1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/evacuationInfo.hpp"
  30 #include "gc_implementation/g1/g1AllocRegion.hpp"
  31 #include "gc_implementation/g1/g1BiasedArray.hpp"
  32 #include "gc_implementation/g1/g1HRPrinter.hpp"
  33 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  34 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  35 #include "gc_implementation/g1/g1YCTypes.hpp"
  36 #include "gc_implementation/g1/heapRegionSeq.hpp"
  37 #include "gc_implementation/g1/heapRegionSet.hpp"
  38 #include "gc_implementation/shared/hSpaceCounters.hpp"
  39 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  40 #include "memory/barrierSet.hpp"
  41 #include "memory/memRegion.hpp"
  42 #include "memory/sharedHeap.hpp"
  43 #include "utilities/stack.hpp"
  44 
  45 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  46 // It uses the "Garbage First" heap organization and algorithm, which
  47 // may combine concurrent marking with parallel, incremental compaction of
  48 // heap subsets that will yield large amounts of garbage.
  49 
  50 // Forward declarations
  51 class HeapRegion;
  52 class HRRSCleanupTask;
  53 class GenerationSpec;
  54 class OopsInHeapRegionClosure;
  55 class G1KlassScanClosure;
  56 class G1ScanHeapEvacClosure;
  57 class ObjectClosure;
  58 class SpaceClosure;
  59 class CompactibleSpaceClosure;
  60 class Space;
  61 class G1CollectorPolicy;
  62 class GenRemSet;
  63 class G1RemSet;
  64 class HeapRegionRemSetIterator;
  65 class ConcurrentMark;
  66 class ConcurrentMarkThread;
  67 class ConcurrentG1Refine;
  68 class ConcurrentGCTimer;
  69 class GenerationCounters;
  70 class STWGCTimer;
  71 class G1NewTracer;
  72 class G1OldTracer;
  73 class EvacuationFailedInfo;
  74 class nmethod;
  75 class Ticks;
  76 
  77 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  78 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  79 
  80 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  81 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  82 
  83 enum GCAllocPurpose {
  84   GCAllocForTenured,
  85   GCAllocForSurvived,
  86   GCAllocPurposeCount
  87 };
  88 
  89 class YoungList : public CHeapObj<mtGC> {
  90 private:
  91   G1CollectedHeap* _g1h;
  92 
  93   HeapRegion* _head;
  94 
  95   HeapRegion* _survivor_head;
  96   HeapRegion* _survivor_tail;
  97 
  98   HeapRegion* _curr;
  99 
 100   uint        _length;
 101   uint        _survivor_length;
 102 
 103   size_t      _last_sampled_rs_lengths;
 104   size_t      _sampled_rs_lengths;
 105 
 106   void         empty_list(HeapRegion* list);
 107 
 108 public:
 109   YoungList(G1CollectedHeap* g1h);
 110 
 111   void         push_region(HeapRegion* hr);
 112   void         add_survivor_region(HeapRegion* hr);
 113 
 114   void         empty_list();
 115   bool         is_empty() { return _length == 0; }
 116   uint         length() { return _length; }
 117   uint         survivor_length() { return _survivor_length; }
 118 
 119   // Currently we do not keep track of the used byte sum for the
 120   // young list and the survivors and it'd be quite a lot of work to
 121   // do so. When we'll eventually replace the young list with
 122   // instances of HeapRegionLinkedList we'll get that for free. So,
 123   // we'll report the more accurate information then.
 124   size_t       eden_used_bytes() {
 125     assert(length() >= survivor_length(), "invariant");
 126     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 127   }
 128   size_t       survivor_used_bytes() {
 129     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 130   }
 131 
 132   void rs_length_sampling_init();
 133   bool rs_length_sampling_more();
 134   void rs_length_sampling_next();
 135 
 136   void reset_sampled_info() {
 137     _last_sampled_rs_lengths =   0;
 138   }
 139   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 140 
 141   // for development purposes
 142   void reset_auxilary_lists();
 143   void clear() { _head = NULL; _length = 0; }
 144 
 145   void clear_survivors() {
 146     _survivor_head    = NULL;
 147     _survivor_tail    = NULL;
 148     _survivor_length  = 0;
 149   }
 150 
 151   HeapRegion* first_region() { return _head; }
 152   HeapRegion* first_survivor_region() { return _survivor_head; }
 153   HeapRegion* last_survivor_region() { return _survivor_tail; }
 154 
 155   // debugging
 156   bool          check_list_well_formed();
 157   bool          check_list_empty(bool check_sample = true);
 158   void          print();
 159 };
 160 
 161 class MutatorAllocRegion : public G1AllocRegion {
 162 protected:
 163   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 164   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 165 public:
 166   MutatorAllocRegion()
 167     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 168 };
 169 
 170 class SurvivorGCAllocRegion : public G1AllocRegion {
 171 protected:
 172   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 173   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 174 public:
 175   SurvivorGCAllocRegion()
 176   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 177 };
 178 
 179 class OldGCAllocRegion : public G1AllocRegion {
 180 protected:
 181   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 182   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 183 public:
 184   OldGCAllocRegion()
 185   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 186 };
 187 
 188 // The G1 STW is alive closure.
 189 // An instance is embedded into the G1CH and used as the
 190 // (optional) _is_alive_non_header closure in the STW
 191 // reference processor. It is also extensively used during
 192 // reference processing during STW evacuation pauses.
 193 class G1STWIsAliveClosure: public BoolObjectClosure {
 194   G1CollectedHeap* _g1;
 195 public:
 196   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 197   bool do_object_b(oop p);
 198 };
 199 
 200 class RefineCardTableEntryClosure;
 201 
 202 class G1CollectedHeap : public SharedHeap {
 203   friend class VM_CollectForMetadataAllocation;
 204   friend class VM_G1CollectForAllocation;
 205   friend class VM_G1CollectFull;
 206   friend class VM_G1IncCollectionPause;
 207   friend class VMStructs;
 208   friend class MutatorAllocRegion;
 209   friend class SurvivorGCAllocRegion;
 210   friend class OldGCAllocRegion;
 211 
 212   // Closures used in implementation.
 213   template <G1Barrier barrier, G1Mark do_mark_object>
 214   friend class G1ParCopyClosure;
 215   friend class G1IsAliveClosure;
 216   friend class G1EvacuateFollowersClosure;
 217   friend class G1ParScanThreadState;
 218   friend class G1ParScanClosureSuper;
 219   friend class G1ParEvacuateFollowersClosure;
 220   friend class G1ParTask;
 221   friend class G1FreeGarbageRegionClosure;
 222   friend class RefineCardTableEntryClosure;
 223   friend class G1PrepareCompactClosure;
 224   friend class RegionSorter;
 225   friend class RegionResetter;
 226   friend class CountRCClosure;
 227   friend class EvacPopObjClosure;
 228   friend class G1ParCleanupCTTask;
 229 
 230   friend class G1FreeHumongousRegionClosure;
 231   // Other related classes.
 232   friend class G1MarkSweep;
 233 
 234 private:
 235   // The one and only G1CollectedHeap, so static functions can find it.
 236   static G1CollectedHeap* _g1h;
 237 
 238   static size_t _humongous_object_threshold_in_words;
 239 
 240   // The secondary free list which contains regions that have been
 241   // freed up during the cleanup process. This will be appended to
 242   // the master free list when appropriate.
 243   FreeRegionList _secondary_free_list;
 244 
 245   // It keeps track of the old regions.
 246   HeapRegionSet _old_set;
 247 
 248   // It keeps track of the humongous regions.
 249   HeapRegionSet _humongous_set;
 250 
 251   void clear_humongous_is_live_table();
 252   void eagerly_reclaim_humongous_regions();
 253 
 254   // The number of regions we could create by expansion.
 255   uint _expansion_regions;
 256 
 257   // The block offset table for the G1 heap.
 258   G1BlockOffsetSharedArray* _bot_shared;
 259 
 260   // Tears down the region sets / lists so that they are empty and the
 261   // regions on the heap do not belong to a region set / list. The
 262   // only exception is the humongous set which we leave unaltered. If
 263   // free_list_only is true, it will only tear down the master free
 264   // list. It is called before a Full GC (free_list_only == false) or
 265   // before heap shrinking (free_list_only == true).
 266   void tear_down_region_sets(bool free_list_only);
 267 
 268   // Rebuilds the region sets / lists so that they are repopulated to
 269   // reflect the contents of the heap. The only exception is the
 270   // humongous set which was not torn down in the first place. If
 271   // free_list_only is true, it will only rebuild the master free
 272   // list. It is called after a Full GC (free_list_only == false) or
 273   // after heap shrinking (free_list_only == true).
 274   void rebuild_region_sets(bool free_list_only);
 275 
 276   // The sequence of all heap regions in the heap.
 277   HeapRegionSeq _hrs;
 278 
 279   // Alloc region used to satisfy mutator allocation requests.
 280   MutatorAllocRegion _mutator_alloc_region;
 281 
 282   // Alloc region used to satisfy allocation requests by the GC for
 283   // survivor objects.
 284   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 285 
 286   // PLAB sizing policy for survivors.
 287   PLABStats _survivor_plab_stats;
 288 
 289   // Alloc region used to satisfy allocation requests by the GC for
 290   // old objects.
 291   OldGCAllocRegion _old_gc_alloc_region;
 292 
 293   // PLAB sizing policy for tenured objects.
 294   PLABStats _old_plab_stats;
 295 
 296   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
 297     PLABStats* stats = NULL;
 298 
 299     switch (purpose) {
 300     case GCAllocForSurvived:
 301       stats = &_survivor_plab_stats;
 302       break;
 303     case GCAllocForTenured:
 304       stats = &_old_plab_stats;
 305       break;
 306     default:
 307       assert(false, "unrecognized GCAllocPurpose");
 308     }
 309 
 310     return stats;
 311   }
 312 
 313   // The last old region we allocated to during the last GC.
 314   // Typically, it is not full so we should re-use it during the next GC.
 315   HeapRegion* _retained_old_gc_alloc_region;
 316 
 317   // It specifies whether we should attempt to expand the heap after a
 318   // region allocation failure. If heap expansion fails we set this to
 319   // false so that we don't re-attempt the heap expansion (it's likely
 320   // that subsequent expansion attempts will also fail if one fails).
 321   // Currently, it is only consulted during GC and it's reset at the
 322   // start of each GC.
 323   bool _expand_heap_after_alloc_failure;
 324 
 325   // It resets the mutator alloc region before new allocations can take place.
 326   void init_mutator_alloc_region();
 327 
 328   // It releases the mutator alloc region.
 329   void release_mutator_alloc_region();
 330 
 331   // It initializes the GC alloc regions at the start of a GC.
 332   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 333 
 334   // Setup the retained old gc alloc region as the currrent old gc alloc region.
 335   void use_retained_old_gc_alloc_region(EvacuationInfo& evacuation_info);
 336 
 337   // It releases the GC alloc regions at the end of a GC.
 338   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
 339 
 340   // It does any cleanup that needs to be done on the GC alloc regions
 341   // before a Full GC.
 342   void abandon_gc_alloc_regions();
 343 
 344   // Helper for monitoring and management support.
 345   G1MonitoringSupport* _g1mm;
 346 
 347   // Determines PLAB size for a particular allocation purpose.
 348   size_t desired_plab_sz(GCAllocPurpose purpose);
 349 
 350   // Outside of GC pauses, the number of bytes used in all regions other
 351   // than the current allocation region.
 352   size_t _summary_bytes_used;
 353 
 354   // Records whether the region at the given index is kept live by roots or
 355   // references from the young generation.
 356   class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
 357    protected:
 358     bool default_value() const { return false; }
 359    public:
 360     void clear() { G1BiasedMappedArray<bool>::clear(); }
 361     void set_live(uint region) {
 362       set_by_index(region, true);
 363     }
 364     bool is_live(uint region) {
 365       return get_by_index(region);
 366     }
 367   };
 368 
 369   HumongousIsLiveBiasedMappedArray _humongous_is_live;
 370   // Stores whether during humongous object registration we found candidate regions.
 371   // If not, we can skip a few steps.
 372   bool _has_humongous_reclaim_candidates;
 373 
 374   volatile unsigned _gc_time_stamp;
 375 
 376   size_t* _surviving_young_words;
 377 
 378   G1HRPrinter _hr_printer;
 379 
 380   void setup_surviving_young_words();
 381   void update_surviving_young_words(size_t* surv_young_words);
 382   void cleanup_surviving_young_words();
 383 
 384   // It decides whether an explicit GC should start a concurrent cycle
 385   // instead of doing a STW GC. Currently, a concurrent cycle is
 386   // explicitly started if:
 387   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 388   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 389   // (c) cause == _g1_humongous_allocation
 390   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 391 
 392   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 393   // concurrent cycles) we have started.
 394   volatile unsigned int _old_marking_cycles_started;
 395 
 396   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 397   // concurrent cycles) we have completed.
 398   volatile unsigned int _old_marking_cycles_completed;
 399 
 400   bool _concurrent_cycle_started;
 401 
 402   // This is a non-product method that is helpful for testing. It is
 403   // called at the end of a GC and artificially expands the heap by
 404   // allocating a number of dead regions. This way we can induce very
 405   // frequent marking cycles and stress the cleanup / concurrent
 406   // cleanup code more (as all the regions that will be allocated by
 407   // this method will be found dead by the marking cycle).
 408   void allocate_dummy_regions() PRODUCT_RETURN;
 409 
 410   // Clear RSets after a compaction. It also resets the GC time stamps.
 411   void clear_rsets_post_compaction();
 412 
 413   // If the HR printer is active, dump the state of the regions in the
 414   // heap after a compaction.
 415   void print_hrs_post_compaction();
 416 
 417   double verify(bool guard, const char* msg);
 418   void verify_before_gc();
 419   void verify_after_gc();
 420 
 421   void log_gc_header();
 422   void log_gc_footer(double pause_time_sec);
 423 
 424   // These are macros so that, if the assert fires, we get the correct
 425   // line number, file, etc.
 426 
 427 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 428   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 429           (_extra_message_),                                                  \
 430           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 431           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 432           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 433 
 434 #define assert_heap_locked()                                                  \
 435   do {                                                                        \
 436     assert(Heap_lock->owned_by_self(),                                        \
 437            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 438   } while (0)
 439 
 440 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 441   do {                                                                        \
 442     assert(Heap_lock->owned_by_self() ||                                      \
 443            (SafepointSynchronize::is_at_safepoint() &&                        \
 444              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 445            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 446                                         "should be at a safepoint"));         \
 447   } while (0)
 448 
 449 #define assert_heap_locked_and_not_at_safepoint()                             \
 450   do {                                                                        \
 451     assert(Heap_lock->owned_by_self() &&                                      \
 452                                     !SafepointSynchronize::is_at_safepoint(), \
 453           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 454                                        "should not be at a safepoint"));      \
 455   } while (0)
 456 
 457 #define assert_heap_not_locked()                                              \
 458   do {                                                                        \
 459     assert(!Heap_lock->owned_by_self(),                                       \
 460         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 461   } while (0)
 462 
 463 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 464   do {                                                                        \
 465     assert(!Heap_lock->owned_by_self() &&                                     \
 466                                     !SafepointSynchronize::is_at_safepoint(), \
 467       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 468                                    "should not be at a safepoint"));          \
 469   } while (0)
 470 
 471 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 472   do {                                                                        \
 473     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 474               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 475            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 476   } while (0)
 477 
 478 #define assert_not_at_safepoint()                                             \
 479   do {                                                                        \
 480     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 481            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 482   } while (0)
 483 
 484 protected:
 485 
 486   // The young region list.
 487   YoungList*  _young_list;
 488 
 489   // The current policy object for the collector.
 490   G1CollectorPolicy* _g1_policy;
 491 
 492   // This is the second level of trying to allocate a new region. If
 493   // new_region() didn't find a region on the free_list, this call will
 494   // check whether there's anything available on the
 495   // secondary_free_list and/or wait for more regions to appear on
 496   // that list, if _free_regions_coming is set.
 497   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 498 
 499   // Try to allocate a single non-humongous HeapRegion sufficient for
 500   // an allocation of the given word_size. If do_expand is true,
 501   // attempt to expand the heap if necessary to satisfy the allocation
 502   // request. If the region is to be used as an old region or for a
 503   // humongous object, set is_old to true. If not, to false.
 504   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 505 
 506   // Initialize a contiguous set of free regions of length num_regions
 507   // and starting at index first so that they appear as a single
 508   // humongous region.
 509   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 510                                                       uint num_regions,
 511                                                       size_t word_size);
 512 
 513   // Attempt to allocate a humongous object of the given size. Return
 514   // NULL if unsuccessful.
 515   HeapWord* humongous_obj_allocate(size_t word_size);
 516 
 517   // The following two methods, allocate_new_tlab() and
 518   // mem_allocate(), are the two main entry points from the runtime
 519   // into the G1's allocation routines. They have the following
 520   // assumptions:
 521   //
 522   // * They should both be called outside safepoints.
 523   //
 524   // * They should both be called without holding the Heap_lock.
 525   //
 526   // * All allocation requests for new TLABs should go to
 527   //   allocate_new_tlab().
 528   //
 529   // * All non-TLAB allocation requests should go to mem_allocate().
 530   //
 531   // * If either call cannot satisfy the allocation request using the
 532   //   current allocating region, they will try to get a new one. If
 533   //   this fails, they will attempt to do an evacuation pause and
 534   //   retry the allocation.
 535   //
 536   // * If all allocation attempts fail, even after trying to schedule
 537   //   an evacuation pause, allocate_new_tlab() will return NULL,
 538   //   whereas mem_allocate() will attempt a heap expansion and/or
 539   //   schedule a Full GC.
 540   //
 541   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 542   //   should never be called with word_size being humongous. All
 543   //   humongous allocation requests should go to mem_allocate() which
 544   //   will satisfy them with a special path.
 545 
 546   virtual HeapWord* allocate_new_tlab(size_t word_size);
 547 
 548   virtual HeapWord* mem_allocate(size_t word_size,
 549                                  bool*  gc_overhead_limit_was_exceeded);
 550 
 551   // The following three methods take a gc_count_before_ret
 552   // parameter which is used to return the GC count if the method
 553   // returns NULL. Given that we are required to read the GC count
 554   // while holding the Heap_lock, and these paths will take the
 555   // Heap_lock at some point, it's easier to get them to read the GC
 556   // count while holding the Heap_lock before they return NULL instead
 557   // of the caller (namely: mem_allocate()) having to also take the
 558   // Heap_lock just to read the GC count.
 559 
 560   // First-level mutator allocation attempt: try to allocate out of
 561   // the mutator alloc region without taking the Heap_lock. This
 562   // should only be used for non-humongous allocations.
 563   inline HeapWord* attempt_allocation(size_t word_size,
 564                                       unsigned int* gc_count_before_ret,
 565                                       int* gclocker_retry_count_ret);
 566 
 567   // Second-level mutator allocation attempt: take the Heap_lock and
 568   // retry the allocation attempt, potentially scheduling a GC
 569   // pause. This should only be used for non-humongous allocations.
 570   HeapWord* attempt_allocation_slow(size_t word_size,
 571                                     unsigned int* gc_count_before_ret,
 572                                     int* gclocker_retry_count_ret);
 573 
 574   // Takes the Heap_lock and attempts a humongous allocation. It can
 575   // potentially schedule a GC pause.
 576   HeapWord* attempt_allocation_humongous(size_t word_size,
 577                                          unsigned int* gc_count_before_ret,
 578                                          int* gclocker_retry_count_ret);
 579 
 580   // Allocation attempt that should be called during safepoints (e.g.,
 581   // at the end of a successful GC). expect_null_mutator_alloc_region
 582   // specifies whether the mutator alloc region is expected to be NULL
 583   // or not.
 584   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 585                                        bool expect_null_mutator_alloc_region);
 586 
 587   // It dirties the cards that cover the block so that so that the post
 588   // write barrier never queues anything when updating objects on this
 589   // block. It is assumed (and in fact we assert) that the block
 590   // belongs to a young region.
 591   inline void dirty_young_block(HeapWord* start, size_t word_size);
 592 
 593   // Allocate blocks during garbage collection. Will ensure an
 594   // allocation region, either by picking one or expanding the
 595   // heap, and then allocate a block of the given size. The block
 596   // may not be a humongous - it must fit into a single heap region.
 597   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 598 
 599   HeapWord* allocate_during_gc_slow(GCAllocPurpose purpose,
 600                                     HeapRegion*    alloc_region,
 601                                     bool           par,
 602                                     size_t         word_size);
 603 
 604   // Ensure that no further allocations can happen in "r", bearing in mind
 605   // that parallel threads might be attempting allocations.
 606   void par_allocate_remaining_space(HeapRegion* r);
 607 
 608   // Allocation attempt during GC for a survivor object / PLAB.
 609   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 610 
 611   // Allocation attempt during GC for an old object / PLAB.
 612   inline HeapWord* old_attempt_allocation(size_t word_size);
 613 
 614   // These methods are the "callbacks" from the G1AllocRegion class.
 615 
 616   // For mutator alloc regions.
 617   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 618   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 619                                    size_t allocated_bytes);
 620 
 621   // For GC alloc regions.
 622   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 623                                   GCAllocPurpose ap);
 624   void retire_gc_alloc_region(HeapRegion* alloc_region,
 625                               size_t allocated_bytes, GCAllocPurpose ap);
 626 
 627   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 628   //   inspection request and should collect the entire heap
 629   // - if clear_all_soft_refs is true, all soft references should be
 630   //   cleared during the GC
 631   // - if explicit_gc is false, word_size describes the allocation that
 632   //   the GC should attempt (at least) to satisfy
 633   // - it returns false if it is unable to do the collection due to the
 634   //   GC locker being active, true otherwise
 635   bool do_collection(bool explicit_gc,
 636                      bool clear_all_soft_refs,
 637                      size_t word_size);
 638 
 639   // Callback from VM_G1CollectFull operation.
 640   // Perform a full collection.
 641   virtual void do_full_collection(bool clear_all_soft_refs);
 642 
 643   // Resize the heap if necessary after a full collection.  If this is
 644   // after a collect-for allocation, "word_size" is the allocation size,
 645   // and will be considered part of the used portion of the heap.
 646   void resize_if_necessary_after_full_collection(size_t word_size);
 647 
 648   // Callback from VM_G1CollectForAllocation operation.
 649   // This function does everything necessary/possible to satisfy a
 650   // failed allocation request (including collection, expansion, etc.)
 651   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 652 
 653   // Attempting to expand the heap sufficiently
 654   // to support an allocation of the given "word_size".  If
 655   // successful, perform the allocation and return the address of the
 656   // allocated block, or else "NULL".
 657   HeapWord* expand_and_allocate(size_t word_size);
 658 
 659   // Process any reference objects discovered during
 660   // an incremental evacuation pause.
 661   void process_discovered_references(uint no_of_gc_workers);
 662 
 663   // Enqueue any remaining discovered references
 664   // after processing.
 665   void enqueue_discovered_references(uint no_of_gc_workers);
 666 
 667 public:
 668 
 669   G1MonitoringSupport* g1mm() {
 670     assert(_g1mm != NULL, "should have been initialized");
 671     return _g1mm;
 672   }
 673 
 674   // Expand the garbage-first heap by at least the given size (in bytes!).
 675   // Returns true if the heap was expanded by the requested amount;
 676   // false otherwise.
 677   // (Rounds up to a HeapRegion boundary.)
 678   bool expand(size_t expand_bytes);
 679 
 680   // Do anything common to GC's.
 681   virtual void gc_prologue(bool full);
 682   virtual void gc_epilogue(bool full);
 683 
 684   inline void set_humongous_is_live(oop obj);
 685 
 686   bool humongous_is_live(uint region) {
 687     return _humongous_is_live.is_live(region);
 688   }
 689 
 690   // Returns whether the given region (which must be a humongous (start) region)
 691   // is to be considered conservatively live regardless of any other conditions.
 692   bool humongous_region_is_always_live(uint index);
 693   // Register the given region to be part of the collection set.
 694   inline void register_humongous_region_with_in_cset_fast_test(uint index);
 695   // Register regions with humongous objects (actually on the start region) in
 696   // the in_cset_fast_test table.
 697   void register_humongous_regions_with_in_cset_fast_test();
 698   // We register a region with the fast "in collection set" test. We
 699   // simply set to true the array slot corresponding to this region.
 700   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 701     _in_cset_fast_test.set_in_cset(r->hrs_index());
 702   }
 703 
 704   // This is a fast test on whether a reference points into the
 705   // collection set or not. Assume that the reference
 706   // points into the heap.
 707   inline bool in_cset_fast_test(oop obj);
 708 
 709   void clear_cset_fast_test() {
 710     _in_cset_fast_test.clear();
 711   }
 712 
 713   // This is called at the start of either a concurrent cycle or a Full
 714   // GC to update the number of old marking cycles started.
 715   void increment_old_marking_cycles_started();
 716 
 717   // This is called at the end of either a concurrent cycle or a Full
 718   // GC to update the number of old marking cycles completed. Those two
 719   // can happen in a nested fashion, i.e., we start a concurrent
 720   // cycle, a Full GC happens half-way through it which ends first,
 721   // and then the cycle notices that a Full GC happened and ends
 722   // too. The concurrent parameter is a boolean to help us do a bit
 723   // tighter consistency checking in the method. If concurrent is
 724   // false, the caller is the inner caller in the nesting (i.e., the
 725   // Full GC). If concurrent is true, the caller is the outer caller
 726   // in this nesting (i.e., the concurrent cycle). Further nesting is
 727   // not currently supported. The end of this call also notifies
 728   // the FullGCCount_lock in case a Java thread is waiting for a full
 729   // GC to happen (e.g., it called System.gc() with
 730   // +ExplicitGCInvokesConcurrent).
 731   void increment_old_marking_cycles_completed(bool concurrent);
 732 
 733   unsigned int old_marking_cycles_completed() {
 734     return _old_marking_cycles_completed;
 735   }
 736 
 737   void register_concurrent_cycle_start(const Ticks& start_time);
 738   void register_concurrent_cycle_end();
 739   void trace_heap_after_concurrent_cycle();
 740 
 741   G1YCType yc_type();
 742 
 743   G1HRPrinter* hr_printer() { return &_hr_printer; }
 744 
 745   // Frees a non-humongous region by initializing its contents and
 746   // adding it to the free list that's passed as a parameter (this is
 747   // usually a local list which will be appended to the master free
 748   // list later). The used bytes of freed regions are accumulated in
 749   // pre_used. If par is true, the region's RSet will not be freed
 750   // up. The assumption is that this will be done later.
 751   // The locked parameter indicates if the caller has already taken
 752   // care of proper synchronization. This may allow some optimizations.
 753   void free_region(HeapRegion* hr,
 754                    FreeRegionList* free_list,
 755                    bool par,
 756                    bool locked = false);
 757 
 758   // Frees a humongous region by collapsing it into individual regions
 759   // and calling free_region() for each of them. The freed regions
 760   // will be added to the free list that's passed as a parameter (this
 761   // is usually a local list which will be appended to the master free
 762   // list later). The used bytes of freed regions are accumulated in
 763   // pre_used. If par is true, the region's RSet will not be freed
 764   // up. The assumption is that this will be done later.
 765   void free_humongous_region(HeapRegion* hr,
 766                              FreeRegionList* free_list,
 767                              bool par);
 768 protected:
 769 
 770   // Shrink the garbage-first heap by at most the given size (in bytes!).
 771   // (Rounds down to a HeapRegion boundary.)
 772   virtual void shrink(size_t expand_bytes);
 773   void shrink_helper(size_t expand_bytes);
 774 
 775   #if TASKQUEUE_STATS
 776   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 777   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 778   void reset_taskqueue_stats();
 779   #endif // TASKQUEUE_STATS
 780 
 781   // Schedule the VM operation that will do an evacuation pause to
 782   // satisfy an allocation request of word_size. *succeeded will
 783   // return whether the VM operation was successful (it did do an
 784   // evacuation pause) or not (another thread beat us to it or the GC
 785   // locker was active). Given that we should not be holding the
 786   // Heap_lock when we enter this method, we will pass the
 787   // gc_count_before (i.e., total_collections()) as a parameter since
 788   // it has to be read while holding the Heap_lock. Currently, both
 789   // methods that call do_collection_pause() release the Heap_lock
 790   // before the call, so it's easy to read gc_count_before just before.
 791   HeapWord* do_collection_pause(size_t         word_size,
 792                                 unsigned int   gc_count_before,
 793                                 bool*          succeeded,
 794                                 GCCause::Cause gc_cause);
 795 
 796   // The guts of the incremental collection pause, executed by the vm
 797   // thread. It returns false if it is unable to do the collection due
 798   // to the GC locker being active, true otherwise
 799   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 800 
 801   // Actually do the work of evacuating the collection set.
 802   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 803 
 804   // The g1 remembered set of the heap.
 805   G1RemSet* _g1_rem_set;
 806 
 807   // A set of cards that cover the objects for which the Rsets should be updated
 808   // concurrently after the collection.
 809   DirtyCardQueueSet _dirty_card_queue_set;
 810 
 811   // The closure used to refine a single card.
 812   RefineCardTableEntryClosure* _refine_cte_cl;
 813 
 814   // A function to check the consistency of dirty card logs.
 815   void check_ct_logs_at_safepoint();
 816 
 817   // A DirtyCardQueueSet that is used to hold cards that contain
 818   // references into the current collection set. This is used to
 819   // update the remembered sets of the regions in the collection
 820   // set in the event of an evacuation failure.
 821   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 822 
 823   // After a collection pause, make the regions in the CS into free
 824   // regions.
 825   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 826 
 827   // Abandon the current collection set without recording policy
 828   // statistics or updating free lists.
 829   void abandon_collection_set(HeapRegion* cs_head);
 830 
 831   // Applies "scan_non_heap_roots" to roots outside the heap,
 832   // "scan_rs" to roots inside the heap (having done "set_region" to
 833   // indicate the region in which the root resides),
 834   // and does "scan_metadata" If "scan_rs" is
 835   // NULL, then this step is skipped.  The "worker_i"
 836   // param is for use with parallel roots processing, and should be
 837   // the "i" of the calling parallel worker thread's work(i) function.
 838   // In the sequential case this param will be ignored.
 839   void g1_process_roots(OopClosure* scan_non_heap_roots,
 840                         OopClosure* scan_non_heap_weak_roots,
 841                         OopsInHeapRegionClosure* scan_rs,
 842                         CLDClosure* scan_strong_clds,
 843                         CLDClosure* scan_weak_clds,
 844                         CodeBlobClosure* scan_strong_code,
 845                         uint worker_i);
 846 
 847   // Notifies all the necessary spaces that the committed space has
 848   // been updated (either expanded or shrunk). It should be called
 849   // after _g1_storage is updated.
 850   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 851 
 852   // The concurrent marker (and the thread it runs in.)
 853   ConcurrentMark* _cm;
 854   ConcurrentMarkThread* _cmThread;
 855   bool _mark_in_progress;
 856 
 857   // The concurrent refiner.
 858   ConcurrentG1Refine* _cg1r;
 859 
 860   // The parallel task queues
 861   RefToScanQueueSet *_task_queues;
 862 
 863   // True iff a evacuation has failed in the current collection.
 864   bool _evacuation_failed;
 865 
 866   EvacuationFailedInfo* _evacuation_failed_info_array;
 867 
 868   // Failed evacuations cause some logical from-space objects to have
 869   // forwarding pointers to themselves.  Reset them.
 870   void remove_self_forwarding_pointers();
 871 
 872   // Together, these store an object with a preserved mark, and its mark value.
 873   Stack<oop, mtGC>     _objs_with_preserved_marks;
 874   Stack<markOop, mtGC> _preserved_marks_of_objs;
 875 
 876   // Preserve the mark of "obj", if necessary, in preparation for its mark
 877   // word being overwritten with a self-forwarding-pointer.
 878   void preserve_mark_if_necessary(oop obj, markOop m);
 879 
 880   // The stack of evac-failure objects left to be scanned.
 881   GrowableArray<oop>*    _evac_failure_scan_stack;
 882   // The closure to apply to evac-failure objects.
 883 
 884   OopsInHeapRegionClosure* _evac_failure_closure;
 885   // Set the field above.
 886   void
 887   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 888     _evac_failure_closure = evac_failure_closure;
 889   }
 890 
 891   // Push "obj" on the scan stack.
 892   void push_on_evac_failure_scan_stack(oop obj);
 893   // Process scan stack entries until the stack is empty.
 894   void drain_evac_failure_scan_stack();
 895   // True iff an invocation of "drain_scan_stack" is in progress; to
 896   // prevent unnecessary recursion.
 897   bool _drain_in_progress;
 898 
 899   // Do any necessary initialization for evacuation-failure handling.
 900   // "cl" is the closure that will be used to process evac-failure
 901   // objects.
 902   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 903   // Do any necessary cleanup for evacuation-failure handling data
 904   // structures.
 905   void finalize_for_evac_failure();
 906 
 907   // An attempt to evacuate "obj" has failed; take necessary steps.
 908   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 909   void handle_evacuation_failure_common(oop obj, markOop m);
 910 
 911 #ifndef PRODUCT
 912   // Support for forcing evacuation failures. Analogous to
 913   // PromotionFailureALot for the other collectors.
 914 
 915   // Records whether G1EvacuationFailureALot should be in effect
 916   // for the current GC
 917   bool _evacuation_failure_alot_for_current_gc;
 918 
 919   // Used to record the GC number for interval checking when
 920   // determining whether G1EvaucationFailureALot is in effect
 921   // for the current GC.
 922   size_t _evacuation_failure_alot_gc_number;
 923 
 924   // Count of the number of evacuations between failures.
 925   volatile size_t _evacuation_failure_alot_count;
 926 
 927   // Set whether G1EvacuationFailureALot should be in effect
 928   // for the current GC (based upon the type of GC and which
 929   // command line flags are set);
 930   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 931                                                   bool during_initial_mark,
 932                                                   bool during_marking);
 933 
 934   inline void set_evacuation_failure_alot_for_current_gc();
 935 
 936   // Return true if it's time to cause an evacuation failure.
 937   inline bool evacuation_should_fail();
 938 
 939   // Reset the G1EvacuationFailureALot counters.  Should be called at
 940   // the end of an evacuation pause in which an evacuation failure occurred.
 941   inline void reset_evacuation_should_fail();
 942 #endif // !PRODUCT
 943 
 944   // ("Weak") Reference processing support.
 945   //
 946   // G1 has 2 instances of the reference processor class. One
 947   // (_ref_processor_cm) handles reference object discovery
 948   // and subsequent processing during concurrent marking cycles.
 949   //
 950   // The other (_ref_processor_stw) handles reference object
 951   // discovery and processing during full GCs and incremental
 952   // evacuation pauses.
 953   //
 954   // During an incremental pause, reference discovery will be
 955   // temporarily disabled for _ref_processor_cm and will be
 956   // enabled for _ref_processor_stw. At the end of the evacuation
 957   // pause references discovered by _ref_processor_stw will be
 958   // processed and discovery will be disabled. The previous
 959   // setting for reference object discovery for _ref_processor_cm
 960   // will be re-instated.
 961   //
 962   // At the start of marking:
 963   //  * Discovery by the CM ref processor is verified to be inactive
 964   //    and it's discovered lists are empty.
 965   //  * Discovery by the CM ref processor is then enabled.
 966   //
 967   // At the end of marking:
 968   //  * Any references on the CM ref processor's discovered
 969   //    lists are processed (possibly MT).
 970   //
 971   // At the start of full GC we:
 972   //  * Disable discovery by the CM ref processor and
 973   //    empty CM ref processor's discovered lists
 974   //    (without processing any entries).
 975   //  * Verify that the STW ref processor is inactive and it's
 976   //    discovered lists are empty.
 977   //  * Temporarily set STW ref processor discovery as single threaded.
 978   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 979   //    field.
 980   //  * Finally enable discovery by the STW ref processor.
 981   //
 982   // The STW ref processor is used to record any discovered
 983   // references during the full GC.
 984   //
 985   // At the end of a full GC we:
 986   //  * Enqueue any reference objects discovered by the STW ref processor
 987   //    that have non-live referents. This has the side-effect of
 988   //    making the STW ref processor inactive by disabling discovery.
 989   //  * Verify that the CM ref processor is still inactive
 990   //    and no references have been placed on it's discovered
 991   //    lists (also checked as a precondition during initial marking).
 992 
 993   // The (stw) reference processor...
 994   ReferenceProcessor* _ref_processor_stw;
 995 
 996   STWGCTimer* _gc_timer_stw;
 997   ConcurrentGCTimer* _gc_timer_cm;
 998 
 999   G1OldTracer* _gc_tracer_cm;
1000   G1NewTracer* _gc_tracer_stw;
1001 
1002   // During reference object discovery, the _is_alive_non_header
1003   // closure (if non-null) is applied to the referent object to
1004   // determine whether the referent is live. If so then the
1005   // reference object does not need to be 'discovered' and can
1006   // be treated as a regular oop. This has the benefit of reducing
1007   // the number of 'discovered' reference objects that need to
1008   // be processed.
1009   //
1010   // Instance of the is_alive closure for embedding into the
1011   // STW reference processor as the _is_alive_non_header field.
1012   // Supplying a value for the _is_alive_non_header field is
1013   // optional but doing so prevents unnecessary additions to
1014   // the discovered lists during reference discovery.
1015   G1STWIsAliveClosure _is_alive_closure_stw;
1016 
1017   // The (concurrent marking) reference processor...
1018   ReferenceProcessor* _ref_processor_cm;
1019 
1020   // Instance of the concurrent mark is_alive closure for embedding
1021   // into the Concurrent Marking reference processor as the
1022   // _is_alive_non_header field. Supplying a value for the
1023   // _is_alive_non_header field is optional but doing so prevents
1024   // unnecessary additions to the discovered lists during reference
1025   // discovery.
1026   G1CMIsAliveClosure _is_alive_closure_cm;
1027 
1028   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1029   HeapRegion** _worker_cset_start_region;
1030 
1031   // Time stamp to validate the regions recorded in the cache
1032   // used by G1CollectedHeap::start_cset_region_for_worker().
1033   // The heap region entry for a given worker is valid iff
1034   // the associated time stamp value matches the current value
1035   // of G1CollectedHeap::_gc_time_stamp.
1036   unsigned int* _worker_cset_start_region_time_stamp;
1037 
1038   enum G1H_process_roots_tasks {
1039     G1H_PS_filter_satb_buffers,
1040     G1H_PS_refProcessor_oops_do,
1041     // Leave this one last.
1042     G1H_PS_NumElements
1043   };
1044 
1045   SubTasksDone* _process_strong_tasks;
1046 
1047   volatile bool _free_regions_coming;
1048 
1049 public:
1050 
1051   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1052 
1053   void set_refine_cte_cl_concurrency(bool concurrent);
1054 
1055   RefToScanQueue *task_queue(int i) const;
1056 
1057   // A set of cards where updates happened during the GC
1058   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1059 
1060   // A DirtyCardQueueSet that is used to hold cards that contain
1061   // references into the current collection set. This is used to
1062   // update the remembered sets of the regions in the collection
1063   // set in the event of an evacuation failure.
1064   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1065         { return _into_cset_dirty_card_queue_set; }
1066 
1067   // Create a G1CollectedHeap with the specified policy.
1068   // Must call the initialize method afterwards.
1069   // May not return if something goes wrong.
1070   G1CollectedHeap(G1CollectorPolicy* policy);
1071 
1072   // Initialize the G1CollectedHeap to have the initial and
1073   // maximum sizes and remembered and barrier sets
1074   // specified by the policy object.
1075   jint initialize();
1076 
1077   virtual void stop();
1078 
1079   // Return the (conservative) maximum heap alignment for any G1 heap
1080   static size_t conservative_max_heap_alignment();
1081 
1082   // Initialize weak reference processing.
1083   virtual void ref_processing_init();
1084 
1085   void set_par_threads(uint t) {
1086     SharedHeap::set_par_threads(t);
1087     // Done in SharedHeap but oddly there are
1088     // two _process_strong_tasks's in a G1CollectedHeap
1089     // so do it here too.
1090     _process_strong_tasks->set_n_threads(t);
1091   }
1092 
1093   // Set _n_par_threads according to a policy TBD.
1094   void set_par_threads();
1095 
1096   void set_n_termination(int t) {
1097     _process_strong_tasks->set_n_threads(t);
1098   }
1099 
1100   virtual CollectedHeap::Name kind() const {
1101     return CollectedHeap::G1CollectedHeap;
1102   }
1103 
1104   // The current policy object for the collector.
1105   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1106 
1107   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1108 
1109   // Adaptive size policy.  No such thing for g1.
1110   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1111 
1112   // The rem set and barrier set.
1113   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1114 
1115   unsigned get_gc_time_stamp() {
1116     return _gc_time_stamp;
1117   }
1118 
1119   inline void reset_gc_time_stamp();
1120 
1121   void check_gc_time_stamps() PRODUCT_RETURN;
1122 
1123   inline void increment_gc_time_stamp();
1124 
1125   // Reset the given region's GC timestamp. If it's starts humongous,
1126   // also reset the GC timestamp of its corresponding
1127   // continues humongous regions too.
1128   void reset_gc_time_stamps(HeapRegion* hr);
1129 
1130   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1131                                   DirtyCardQueue* into_cset_dcq,
1132                                   bool concurrent, uint worker_i);
1133 
1134   // The shared block offset table array.
1135   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1136 
1137   // Reference Processing accessors
1138 
1139   // The STW reference processor....
1140   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1141 
1142   // The Concurrent Marking reference processor...
1143   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1144 
1145   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1146   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1147 
1148   virtual size_t capacity() const;
1149   virtual size_t used() const;
1150   // This should be called when we're not holding the heap lock. The
1151   // result might be a bit inaccurate.
1152   size_t used_unlocked() const;
1153   size_t recalculate_used() const;
1154 
1155   // These virtual functions do the actual allocation.
1156   // Some heaps may offer a contiguous region for shared non-blocking
1157   // allocation, via inlined code (by exporting the address of the top and
1158   // end fields defining the extent of the contiguous allocation region.)
1159   // But G1CollectedHeap doesn't yet support this.
1160 
1161   virtual bool is_maximal_no_gc() const {
1162     return _hrs.available() == 0;
1163   }
1164 
1165   // The current number of regions in the heap.
1166   uint num_regions() const { return _hrs.length(); }
1167 
1168   // The max number of regions in the heap.
1169   uint max_regions() const { return _hrs.max_length(); }
1170 
1171   // The number of regions that are completely free.
1172   uint num_free_regions() const { return _hrs.num_free_regions(); }
1173 
1174   // The number of regions that are not completely free.
1175   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1176 
1177   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1178   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1179   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1180   void verify_dirty_young_regions() PRODUCT_RETURN;
1181 
1182 #ifndef PRODUCT
1183   // Make sure that the given bitmap has no marked objects in the
1184   // range [from,limit). If it does, print an error message and return
1185   // false. Otherwise, just return true. bitmap_name should be "prev"
1186   // or "next".
1187   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1188                                 HeapWord* from, HeapWord* limit);
1189 
1190   // Verify that the prev / next bitmap range [tams,end) for the given
1191   // region has no marks. Return true if all is well, false if errors
1192   // are detected.
1193   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1194 #endif // PRODUCT
1195 
1196   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1197   // the given region do not have any spurious marks. If errors are
1198   // detected, print appropriate error messages and crash.
1199   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1200 
1201   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1202   // have any spurious marks. If errors are detected, print
1203   // appropriate error messages and crash.
1204   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1205 
1206   // verify_region_sets() performs verification over the region
1207   // lists. It will be compiled in the product code to be used when
1208   // necessary (i.e., during heap verification).
1209   void verify_region_sets();
1210 
1211   // verify_region_sets_optional() is planted in the code for
1212   // list verification in non-product builds (and it can be enabled in
1213   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1214 #if HEAP_REGION_SET_FORCE_VERIFY
1215   void verify_region_sets_optional() {
1216     verify_region_sets();
1217   }
1218 #else // HEAP_REGION_SET_FORCE_VERIFY
1219   void verify_region_sets_optional() { }
1220 #endif // HEAP_REGION_SET_FORCE_VERIFY
1221 
1222 #ifdef ASSERT
1223   bool is_on_master_free_list(HeapRegion* hr) {
1224     return _hrs.is_free(hr);
1225   }
1226 #endif // ASSERT
1227 
1228   // Wrapper for the region list operations that can be called from
1229   // methods outside this class.
1230 
1231   void secondary_free_list_add(FreeRegionList* list) {
1232     _secondary_free_list.add_ordered(list);
1233   }
1234 
1235   void append_secondary_free_list() {
1236     _hrs.insert_list_into_free_list(&_secondary_free_list);
1237   }
1238 
1239   void append_secondary_free_list_if_not_empty_with_lock() {
1240     // If the secondary free list looks empty there's no reason to
1241     // take the lock and then try to append it.
1242     if (!_secondary_free_list.is_empty()) {
1243       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1244       append_secondary_free_list();
1245     }
1246   }
1247 
1248   inline void old_set_remove(HeapRegion* hr);
1249 
1250   size_t non_young_capacity_bytes() {
1251     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1252   }
1253 
1254   void set_free_regions_coming();
1255   void reset_free_regions_coming();
1256   bool free_regions_coming() { return _free_regions_coming; }
1257   void wait_while_free_regions_coming();
1258 
1259   // Determine whether the given region is one that we are using as an
1260   // old GC alloc region.
1261   bool is_old_gc_alloc_region(HeapRegion* hr) {
1262     return hr == _retained_old_gc_alloc_region;
1263   }
1264 
1265   // Perform a collection of the heap; intended for use in implementing
1266   // "System.gc".  This probably implies as full a collection as the
1267   // "CollectedHeap" supports.
1268   virtual void collect(GCCause::Cause cause);
1269 
1270   // The same as above but assume that the caller holds the Heap_lock.
1271   void collect_locked(GCCause::Cause cause);
1272 
1273   // True iff an evacuation has failed in the most-recent collection.
1274   bool evacuation_failed() { return _evacuation_failed; }
1275 
1276   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1277   void prepend_to_freelist(FreeRegionList* list);
1278   void decrement_summary_bytes(size_t bytes);
1279 
1280   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1281   virtual bool is_in(const void* p) const;
1282 
1283   // Return "TRUE" iff the given object address is within the collection
1284   // set. Slow implementation.
1285   inline bool obj_in_cs(oop obj);
1286 
1287   inline bool is_in_cset(oop obj);
1288 
1289   inline bool is_in_cset_or_humongous(const oop obj);
1290 
1291   enum in_cset_state_t {
1292    InNeither,           // neither in collection set nor humongous
1293    InCSet,              // region is in collection set only
1294    IsHumongous          // region is a humongous start region
1295   };
1296  private:
1297   // Instances of this class are used for quick tests on whether a reference points
1298   // into the collection set or is a humongous object (points into a humongous
1299   // object).
1300   // Each of the array's elements denotes whether the corresponding region is in
1301   // the collection set or a humongous region.
1302   // We use this to quickly reclaim humongous objects: by making a humongous region
1303   // succeed this test, we sort-of add it to the collection set. During the reference
1304   // iteration closures, when we see a humongous region, we simply mark it as
1305   // referenced, i.e. live.
1306   class G1FastCSetBiasedMappedArray : public G1BiasedMappedArray<char> {
1307    protected:
1308     char default_value() const { return G1CollectedHeap::InNeither; }
1309    public:
1310     void set_humongous(uintptr_t index) {
1311       assert(get_by_index(index) != InCSet, "Should not overwrite InCSet values");
1312       set_by_index(index, G1CollectedHeap::IsHumongous);
1313     }
1314 
1315     void clear_humongous(uintptr_t index) {
1316       set_by_index(index, G1CollectedHeap::InNeither);
1317     }
1318 
1319     void set_in_cset(uintptr_t index) {
1320       assert(get_by_index(index) != G1CollectedHeap::IsHumongous, "Should not overwrite IsHumongous value");
1321       set_by_index(index, G1CollectedHeap::InCSet);
1322     }
1323 
1324     bool is_in_cset_or_humongous(HeapWord* addr) const { return get_by_address(addr) != G1CollectedHeap::InNeither; }
1325     bool is_in_cset(HeapWord* addr) const { return get_by_address(addr) == G1CollectedHeap::InCSet; }
1326     G1CollectedHeap::in_cset_state_t at(HeapWord* addr) const { return (G1CollectedHeap::in_cset_state_t)get_by_address(addr); }
1327     void clear() { G1BiasedMappedArray<char>::clear(); }
1328   };
1329 
1330   // This array is used for a quick test on whether a reference points into
1331   // the collection set or not. Each of the array's elements denotes whether the
1332   // corresponding region is in the collection set or not.
1333   G1FastCSetBiasedMappedArray _in_cset_fast_test;
1334 
1335  public:
1336 
1337   inline in_cset_state_t in_cset_state(const oop obj);
1338 
1339   // Return "TRUE" iff the given object address is in the reserved
1340   // region of g1.
1341   bool is_in_g1_reserved(const void* p) const {
1342     return _hrs.reserved().contains(p);
1343   }
1344 
1345   // Returns a MemRegion that corresponds to the space that has been
1346   // reserved for the heap
1347   MemRegion g1_reserved() const {
1348     return _hrs.reserved();
1349   }
1350 
1351   // Returns a MemRegion that corresponds to the space that has been
1352   // committed in the heap
1353   MemRegion g1_committed() {
1354     return _hrs.committed();
1355   }
1356 
1357   virtual bool is_in_closed_subset(const void* p) const;
1358 
1359   G1SATBCardTableModRefBS* g1_barrier_set() {
1360     return (G1SATBCardTableModRefBS*) barrier_set();
1361   }
1362 
1363   // This resets the card table to all zeros.  It is used after
1364   // a collection pause which used the card table to claim cards.
1365   void cleanUpCardTable();
1366 
1367   // Iteration functions.
1368 
1369   // Iterate over all the ref-containing fields of all objects, calling
1370   // "cl.do_oop" on each.
1371   virtual void oop_iterate(ExtendedOopClosure* cl);
1372 
1373   // Iterate over all objects, calling "cl.do_object" on each.
1374   virtual void object_iterate(ObjectClosure* cl);
1375 
1376   virtual void safe_object_iterate(ObjectClosure* cl) {
1377     object_iterate(cl);
1378   }
1379 
1380   // Iterate over all spaces in use in the heap, in ascending address order.
1381   virtual void space_iterate(SpaceClosure* cl);
1382 
1383   // Iterate over heap regions, in address order, terminating the
1384   // iteration early if the "doHeapRegion" method returns "true".
1385   void heap_region_iterate(HeapRegionClosure* blk) const;
1386 
1387   // Return the region with the given index. It assumes the index is valid.
1388   inline HeapRegion* region_at(uint index) const;
1389 
1390   // Calculate the region index of the given address. Given address must be
1391   // within the heap.
1392   inline uint addr_to_region(HeapWord* addr) const;
1393 
1394   inline HeapWord* bottom_addr_for_region(uint index) const;
1395 
1396   // Divide the heap region sequence into "chunks" of some size (the number
1397   // of regions divided by the number of parallel threads times some
1398   // overpartition factor, currently 4).  Assumes that this will be called
1399   // in parallel by ParallelGCThreads worker threads with distinct worker
1400   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1401   // calls will use the same "claim_value", and that that claim value is
1402   // different from the claim_value of any heap region before the start of
1403   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1404   // attempting to claim the first region in each chunk, and, if
1405   // successful, applying the closure to each region in the chunk (and
1406   // setting the claim value of the second and subsequent regions of the
1407   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1408   // i.e., that a closure never attempt to abort a traversal.
1409   void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
1410                                        uint worker_id,
1411                                        uint num_workers,
1412                                        jint claim_value) const;
1413 
1414   // It resets all the region claim values to the default.
1415   void reset_heap_region_claim_values();
1416 
1417   // Resets the claim values of regions in the current
1418   // collection set to the default.
1419   void reset_cset_heap_region_claim_values();
1420 
1421 #ifdef ASSERT
1422   bool check_heap_region_claim_values(jint claim_value);
1423 
1424   // Same as the routine above but only checks regions in the
1425   // current collection set.
1426   bool check_cset_heap_region_claim_values(jint claim_value);
1427 #endif // ASSERT
1428 
1429   // Clear the cached cset start regions and (more importantly)
1430   // the time stamps. Called when we reset the GC time stamp.
1431   void clear_cset_start_regions();
1432 
1433   // Given the id of a worker, obtain or calculate a suitable
1434   // starting region for iterating over the current collection set.
1435   HeapRegion* start_cset_region_for_worker(uint worker_i);
1436 
1437   // Iterate over the regions (if any) in the current collection set.
1438   void collection_set_iterate(HeapRegionClosure* blk);
1439 
1440   // As above but starting from region r
1441   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1442 
1443   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1444 
1445   // A CollectedHeap will contain some number of spaces.  This finds the
1446   // space containing a given address, or else returns NULL.
1447   virtual Space* space_containing(const void* addr) const;
1448 
1449   // Returns the HeapRegion that contains addr. addr must not be NULL.
1450   template <class T>
1451   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1452 
1453   // Returns the HeapRegion that contains addr. addr must not be NULL.
1454   // If addr is within a humongous continues region, it returns its humongous start region.
1455   template <class T>
1456   inline HeapRegion* heap_region_containing(const T addr) const;
1457 
1458   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1459   // each address in the (reserved) heap is a member of exactly
1460   // one block.  The defining characteristic of a block is that it is
1461   // possible to find its size, and thus to progress forward to the next
1462   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1463   // represent Java objects, or they might be free blocks in a
1464   // free-list-based heap (or subheap), as long as the two kinds are
1465   // distinguishable and the size of each is determinable.
1466 
1467   // Returns the address of the start of the "block" that contains the
1468   // address "addr".  We say "blocks" instead of "object" since some heaps
1469   // may not pack objects densely; a chunk may either be an object or a
1470   // non-object.
1471   virtual HeapWord* block_start(const void* addr) const;
1472 
1473   // Requires "addr" to be the start of a chunk, and returns its size.
1474   // "addr + size" is required to be the start of a new chunk, or the end
1475   // of the active area of the heap.
1476   virtual size_t block_size(const HeapWord* addr) const;
1477 
1478   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1479   // the block is an object.
1480   virtual bool block_is_obj(const HeapWord* addr) const;
1481 
1482   // Does this heap support heap inspection? (+PrintClassHistogram)
1483   virtual bool supports_heap_inspection() const { return true; }
1484 
1485   // Section on thread-local allocation buffers (TLABs)
1486   // See CollectedHeap for semantics.
1487 
1488   bool supports_tlab_allocation() const;
1489   size_t tlab_capacity(Thread* ignored) const;
1490   size_t tlab_used(Thread* ignored) const;
1491   size_t max_tlab_size() const;
1492   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1493 
1494   // Can a compiler initialize a new object without store barriers?
1495   // This permission only extends from the creation of a new object
1496   // via a TLAB up to the first subsequent safepoint. If such permission
1497   // is granted for this heap type, the compiler promises to call
1498   // defer_store_barrier() below on any slow path allocation of
1499   // a new object for which such initializing store barriers will
1500   // have been elided. G1, like CMS, allows this, but should be
1501   // ready to provide a compensating write barrier as necessary
1502   // if that storage came out of a non-young region. The efficiency
1503   // of this implementation depends crucially on being able to
1504   // answer very efficiently in constant time whether a piece of
1505   // storage in the heap comes from a young region or not.
1506   // See ReduceInitialCardMarks.
1507   virtual bool can_elide_tlab_store_barriers() const {
1508     return true;
1509   }
1510 
1511   virtual bool card_mark_must_follow_store() const {
1512     return true;
1513   }
1514 
1515   inline bool is_in_young(const oop obj);
1516 
1517 #ifdef ASSERT
1518   virtual bool is_in_partial_collection(const void* p);
1519 #endif
1520 
1521   virtual bool is_scavengable(const void* addr);
1522 
1523   // We don't need barriers for initializing stores to objects
1524   // in the young gen: for the SATB pre-barrier, there is no
1525   // pre-value that needs to be remembered; for the remembered-set
1526   // update logging post-barrier, we don't maintain remembered set
1527   // information for young gen objects.
1528   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1529 
1530   // Returns "true" iff the given word_size is "very large".
1531   static bool isHumongous(size_t word_size) {
1532     // Note this has to be strictly greater-than as the TLABs
1533     // are capped at the humongous threshold and we want to
1534     // ensure that we don't try to allocate a TLAB as
1535     // humongous and that we don't allocate a humongous
1536     // object in a TLAB.
1537     return word_size > _humongous_object_threshold_in_words;
1538   }
1539 
1540   // Update mod union table with the set of dirty cards.
1541   void updateModUnion();
1542 
1543   // Set the mod union bits corresponding to the given memRegion.  Note
1544   // that this is always a safe operation, since it doesn't clear any
1545   // bits.
1546   void markModUnionRange(MemRegion mr);
1547 
1548   // Records the fact that a marking phase is no longer in progress.
1549   void set_marking_complete() {
1550     _mark_in_progress = false;
1551   }
1552   void set_marking_started() {
1553     _mark_in_progress = true;
1554   }
1555   bool mark_in_progress() {
1556     return _mark_in_progress;
1557   }
1558 
1559   // Print the maximum heap capacity.
1560   virtual size_t max_capacity() const;
1561 
1562   virtual jlong millis_since_last_gc();
1563 
1564 
1565   // Convenience function to be used in situations where the heap type can be
1566   // asserted to be this type.
1567   static G1CollectedHeap* heap();
1568 
1569   void set_region_short_lived_locked(HeapRegion* hr);
1570   // add appropriate methods for any other surv rate groups
1571 
1572   YoungList* young_list() const { return _young_list; }
1573 
1574   // debugging
1575   bool check_young_list_well_formed() {
1576     return _young_list->check_list_well_formed();
1577   }
1578 
1579   bool check_young_list_empty(bool check_heap,
1580                               bool check_sample = true);
1581 
1582   // *** Stuff related to concurrent marking.  It's not clear to me that so
1583   // many of these need to be public.
1584 
1585   // The functions below are helper functions that a subclass of
1586   // "CollectedHeap" can use in the implementation of its virtual
1587   // functions.
1588   // This performs a concurrent marking of the live objects in a
1589   // bitmap off to the side.
1590   void doConcurrentMark();
1591 
1592   bool isMarkedPrev(oop obj) const;
1593   bool isMarkedNext(oop obj) const;
1594 
1595   // Determine if an object is dead, given the object and also
1596   // the region to which the object belongs. An object is dead
1597   // iff a) it was not allocated since the last mark and b) it
1598   // is not marked.
1599   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1600     return
1601       !hr->obj_allocated_since_prev_marking(obj) &&
1602       !isMarkedPrev(obj);
1603   }
1604 
1605   // This function returns true when an object has been
1606   // around since the previous marking and hasn't yet
1607   // been marked during this marking.
1608   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1609     return
1610       !hr->obj_allocated_since_next_marking(obj) &&
1611       !isMarkedNext(obj);
1612   }
1613 
1614   // Determine if an object is dead, given only the object itself.
1615   // This will find the region to which the object belongs and
1616   // then call the region version of the same function.
1617 
1618   // Added if it is NULL it isn't dead.
1619 
1620   inline bool is_obj_dead(const oop obj) const;
1621 
1622   inline bool is_obj_ill(const oop obj) const;
1623 
1624   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1625   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1626   bool is_marked(oop obj, VerifyOption vo);
1627   const char* top_at_mark_start_str(VerifyOption vo);
1628 
1629   ConcurrentMark* concurrent_mark() const { return _cm; }
1630 
1631   // Refinement
1632 
1633   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1634 
1635   // The dirty cards region list is used to record a subset of regions
1636   // whose cards need clearing. The list if populated during the
1637   // remembered set scanning and drained during the card table
1638   // cleanup. Although the methods are reentrant, population/draining
1639   // phases must not overlap. For synchronization purposes the last
1640   // element on the list points to itself.
1641   HeapRegion* _dirty_cards_region_list;
1642   void push_dirty_cards_region(HeapRegion* hr);
1643   HeapRegion* pop_dirty_cards_region();
1644 
1645   // Optimized nmethod scanning support routines
1646 
1647   // Register the given nmethod with the G1 heap.
1648   virtual void register_nmethod(nmethod* nm);
1649 
1650   // Unregister the given nmethod from the G1 heap.
1651   virtual void unregister_nmethod(nmethod* nm);
1652 
1653   // Migrate the nmethods in the code root lists of the regions
1654   // in the collection set to regions in to-space. In the event
1655   // of an evacuation failure, nmethods that reference objects
1656   // that were not successfully evacuated are not migrated.
1657   void migrate_strong_code_roots();
1658 
1659   // Free up superfluous code root memory.
1660   void purge_code_root_memory();
1661 
1662   // Rebuild the strong code root lists for each region
1663   // after a full GC.
1664   void rebuild_strong_code_roots();
1665 
1666   // Delete entries for dead interned string and clean up unreferenced symbols
1667   // in symbol table, possibly in parallel.
1668   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1669 
1670   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1671   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1672 
1673   // Redirty logged cards in the refinement queue.
1674   void redirty_logged_cards();
1675   // Verification
1676 
1677   // The following is just to alert the verification code
1678   // that a full collection has occurred and that the
1679   // remembered sets are no longer up to date.
1680   bool _full_collection;
1681   void set_full_collection() { _full_collection = true;}
1682   void clear_full_collection() {_full_collection = false;}
1683   bool full_collection() {return _full_collection;}
1684 
1685   // Perform any cleanup actions necessary before allowing a verification.
1686   virtual void prepare_for_verify();
1687 
1688   // Perform verification.
1689 
1690   // vo == UsePrevMarking  -> use "prev" marking information,
1691   // vo == UseNextMarking -> use "next" marking information
1692   // vo == UseMarkWord    -> use the mark word in the object header
1693   //
1694   // NOTE: Only the "prev" marking information is guaranteed to be
1695   // consistent most of the time, so most calls to this should use
1696   // vo == UsePrevMarking.
1697   // Currently, there is only one case where this is called with
1698   // vo == UseNextMarking, which is to verify the "next" marking
1699   // information at the end of remark.
1700   // Currently there is only one place where this is called with
1701   // vo == UseMarkWord, which is to verify the marking during a
1702   // full GC.
1703   void verify(bool silent, VerifyOption vo);
1704 
1705   // Override; it uses the "prev" marking information
1706   virtual void verify(bool silent);
1707 
1708   // The methods below are here for convenience and dispatch the
1709   // appropriate method depending on value of the given VerifyOption
1710   // parameter. The values for that parameter, and their meanings,
1711   // are the same as those above.
1712 
1713   bool is_obj_dead_cond(const oop obj,
1714                         const HeapRegion* hr,
1715                         const VerifyOption vo) const;
1716 
1717   bool is_obj_dead_cond(const oop obj,
1718                         const VerifyOption vo) const;
1719 
1720   // Printing
1721 
1722   virtual void print_on(outputStream* st) const;
1723   virtual void print_extended_on(outputStream* st) const;
1724   virtual void print_on_error(outputStream* st) const;
1725 
1726   virtual void print_gc_threads_on(outputStream* st) const;
1727   virtual void gc_threads_do(ThreadClosure* tc) const;
1728 
1729   // Override
1730   void print_tracing_info() const;
1731 
1732   // The following two methods are helpful for debugging RSet issues.
1733   void print_cset_rsets() PRODUCT_RETURN;
1734   void print_all_rsets() PRODUCT_RETURN;
1735 
1736 public:
1737   size_t pending_card_num();
1738   size_t cards_scanned();
1739 
1740 protected:
1741   size_t _max_heap_capacity;
1742 };
1743 
1744 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1745 private:
1746   bool        _retired;
1747 
1748 public:
1749   G1ParGCAllocBuffer(size_t gclab_word_size);
1750   virtual ~G1ParGCAllocBuffer() {
1751     guarantee(_retired, "Allocation buffer has not been retired");
1752   }
1753 
1754   virtual void set_buf(HeapWord* buf) {
1755     ParGCAllocBuffer::set_buf(buf);
1756     _retired = false;
1757   }
1758 
1759   virtual void retire(bool end_of_gc, bool retain) {
1760     if (_retired) {
1761       return;
1762     }
1763     ParGCAllocBuffer::retire(end_of_gc, retain);
1764     _retired = true;
1765   }
1766 };
1767 
1768 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP