1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/concurrentMark.hpp"
  29 #include "gc/g1/evacuationInfo.hpp"
  30 #include "gc/g1/g1AllocationContext.hpp"
  31 #include "gc/g1/g1BiasedArray.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1HRPrinter.hpp"
  34 #include "gc/g1/g1InCSetState.hpp"
  35 #include "gc/g1/g1MonitoringSupport.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/g1YCTypes.hpp"
  39 #include "gc/g1/hSpaceCounters.hpp"
  40 #include "gc/g1/heapRegionManager.hpp"
  41 #include "gc/g1/heapRegionSet.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "gc/shared/plab.hpp"
  45 #include "memory/memRegion.hpp"
  46 #include "utilities/stack.hpp"
  47 
  48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  49 // It uses the "Garbage First" heap organization and algorithm, which
  50 // may combine concurrent marking with parallel, incremental compaction of
  51 // heap subsets that will yield large amounts of garbage.
  52 
  53 // Forward declarations
  54 class HeapRegion;
  55 class HRRSCleanupTask;
  56 class GenerationSpec;
  57 class OopsInHeapRegionClosure;
  58 class G1ParScanThreadState;
  59 class G1KlassScanClosure;
  60 class G1ParScanThreadState;
  61 class ObjectClosure;
  62 class SpaceClosure;
  63 class CompactibleSpaceClosure;
  64 class Space;
  65 class G1CollectorPolicy;
  66 class GenRemSet;
  67 class G1RemSet;
  68 class HeapRegionRemSetIterator;
  69 class ConcurrentMark;
  70 class ConcurrentMarkThread;
  71 class ConcurrentG1Refine;
  72 class ConcurrentGCTimer;
  73 class GenerationCounters;
  74 class STWGCTimer;
  75 class G1NewTracer;
  76 class G1OldTracer;
  77 class EvacuationFailedInfo;
  78 class nmethod;
  79 class Ticks;
  80 class FlexibleWorkGang;
  81 class G1Allocator;
  82 class G1ArchiveAllocator;
  83 
  84 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  85 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  86 
  87 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  88 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  89 
  90 class YoungList : public CHeapObj<mtGC> {
  91 private:
  92   G1CollectedHeap* _g1h;
  93 
  94   HeapRegion* _head;
  95 
  96   HeapRegion* _survivor_head;
  97   HeapRegion* _survivor_tail;
  98 
  99   HeapRegion* _curr;
 100 
 101   uint        _length;
 102   uint        _survivor_length;
 103 
 104   size_t      _last_sampled_rs_lengths;
 105   size_t      _sampled_rs_lengths;
 106 
 107   void         empty_list(HeapRegion* list);
 108 
 109 public:
 110   YoungList(G1CollectedHeap* g1h);
 111 
 112   void         push_region(HeapRegion* hr);
 113   void         add_survivor_region(HeapRegion* hr);
 114 
 115   void         empty_list();
 116   bool         is_empty() { return _length == 0; }
 117   uint         length() { return _length; }
 118   uint         eden_length() { return length() - survivor_length(); }
 119   uint         survivor_length() { return _survivor_length; }
 120 
 121   // Currently we do not keep track of the used byte sum for the
 122   // young list and the survivors and it'd be quite a lot of work to
 123   // do so. When we'll eventually replace the young list with
 124   // instances of HeapRegionLinkedList we'll get that for free. So,
 125   // we'll report the more accurate information then.
 126   size_t       eden_used_bytes() {
 127     assert(length() >= survivor_length(), "invariant");
 128     return (size_t) eden_length() * HeapRegion::GrainBytes;
 129   }
 130   size_t       survivor_used_bytes() {
 131     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 132   }
 133 
 134   void rs_length_sampling_init();
 135   bool rs_length_sampling_more();
 136   void rs_length_sampling_next();
 137 
 138   void reset_sampled_info() {
 139     _last_sampled_rs_lengths =   0;
 140   }
 141   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 142 
 143   // for development purposes
 144   void reset_auxilary_lists();
 145   void clear() { _head = NULL; _length = 0; }
 146 
 147   void clear_survivors() {
 148     _survivor_head    = NULL;
 149     _survivor_tail    = NULL;
 150     _survivor_length  = 0;
 151   }
 152 
 153   HeapRegion* first_region() { return _head; }
 154   HeapRegion* first_survivor_region() { return _survivor_head; }
 155   HeapRegion* last_survivor_region() { return _survivor_tail; }
 156 
 157   // debugging
 158   bool          check_list_well_formed();
 159   bool          check_list_empty(bool check_sample = true);
 160   void          print();
 161 };
 162 
 163 // The G1 STW is alive closure.
 164 // An instance is embedded into the G1CH and used as the
 165 // (optional) _is_alive_non_header closure in the STW
 166 // reference processor. It is also extensively used during
 167 // reference processing during STW evacuation pauses.
 168 class G1STWIsAliveClosure: public BoolObjectClosure {
 169   G1CollectedHeap* _g1;
 170 public:
 171   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 172   bool do_object_b(oop p);
 173 };
 174 
 175 class RefineCardTableEntryClosure;
 176 
 177 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 178  private:
 179   void reset_from_card_cache(uint start_idx, size_t num_regions);
 180  public:
 181   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 182 };
 183 
 184 class G1CollectedHeap : public CollectedHeap {
 185   friend class VM_CollectForMetadataAllocation;
 186   friend class VM_G1CollectForAllocation;
 187   friend class VM_G1CollectFull;
 188   friend class VM_G1IncCollectionPause;
 189   friend class VMStructs;
 190   friend class MutatorAllocRegion;
 191   friend class G1GCAllocRegion;
 192 
 193   // Closures used in implementation.
 194   friend class G1ParScanThreadState;
 195   friend class G1ParTask;
 196   friend class G1PLABAllocator;
 197   friend class G1PrepareCompactClosure;
 198 
 199   // Other related classes.
 200   friend class HeapRegionClaimer;
 201 
 202   // Testing classes.
 203   friend class G1CheckCSetFastTableClosure;
 204 
 205 private:
 206   FlexibleWorkGang* _workers;
 207 
 208   static size_t _humongous_object_threshold_in_words;
 209 
 210   // The secondary free list which contains regions that have been
 211   // freed up during the cleanup process. This will be appended to
 212   // the master free list when appropriate.
 213   FreeRegionList _secondary_free_list;
 214 
 215   // It keeps track of the old regions.
 216   HeapRegionSet _old_set;
 217 
 218   // It keeps track of the humongous regions.
 219   HeapRegionSet _humongous_set;
 220 
 221   void eagerly_reclaim_humongous_regions();
 222 
 223   // The number of regions we could create by expansion.
 224   uint _expansion_regions;
 225 
 226   // The block offset table for the G1 heap.
 227   G1BlockOffsetSharedArray* _bot_shared;
 228 
 229   // Tears down the region sets / lists so that they are empty and the
 230   // regions on the heap do not belong to a region set / list. The
 231   // only exception is the humongous set which we leave unaltered. If
 232   // free_list_only is true, it will only tear down the master free
 233   // list. It is called before a Full GC (free_list_only == false) or
 234   // before heap shrinking (free_list_only == true).
 235   void tear_down_region_sets(bool free_list_only);
 236 
 237   // Rebuilds the region sets / lists so that they are repopulated to
 238   // reflect the contents of the heap. The only exception is the
 239   // humongous set which was not torn down in the first place. If
 240   // free_list_only is true, it will only rebuild the master free
 241   // list. It is called after a Full GC (free_list_only == false) or
 242   // after heap shrinking (free_list_only == true).
 243   void rebuild_region_sets(bool free_list_only);
 244 
 245   // Callback for region mapping changed events.
 246   G1RegionMappingChangedListener _listener;
 247 
 248   // The sequence of all heap regions in the heap.
 249   HeapRegionManager _hrm;
 250 
 251   // Manages all allocations with regions except humongous object allocations.
 252   G1Allocator* _allocator;
 253 
 254   // Outside of GC pauses, the number of bytes used in all regions other
 255   // than the current allocation region(s).
 256   size_t _summary_bytes_used;
 257 
 258   void increase_used(size_t bytes);
 259   void decrease_used(size_t bytes);
 260 
 261   void set_used(size_t bytes);
 262 
 263   // Class that handles archive allocation ranges.
 264   G1ArchiveAllocator* _archive_allocator;
 265 
 266   // Statistics for each allocation context
 267   AllocationContextStats _allocation_context_stats;
 268 
 269   // GC allocation statistics policy for survivors.
 270   G1EvacStats _survivor_evac_stats;
 271 
 272   // GC allocation statistics policy for tenured objects.
 273   G1EvacStats _old_evac_stats;
 274 
 275   // It specifies whether we should attempt to expand the heap after a
 276   // region allocation failure. If heap expansion fails we set this to
 277   // false so that we don't re-attempt the heap expansion (it's likely
 278   // that subsequent expansion attempts will also fail if one fails).
 279   // Currently, it is only consulted during GC and it's reset at the
 280   // start of each GC.
 281   bool _expand_heap_after_alloc_failure;
 282 
 283   // Helper for monitoring and management support.
 284   G1MonitoringSupport* _g1mm;
 285 
 286   // Records whether the region at the given index is (still) a
 287   // candidate for eager reclaim.  Only valid for humongous start
 288   // regions; other regions have unspecified values.  Humongous start
 289   // regions are initialized at start of collection pause, with
 290   // candidates removed from the set as they are found reachable from
 291   // roots or the young generation.
 292   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 293    protected:
 294     bool default_value() const { return false; }
 295    public:
 296     void clear() { G1BiasedMappedArray<bool>::clear(); }
 297     void set_candidate(uint region, bool value) {
 298       set_by_index(region, value);
 299     }
 300     bool is_candidate(uint region) {
 301       return get_by_index(region);
 302     }
 303   };
 304 
 305   HumongousReclaimCandidates _humongous_reclaim_candidates;
 306   // Stores whether during humongous object registration we found candidate regions.
 307   // If not, we can skip a few steps.
 308   bool _has_humongous_reclaim_candidates;
 309 
 310   volatile unsigned _gc_time_stamp;
 311 
 312   size_t* _surviving_young_words;
 313 
 314   G1HRPrinter _hr_printer;
 315 
 316   void setup_surviving_young_words();
 317   void update_surviving_young_words(size_t* surv_young_words);
 318   void cleanup_surviving_young_words();
 319 
 320   // It decides whether an explicit GC should start a concurrent cycle
 321   // instead of doing a STW GC. Currently, a concurrent cycle is
 322   // explicitly started if:
 323   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 324   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 325   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 326   // (d) cause == _g1_humongous_allocation
 327   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 328 
 329   // indicates whether we are in young or mixed GC mode
 330   G1CollectorState _collector_state;
 331 
 332   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 333   // concurrent cycles) we have started.
 334   volatile uint _old_marking_cycles_started;
 335 
 336   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 337   // concurrent cycles) we have completed.
 338   volatile uint _old_marking_cycles_completed;
 339 
 340   bool _heap_summary_sent;
 341 
 342   // This is a non-product method that is helpful for testing. It is
 343   // called at the end of a GC and artificially expands the heap by
 344   // allocating a number of dead regions. This way we can induce very
 345   // frequent marking cycles and stress the cleanup / concurrent
 346   // cleanup code more (as all the regions that will be allocated by
 347   // this method will be found dead by the marking cycle).
 348   void allocate_dummy_regions() PRODUCT_RETURN;
 349 
 350   // Clear RSets after a compaction. It also resets the GC time stamps.
 351   void clear_rsets_post_compaction();
 352 
 353   // If the HR printer is active, dump the state of the regions in the
 354   // heap after a compaction.
 355   void print_hrm_post_compaction();
 356 
 357   // Create a memory mapper for auxiliary data structures of the given size and
 358   // translation factor.
 359   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 360                                                          size_t size,
 361                                                          size_t translation_factor);
 362 
 363   double verify(bool guard, const char* msg);
 364   void verify_before_gc();
 365   void verify_after_gc();
 366 
 367   void log_gc_header();
 368   void log_gc_footer(double pause_time_sec);
 369 
 370   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 371 
 372   // These are macros so that, if the assert fires, we get the correct
 373   // line number, file, etc.
 374 
 375 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 376   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 377           (_extra_message_),                                                  \
 378           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 379           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 380           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 381 
 382 #define assert_heap_locked()                                                  \
 383   do {                                                                        \
 384     assert(Heap_lock->owned_by_self(),                                        \
 385            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 386   } while (0)
 387 
 388 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 389   do {                                                                        \
 390     assert(Heap_lock->owned_by_self() ||                                      \
 391            (SafepointSynchronize::is_at_safepoint() &&                        \
 392              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 393            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 394                                         "should be at a safepoint"));         \
 395   } while (0)
 396 
 397 #define assert_heap_locked_and_not_at_safepoint()                             \
 398   do {                                                                        \
 399     assert(Heap_lock->owned_by_self() &&                                      \
 400                                     !SafepointSynchronize::is_at_safepoint(), \
 401           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 402                                        "should not be at a safepoint"));      \
 403   } while (0)
 404 
 405 #define assert_heap_not_locked()                                              \
 406   do {                                                                        \
 407     assert(!Heap_lock->owned_by_self(),                                       \
 408         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 409   } while (0)
 410 
 411 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 412   do {                                                                        \
 413     assert(!Heap_lock->owned_by_self() &&                                     \
 414                                     !SafepointSynchronize::is_at_safepoint(), \
 415       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 416                                    "should not be at a safepoint"));          \
 417   } while (0)
 418 
 419 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 420   do {                                                                        \
 421     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 422               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 423            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 424   } while (0)
 425 
 426 #define assert_not_at_safepoint()                                             \
 427   do {                                                                        \
 428     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 429            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 430   } while (0)
 431 
 432 protected:
 433 
 434   // The young region list.
 435   YoungList*  _young_list;
 436 
 437   // The current policy object for the collector.
 438   G1CollectorPolicy* _g1_policy;
 439 
 440   // This is the second level of trying to allocate a new region. If
 441   // new_region() didn't find a region on the free_list, this call will
 442   // check whether there's anything available on the
 443   // secondary_free_list and/or wait for more regions to appear on
 444   // that list, if _free_regions_coming is set.
 445   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 446 
 447   // Try to allocate a single non-humongous HeapRegion sufficient for
 448   // an allocation of the given word_size. If do_expand is true,
 449   // attempt to expand the heap if necessary to satisfy the allocation
 450   // request. If the region is to be used as an old region or for a
 451   // humongous object, set is_old to true. If not, to false.
 452   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 453 
 454   // Initialize a contiguous set of free regions of length num_regions
 455   // and starting at index first so that they appear as a single
 456   // humongous region.
 457   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 458                                                       uint num_regions,
 459                                                       size_t word_size,
 460                                                       AllocationContext_t context);
 461 
 462   // Attempt to allocate a humongous object of the given size. Return
 463   // NULL if unsuccessful.
 464   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 465 
 466   // The following two methods, allocate_new_tlab() and
 467   // mem_allocate(), are the two main entry points from the runtime
 468   // into the G1's allocation routines. They have the following
 469   // assumptions:
 470   //
 471   // * They should both be called outside safepoints.
 472   //
 473   // * They should both be called without holding the Heap_lock.
 474   //
 475   // * All allocation requests for new TLABs should go to
 476   //   allocate_new_tlab().
 477   //
 478   // * All non-TLAB allocation requests should go to mem_allocate().
 479   //
 480   // * If either call cannot satisfy the allocation request using the
 481   //   current allocating region, they will try to get a new one. If
 482   //   this fails, they will attempt to do an evacuation pause and
 483   //   retry the allocation.
 484   //
 485   // * If all allocation attempts fail, even after trying to schedule
 486   //   an evacuation pause, allocate_new_tlab() will return NULL,
 487   //   whereas mem_allocate() will attempt a heap expansion and/or
 488   //   schedule a Full GC.
 489   //
 490   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 491   //   should never be called with word_size being humongous. All
 492   //   humongous allocation requests should go to mem_allocate() which
 493   //   will satisfy them with a special path.
 494 
 495   virtual HeapWord* allocate_new_tlab(size_t word_size);
 496 
 497   virtual HeapWord* mem_allocate(size_t word_size,
 498                                  bool*  gc_overhead_limit_was_exceeded);
 499 
 500   // The following three methods take a gc_count_before_ret
 501   // parameter which is used to return the GC count if the method
 502   // returns NULL. Given that we are required to read the GC count
 503   // while holding the Heap_lock, and these paths will take the
 504   // Heap_lock at some point, it's easier to get them to read the GC
 505   // count while holding the Heap_lock before they return NULL instead
 506   // of the caller (namely: mem_allocate()) having to also take the
 507   // Heap_lock just to read the GC count.
 508 
 509   // First-level mutator allocation attempt: try to allocate out of
 510   // the mutator alloc region without taking the Heap_lock. This
 511   // should only be used for non-humongous allocations.
 512   inline HeapWord* attempt_allocation(size_t word_size,
 513                                       uint* gc_count_before_ret,
 514                                       uint* gclocker_retry_count_ret);
 515 
 516   // Second-level mutator allocation attempt: take the Heap_lock and
 517   // retry the allocation attempt, potentially scheduling a GC
 518   // pause. This should only be used for non-humongous allocations.
 519   HeapWord* attempt_allocation_slow(size_t word_size,
 520                                     AllocationContext_t context,
 521                                     uint* gc_count_before_ret,
 522                                     uint* gclocker_retry_count_ret);
 523 
 524   // Takes the Heap_lock and attempts a humongous allocation. It can
 525   // potentially schedule a GC pause.
 526   HeapWord* attempt_allocation_humongous(size_t word_size,
 527                                          uint* gc_count_before_ret,
 528                                          uint* gclocker_retry_count_ret);
 529 
 530   // Allocation attempt that should be called during safepoints (e.g.,
 531   // at the end of a successful GC). expect_null_mutator_alloc_region
 532   // specifies whether the mutator alloc region is expected to be NULL
 533   // or not.
 534   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 535                                             AllocationContext_t context,
 536                                             bool expect_null_mutator_alloc_region);
 537 
 538   // These methods are the "callbacks" from the G1AllocRegion class.
 539 
 540   // For mutator alloc regions.
 541   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 542   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 543                                    size_t allocated_bytes);
 544 
 545   // For GC alloc regions.
 546   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 547                                   InCSetState dest);
 548   void retire_gc_alloc_region(HeapRegion* alloc_region,
 549                               size_t allocated_bytes, InCSetState dest);
 550 
 551   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 552   //   inspection request and should collect the entire heap
 553   // - if clear_all_soft_refs is true, all soft references should be
 554   //   cleared during the GC
 555   // - if explicit_gc is false, word_size describes the allocation that
 556   //   the GC should attempt (at least) to satisfy
 557   // - it returns false if it is unable to do the collection due to the
 558   //   GC locker being active, true otherwise
 559   bool do_collection(bool explicit_gc,
 560                      bool clear_all_soft_refs,
 561                      size_t word_size);
 562 
 563   // Callback from VM_G1CollectFull operation.
 564   // Perform a full collection.
 565   virtual void do_full_collection(bool clear_all_soft_refs);
 566 
 567   // Resize the heap if necessary after a full collection.  If this is
 568   // after a collect-for allocation, "word_size" is the allocation size,
 569   // and will be considered part of the used portion of the heap.
 570   void resize_if_necessary_after_full_collection(size_t word_size);
 571 
 572   // Callback from VM_G1CollectForAllocation operation.
 573   // This function does everything necessary/possible to satisfy a
 574   // failed allocation request (including collection, expansion, etc.)
 575   HeapWord* satisfy_failed_allocation(size_t word_size,
 576                                       AllocationContext_t context,
 577                                       bool* succeeded);
 578 
 579   // Attempting to expand the heap sufficiently
 580   // to support an allocation of the given "word_size".  If
 581   // successful, perform the allocation and return the address of the
 582   // allocated block, or else "NULL".
 583   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 584 
 585   // Process any reference objects discovered during
 586   // an incremental evacuation pause.
 587   void process_discovered_references(G1ParScanThreadState** pss);
 588 
 589   // Enqueue any remaining discovered references
 590   // after processing.
 591   void enqueue_discovered_references(G1ParScanThreadState** pss);
 592 
 593 public:
 594   FlexibleWorkGang* workers() const { return _workers; }
 595 
 596   G1Allocator* allocator() {
 597     return _allocator;
 598   }
 599 
 600   G1MonitoringSupport* g1mm() {
 601     assert(_g1mm != NULL, "should have been initialized");
 602     return _g1mm;
 603   }
 604 
 605   // Expand the garbage-first heap by at least the given size (in bytes!).
 606   // Returns true if the heap was expanded by the requested amount;
 607   // false otherwise.
 608   // (Rounds up to a HeapRegion boundary.)
 609   bool expand(size_t expand_bytes);
 610 
 611   // Returns the PLAB statistics for a given destination.
 612   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 613 
 614   // Determines PLAB size for a given destination.
 615   inline size_t desired_plab_sz(InCSetState dest);
 616 
 617   inline AllocationContextStats& allocation_context_stats();
 618 
 619   // Do anything common to GC's.
 620   void gc_prologue(bool full);
 621   void gc_epilogue(bool full);
 622 
 623   // Modify the reclaim candidate set and test for presence.
 624   // These are only valid for starts_humongous regions.
 625   inline void set_humongous_reclaim_candidate(uint region, bool value);
 626   inline bool is_humongous_reclaim_candidate(uint region);
 627 
 628   // Remove from the reclaim candidate set.  Also remove from the
 629   // collection set so that later encounters avoid the slow path.
 630   inline void set_humongous_is_live(oop obj);
 631 
 632   // Register the given region to be part of the collection set.
 633   inline void register_humongous_region_with_cset(uint index);
 634   // Register regions with humongous objects (actually on the start region) in
 635   // the in_cset_fast_test table.
 636   void register_humongous_regions_with_cset();
 637   // We register a region with the fast "in collection set" test. We
 638   // simply set to true the array slot corresponding to this region.
 639   void register_young_region_with_cset(HeapRegion* r) {
 640     _in_cset_fast_test.set_in_young(r->hrm_index());
 641   }
 642   void register_old_region_with_cset(HeapRegion* r) {
 643     _in_cset_fast_test.set_in_old(r->hrm_index());
 644   }
 645   void clear_in_cset(const HeapRegion* hr) {
 646     _in_cset_fast_test.clear(hr);
 647   }
 648 
 649   void clear_cset_fast_test() {
 650     _in_cset_fast_test.clear();
 651   }
 652 
 653   // This is called at the start of either a concurrent cycle or a Full
 654   // GC to update the number of old marking cycles started.
 655   void increment_old_marking_cycles_started();
 656 
 657   // This is called at the end of either a concurrent cycle or a Full
 658   // GC to update the number of old marking cycles completed. Those two
 659   // can happen in a nested fashion, i.e., we start a concurrent
 660   // cycle, a Full GC happens half-way through it which ends first,
 661   // and then the cycle notices that a Full GC happened and ends
 662   // too. The concurrent parameter is a boolean to help us do a bit
 663   // tighter consistency checking in the method. If concurrent is
 664   // false, the caller is the inner caller in the nesting (i.e., the
 665   // Full GC). If concurrent is true, the caller is the outer caller
 666   // in this nesting (i.e., the concurrent cycle). Further nesting is
 667   // not currently supported. The end of this call also notifies
 668   // the FullGCCount_lock in case a Java thread is waiting for a full
 669   // GC to happen (e.g., it called System.gc() with
 670   // +ExplicitGCInvokesConcurrent).
 671   void increment_old_marking_cycles_completed(bool concurrent);
 672 
 673   uint old_marking_cycles_completed() {
 674     return _old_marking_cycles_completed;
 675   }
 676 
 677   void register_concurrent_cycle_start(const Ticks& start_time);
 678   void register_concurrent_cycle_end();
 679   void trace_heap_after_concurrent_cycle();
 680 
 681   G1HRPrinter* hr_printer() { return &_hr_printer; }
 682 
 683   // Allocates a new heap region instance.
 684   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 685 
 686   // Allocates a new per thread par scan state for the given thread id.
 687   G1ParScanThreadState* new_par_scan_state(uint worker_id);
 688 
 689   // Allocate the highest free region in the reserved heap. This will commit
 690   // regions as necessary.
 691   HeapRegion* alloc_highest_free_region();
 692 
 693   // Frees a non-humongous region by initializing its contents and
 694   // adding it to the free list that's passed as a parameter (this is
 695   // usually a local list which will be appended to the master free
 696   // list later). The used bytes of freed regions are accumulated in
 697   // pre_used. If par is true, the region's RSet will not be freed
 698   // up. The assumption is that this will be done later.
 699   // The locked parameter indicates if the caller has already taken
 700   // care of proper synchronization. This may allow some optimizations.
 701   void free_region(HeapRegion* hr,
 702                    FreeRegionList* free_list,
 703                    bool par,
 704                    bool locked = false);
 705 
 706   // It dirties the cards that cover the block so that the post
 707   // write barrier never queues anything when updating objects on this
 708   // block. It is assumed (and in fact we assert) that the block
 709   // belongs to a young region.
 710   inline void dirty_young_block(HeapWord* start, size_t word_size);
 711 
 712   // Frees a humongous region by collapsing it into individual regions
 713   // and calling free_region() for each of them. The freed regions
 714   // will be added to the free list that's passed as a parameter (this
 715   // is usually a local list which will be appended to the master free
 716   // list later). The used bytes of freed regions are accumulated in
 717   // pre_used. If par is true, the region's RSet will not be freed
 718   // up. The assumption is that this will be done later.
 719   void free_humongous_region(HeapRegion* hr,
 720                              FreeRegionList* free_list,
 721                              bool par);
 722 
 723   // Facility for allocating in 'archive' regions in high heap memory and
 724   // recording the allocated ranges. These should all be called from the
 725   // VM thread at safepoints, without the heap lock held. They can be used
 726   // to create and archive a set of heap regions which can be mapped at the
 727   // same fixed addresses in a subsequent JVM invocation.
 728   void begin_archive_alloc_range();
 729 
 730   // Check if the requested size would be too large for an archive allocation.
 731   bool is_archive_alloc_too_large(size_t word_size);
 732 
 733   // Allocate memory of the requested size from the archive region. This will
 734   // return NULL if the size is too large or if no memory is available. It
 735   // does not trigger a garbage collection.
 736   HeapWord* archive_mem_allocate(size_t word_size);
 737 
 738   // Optionally aligns the end address and returns the allocated ranges in
 739   // an array of MemRegions in order of ascending addresses.
 740   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 741                                size_t end_alignment_in_bytes = 0);
 742 
 743   // Facility for allocating a fixed range within the heap and marking
 744   // the containing regions as 'archive'. For use at JVM init time, when the
 745   // caller may mmap archived heap data at the specified range(s).
 746   // Verify that the MemRegions specified in the argument array are within the
 747   // reserved heap.
 748   bool check_archive_addresses(MemRegion* range, size_t count);
 749 
 750   // Commit the appropriate G1 regions containing the specified MemRegions
 751   // and mark them as 'archive' regions. The regions in the array must be
 752   // non-overlapping and in order of ascending address.
 753   bool alloc_archive_regions(MemRegion* range, size_t count);
 754 
 755   // Insert any required filler objects in the G1 regions around the specified
 756   // ranges to make the regions parseable. This must be called after
 757   // alloc_archive_regions, and after class loading has occurred.
 758   void fill_archive_regions(MemRegion* range, size_t count);
 759 
 760 protected:
 761 
 762   // Shrink the garbage-first heap by at most the given size (in bytes!).
 763   // (Rounds down to a HeapRegion boundary.)
 764   virtual void shrink(size_t expand_bytes);
 765   void shrink_helper(size_t expand_bytes);
 766 
 767   #if TASKQUEUE_STATS
 768   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 769   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 770   void reset_taskqueue_stats();
 771   #endif // TASKQUEUE_STATS
 772 
 773   // Schedule the VM operation that will do an evacuation pause to
 774   // satisfy an allocation request of word_size. *succeeded will
 775   // return whether the VM operation was successful (it did do an
 776   // evacuation pause) or not (another thread beat us to it or the GC
 777   // locker was active). Given that we should not be holding the
 778   // Heap_lock when we enter this method, we will pass the
 779   // gc_count_before (i.e., total_collections()) as a parameter since
 780   // it has to be read while holding the Heap_lock. Currently, both
 781   // methods that call do_collection_pause() release the Heap_lock
 782   // before the call, so it's easy to read gc_count_before just before.
 783   HeapWord* do_collection_pause(size_t         word_size,
 784                                 uint           gc_count_before,
 785                                 bool*          succeeded,
 786                                 GCCause::Cause gc_cause);
 787 
 788   void wait_for_root_region_scanning();
 789 
 790   // The guts of the incremental collection pause, executed by the vm
 791   // thread. It returns false if it is unable to do the collection due
 792   // to the GC locker being active, true otherwise
 793   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 794 
 795   // Actually do the work of evacuating the collection set.
 796   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 797   
 798   // Print the header for the per-thread termination statistics.
 799   static void print_termination_stats_hdr(outputStream* const st);
 800   // Print actual per-thread termination statistics.
 801   void print_termination_stats(outputStream* const st,
 802                                uint worker_id,
 803                                double elapsed_ms,
 804                                double strong_roots_ms,
 805                                double term_ms,
 806                                size_t term_attempts,
 807                                size_t alloc_buffer_waste,
 808                                size_t undo_waste) const;
 809   // Update object copying statistics.
 810   void record_obj_copy_mem_stats();
 811   
 812   // The g1 remembered set of the heap.
 813   G1RemSet* _g1_rem_set;
 814 
 815   // A set of cards that cover the objects for which the Rsets should be updated
 816   // concurrently after the collection.
 817   DirtyCardQueueSet _dirty_card_queue_set;
 818 
 819   // The closure used to refine a single card.
 820   RefineCardTableEntryClosure* _refine_cte_cl;
 821 
 822   // A DirtyCardQueueSet that is used to hold cards that contain
 823   // references into the current collection set. This is used to
 824   // update the remembered sets of the regions in the collection
 825   // set in the event of an evacuation failure.
 826   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 827 
 828   // After a collection pause, make the regions in the CS into free
 829   // regions.
 830   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 831 
 832   // Abandon the current collection set without recording policy
 833   // statistics or updating free lists.
 834   void abandon_collection_set(HeapRegion* cs_head);
 835 
 836   // The concurrent marker (and the thread it runs in.)
 837   ConcurrentMark* _cm;
 838   ConcurrentMarkThread* _cmThread;
 839 
 840   // The concurrent refiner.
 841   ConcurrentG1Refine* _cg1r;
 842 
 843   // The parallel task queues
 844   RefToScanQueueSet *_task_queues;
 845 
 846   // True iff a evacuation has failed in the current collection.
 847   bool _evacuation_failed;
 848 
 849   EvacuationFailedInfo* _evacuation_failed_info_array;
 850 
 851   // Failed evacuations cause some logical from-space objects to have
 852   // forwarding pointers to themselves.  Reset them.
 853   void remove_self_forwarding_pointers();
 854 
 855   struct OopAndMarkOop {
 856    private:
 857     oop _o;
 858     markOop _m;
 859    public:
 860     OopAndMarkOop(oop obj, markOop m) : _o(obj), _m(m) {
 861     }
 862 
 863     void set_mark() {
 864       _o->set_mark(_m);
 865     }
 866   };
 867 
 868   typedef Stack<OopAndMarkOop,mtGC> OopAndMarkOopStack;
 869   // Stores marks with the corresponding oop that we need to preserve during evacuation
 870   // failure.
 871   OopAndMarkOopStack*  _preserved_objs;
 872 
 873   // Preserve the mark of "obj", if necessary, in preparation for its mark
 874   // word being overwritten with a self-forwarding-pointer.
 875   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 876 
 877 #ifndef PRODUCT
 878   // Support for forcing evacuation failures. Analogous to
 879   // PromotionFailureALot for the other collectors.
 880 
 881   // Records whether G1EvacuationFailureALot should be in effect
 882   // for the current GC
 883   bool _evacuation_failure_alot_for_current_gc;
 884 
 885   // Used to record the GC number for interval checking when
 886   // determining whether G1EvaucationFailureALot is in effect
 887   // for the current GC.
 888   size_t _evacuation_failure_alot_gc_number;
 889 
 890   // Count of the number of evacuations between failures.
 891   volatile size_t _evacuation_failure_alot_count;
 892 
 893   // Set whether G1EvacuationFailureALot should be in effect
 894   // for the current GC (based upon the type of GC and which
 895   // command line flags are set);
 896   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 897                                                   bool during_initial_mark,
 898                                                   bool during_marking);
 899 
 900   inline void set_evacuation_failure_alot_for_current_gc();
 901 
 902   // Return true if it's time to cause an evacuation failure.
 903   inline bool evacuation_should_fail();
 904 
 905   // Reset the G1EvacuationFailureALot counters.  Should be called at
 906   // the end of an evacuation pause in which an evacuation failure occurred.
 907   inline void reset_evacuation_should_fail();
 908 #endif // !PRODUCT
 909 
 910   // ("Weak") Reference processing support.
 911   //
 912   // G1 has 2 instances of the reference processor class. One
 913   // (_ref_processor_cm) handles reference object discovery
 914   // and subsequent processing during concurrent marking cycles.
 915   //
 916   // The other (_ref_processor_stw) handles reference object
 917   // discovery and processing during full GCs and incremental
 918   // evacuation pauses.
 919   //
 920   // During an incremental pause, reference discovery will be
 921   // temporarily disabled for _ref_processor_cm and will be
 922   // enabled for _ref_processor_stw. At the end of the evacuation
 923   // pause references discovered by _ref_processor_stw will be
 924   // processed and discovery will be disabled. The previous
 925   // setting for reference object discovery for _ref_processor_cm
 926   // will be re-instated.
 927   //
 928   // At the start of marking:
 929   //  * Discovery by the CM ref processor is verified to be inactive
 930   //    and it's discovered lists are empty.
 931   //  * Discovery by the CM ref processor is then enabled.
 932   //
 933   // At the end of marking:
 934   //  * Any references on the CM ref processor's discovered
 935   //    lists are processed (possibly MT).
 936   //
 937   // At the start of full GC we:
 938   //  * Disable discovery by the CM ref processor and
 939   //    empty CM ref processor's discovered lists
 940   //    (without processing any entries).
 941   //  * Verify that the STW ref processor is inactive and it's
 942   //    discovered lists are empty.
 943   //  * Temporarily set STW ref processor discovery as single threaded.
 944   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 945   //    field.
 946   //  * Finally enable discovery by the STW ref processor.
 947   //
 948   // The STW ref processor is used to record any discovered
 949   // references during the full GC.
 950   //
 951   // At the end of a full GC we:
 952   //  * Enqueue any reference objects discovered by the STW ref processor
 953   //    that have non-live referents. This has the side-effect of
 954   //    making the STW ref processor inactive by disabling discovery.
 955   //  * Verify that the CM ref processor is still inactive
 956   //    and no references have been placed on it's discovered
 957   //    lists (also checked as a precondition during initial marking).
 958 
 959   // The (stw) reference processor...
 960   ReferenceProcessor* _ref_processor_stw;
 961 
 962   STWGCTimer* _gc_timer_stw;
 963   ConcurrentGCTimer* _gc_timer_cm;
 964 
 965   G1OldTracer* _gc_tracer_cm;
 966   G1NewTracer* _gc_tracer_stw;
 967 
 968   // During reference object discovery, the _is_alive_non_header
 969   // closure (if non-null) is applied to the referent object to
 970   // determine whether the referent is live. If so then the
 971   // reference object does not need to be 'discovered' and can
 972   // be treated as a regular oop. This has the benefit of reducing
 973   // the number of 'discovered' reference objects that need to
 974   // be processed.
 975   //
 976   // Instance of the is_alive closure for embedding into the
 977   // STW reference processor as the _is_alive_non_header field.
 978   // Supplying a value for the _is_alive_non_header field is
 979   // optional but doing so prevents unnecessary additions to
 980   // the discovered lists during reference discovery.
 981   G1STWIsAliveClosure _is_alive_closure_stw;
 982 
 983   // The (concurrent marking) reference processor...
 984   ReferenceProcessor* _ref_processor_cm;
 985 
 986   // Instance of the concurrent mark is_alive closure for embedding
 987   // into the Concurrent Marking reference processor as the
 988   // _is_alive_non_header field. Supplying a value for the
 989   // _is_alive_non_header field is optional but doing so prevents
 990   // unnecessary additions to the discovered lists during reference
 991   // discovery.
 992   G1CMIsAliveClosure _is_alive_closure_cm;
 993 
 994   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 995   HeapRegion** _worker_cset_start_region;
 996 
 997   // Time stamp to validate the regions recorded in the cache
 998   // used by G1CollectedHeap::start_cset_region_for_worker().
 999   // The heap region entry for a given worker is valid iff
1000   // the associated time stamp value matches the current value
1001   // of G1CollectedHeap::_gc_time_stamp.
1002   uint* _worker_cset_start_region_time_stamp;
1003 
1004   volatile bool _free_regions_coming;
1005 
1006 public:
1007 
1008   void set_refine_cte_cl_concurrency(bool concurrent);
1009 
1010   RefToScanQueue *task_queue(uint i) const;
1011 
1012   uint num_task_queues() const;
1013 
1014   // A set of cards where updates happened during the GC
1015   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1016 
1017   // A DirtyCardQueueSet that is used to hold cards that contain
1018   // references into the current collection set. This is used to
1019   // update the remembered sets of the regions in the collection
1020   // set in the event of an evacuation failure.
1021   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1022         { return _into_cset_dirty_card_queue_set; }
1023 
1024   // Create a G1CollectedHeap with the specified policy.
1025   // Must call the initialize method afterwards.
1026   // May not return if something goes wrong.
1027   G1CollectedHeap(G1CollectorPolicy* policy);
1028 
1029   // Initialize the G1CollectedHeap to have the initial and
1030   // maximum sizes and remembered and barrier sets
1031   // specified by the policy object.
1032   jint initialize();
1033 
1034   virtual void stop();
1035 
1036   // Return the (conservative) maximum heap alignment for any G1 heap
1037   static size_t conservative_max_heap_alignment();
1038 
1039   // Does operations required after initialization has been done.
1040   void post_initialize();
1041 
1042   // Initialize weak reference processing.
1043   void ref_processing_init();
1044 
1045   virtual Name kind() const {
1046     return CollectedHeap::G1CollectedHeap;
1047   }
1048 
1049   G1CollectorState* collector_state() { return &_collector_state; }
1050 
1051   // The current policy object for the collector.
1052   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1053 
1054   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1055 
1056   // Adaptive size policy.  No such thing for g1.
1057   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1058 
1059   // The rem set and barrier set.
1060   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1061 
1062   unsigned get_gc_time_stamp() {
1063     return _gc_time_stamp;
1064   }
1065 
1066   inline void reset_gc_time_stamp();
1067 
1068   void check_gc_time_stamps() PRODUCT_RETURN;
1069 
1070   inline void increment_gc_time_stamp();
1071 
1072   // Reset the given region's GC timestamp. If it's starts humongous,
1073   // also reset the GC timestamp of its corresponding
1074   // continues humongous regions too.
1075   void reset_gc_time_stamps(HeapRegion* hr);
1076 
1077   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1078                                   DirtyCardQueue* into_cset_dcq,
1079                                   bool concurrent, uint worker_i);
1080 
1081   // The shared block offset table array.
1082   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1083 
1084   // Reference Processing accessors
1085 
1086   // The STW reference processor....
1087   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1088 
1089   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1090 
1091   // The Concurrent Marking reference processor...
1092   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1093 
1094   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1095   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1096 
1097   virtual size_t capacity() const;
1098   virtual size_t used() const;
1099   // This should be called when we're not holding the heap lock. The
1100   // result might be a bit inaccurate.
1101   size_t used_unlocked() const;
1102   size_t recalculate_used() const;
1103 
1104   // These virtual functions do the actual allocation.
1105   // Some heaps may offer a contiguous region for shared non-blocking
1106   // allocation, via inlined code (by exporting the address of the top and
1107   // end fields defining the extent of the contiguous allocation region.)
1108   // But G1CollectedHeap doesn't yet support this.
1109 
1110   virtual bool is_maximal_no_gc() const {
1111     return _hrm.available() == 0;
1112   }
1113 
1114   // The current number of regions in the heap.
1115   uint num_regions() const { return _hrm.length(); }
1116 
1117   // The max number of regions in the heap.
1118   uint max_regions() const { return _hrm.max_length(); }
1119 
1120   // The number of regions that are completely free.
1121   uint num_free_regions() const { return _hrm.num_free_regions(); }
1122 
1123   MemoryUsage get_auxiliary_data_memory_usage() const {
1124     return _hrm.get_auxiliary_data_memory_usage();
1125   }
1126 
1127   // The number of regions that are not completely free.
1128   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1129 
1130   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1131   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1132   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1133   void verify_dirty_young_regions() PRODUCT_RETURN;
1134 
1135 #ifndef PRODUCT
1136   // Make sure that the given bitmap has no marked objects in the
1137   // range [from,limit). If it does, print an error message and return
1138   // false. Otherwise, just return true. bitmap_name should be "prev"
1139   // or "next".
1140   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1141                                 HeapWord* from, HeapWord* limit);
1142 
1143   // Verify that the prev / next bitmap range [tams,end) for the given
1144   // region has no marks. Return true if all is well, false if errors
1145   // are detected.
1146   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1147 #endif // PRODUCT
1148 
1149   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1150   // the given region do not have any spurious marks. If errors are
1151   // detected, print appropriate error messages and crash.
1152   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1153 
1154   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1155   // have any spurious marks. If errors are detected, print
1156   // appropriate error messages and crash.
1157   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1158 
1159   // Do sanity check on the contents of the in-cset fast test table.
1160   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1161 
1162   // verify_region_sets() performs verification over the region
1163   // lists. It will be compiled in the product code to be used when
1164   // necessary (i.e., during heap verification).
1165   void verify_region_sets();
1166 
1167   // verify_region_sets_optional() is planted in the code for
1168   // list verification in non-product builds (and it can be enabled in
1169   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1170 #if HEAP_REGION_SET_FORCE_VERIFY
1171   void verify_region_sets_optional() {
1172     verify_region_sets();
1173   }
1174 #else // HEAP_REGION_SET_FORCE_VERIFY
1175   void verify_region_sets_optional() { }
1176 #endif // HEAP_REGION_SET_FORCE_VERIFY
1177 
1178 #ifdef ASSERT
1179   bool is_on_master_free_list(HeapRegion* hr) {
1180     return _hrm.is_free(hr);
1181   }
1182 #endif // ASSERT
1183 
1184   // Wrapper for the region list operations that can be called from
1185   // methods outside this class.
1186 
1187   void secondary_free_list_add(FreeRegionList* list) {
1188     _secondary_free_list.add_ordered(list);
1189   }
1190 
1191   void append_secondary_free_list() {
1192     _hrm.insert_list_into_free_list(&_secondary_free_list);
1193   }
1194 
1195   void append_secondary_free_list_if_not_empty_with_lock() {
1196     // If the secondary free list looks empty there's no reason to
1197     // take the lock and then try to append it.
1198     if (!_secondary_free_list.is_empty()) {
1199       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1200       append_secondary_free_list();
1201     }
1202   }
1203 
1204   inline void old_set_add(HeapRegion* hr);
1205   inline void old_set_remove(HeapRegion* hr);
1206 
1207   size_t non_young_capacity_bytes() {
1208     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1209   }
1210 
1211   void set_free_regions_coming();
1212   void reset_free_regions_coming();
1213   bool free_regions_coming() { return _free_regions_coming; }
1214   void wait_while_free_regions_coming();
1215 
1216   // Determine whether the given region is one that we are using as an
1217   // old GC alloc region.
1218   bool is_old_gc_alloc_region(HeapRegion* hr);
1219 
1220   // Perform a collection of the heap; intended for use in implementing
1221   // "System.gc".  This probably implies as full a collection as the
1222   // "CollectedHeap" supports.
1223   virtual void collect(GCCause::Cause cause);
1224 
1225   // The same as above but assume that the caller holds the Heap_lock.
1226   void collect_locked(GCCause::Cause cause);
1227 
1228   virtual bool copy_allocation_context_stats(const jint* contexts,
1229                                              jlong* totals,
1230                                              jbyte* accuracy,
1231                                              jint len);
1232 
1233   // True iff an evacuation has failed in the most-recent collection.
1234   bool evacuation_failed() { return _evacuation_failed; }
1235 
1236   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1237   void prepend_to_freelist(FreeRegionList* list);
1238   void decrement_summary_bytes(size_t bytes);
1239 
1240   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1241   virtual bool is_in(const void* p) const;
1242 #ifdef ASSERT
1243   // Returns whether p is in one of the available areas of the heap. Slow but
1244   // extensive version.
1245   bool is_in_exact(const void* p) const;
1246 #endif
1247 
1248   // Return "TRUE" iff the given object address is within the collection
1249   // set. Slow implementation.
1250   bool obj_in_cs(oop obj);
1251 
1252   inline bool is_in_cset(const HeapRegion *hr);
1253   inline bool is_in_cset(oop obj);
1254 
1255   inline bool is_in_cset_or_humongous(const oop obj);
1256 
1257  private:
1258   // This array is used for a quick test on whether a reference points into
1259   // the collection set or not. Each of the array's elements denotes whether the
1260   // corresponding region is in the collection set or not.
1261   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1262 
1263  public:
1264 
1265   inline InCSetState in_cset_state(const oop obj);
1266 
1267   // Return "TRUE" iff the given object address is in the reserved
1268   // region of g1.
1269   bool is_in_g1_reserved(const void* p) const {
1270     return _hrm.reserved().contains(p);
1271   }
1272 
1273   // Returns a MemRegion that corresponds to the space that has been
1274   // reserved for the heap
1275   MemRegion g1_reserved() const {
1276     return _hrm.reserved();
1277   }
1278 
1279   virtual bool is_in_closed_subset(const void* p) const;
1280 
1281   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1282     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1283   }
1284 
1285   // This resets the card table to all zeros.  It is used after
1286   // a collection pause which used the card table to claim cards.
1287   void cleanUpCardTable();
1288 
1289   // Iteration functions.
1290 
1291   // Iterate over all objects, calling "cl.do_object" on each.
1292   virtual void object_iterate(ObjectClosure* cl);
1293 
1294   virtual void safe_object_iterate(ObjectClosure* cl) {
1295     object_iterate(cl);
1296   }
1297 
1298   // Iterate over heap regions, in address order, terminating the
1299   // iteration early if the "doHeapRegion" method returns "true".
1300   void heap_region_iterate(HeapRegionClosure* blk) const;
1301 
1302   // Return the region with the given index. It assumes the index is valid.
1303   inline HeapRegion* region_at(uint index) const;
1304 
1305   // Calculate the region index of the given address. Given address must be
1306   // within the heap.
1307   inline uint addr_to_region(HeapWord* addr) const;
1308 
1309   inline HeapWord* bottom_addr_for_region(uint index) const;
1310 
1311   // Iterate over the heap regions in parallel. Assumes that this will be called
1312   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1313   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1314   // to each of the regions, by attempting to claim the region using the
1315   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1316   // region. The concurrent argument should be set to true if iteration is
1317   // performed concurrently, during which no assumptions are made for consistent
1318   // attributes of the heap regions (as they might be modified while iterating).
1319   void heap_region_par_iterate(HeapRegionClosure* cl,
1320                                uint worker_id,
1321                                HeapRegionClaimer* hrclaimer,
1322                                bool concurrent = false) const;
1323 
1324   // Clear the cached cset start regions and (more importantly)
1325   // the time stamps. Called when we reset the GC time stamp.
1326   void clear_cset_start_regions();
1327 
1328   // Given the id of a worker, obtain or calculate a suitable
1329   // starting region for iterating over the current collection set.
1330   HeapRegion* start_cset_region_for_worker(uint worker_i);
1331 
1332   // Iterate over the regions (if any) in the current collection set.
1333   void collection_set_iterate(HeapRegionClosure* blk);
1334 
1335   // As above but starting from region r
1336   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1337 
1338   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1339 
1340   // Returns the HeapRegion that contains addr. addr must not be NULL.
1341   template <class T>
1342   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1343 
1344   // Returns the HeapRegion that contains addr. addr must not be NULL.
1345   // If addr is within a humongous continues region, it returns its humongous start region.
1346   template <class T>
1347   inline HeapRegion* heap_region_containing(const T addr) const;
1348 
1349   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1350   // each address in the (reserved) heap is a member of exactly
1351   // one block.  The defining characteristic of a block is that it is
1352   // possible to find its size, and thus to progress forward to the next
1353   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1354   // represent Java objects, or they might be free blocks in a
1355   // free-list-based heap (or subheap), as long as the two kinds are
1356   // distinguishable and the size of each is determinable.
1357 
1358   // Returns the address of the start of the "block" that contains the
1359   // address "addr".  We say "blocks" instead of "object" since some heaps
1360   // may not pack objects densely; a chunk may either be an object or a
1361   // non-object.
1362   virtual HeapWord* block_start(const void* addr) const;
1363 
1364   // Requires "addr" to be the start of a chunk, and returns its size.
1365   // "addr + size" is required to be the start of a new chunk, or the end
1366   // of the active area of the heap.
1367   virtual size_t block_size(const HeapWord* addr) const;
1368 
1369   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1370   // the block is an object.
1371   virtual bool block_is_obj(const HeapWord* addr) const;
1372 
1373   // Section on thread-local allocation buffers (TLABs)
1374   // See CollectedHeap for semantics.
1375 
1376   bool supports_tlab_allocation() const;
1377   size_t tlab_capacity(Thread* ignored) const;
1378   size_t tlab_used(Thread* ignored) const;
1379   size_t max_tlab_size() const;
1380   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1381 
1382   // Can a compiler initialize a new object without store barriers?
1383   // This permission only extends from the creation of a new object
1384   // via a TLAB up to the first subsequent safepoint. If such permission
1385   // is granted for this heap type, the compiler promises to call
1386   // defer_store_barrier() below on any slow path allocation of
1387   // a new object for which such initializing store barriers will
1388   // have been elided. G1, like CMS, allows this, but should be
1389   // ready to provide a compensating write barrier as necessary
1390   // if that storage came out of a non-young region. The efficiency
1391   // of this implementation depends crucially on being able to
1392   // answer very efficiently in constant time whether a piece of
1393   // storage in the heap comes from a young region or not.
1394   // See ReduceInitialCardMarks.
1395   virtual bool can_elide_tlab_store_barriers() const {
1396     return true;
1397   }
1398 
1399   virtual bool card_mark_must_follow_store() const {
1400     return true;
1401   }
1402 
1403   inline bool is_in_young(const oop obj);
1404 
1405   virtual bool is_scavengable(const void* addr);
1406 
1407   // We don't need barriers for initializing stores to objects
1408   // in the young gen: for the SATB pre-barrier, there is no
1409   // pre-value that needs to be remembered; for the remembered-set
1410   // update logging post-barrier, we don't maintain remembered set
1411   // information for young gen objects.
1412   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1413 
1414   // Returns "true" iff the given word_size is "very large".
1415   static bool is_humongous(size_t word_size) {
1416     // Note this has to be strictly greater-than as the TLABs
1417     // are capped at the humongous threshold and we want to
1418     // ensure that we don't try to allocate a TLAB as
1419     // humongous and that we don't allocate a humongous
1420     // object in a TLAB.
1421     return word_size > _humongous_object_threshold_in_words;
1422   }
1423 
1424   // Returns the humongous threshold for a specific region size
1425   static size_t humongous_threshold_for(size_t region_size) {
1426     return (region_size / 2);
1427   }
1428 
1429   // Update mod union table with the set of dirty cards.
1430   void updateModUnion();
1431 
1432   // Set the mod union bits corresponding to the given memRegion.  Note
1433   // that this is always a safe operation, since it doesn't clear any
1434   // bits.
1435   void markModUnionRange(MemRegion mr);
1436 
1437   // Print the maximum heap capacity.
1438   virtual size_t max_capacity() const;
1439 
1440   virtual jlong millis_since_last_gc();
1441 
1442 
1443   // Convenience function to be used in situations where the heap type can be
1444   // asserted to be this type.
1445   static G1CollectedHeap* heap();
1446 
1447   void set_region_short_lived_locked(HeapRegion* hr);
1448   // add appropriate methods for any other surv rate groups
1449 
1450   YoungList* young_list() const { return _young_list; }
1451 
1452   // debugging
1453   bool check_young_list_well_formed() {
1454     return _young_list->check_list_well_formed();
1455   }
1456 
1457   bool check_young_list_empty(bool check_heap,
1458                               bool check_sample = true);
1459 
1460   // *** Stuff related to concurrent marking.  It's not clear to me that so
1461   // many of these need to be public.
1462 
1463   // The functions below are helper functions that a subclass of
1464   // "CollectedHeap" can use in the implementation of its virtual
1465   // functions.
1466   // This performs a concurrent marking of the live objects in a
1467   // bitmap off to the side.
1468   void doConcurrentMark();
1469 
1470   bool isMarkedPrev(oop obj) const;
1471   bool isMarkedNext(oop obj) const;
1472 
1473   // Determine if an object is dead, given the object and also
1474   // the region to which the object belongs. An object is dead
1475   // iff a) it was not allocated since the last mark, b) it
1476   // is not marked, and c) it is not in an archive region.
1477   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1478     return
1479       !hr->obj_allocated_since_prev_marking(obj) &&
1480       !isMarkedPrev(obj) &&
1481       !hr->is_archive();
1482   }
1483 
1484   // This function returns true when an object has been
1485   // around since the previous marking and hasn't yet
1486   // been marked during this marking, and is not in an archive region.
1487   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1488     return
1489       !hr->obj_allocated_since_next_marking(obj) &&
1490       !isMarkedNext(obj) &&
1491       !hr->is_archive();
1492   }
1493 
1494   // Determine if an object is dead, given only the object itself.
1495   // This will find the region to which the object belongs and
1496   // then call the region version of the same function.
1497 
1498   // Added if it is NULL it isn't dead.
1499 
1500   inline bool is_obj_dead(const oop obj) const;
1501 
1502   inline bool is_obj_ill(const oop obj) const;
1503 
1504   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1505   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1506   bool is_marked(oop obj, VerifyOption vo);
1507   const char* top_at_mark_start_str(VerifyOption vo);
1508 
1509   ConcurrentMark* concurrent_mark() const { return _cm; }
1510 
1511   // Refinement
1512 
1513   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1514 
1515   // The dirty cards region list is used to record a subset of regions
1516   // whose cards need clearing. The list if populated during the
1517   // remembered set scanning and drained during the card table
1518   // cleanup. Although the methods are reentrant, population/draining
1519   // phases must not overlap. For synchronization purposes the last
1520   // element on the list points to itself.
1521   HeapRegion* _dirty_cards_region_list;
1522   void push_dirty_cards_region(HeapRegion* hr);
1523   HeapRegion* pop_dirty_cards_region();
1524 
1525   // Optimized nmethod scanning support routines
1526 
1527   // Register the given nmethod with the G1 heap.
1528   virtual void register_nmethod(nmethod* nm);
1529 
1530   // Unregister the given nmethod from the G1 heap.
1531   virtual void unregister_nmethod(nmethod* nm);
1532 
1533   // Free up superfluous code root memory.
1534   void purge_code_root_memory();
1535 
1536   // Rebuild the strong code root lists for each region
1537   // after a full GC.
1538   void rebuild_strong_code_roots();
1539 
1540   // Delete entries for dead interned string and clean up unreferenced symbols
1541   // in symbol table, possibly in parallel.
1542   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1543 
1544   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1545   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1546 
1547   // Redirty logged cards in the refinement queue.
1548   void redirty_logged_cards();
1549   // Verification
1550 
1551   // Perform any cleanup actions necessary before allowing a verification.
1552   virtual void prepare_for_verify();
1553 
1554   // Perform verification.
1555 
1556   // vo == UsePrevMarking  -> use "prev" marking information,
1557   // vo == UseNextMarking -> use "next" marking information
1558   // vo == UseMarkWord    -> use the mark word in the object header
1559   //
1560   // NOTE: Only the "prev" marking information is guaranteed to be
1561   // consistent most of the time, so most calls to this should use
1562   // vo == UsePrevMarking.
1563   // Currently, there is only one case where this is called with
1564   // vo == UseNextMarking, which is to verify the "next" marking
1565   // information at the end of remark.
1566   // Currently there is only one place where this is called with
1567   // vo == UseMarkWord, which is to verify the marking during a
1568   // full GC.
1569   void verify(bool silent, VerifyOption vo);
1570 
1571   // Override; it uses the "prev" marking information
1572   virtual void verify(bool silent);
1573 
1574   // The methods below are here for convenience and dispatch the
1575   // appropriate method depending on value of the given VerifyOption
1576   // parameter. The values for that parameter, and their meanings,
1577   // are the same as those above.
1578 
1579   bool is_obj_dead_cond(const oop obj,
1580                         const HeapRegion* hr,
1581                         const VerifyOption vo) const;
1582 
1583   bool is_obj_dead_cond(const oop obj,
1584                         const VerifyOption vo) const;
1585 
1586   G1HeapSummary create_g1_heap_summary();
1587   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1588 
1589   // Printing
1590 
1591   virtual void print_on(outputStream* st) const;
1592   virtual void print_extended_on(outputStream* st) const;
1593   virtual void print_on_error(outputStream* st) const;
1594 
1595   virtual void print_gc_threads_on(outputStream* st) const;
1596   virtual void gc_threads_do(ThreadClosure* tc) const;
1597 
1598   // Override
1599   void print_tracing_info() const;
1600 
1601   // The following two methods are helpful for debugging RSet issues.
1602   void print_cset_rsets() PRODUCT_RETURN;
1603   void print_all_rsets() PRODUCT_RETURN;
1604 
1605 public:
1606   size_t pending_card_num();
1607   size_t cards_scanned();
1608 
1609 protected:
1610   size_t _max_heap_capacity;
1611 };
1612 
1613 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP