 214 
 215       // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
 216       if (is_word_aligned(cur_entry)) {
 217         jbyte* cur_row = cur_entry - BytesPerWord;
 218         while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row()) {
 219           cur_row -= BytesPerWord;
 220         }
 221         cur_entry = cur_row + BytesPerWord;
 222         cur_hw = _ct->addr_for(cur_entry);
 223       }
 224 
 225       // Reset the dirty window, while continuing to look
 226       // for the next dirty card that will start a
 227       // new dirty window.
 228       end_of_non_clean = cur_hw;
 229       start_of_non_clean = cur_hw;
 230     }
 231     // Note that "cur_entry" leads "start_of_non_clean" in
 232     // its leftward excursion after this point
 233     // in the loop and, when we hit the left end of "mr",
 234     // will point off of the left end of the card-table
 235     // for "mr".
 236     cur_entry--;
 237   }
 238   // If the first card of "mr" was dirty, we will have
 239   // been left with a dirty window, co-initial with "mr",
 240   // which we now process.
 241   if (start_of_non_clean < end_of_non_clean) {
 242     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 243     _dirty_card_closure->do_MemRegion(mrd);
 244   }
 245 }
 246 
 247 // clean (by dirty->clean before) ==> cur_younger_gen
 248 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
 249 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
 250 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
 251 // cur-younger-gen                ==> cur_younger_gen
 252 // cur_youngergen_and_prev_nonclean_card ==> no change.
 253 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
 254   jbyte* entry = ct_bs()->byte_for(field);
 255   do {
 256     jbyte entry_val = *entry;
 257     // We put this first because it's probably the most common case.
 258     if (entry_val == clean_card_val()) {
 259       // No threat of contention with cleaning threads.
 260       *entry = cur_youngergen_card_val();
 261       return;
 262     } else if (card_is_dirty_wrt_gen_iter(entry_val)
 263                || is_prev_youngergen_card_val(entry_val)) {
 264       // Mark it as both cur and prev youngergen; card cleaning thread will
 265       // eventually remove the previous stuff.
 266       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
 267       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
 268       // Did the CAS succeed?
 269       if (res == entry_val) return;
 270       // Otherwise, retry, to see the new value.
 271       continue;
 272     } else {
 273       assert(entry_val == cur_youngergen_and_prev_nonclean_card
 274              || entry_val == cur_youngergen_card_val(),
 275              "should be only possibilities.");
 276       return;
 277     }
 278   } while (true);
 279 }
 280 
 281 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
 282                                                 OopsInGenClosure* cl) {
 283   const MemRegion urasm = sp->used_region_at_save_marks();
 284 #ifdef ASSERT
 285   // Convert the assertion check to a warning if we are running
 286   // CMS+ParNew until related bug is fixed.
 287   MemRegion ur    = sp->used_region();
 288   assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
 289          err_msg("Did you forget to call save_marks()? "
 290                  "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 291                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 292                  p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end())));
 293   // In the case of CMS+ParNew, issue a warning
 294   if (!ur.contains(urasm)) {
 295     assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
 296     warning("CMS+ParNew: Did you forget to call save_marks()? "
 297             "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 298             "[" PTR_FORMAT ", " PTR_FORMAT ")",
 299              p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
 300     MemRegion ur2 = sp->used_region();
 301     MemRegion urasm2 = sp->used_region_at_save_marks();
 302     if (!ur.equals(ur2)) {
 303       warning("CMS+ParNew: Flickering used_region()!!");
 304     }
 305     if (!urasm.equals(urasm2)) {
 306       warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
 307     }
 308     ShouldNotReachHere();
 309   }
 310 #endif
 311   _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
 312 }
 313 
 314 void CardTableRS::clear_into_younger(Generation* old_gen) {
 315   assert(old_gen->level() == 1, "Should only be called for the old generation");
 316   // The card tables for the youngest gen need never be cleared.
 317   // There's a bit of subtlety in the clear() and invalidate()
 318   // methods that we exploit here and in invalidate_or_clear()
 319   // below to avoid missing cards at the fringes. If clear() or
 320   // invalidate() are changed in the future, this code should
 321   // be revisited. 20040107.ysr
 322   clear(old_gen->prev_used_region());
 323 }
 324 
 325 void CardTableRS::invalidate_or_clear(Generation* old_gen) {
 326   assert(old_gen->level() == 1, "Should only be called for the old generation");
 327   // Invalidate the cards for the currently occupied part of
 328   // the old generation and clear the cards for the
 329   // unoccupied part of the generation (if any, making use
 330   // of that generation's prev_used_region to determine that
 331   // region). No need to do anything for the youngest
 332   // generation. Also see note#20040107.ysr above.
 333   MemRegion used_mr = old_gen->used_region();
 334   MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
 335   if (!to_be_cleared_mr.is_empty()) {
 336     clear(to_be_cleared_mr);
 337   }
 338   invalidate(used_mr);
 339 }
 340 
 341 
 342 class VerifyCleanCardClosure: public OopClosure {
 343 private:
 344   HeapWord* _boundary;
 345   HeapWord* _begin;
 346   HeapWord* _end;
 347 protected:
 348   template <class T> void do_oop_work(T* p) {
 349     HeapWord* jp = (HeapWord*)p;
 350     assert(jp >= _begin && jp < _end,
 351            err_msg("Error: jp " PTR_FORMAT " should be within "
 352                    "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
 353                    p2i(jp), p2i(_begin), p2i(_end)));
 354     oop obj = oopDesc::load_decode_heap_oop(p);
 355     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
 356               err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
 357                       "clean card crosses boundary" PTR_FORMAT,
 358                       p2i((HeapWord*)obj), p2i(jp), p2i(_boundary)));
 359   }
 360 
 361 public:
 362   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
 363     _boundary(b), _begin(begin), _end(end) {
 364     assert(b <= begin,
 365            err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
 366                    p2i(b), p2i(begin)));
 367     assert(begin <= end,
 368            err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
 369                    p2i(begin), p2i(end)));
 370   }
 371 
 372   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
 373   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
 374 };
 375 
 376 class VerifyCTSpaceClosure: public SpaceClosure {
 377 private:
 378   CardTableRS* _ct;
 379   HeapWord* _boundary;
 380 public:
 381   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
 382     _ct(ct), _boundary(boundary) {}
 383   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
 384 };
 385 
 386 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
 387   CardTableRS* _ct;
 388 public:
 389   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
 390   void do_generation(Generation* gen) {
 391     // Skip the youngest generation.
 392     if (gen->level() == 0) return;
 393     // Normally, we're interested in pointers to younger generations.
 394     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
 395     gen->space_iterate(&blk, true);
 396   }
 397 };
 398 
 399 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
 400   // We don't need to do young-gen spaces.
 401   if (s->end() <= gen_boundary) return;
 402   MemRegion used = s->used_region();
 403 
 404   jbyte* cur_entry = byte_for(used.start());
 405   jbyte* limit = byte_after(used.last());
 406   while (cur_entry < limit) {
 407     if (*cur_entry == CardTableModRefBS::clean_card) {
 408       jbyte* first_dirty = cur_entry+1;
 409       while (first_dirty < limit &&
 410              *first_dirty == CardTableModRefBS::clean_card) {
 411         first_dirty++;
 412       }
 413       // If the first object is a regular object, and it has a
 414       // young-to-old field, that would mark the previous card.
 415       HeapWord* boundary = addr_for(cur_entry);
 416       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
 417       HeapWord* boundary_block = s->block_start(boundary);
 418       HeapWord* begin = boundary;             // Until proven otherwise.
 419       HeapWord* start_block = boundary_block; // Until proven otherwise.
 420       if (boundary_block < boundary) {
 421         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
 422           oop boundary_obj = oop(boundary_block);
 423           if (!boundary_obj->is_objArray() &&
 424               !boundary_obj->is_typeArray()) {
 425             guarantee(cur_entry > byte_for(used.start()),
 426                       "else boundary would be boundary_block");
 427             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
 428               begin = boundary_block + s->block_size(boundary_block);
 429               start_block = begin;
 430             }
 431           }
 432         }
 433       }
 434       // Now traverse objects until end.
 435       if (begin < end) {
 436         MemRegion mr(begin, end);
 437         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
 438         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
 439           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
 440             oop(cur)->oop_iterate_no_header(&verify_blk, mr);
 441           }
 442         }
 443       }
 444       cur_entry = first_dirty;
 445     } else {
 446       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
 447       // is a transient value, that cannot be in the card table
 448       // except during GC, and thus assert that:
 449       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
 450       //        "Illegal CT value");
 451       // That however, need not hold, as will become clear in the
 452       // following...
 453 
 454       // We'd normally expect that if we are in the parallel case,
 455       // we can't have left a prev value (which would be different
 456       // from the current value) in the card table, and so we'd like to
 457       // assert that:
 458       // guarantee(cur_youngergen_card_val() == youngergen_card
 459       //           || !is_prev_youngergen_card_val(*cur_entry),
 460       //           "Illegal CT value");
 461       // That, however, may not hold occasionally, because of
 462       // CMS or MSC in the old gen. To wit, consider the
 463       // following two simple illustrative scenarios:
 464       // (a) CMS: Consider the case where a large object L
 465       //     spanning several cards is allocated in the old
 466       //     gen, and has a young gen reference stored in it, dirtying
 467       //     some interior cards. A young collection scans the card,
 468       //     finds a young ref and installs a youngergenP_n value.
 469       //     L then goes dead. Now a CMS collection starts,
 470       //     finds L dead and sweeps it up. Assume that L is
 471       //     abutting _unallocated_blk, so _unallocated_blk is
 472       //     adjusted down to (below) L. Assume further that
 473       //     no young collection intervenes during this CMS cycle.
 474       //     The next young gen cycle will not get to look at this
 475       //     youngergenP_n card since it lies in the unoccupied
 476       //     part of the space.
 477       //     Some young collections later the blocks on this
 478       //     card can be re-allocated either due to direct allocation
 479       //     or due to absorbing promotions. At this time, the
 480       //     before-gc verification will fail the above assert.
 481       // (b) MSC: In this case, an object L with a young reference
 482       //     is on a card that (therefore) holds a youngergen_n value.
 483       //     Suppose also that L lies towards the end of the used
 484       //     the used space before GC. An MSC collection
 485       //     occurs that compacts to such an extent that this
 486       //     card is no longer in the occupied part of the space.
 487       //     Since current code in MSC does not always clear cards
 488       //     in the unused part of old gen, this stale youngergen_n
 489       //     value is left behind and can later be covered by
 490       //     an object when promotion or direct allocation
 491       //     re-allocates that part of the heap.
 492       //
 493       // Fortunately, the presence of such stale card values is
 494       // "only" a minor annoyance in that subsequent young collections
 495       // might needlessly scan such cards, but would still never corrupt
 496       // the heap as a result. However, it's likely not to be a significant
 497       // performance inhibitor in practice. For instance,
 498       // some recent measurements with unoccupied cards eagerly cleared
 499       // out to maintain this invariant, showed next to no
 500       // change in young collection times; of course one can construct
 501       // degenerate examples where the cost can be significant.)
 502       // Note, in particular, that if the "stale" card is modified
 503       // after re-allocation, it would be dirty, not "stale". Thus,
 504       // we can never have a younger ref in such a card and it is
 505       // safe not to scan that card in any collection. [As we see
 506       // below, we do some unnecessary scanning
 507       // in some cases in the current parallel scanning algorithm.]
 508       //
 509       // The main point below is that the parallel card scanning code
 510       // deals correctly with these stale card values. There are two main
 511       // cases to consider where we have a stale "younger gen" value and a
 512       // "derivative" case to consider, where we have a stale
 513       // "cur_younger_gen_and_prev_non_clean" value, as will become
 514       // apparent in the case analysis below.
 515       // o Case 1. If the stale value corresponds to a younger_gen_n
 516       //   value other than the cur_younger_gen value then the code
 517       //   treats this as being tantamount to a prev_younger_gen
 518       //   card. This means that the card may be unnecessarily scanned.
 519       //   There are two sub-cases to consider:
 520       //   o Case 1a. Let us say that the card is in the occupied part
 521       //     of the generation at the time the collection begins. In
 522       //     that case the card will be either cleared when it is scanned
 523       //     for young pointers, or will be set to cur_younger_gen as a
 524       //     result of promotion. (We have elided the normal case where
 525       //     the scanning thread and the promoting thread interleave
 526       //     possibly resulting in a transient
 527       //     cur_younger_gen_and_prev_non_clean value before settling
 528       //     to cur_younger_gen. [End Case 1a.]
 529       //   o Case 1b. Consider now the case when the card is in the unoccupied
 530       //     part of the space which becomes occupied because of promotions
 531       //     into it during the current young GC. In this case the card
 532       //     will never be scanned for young references. The current
 533       //     code will set the card value to either
 534       //     cur_younger_gen_and_prev_non_clean or leave
 535       //     it with its stale value -- because the promotions didn't
 536       //     result in any younger refs on that card. Of these two
 537       //     cases, the latter will be covered in Case 1a during
 538       //     a subsequent scan. To deal with the former case, we need
 539       //     to further consider how we deal with a stale value of
 540       //     cur_younger_gen_and_prev_non_clean in our case analysis
 541       //     below. This we do in Case 3 below. [End Case 1b]
 542       //   [End Case 1]
 543       // o Case 2. If the stale value corresponds to cur_younger_gen being
 544       //   a value not necessarily written by a current promotion, the
 545       //   card will not be scanned by the younger refs scanning code.
 546       //   (This is OK since as we argued above such cards cannot contain
 547       //   any younger refs.) The result is that this value will be
 548       //   treated as a prev_younger_gen value in a subsequent collection,
 549       //   which is addressed in Case 1 above. [End Case 2]
 550       // o Case 3. We here consider the "derivative" case from Case 1b. above
 551       //   because of which we may find a stale
 552       //   cur_younger_gen_and_prev_non_clean card value in the table.
 553       //   Once again, as in Case 1, we consider two subcases, depending
 554       //   on whether the card lies in the occupied or unoccupied part
 555       //   of the space at the start of the young collection.
 556       //   o Case 3a. Let us say the card is in the occupied part of
 557       //     the old gen at the start of the young collection. In that
 558       //     case, the card will be scanned by the younger refs scanning
 559       //     code which will set it to cur_younger_gen. In a subsequent
 560       //     scan, the card will be considered again and get its final
 561       //     correct value. [End Case 3a]
 562       //   o Case 3b. Now consider the case where the card is in the
 563       //     unoccupied part of the old gen, and is occupied as a result
 564       //     of promotions during thus young gc. In that case,
 565       //     the card will not be scanned for younger refs. The presence
 566       //     of newly promoted objects on the card will then result in
 567       //     its keeping the value cur_younger_gen_and_prev_non_clean
 568       //     value, which we have dealt with in Case 3 here. [End Case 3b]
 569       //   [End Case 3]
 570       //
 571       // (Please refer to the code in the helper class
 572       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
 573       //
 574       // The informal arguments above can be tightened into a formal
 575       // correctness proof and it behooves us to write up such a proof,
 576       // or to use model checking to prove that there are no lingering
 577       // concerns.
 578       //
 579       // Clearly because of Case 3b one cannot bound the time for
 580       // which a card will retain what we have called a "stale" value.
 581       // However, one can obtain a Loose upper bound on the redundant
 582       // work as a result of such stale values. Note first that any
 583       // time a stale card lies in the occupied part of the space at
 584       // the start of the collection, it is scanned by younger refs
 585       // code and we can define a rank function on card values that
 586       // declines when this is so. Note also that when a card does not
 587       // lie in the occupied part of the space at the beginning of a
 588       // young collection, its rank can either decline or stay unchanged.
 589       // In this case, no extra work is done in terms of redundant
 590       // younger refs scanning of that card.
 591       // Then, the case analysis above reveals that, in the worst case,
 592       // any such stale card will be scanned unnecessarily at most twice.
 593       //
 594       // It is nonetheless advisable to try and get rid of some of this
 595       // redundant work in a subsequent (low priority) re-design of
 596       // the card-scanning code, if only to simplify the underlying
 597       // state machine analysis/proof. ysr 1/28/2002. XXX
 598       cur_entry++;
 599     }
 600   }
 601 }
 602 
 603 void CardTableRS::verify() {
 604   // At present, we only know how to verify the card table RS for
 605   // generational heaps.
 606   VerifyCTGenClosure blk(this);
 607   CollectedHeap* ch = Universe::heap();
 608 
 609   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
 610     GenCollectedHeap::heap()->generation_iterate(&blk, false);
 611     _ct_bs->verify();
 612     }
 613   }
 614 
 615 
 616 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
 617   if (!mr.is_empty()) {
 618     jbyte* cur_entry = byte_for(mr.start());
 619     jbyte* limit = byte_after(mr.last());
 620     // The region mr may not start on a card boundary so
 621     // the first card may reflect a write to the space
 622     // just prior to mr.
 623     if (!is_aligned(mr.start())) {
 624       cur_entry++;
 625     }
 626     for (;cur_entry < limit; cur_entry++) {
 627       guarantee(*cur_entry == CardTableModRefBS::clean_card,
 628                 "Unexpected dirty card found");
 629     }
 630   }
 631 }