1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "runtime/virtualspace.hpp"
  30 #include "utilities/globalDefinitions.hpp"
  31 
  32 // The CollectedHeap type requires subtypes to implement a method
  33 // "block_start".  For some subtypes, notably generational
  34 // systems using card-table-based write barriers, the efficiency of this
  35 // operation may be important.  Implementations of the "BlockOffsetArray"
  36 // class may be useful in providing such efficient implementations.
  37 //
  38 // While generally mirroring the structure of the BOT for GenCollectedHeap,
  39 // the following types are tailored more towards G1's uses; these should,
  40 // however, be merged back into a common BOT to avoid code duplication
  41 // and reduce maintenance overhead.
  42 //
  43 //    G1BlockOffsetTable (abstract)
  44 //    -- G1BlockOffsetArray                (uses G1BlockOffsetSharedArray)
  45 //       -- G1BlockOffsetArrayContigSpace
  46 //
  47 // A main impediment to the consolidation of this code might be the
  48 // effect of making some of the block_start*() calls non-const as
  49 // below. Whether that might adversely affect performance optimizations
  50 // that compilers might normally perform in the case of non-G1
  51 // collectors needs to be carefully investigated prior to any such
  52 // consolidation.
  53 
  54 // Forward declarations
  55 class G1BlockOffsetSharedArray;
  56 class G1OffsetTableContigSpace;
  57 
  58 class G1BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
  59   friend class VMStructs;
  60 protected:
  61   // These members describe the region covered by the table.
  62 
  63   // The space this table is covering.
  64   HeapWord* _bottom;    // == reserved.start
  65   HeapWord* _end;       // End of currently allocated region.
  66 
  67 public:
  68   // Initialize the table to cover the given space.
  69   // The contents of the initial table are undefined.
  70   G1BlockOffsetTable(HeapWord* bottom, HeapWord* end) :
  71     _bottom(bottom), _end(end)
  72     {
  73       assert(_bottom <= _end, "arguments out of order");
  74     }
  75 
  76   // Note that the committed size of the covered space may have changed,
  77   // so the table size might also wish to change.
  78   virtual void resize(size_t new_word_size) = 0;
  79 
  80   virtual void set_bottom(HeapWord* new_bottom) {
  81     assert(new_bottom <= _end,
  82            err_msg("new_bottom (" PTR_FORMAT ") > _end (" PTR_FORMAT ")",
  83                    p2i(new_bottom), p2i(_end)));
  84     _bottom = new_bottom;
  85     resize(pointer_delta(_end, _bottom));
  86   }
  87 
  88   // Requires "addr" to be contained by a block, and returns the address of
  89   // the start of that block.  (May have side effects, namely updating of
  90   // shared array entries that "point" too far backwards.  This can occur,
  91   // for example, when LAB allocation is used in a space covered by the
  92   // table.)
  93   virtual HeapWord* block_start_unsafe(const void* addr) = 0;
  94   // Same as above, but does not have any of the possible side effects
  95   // discussed above.
  96   virtual HeapWord* block_start_unsafe_const(const void* addr) const = 0;
  97 
  98   // Returns the address of the start of the block containing "addr", or
  99   // else "null" if it is covered by no block.  (May have side effects,
 100   // namely updating of shared array entries that "point" too far
 101   // backwards.  This can occur, for example, when lab allocation is used
 102   // in a space covered by the table.)
 103   inline HeapWord* block_start(const void* addr);
 104   // Same as above, but does not have any of the possible side effects
 105   // discussed above.
 106   inline HeapWord* block_start_const(const void* addr) const;
 107 };
 108 
 109 // This implementation of "G1BlockOffsetTable" divides the covered region
 110 // into "N"-word subregions (where "N" = 2^"LogN".  An array with an entry
 111 // for each such subregion indicates how far back one must go to find the
 112 // start of the chunk that includes the first word of the subregion.
 113 //
 114 // Each BlockOffsetArray is owned by a Space.  However, the actual array
 115 // may be shared by several BlockOffsetArrays; this is useful
 116 // when a single resizable area (such as a generation) is divided up into
 117 // several spaces in which contiguous allocation takes place,
 118 // such as, for example, in G1 or in the train generation.)
 119 
 120 // Here is the shared array type.
 121 
 122 class G1BlockOffsetSharedArray: public CHeapObj<mtGC> {
 123   friend class G1BlockOffsetArray;
 124   friend class G1BlockOffsetArrayContigSpace;
 125   friend class VMStructs;
 126 
 127 private:
 128   // The reserved region covered by the shared array.
 129   MemRegion _reserved;
 130 
 131   // End of the current committed region.
 132   HeapWord* _end;
 133 
 134   // Array for keeping offsets for retrieving object start fast given an
 135   // address.
 136   VirtualSpace _vs;
 137   u_char* _offset_array;          // byte array keeping backwards offsets
 138 
 139   void check_index(size_t index, const char* msg) const {
 140     assert(index < _vs.committed_size(),
 141            err_msg("%s - "
 142                    "index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT,
 143                    msg, index, _vs.committed_size()));
 144   }
 145 
 146   void check_offset(size_t offset, const char* msg) const {
 147     assert(offset <= N_words,
 148            err_msg("%s - "
 149                    "offset: " SIZE_FORMAT", N_words: %u",
 150                    msg, offset, (uint)N_words));
 151   }
 152 
 153   // Bounds checking accessors:
 154   // For performance these have to devolve to array accesses in product builds.
 155   u_char offset_array(size_t index) const {
 156     check_index(index, "index out of range");
 157     return _offset_array[index];
 158   }
 159 
 160   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset);
 161 
 162   void set_offset_array(size_t index, u_char offset) {
 163     check_index(index, "index out of range");
 164     check_offset(offset, "offset too large");
 165     _offset_array[index] = offset;
 166   }
 167 
 168   void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
 169     check_index(index, "index out of range");
 170     assert(high >= low, "addresses out of order");
 171     check_offset(pointer_delta(high, low), "offset too large");
 172     _offset_array[index] = (u_char) pointer_delta(high, low);
 173   }
 174 
 175   void set_offset_array(size_t left, size_t right, u_char offset) {
 176     check_index(right, "right index out of range");
 177     assert(left <= right, "indexes out of order");
 178     size_t num_cards = right - left + 1;
 179     if (UseMemSetInBOT) {
 180       memset(&_offset_array[left], offset, num_cards);
 181     } else {
 182       size_t i = left;
 183       const size_t end = i + num_cards;
 184       for (; i < end; i++) {
 185         _offset_array[i] = offset;
 186       }
 187     }
 188   }
 189 
 190   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
 191     check_index(index, "index out of range");
 192     assert(high >= low, "addresses out of order");
 193     check_offset(pointer_delta(high, low), "offset too large");
 194     assert(_offset_array[index] == pointer_delta(high, low), "Wrong offset");
 195   }
 196 
 197   bool is_card_boundary(HeapWord* p) const;
 198 
 199   // Return the number of slots needed for an offset array
 200   // that covers mem_region_words words.
 201   // We always add an extra slot because if an object
 202   // ends on a card boundary we put a 0 in the next
 203   // offset array slot, so we want that slot always
 204   // to be reserved.
 205 
 206   size_t compute_size(size_t mem_region_words) {
 207     size_t number_of_slots = (mem_region_words / N_words) + 1;
 208     return ReservedSpace::page_align_size_up(number_of_slots);
 209   }
 210 
 211 public:
 212   enum SomePublicConstants {
 213     LogN = 9,
 214     LogN_words = LogN - LogHeapWordSize,
 215     N_bytes = 1 << LogN,
 216     N_words = 1 << LogN_words
 217   };
 218 
 219   // Initialize the table to cover from "base" to (at least)
 220   // "base + init_word_size".  In the future, the table may be expanded
 221   // (see "resize" below) up to the size of "_reserved" (which must be at
 222   // least "init_word_size".) The contents of the initial table are
 223   // undefined; it is the responsibility of the constituent
 224   // G1BlockOffsetTable(s) to initialize cards.
 225   G1BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
 226 
 227   // Notes a change in the committed size of the region covered by the
 228   // table.  The "new_word_size" may not be larger than the size of the
 229   // reserved region this table covers.
 230   void resize(size_t new_word_size);
 231 
 232   void set_bottom(HeapWord* new_bottom);
 233 
 234   // Return the appropriate index into "_offset_array" for "p".
 235   inline size_t index_for(const void* p) const;
 236 
 237   // Return the address indicating the start of the region corresponding to
 238   // "index" in "_offset_array".
 239   inline HeapWord* address_for_index(size_t index) const;
 240 };
 241 
 242 // And here is the G1BlockOffsetTable subtype that uses the array.
 243 
 244 class G1BlockOffsetArray: public G1BlockOffsetTable {
 245   friend class G1BlockOffsetSharedArray;
 246   friend class G1BlockOffsetArrayContigSpace;
 247   friend class VMStructs;
 248 private:
 249   enum SomePrivateConstants {
 250     N_words = G1BlockOffsetSharedArray::N_words,
 251     LogN    = G1BlockOffsetSharedArray::LogN
 252   };
 253 
 254   // The following enums are used by do_block_helper
 255   enum Action {
 256     Action_single,      // BOT records a single block (see single_block())
 257     Action_mark,        // BOT marks the start of a block (see mark_block())
 258     Action_check        // Check that BOT records block correctly
 259                         // (see verify_single_block()).
 260   };
 261 
 262   // This is the array, which can be shared by several BlockOffsetArray's
 263   // servicing different
 264   G1BlockOffsetSharedArray* _array;
 265 
 266   // The space that owns this subregion.
 267   G1OffsetTableContigSpace* _gsp;
 268 
 269   // If true, array entries are initialized to 0; otherwise, they are
 270   // initialized to point backwards to the beginning of the covered region.
 271   bool _init_to_zero;
 272 
 273   // The portion [_unallocated_block, _sp.end()) of the space that
 274   // is a single block known not to contain any objects.
 275   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
 276   HeapWord* _unallocated_block;
 277 
 278   // Sets the entries
 279   // corresponding to the cards starting at "start" and ending at "end"
 280   // to point back to the card before "start": the interval [start, end)
 281   // is right-open.
 282   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
 283   // Same as above, except that the args here are a card _index_ interval
 284   // that is closed: [start_index, end_index]
 285   void set_remainder_to_point_to_start_incl(size_t start, size_t end);
 286 
 287   // A helper function for BOT adjustment/verification work
 288   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
 289 
 290 protected:
 291 
 292   G1OffsetTableContigSpace* gsp() const { return _gsp; }
 293 
 294   inline size_t block_size(const HeapWord* p) const;
 295 
 296   // Returns the address of a block whose start is at most "addr".
 297   // If "has_max_index" is true, "assumes "max_index" is the last valid one
 298   // in the array.
 299   inline HeapWord* block_at_or_preceding(const void* addr,
 300                                          bool has_max_index,
 301                                          size_t max_index) const;
 302 
 303   // "q" is a block boundary that is <= "addr"; "n" is the address of the
 304   // next block (or the end of the space.)  Return the address of the
 305   // beginning of the block that contains "addr".  Does so without side
 306   // effects (see, e.g., spec of  block_start.)
 307   inline HeapWord*
 308   forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n,
 309                                          const void* addr) const;
 310 
 311   // "q" is a block boundary that is <= "addr"; return the address of the
 312   // beginning of the block that contains "addr".  May have side effects
 313   // on "this", by updating imprecise entries.
 314   inline HeapWord* forward_to_block_containing_addr(HeapWord* q,
 315                                                     const void* addr);
 316 
 317   // "q" is a block boundary that is <= "addr"; "n" is the address of the
 318   // next block (or the end of the space.)  Return the address of the
 319   // beginning of the block that contains "addr".  May have side effects
 320   // on "this", by updating imprecise entries.
 321   HeapWord* forward_to_block_containing_addr_slow(HeapWord* q,
 322                                                   HeapWord* n,
 323                                                   const void* addr);
 324 
 325   // Requires that "*threshold_" be the first array entry boundary at or
 326   // above "blk_start", and that "*index_" be the corresponding array
 327   // index.  If the block starts at or crosses "*threshold_", records
 328   // "blk_start" as the appropriate block start for the array index
 329   // starting at "*threshold_", and for any other indices crossed by the
 330   // block.  Updates "*threshold_" and "*index_" to correspond to the first
 331   // index after the block end.
 332   void alloc_block_work2(HeapWord** threshold_, size_t* index_,
 333                          HeapWord* blk_start, HeapWord* blk_end);
 334 
 335 public:
 336   // The space may not have it's bottom and top set yet, which is why the
 337   // region is passed as a parameter.  If "init_to_zero" is true, the
 338   // elements of the array are initialized to zero.  Otherwise, they are
 339   // initialized to point backwards to the beginning.
 340   G1BlockOffsetArray(G1BlockOffsetSharedArray* array, MemRegion mr,
 341                      bool init_to_zero);
 342 
 343   // Note: this ought to be part of the constructor, but that would require
 344   // "this" to be passed as a parameter to a member constructor for
 345   // the containing concrete subtype of Space.
 346   // This would be legal C++, but MS VC++ doesn't allow it.
 347   void set_space(G1OffsetTableContigSpace* sp);
 348 
 349   // Resets the covered region to the given "mr".
 350   void set_region(MemRegion mr);
 351 
 352   // Resets the covered region to one with the same _bottom as before but
 353   // the "new_word_size".
 354   void resize(size_t new_word_size);
 355 
 356   // These must be guaranteed to work properly (i.e., do nothing)
 357   // when "blk_start" ("blk" for second version) is "NULL".
 358   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 359   virtual void alloc_block(HeapWord* blk, size_t size) {
 360     alloc_block(blk, blk + size);
 361   }
 362 
 363   // The following methods are useful and optimized for a
 364   // general, non-contiguous space.
 365 
 366   // Given a block [blk_start, blk_start + full_blk_size), and
 367   // a left_blk_size < full_blk_size, adjust the BOT to show two
 368   // blocks [blk_start, blk_start + left_blk_size) and
 369   // [blk_start + left_blk_size, blk_start + full_blk_size).
 370   // It is assumed (and verified in the non-product VM) that the
 371   // BOT was correct for the original block.
 372   void split_block(HeapWord* blk_start, size_t full_blk_size,
 373                            size_t left_blk_size);
 374 
 375   // Adjust the BOT to show that it has a single block in the
 376   // range [blk_start, blk_start + size). All necessary BOT
 377   // cards are adjusted, but _unallocated_block isn't.
 378   void single_block(HeapWord* blk_start, HeapWord* blk_end);
 379   void single_block(HeapWord* blk, size_t size) {
 380     single_block(blk, blk + size);
 381   }
 382 
 383   // Adjust BOT to show that it has a block in the range
 384   // [blk_start, blk_start + size). Only the first card
 385   // of BOT is touched. It is assumed (and verified in the
 386   // non-product VM) that the remaining cards of the block
 387   // are correct.
 388   void mark_block(HeapWord* blk_start, HeapWord* blk_end);
 389   void mark_block(HeapWord* blk, size_t size) {
 390     mark_block(blk, blk + size);
 391   }
 392 
 393   // Adjust _unallocated_block to indicate that a particular
 394   // block has been newly allocated or freed. It is assumed (and
 395   // verified in the non-product VM) that the BOT is correct for
 396   // the given block.
 397   inline void allocated(HeapWord* blk_start, HeapWord* blk_end) {
 398     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 399     verify_single_block(blk_start, blk_end);
 400     if (BlockOffsetArrayUseUnallocatedBlock) {
 401       _unallocated_block = MAX2(_unallocated_block, blk_end);
 402     }
 403   }
 404 
 405   inline void allocated(HeapWord* blk, size_t size) {
 406     allocated(blk, blk + size);
 407   }
 408 
 409   inline void freed(HeapWord* blk_start, HeapWord* blk_end);
 410 
 411   inline void freed(HeapWord* blk, size_t size);
 412 
 413   virtual HeapWord* block_start_unsafe(const void* addr);
 414   virtual HeapWord* block_start_unsafe_const(const void* addr) const;
 415 
 416   // Requires "addr" to be the start of a card and returns the
 417   // start of the block that contains the given address.
 418   HeapWord* block_start_careful(const void* addr) const;
 419 
 420   // If true, initialize array slots with no allocated blocks to zero.
 421   // Otherwise, make them point back to the front.
 422   bool init_to_zero() { return _init_to_zero; }
 423 
 424   // Verification & debugging - ensure that the offset table reflects the fact
 425   // that the block [blk_start, blk_end) or [blk, blk + size) is a
 426   // single block of storage. NOTE: can;t const this because of
 427   // call to non-const do_block_internal() below.
 428   inline void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) {
 429     if (VerifyBlockOffsetArray) {
 430       do_block_internal(blk_start, blk_end, Action_check);
 431     }
 432   }
 433 
 434   inline void verify_single_block(HeapWord* blk, size_t size) {
 435     verify_single_block(blk, blk + size);
 436   }
 437 
 438   // Used by region verification. Checks that the contents of the
 439   // BOT reflect that there's a single object that spans the address
 440   // range [obj_start, obj_start + word_size); returns true if this is
 441   // the case, returns false if it's not.
 442   bool verify_for_object(HeapWord* obj_start, size_t word_size) const;
 443 
 444   // Verify that the given block is before _unallocated_block
 445   inline void verify_not_unallocated(HeapWord* blk_start,
 446                                      HeapWord* blk_end) const {
 447     if (BlockOffsetArrayUseUnallocatedBlock) {
 448       assert(blk_start < blk_end, "Block inconsistency?");
 449       assert(blk_end <= _unallocated_block, "_unallocated_block problem");
 450     }
 451   }
 452 
 453   inline void verify_not_unallocated(HeapWord* blk, size_t size) const {
 454     verify_not_unallocated(blk, blk + size);
 455   }
 456 
 457   void check_all_cards(size_t left_card, size_t right_card) const;
 458 
 459   virtual void print_on(outputStream* out) PRODUCT_RETURN;
 460 };
 461 
 462 // A subtype of BlockOffsetArray that takes advantage of the fact
 463 // that its underlying space is a ContiguousSpace, so that its "active"
 464 // region can be more efficiently tracked (than for a non-contiguous space).
 465 class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray {
 466   friend class VMStructs;
 467 
 468   // allocation boundary at which offset array must be updated
 469   HeapWord* _next_offset_threshold;
 470   size_t    _next_offset_index;      // index corresponding to that boundary
 471 
 472   // Work function to be called when allocation start crosses the next
 473   // threshold in the contig space.
 474   void alloc_block_work1(HeapWord* blk_start, HeapWord* blk_end) {
 475     alloc_block_work2(&_next_offset_threshold, &_next_offset_index,
 476                       blk_start, blk_end);
 477   }
 478 
 479   // Zero out the entry for _bottom (offset will be zero).
 480   void zero_bottom_entry();
 481  public:
 482   G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, MemRegion mr);
 483 
 484   // Initialize the threshold to reflect the first boundary after the
 485   // bottom of the covered region.
 486   HeapWord* initialize_threshold();
 487 
 488   void reset_bot() {
 489     zero_bottom_entry();
 490     initialize_threshold();
 491   }
 492 
 493   // Return the next threshold, the point at which the table should be
 494   // updated.
 495   HeapWord* threshold() const { return _next_offset_threshold; }
 496 
 497   // These must be guaranteed to work properly (i.e., do nothing)
 498   // when "blk_start" ("blk" for second version) is "NULL".  In this
 499   // implementation, that's true because NULL is represented as 0, and thus
 500   // never exceeds the "_next_offset_threshold".
 501   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 502     if (blk_end > _next_offset_threshold)
 503       alloc_block_work1(blk_start, blk_end);
 504   }
 505   void alloc_block(HeapWord* blk, size_t size) {
 506      alloc_block(blk, blk+size);
 507   }
 508 
 509   HeapWord* block_start_unsafe(const void* addr);
 510   HeapWord* block_start_unsafe_const(const void* addr) const;
 511 
 512   void set_for_starts_humongous(HeapWord* new_top);
 513 
 514   virtual void print_on(outputStream* out) PRODUCT_RETURN;
 515 };
 516 
 517 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP