1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  27 #include "gc_implementation/g1/heapRegion.hpp"
  28 #include "memory/space.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/java.hpp"
  31 #include "services/memTracker.hpp"
  32 
  33 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  34 
  35 void G1BlockOffsetSharedArrayMappingChangedListener::on_commit(uint start_idx, size_t num_regions) {
  36   // Nothing to do. The BOT is hard-wired to be part of the HeapRegion, and we cannot
  37   // retrieve it here since this would cause firing of several asserts. The code
  38   // exacuted after commit of a region already needs to do some re-initialization of
  39   // the HeapRegion, so we combine that.
  40 }
  41 
  42 //////////////////////////////////////////////////////////////////////
  43 // G1BlockOffsetSharedArray
  44 //////////////////////////////////////////////////////////////////////
  45 
  46 G1BlockOffsetSharedArray::G1BlockOffsetSharedArray(MemRegion heap, G1RegionToSpaceMapper* storage) :
  47   _reserved(), _end(NULL), _listener(), _offset_array(NULL) {
  48 
  49   _reserved = heap;
  50   _end = NULL;
  51 
  52   MemRegion bot_reserved = storage->reserved();
  53 
  54   _offset_array = (u_char*)bot_reserved.start();
  55   _end = _reserved.end();
  56 
  57   storage->set_mapping_changed_listener(&_listener);
  58   
  59   if (TraceBlockOffsetTable) {
  60     gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
  61     gclog_or_tty->print_cr("  "
  62                   "  rs.base(): " INTPTR_FORMAT
  63                   "  rs.size(): " INTPTR_FORMAT
  64                   "  rs end(): " INTPTR_FORMAT,
  65                   bot_reserved.start(), bot_reserved.byte_size(), bot_reserved.end());
  66   }
  67 }
  68 
  69 bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
  70   assert(p >= _reserved.start(), "just checking");
  71   size_t delta = pointer_delta(p, _reserved.start());
  72   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
  73 }
  74 
  75 void G1BlockOffsetSharedArray::set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
  76   set_offset_array(index_for(left), index_for(right -1), offset);
  77 }
  78 
  79 //////////////////////////////////////////////////////////////////////
  80 // G1BlockOffsetArray
  81 //////////////////////////////////////////////////////////////////////
  82 
  83 G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
  84                                        MemRegion mr, bool init_to_zero) :
  85   G1BlockOffsetTable(mr.start(), mr.end()),
  86   _unallocated_block(_bottom),
  87   _array(array), _gsp(NULL),
  88   _init_to_zero(init_to_zero) {
  89   assert(_bottom <= _end, "arguments out of order");
  90   if (!_init_to_zero) {
  91     // initialize cards to point back to mr.start()
  92     set_remainder_to_point_to_start(mr.start() + N_words, mr.end());
  93     _array->set_offset_array(0, 0);  // set first card to 0
  94   }
  95 }
  96 
  97 void G1BlockOffsetArray::set_space(G1OffsetTableContigSpace* sp) {
  98   _gsp = sp;
  99 }
 100 
 101 // The arguments follow the normal convention of denoting
 102 // a right-open interval: [start, end)
 103 void
 104 G1BlockOffsetArray:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) {
 105 
 106   if (start >= end) {
 107     // The start address is equal to the end address (or to
 108     // the right of the end address) so there are not cards
 109     // that need to be updated..
 110     return;
 111   }
 112 
 113   // Write the backskip value for each region.
 114   //
 115   //    offset
 116   //    card             2nd                       3rd
 117   //     | +- 1st        |                         |
 118   //     v v             v                         v
 119   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
 120   //    |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ...
 121   //    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+     +-+-+-+-+-+-+-+-+-+-+-
 122   //    11              19                        75
 123   //      12
 124   //
 125   //    offset card is the card that points to the start of an object
 126   //      x - offset value of offset card
 127   //    1st - start of first logarithmic region
 128   //      0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1
 129   //    2nd - start of second logarithmic region
 130   //      1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8
 131   //    3rd - start of third logarithmic region
 132   //      2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64
 133   //
 134   //    integer below the block offset entry is an example of
 135   //    the index of the entry
 136   //
 137   //    Given an address,
 138   //      Find the index for the address
 139   //      Find the block offset table entry
 140   //      Convert the entry to a back slide
 141   //        (e.g., with today's, offset = 0x81 =>
 142   //          back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8
 143   //      Move back N (e.g., 8) entries and repeat with the
 144   //        value of the new entry
 145   //
 146   size_t start_card = _array->index_for(start);
 147   size_t end_card = _array->index_for(end-1);
 148   assert(start ==_array->address_for_index(start_card), "Precondition");
 149   assert(end ==_array->address_for_index(end_card)+N_words, "Precondition");
 150   set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval
 151 }
 152 
 153 // Unlike the normal convention in this code, the argument here denotes
 154 // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start()
 155 // above.
 156 void
 157 G1BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) {
 158   if (start_card > end_card) {
 159     return;
 160   }
 161   assert(start_card > _array->index_for(_bottom), "Cannot be first card");
 162   assert(_array->offset_array(start_card-1) <= N_words,
 163          "Offset card has an unexpected value");
 164   size_t start_card_for_region = start_card;
 165   u_char offset = max_jubyte;
 166   for (int i = 0; i < BlockOffsetArray::N_powers; i++) {
 167     // -1 so that the the card with the actual offset is counted.  Another -1
 168     // so that the reach ends in this region and not at the start
 169     // of the next.
 170     size_t reach = start_card - 1 + (BlockOffsetArray::power_to_cards_back(i+1) - 1);
 171     offset = N_words + i;
 172     if (reach >= end_card) {
 173       _array->set_offset_array(start_card_for_region, end_card, offset);
 174       start_card_for_region = reach + 1;
 175       break;
 176     }
 177     _array->set_offset_array(start_card_for_region, reach, offset);
 178     start_card_for_region = reach + 1;
 179   }
 180   assert(start_card_for_region > end_card, "Sanity check");
 181   DEBUG_ONLY(check_all_cards(start_card, end_card);)
 182 }
 183 
 184 // The block [blk_start, blk_end) has been allocated;
 185 // adjust the block offset table to represent this information;
 186 // right-open interval: [blk_start, blk_end)
 187 void
 188 G1BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 189   mark_block(blk_start, blk_end);
 190   allocated(blk_start, blk_end);
 191 }
 192 
 193 // Adjust BOT to show that a previously whole block has been split
 194 // into two.
 195 void G1BlockOffsetArray::split_block(HeapWord* blk, size_t blk_size,
 196                                      size_t left_blk_size) {
 197   // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 198   verify_single_block(blk, blk_size);
 199   // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size)
 200   // is one single block.
 201   mark_block(blk + left_blk_size, blk + blk_size);
 202 }
 203 
 204 
 205 // Action_mark - update the BOT for the block [blk_start, blk_end).
 206 //               Current typical use is for splitting a block.
 207 // Action_single - update the BOT for an allocation.
 208 // Action_verify - BOT verification.
 209 void G1BlockOffsetArray::do_block_internal(HeapWord* blk_start,
 210                                            HeapWord* blk_end,
 211                                            Action action) {
 212   assert(Universe::heap()->is_in_reserved(blk_start),
 213          "reference must be into the heap");
 214   assert(Universe::heap()->is_in_reserved(blk_end-1),
 215          "limit must be within the heap");
 216   // This is optimized to make the test fast, assuming we only rarely
 217   // cross boundaries.
 218   uintptr_t end_ui = (uintptr_t)(blk_end - 1);
 219   uintptr_t start_ui = (uintptr_t)blk_start;
 220   // Calculate the last card boundary preceding end of blk
 221   intptr_t boundary_before_end = (intptr_t)end_ui;
 222   clear_bits(boundary_before_end, right_n_bits(LogN));
 223   if (start_ui <= (uintptr_t)boundary_before_end) {
 224     // blk starts at or crosses a boundary
 225     // Calculate index of card on which blk begins
 226     size_t    start_index = _array->index_for(blk_start);
 227     // Index of card on which blk ends
 228     size_t    end_index   = _array->index_for(blk_end - 1);
 229     // Start address of card on which blk begins
 230     HeapWord* boundary    = _array->address_for_index(start_index);
 231     assert(boundary <= blk_start, "blk should start at or after boundary");
 232     if (blk_start != boundary) {
 233       // blk starts strictly after boundary
 234       // adjust card boundary and start_index forward to next card
 235       boundary += N_words;
 236       start_index++;
 237     }
 238     assert(start_index <= end_index, "monotonicity of index_for()");
 239     assert(boundary <= (HeapWord*)boundary_before_end, "tautology");
 240     switch (action) {
 241       case Action_mark: {
 242         if (init_to_zero()) {
 243           _array->set_offset_array(start_index, boundary, blk_start);
 244           break;
 245         } // Else fall through to the next case
 246       }
 247       case Action_single: {
 248         _array->set_offset_array(start_index, boundary, blk_start);
 249         // We have finished marking the "offset card". We need to now
 250         // mark the subsequent cards that this blk spans.
 251         if (start_index < end_index) {
 252           HeapWord* rem_st = _array->address_for_index(start_index) + N_words;
 253           HeapWord* rem_end = _array->address_for_index(end_index) + N_words;
 254           set_remainder_to_point_to_start(rem_st, rem_end);
 255         }
 256         break;
 257       }
 258       case Action_check: {
 259         _array->check_offset_array(start_index, boundary, blk_start);
 260         // We have finished checking the "offset card". We need to now
 261         // check the subsequent cards that this blk spans.
 262         check_all_cards(start_index + 1, end_index);
 263         break;
 264       }
 265       default:
 266         ShouldNotReachHere();
 267     }
 268   }
 269 }
 270 
 271 // The card-interval [start_card, end_card] is a closed interval; this
 272 // is an expensive check -- use with care and only under protection of
 273 // suitable flag.
 274 void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
 275 
 276   if (end_card < start_card) {
 277     return;
 278   }
 279   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
 280   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
 281     u_char entry = _array->offset_array(c);
 282     if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
 283       guarantee(entry > N_words,
 284                 err_msg("Should be in logarithmic region - "
 285                         "entry: %u, "
 286                         "_array->offset_array(c): %u, "
 287                         "N_words: %u",
 288                         (uint)entry, (uint)_array->offset_array(c), (uint)N_words));
 289     }
 290     size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
 291     size_t landing_card = c - backskip;
 292     guarantee(landing_card >= (start_card - 1), "Inv");
 293     if (landing_card >= start_card) {
 294       guarantee(_array->offset_array(landing_card) <= entry,
 295                 err_msg("Monotonicity - landing_card offset: %u, "
 296                         "entry: %u",
 297                         (uint)_array->offset_array(landing_card), (uint)entry));
 298     } else {
 299       guarantee(landing_card == start_card - 1, "Tautology");
 300       // Note that N_words is the maximum offset value
 301       guarantee(_array->offset_array(landing_card) <= N_words,
 302                 err_msg("landing card offset: %u, "
 303                         "N_words: %u",
 304                         (uint)_array->offset_array(landing_card), (uint)N_words));
 305     }
 306   }
 307 }
 308 
 309 // The range [blk_start, blk_end) represents a single contiguous block
 310 // of storage; modify the block offset table to represent this
 311 // information; Right-open interval: [blk_start, blk_end)
 312 // NOTE: this method does _not_ adjust _unallocated_block.
 313 void
 314 G1BlockOffsetArray::single_block(HeapWord* blk_start, HeapWord* blk_end) {
 315   do_block_internal(blk_start, blk_end, Action_single);
 316 }
 317 
 318 // Mark the BOT such that if [blk_start, blk_end) straddles a card
 319 // boundary, the card following the first such boundary is marked
 320 // with the appropriate offset.
 321 // NOTE: this method does _not_ adjust _unallocated_block or
 322 // any cards subsequent to the first one.
 323 void
 324 G1BlockOffsetArray::mark_block(HeapWord* blk_start, HeapWord* blk_end) {
 325   do_block_internal(blk_start, blk_end, Action_mark);
 326 }
 327 
 328 HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
 329   assert(_bottom <= addr && addr < _end,
 330          "addr must be covered by this Array");
 331   // Must read this exactly once because it can be modified by parallel
 332   // allocation.
 333   HeapWord* ub = _unallocated_block;
 334   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
 335     assert(ub < _end, "tautology (see above)");
 336     return ub;
 337   }
 338   // Otherwise, find the block start using the table.
 339   HeapWord* q = block_at_or_preceding(addr, false, 0);
 340   return forward_to_block_containing_addr(q, addr);
 341 }
 342 
 343 // This duplicates a little code from the above: unavoidable.
 344 HeapWord*
 345 G1BlockOffsetArray::block_start_unsafe_const(const void* addr) const {
 346   assert(_bottom <= addr && addr < _end,
 347          "addr must be covered by this Array");
 348   // Must read this exactly once because it can be modified by parallel
 349   // allocation.
 350   HeapWord* ub = _unallocated_block;
 351   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
 352     assert(ub < _end, "tautology (see above)");
 353     return ub;
 354   }
 355   // Otherwise, find the block start using the table.
 356   HeapWord* q = block_at_or_preceding(addr, false, 0);
 357   HeapWord* n = q + block_size(q);
 358   return forward_to_block_containing_addr_const(q, n, addr);
 359 }
 360 
 361 
 362 HeapWord*
 363 G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
 364                                                           HeapWord* n,
 365                                                           const void* addr) {
 366   // We're not in the normal case.  We need to handle an important subcase
 367   // here: LAB allocation.  An allocation previously recorded in the
 368   // offset table was actually a lab allocation, and was divided into
 369   // several objects subsequently.  Fix this situation as we answer the
 370   // query, by updating entries as we cross them.
 371 
 372   // If the fist object's end q is at the card boundary. Start refining
 373   // with the corresponding card (the value of the entry will be basically
 374   // set to 0). If the object crosses the boundary -- start from the next card.
 375   size_t n_index = _array->index_for(n);
 376   size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
 377   // Calculate a consistent next boundary.  If "n" is not at the boundary
 378   // already, step to the boundary.
 379   HeapWord* next_boundary = _array->address_for_index(n_index) +
 380                             (n_index == next_index ? 0 : N_words);
 381   assert(next_boundary <= _array->_end,
 382          err_msg("next_boundary is beyond the end of the covered region "
 383                  " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT,
 384                  next_boundary, _array->_end));
 385   if (addr >= gsp()->top()) return gsp()->top();
 386   while (next_boundary < addr) {
 387     while (n <= next_boundary) {
 388       q = n;
 389       oop obj = oop(q);
 390       if (obj->klass_or_null() == NULL) return q;
 391       n += block_size(q);
 392     }
 393     assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
 394     // [q, n) is the block that crosses the boundary.
 395     alloc_block_work2(&next_boundary, &next_index, q, n);
 396   }
 397   return forward_to_block_containing_addr_const(q, n, addr);
 398 }
 399 
 400 HeapWord* G1BlockOffsetArray::block_start_careful(const void* addr) const {
 401   assert(_array->offset_array(0) == 0, "objects can't cross covered areas");
 402 
 403   assert(_bottom <= addr && addr < _end,
 404          "addr must be covered by this Array");
 405   // Must read this exactly once because it can be modified by parallel
 406   // allocation.
 407   HeapWord* ub = _unallocated_block;
 408   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
 409     assert(ub < _end, "tautology (see above)");
 410     return ub;
 411   }
 412 
 413   // Otherwise, find the block start using the table, but taking
 414   // care (cf block_start_unsafe() above) not to parse any objects/blocks
 415   // on the cards themselves.
 416   size_t index = _array->index_for(addr);
 417   assert(_array->address_for_index(index) == addr,
 418          "arg should be start of card");
 419 
 420   HeapWord* q = (HeapWord*)addr;
 421   uint offset;
 422   do {
 423     offset = _array->offset_array(index--);
 424     q -= offset;
 425   } while (offset == N_words);
 426   assert(q <= addr, "block start should be to left of arg");
 427   return q;
 428 }
 429 
 430 // Note that the committed size of the covered space may have changed,
 431 // so the table size might also wish to change.
 432 void G1BlockOffsetArray::resize(size_t new_word_size) {
 433   HeapWord* new_end = _bottom + new_word_size;
 434   if (_end < new_end && !init_to_zero()) {
 435     // verify that the old and new boundaries are also card boundaries
 436     assert(_array->is_card_boundary(_end),
 437            "_end not a card boundary");
 438     assert(_array->is_card_boundary(new_end),
 439            "new _end would not be a card boundary");
 440     // set all the newly added cards
 441     _array->set_offset_array(_end, new_end, N_words);
 442   }
 443   _end = new_end;  // update _end
 444 }
 445 
 446 void G1BlockOffsetArray::set_region(MemRegion mr) {
 447   _bottom = mr.start();
 448   _end = mr.end();
 449 }
 450 
 451 //
 452 //              threshold_
 453 //              |   _index_
 454 //              v   v
 455 //      +-------+-------+-------+-------+-------+
 456 //      | i-1   |   i   | i+1   | i+2   | i+3   |
 457 //      +-------+-------+-------+-------+-------+
 458 //       ( ^    ]
 459 //         block-start
 460 //
 461 void G1BlockOffsetArray::alloc_block_work2(HeapWord** threshold_, size_t* index_,
 462                                            HeapWord* blk_start, HeapWord* blk_end) {
 463   // For efficiency, do copy-in/copy-out.
 464   HeapWord* threshold = *threshold_;
 465   size_t    index = *index_;
 466 
 467   assert(blk_start != NULL && blk_end > blk_start,
 468          "phantom block");
 469   assert(blk_end > threshold, "should be past threshold");
 470   assert(blk_start <= threshold, "blk_start should be at or before threshold");
 471   assert(pointer_delta(threshold, blk_start) <= N_words,
 472          "offset should be <= BlockOffsetSharedArray::N");
 473   assert(Universe::heap()->is_in_reserved(blk_start),
 474          "reference must be into the heap");
 475   assert(Universe::heap()->is_in_reserved(blk_end-1),
 476          "limit must be within the heap");
 477   assert(threshold == _array->_reserved.start() + index*N_words,
 478          "index must agree with threshold");
 479 
 480   DEBUG_ONLY(size_t orig_index = index;)
 481 
 482   // Mark the card that holds the offset into the block.  Note
 483   // that _next_offset_index and _next_offset_threshold are not
 484   // updated until the end of this method.
 485   _array->set_offset_array(index, threshold, blk_start);
 486 
 487   // We need to now mark the subsequent cards that this blk spans.
 488 
 489   // Index of card on which blk ends.
 490   size_t end_index   = _array->index_for(blk_end - 1);
 491 
 492   // Are there more cards left to be updated?
 493   if (index + 1 <= end_index) {
 494     HeapWord* rem_st  = _array->address_for_index(index + 1);
 495     // Calculate rem_end this way because end_index
 496     // may be the last valid index in the covered region.
 497     HeapWord* rem_end = _array->address_for_index(end_index) +  N_words;
 498     set_remainder_to_point_to_start(rem_st, rem_end);
 499   }
 500 
 501   index = end_index + 1;
 502   // Calculate threshold_ this way because end_index
 503   // may be the last valid index in the covered region.
 504   threshold = _array->address_for_index(end_index) + N_words;
 505   assert(threshold >= blk_end, "Incorrect offset threshold");
 506 
 507   // index_ and threshold_ updated here.
 508   *threshold_ = threshold;
 509   *index_ = index;
 510 
 511 #ifdef ASSERT
 512   // The offset can be 0 if the block starts on a boundary.  That
 513   // is checked by an assertion above.
 514   size_t start_index = _array->index_for(blk_start);
 515   HeapWord* boundary = _array->address_for_index(start_index);
 516   assert((_array->offset_array(orig_index) == 0 &&
 517           blk_start == boundary) ||
 518           (_array->offset_array(orig_index) > 0 &&
 519          _array->offset_array(orig_index) <= N_words),
 520          err_msg("offset array should have been set - "
 521                   "orig_index offset: %u, "
 522                   "blk_start: " PTR_FORMAT ", "
 523                   "boundary: " PTR_FORMAT,
 524                   (uint)_array->offset_array(orig_index),
 525                   blk_start, boundary));
 526   for (size_t j = orig_index + 1; j <= end_index; j++) {
 527     assert(_array->offset_array(j) > 0 &&
 528            _array->offset_array(j) <=
 529              (u_char) (N_words+BlockOffsetArray::N_powers-1),
 530            err_msg("offset array should have been set - "
 531                    "%u not > 0 OR %u not <= %u",
 532                    (uint) _array->offset_array(j),
 533                    (uint) _array->offset_array(j),
 534                    (uint) (N_words+BlockOffsetArray::N_powers-1)));
 535   }
 536 #endif
 537 }
 538 
 539 bool
 540 G1BlockOffsetArray::verify_for_object(HeapWord* obj_start,
 541                                       size_t word_size) const {
 542   size_t first_card = _array->index_for(obj_start);
 543   size_t last_card = _array->index_for(obj_start + word_size - 1);
 544   if (!_array->is_card_boundary(obj_start)) {
 545     // If the object is not on a card boundary the BOT entry of the
 546     // first card should point to another object so we should not
 547     // check that one.
 548     first_card += 1;
 549   }
 550   for (size_t card = first_card; card <= last_card; card += 1) {
 551     HeapWord* card_addr = _array->address_for_index(card);
 552     HeapWord* block_start = block_start_const(card_addr);
 553     if (block_start != obj_start) {
 554       gclog_or_tty->print_cr("block start: "PTR_FORMAT" is incorrect - "
 555                              "card index: "SIZE_FORMAT" "
 556                              "card addr: "PTR_FORMAT" BOT entry: %u "
 557                              "obj: "PTR_FORMAT" word size: "SIZE_FORMAT" "
 558                              "cards: ["SIZE_FORMAT","SIZE_FORMAT"]",
 559                              block_start, card, card_addr,
 560                              _array->offset_array(card),
 561                              obj_start, word_size, first_card, last_card);
 562       return false;
 563     }
 564   }
 565   return true;
 566 }
 567 
 568 #ifndef PRODUCT
 569 void
 570 G1BlockOffsetArray::print_on(outputStream* out) {
 571   size_t from_index = _array->index_for(_bottom);
 572   size_t to_index = _array->index_for(_end);
 573   out->print_cr(">> BOT for area ["PTR_FORMAT","PTR_FORMAT") "
 574                 "cards ["SIZE_FORMAT","SIZE_FORMAT")",
 575                 _bottom, _end, from_index, to_index);
 576   for (size_t i = from_index; i < to_index; ++i) {
 577     out->print_cr("  entry "SIZE_FORMAT_W(8)" | "PTR_FORMAT" : %3u",
 578                   i, _array->address_for_index(i),
 579                   (uint) _array->offset_array(i));
 580   }
 581 }
 582 #endif // !PRODUCT
 583 
 584 //////////////////////////////////////////////////////////////////////
 585 // G1BlockOffsetArrayContigSpace
 586 //////////////////////////////////////////////////////////////////////
 587 
 588 HeapWord*
 589 G1BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) {
 590   assert(_bottom <= addr && addr < _end,
 591          "addr must be covered by this Array");
 592   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
 593   return forward_to_block_containing_addr(q, addr);
 594 }
 595 
 596 HeapWord*
 597 G1BlockOffsetArrayContigSpace::
 598 block_start_unsafe_const(const void* addr) const {
 599   assert(_bottom <= addr && addr < _end,
 600          "addr must be covered by this Array");
 601   HeapWord* q = block_at_or_preceding(addr, true, _next_offset_index-1);
 602   HeapWord* n = q + block_size(q);
 603   return forward_to_block_containing_addr_const(q, n, addr);
 604 }
 605 
 606 G1BlockOffsetArrayContigSpace::
 607 G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array,
 608                               MemRegion mr) :
 609   G1BlockOffsetArray(array, mr, true)
 610 {
 611   _next_offset_threshold = NULL;
 612   _next_offset_index = 0;
 613 }
 614 
 615 HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold_raw() {
 616   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
 617          "just checking");
 618   _next_offset_index = _array->index_for_raw(_bottom);
 619   _next_offset_index++;
 620   _next_offset_threshold =
 621     _array->address_for_index_raw(_next_offset_index);
 622   return _next_offset_threshold;
 623 }
 624 
 625 void G1BlockOffsetArrayContigSpace::zero_bottom_entry_raw() {
 626   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
 627          "just checking");
 628   size_t bottom_index = _array->index_for_raw(_bottom);
 629   assert(_array->address_for_index_raw(bottom_index) == _bottom,
 630          "Precondition of call");
 631   _array->set_offset_array_raw(bottom_index, 0);
 632 }
 633 
 634 HeapWord* G1BlockOffsetArrayContigSpace::initialize_threshold() {
 635   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
 636          "just checking");
 637   _next_offset_index = _array->index_for(_bottom);
 638   _next_offset_index++;
 639   _next_offset_threshold =
 640     _array->address_for_index(_next_offset_index);
 641   return _next_offset_threshold;
 642 }
 643 
 644 void G1BlockOffsetArrayContigSpace::zero_bottom_entry() {
 645   assert(!Universe::heap()->is_in_reserved(_array->_offset_array),
 646          "just checking");
 647   size_t bottom_index = _array->index_for(_bottom);
 648   assert(_array->address_for_index(bottom_index) == _bottom,
 649          "Precondition of call");
 650   _array->set_offset_array(bottom_index, 0);
 651 }
 652 
 653 void
 654 G1BlockOffsetArrayContigSpace::set_for_starts_humongous(HeapWord* new_top) {
 655   assert(new_top <= _end, "_end should have already been updated");
 656 
 657   // The first BOT entry should have offset 0.
 658   reset_bot();
 659   alloc_block(_bottom, new_top);
 660  }
 661 
 662 #ifndef PRODUCT
 663 void
 664 G1BlockOffsetArrayContigSpace::print_on(outputStream* out) {
 665   G1BlockOffsetArray::print_on(out);
 666   out->print_cr("  next offset threshold: "PTR_FORMAT, _next_offset_threshold);
 667   out->print_cr("  next offset index:     "SIZE_FORMAT, _next_offset_index);
 668 }
 669 #endif // !PRODUCT