1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1OopClosures.inline.hpp"
  29 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  30 #include "gc/g1/g1StringDedup.hpp"
  31 #include "gc/shared/taskqueue.inline.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/prefetch.inline.hpp"
  34 
  35 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, ReferenceProcessor* rp)
  36   : _g1h(g1h),
  37     _refs(g1h->task_queue(worker_id)),
  38     _dcq(&g1h->dirty_card_queue_set()),
  39     _ct_bs(g1h->g1_barrier_set()),
  40     _g1_rem(g1h->g1_rem_set()),
  41     _hash_seed(17), _worker_id(worker_id),
  42     _term_attempts(0),
  43     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  44     _age_table(false), _scanner(g1h, rp),
  45     _strong_roots_time(0), _term_time(0),
  46     _old_gen_is_full(false)
  47 {
  48   _scanner.set_par_scan_thread_state(this);
  49   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  50   // we "sacrifice" entry 0 to keep track of surviving bytes for
  51   // non-young regions (where the age is -1)
  52   // We also add a few elements at the beginning and at the end in
  53   // an attempt to eliminate cache contention
  54   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  55   uint array_length = PADDING_ELEM_NUM +
  56                       real_length +
  57                       PADDING_ELEM_NUM;
  58   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  59   if (_surviving_young_words_base == NULL)
  60     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  61                           "Not enough space for young surv histo.");
  62   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  63   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  64 
  65   _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
  66 
  67   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  68   // The dest for Young is used when the objects are aged enough to
  69   // need to be moved to the next space.
  70   _dest[InCSetState::Young]        = InCSetState::Old;
  71   _dest[InCSetState::Old]          = InCSetState::Old;
  72 
  73   _start = os::elapsedTime();
  74 }
  75 
  76 G1ParScanThreadState::~G1ParScanThreadState() {
  77   _plab_allocator->flush_and_retire_stats();
  78   delete _plab_allocator;
  79   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  80 }
  81 
  82 void G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st) {
  83   st->print_raw_cr("GC Termination Stats");
  84   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
  85   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
  86   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
  87 }
  88 
  89 void G1ParScanThreadState::print_termination_stats(outputStream* const st) const {
  90   const double elapsed_ms = elapsed_time() * 1000.0;
  91   const double s_roots_ms = strong_roots_time() * 1000.0;
  92   const double term_ms    = term_time() * 1000.0;
  93   size_t alloc_buffer_waste = 0;
  94   size_t undo_waste = 0;
  95   _plab_allocator->waste(alloc_buffer_waste, undo_waste);
  96   st->print_cr("%3u %9.2f %9.2f %6.2f "
  97                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  98                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  99                _worker_id, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 100                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
 101                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
 102                alloc_buffer_waste * HeapWordSize / K,
 103                undo_waste * HeapWordSize / K);
 104 }
 105 
 106 #ifdef ASSERT
 107 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 108   assert(ref != NULL, "invariant");
 109   assert(UseCompressedOops, "sanity");
 110   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
 111   oop p = oopDesc::load_decode_heap_oop(ref);
 112   assert(_g1h->is_in_g1_reserved(p),
 113          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 114   return true;
 115 }
 116 
 117 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 118   assert(ref != NULL, "invariant");
 119   if (has_partial_array_mask(ref)) {
 120     // Must be in the collection set--it's already been copied.
 121     oop p = clear_partial_array_mask(ref);
 122     assert(_g1h->obj_in_cs(p),
 123            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 124   } else {
 125     oop p = oopDesc::load_decode_heap_oop(ref);
 126     assert(_g1h->is_in_g1_reserved(p),
 127            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 128   }
 129   return true;
 130 }
 131 
 132 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 133   if (ref.is_narrow()) {
 134     return verify_ref((narrowOop*) ref);
 135   } else {
 136     return verify_ref((oop*) ref);
 137   }
 138 }
 139 #endif // ASSERT
 140 
 141 void G1ParScanThreadState::trim_queue() {
 142   StarTask ref;
 143   do {
 144     // Drain the overflow stack first, so other threads can steal.
 145     while (_refs->pop_overflow(ref)) {
 146       dispatch_reference(ref);
 147     }
 148 
 149     while (_refs->pop_local(ref)) {
 150       dispatch_reference(ref);
 151     }
 152   } while (!_refs->is_empty());
 153 }
 154 
 155 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 156                                                       InCSetState* dest,
 157                                                       size_t word_sz,
 158                                                       AllocationContext_t const context,
 159                                                       bool previous_plab_refill_failed) {
 160   assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
 161   assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 162 
 163   // Right now we only have two types of regions (young / old) so
 164   // let's keep the logic here simple. We can generalize it when necessary.
 165   if (dest->is_young()) {
 166     bool plab_refill_in_old_failed = false;
 167     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 168                                                         word_sz,
 169                                                         context,
 170                                                         &plab_refill_in_old_failed);
 171     // Make sure that we won't attempt to copy any other objects out
 172     // of a survivor region (given that apparently we cannot allocate
 173     // any new ones) to avoid coming into this slow path again and again.
 174     // Only consider failed PLAB refill here: failed inline allocations are
 175     // typically large, so not indicative of remaining space.
 176     if (previous_plab_refill_failed) {
 177       _tenuring_threshold = 0;
 178     }
 179 
 180     if (obj_ptr != NULL) {
 181       dest->set_old();
 182     } else {
 183       // We just failed to allocate in old gen. The same idea as explained above
 184       // for making survivor gen unavailable for allocation applies for old gen.
 185       _old_gen_is_full = plab_refill_in_old_failed;
 186     }
 187     return obj_ptr;
 188   } else {
 189     _old_gen_is_full = previous_plab_refill_failed;
 190     assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 191     // no other space to try.
 192     return NULL;
 193   }
 194 }
 195 
 196 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 197   if (state.is_young()) {
 198     age = !m->has_displaced_mark_helper() ? m->age()
 199                                           : m->displaced_mark_helper()->age();
 200     if (age < _tenuring_threshold) {
 201       return state;
 202     }
 203   }
 204   return dest(state);
 205 }
 206 
 207 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 208                                                  oop const old,
 209                                                  markOop const old_mark) {
 210   const size_t word_sz = old->size();
 211   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
 212   // +1 to make the -1 indexes valid...
 213   const int young_index = from_region->young_index_in_cset()+1;
 214   assert( (from_region->is_young() && young_index >  0) ||
 215          (!from_region->is_young() && young_index == 0), "invariant" );
 216   const AllocationContext_t context = from_region->allocation_context();
 217 
 218   uint age = 0;
 219   InCSetState dest_state = next_state(state, old_mark, age);
 220   // The second clause is to prevent premature evacuation failure in case there
 221   // is still space in survivor, but old gen is full.
 222   if (_old_gen_is_full && dest_state.is_old()) {
 223     return handle_evacuation_failure_par(old, old_mark);
 224   }
 225   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context);
 226 
 227   // PLAB allocations should succeed most of the time, so we'll
 228   // normally check against NULL once and that's it.
 229   if (obj_ptr == NULL) {
 230     bool plab_refill_failed = false;
 231     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context, &plab_refill_failed);
 232     if (obj_ptr == NULL) {
 233       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed);
 234       if (obj_ptr == NULL) {
 235         // This will either forward-to-self, or detect that someone else has
 236         // installed a forwarding pointer.
 237         return handle_evacuation_failure_par(old, old_mark);
 238       }
 239     }
 240   }
 241 
 242   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 243   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 244 
 245 #ifndef PRODUCT
 246   // Should this evacuation fail?
 247   if (_g1h->evacuation_should_fail()) {
 248     // Doing this after all the allocation attempts also tests the
 249     // undo_allocation() method too.
 250     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 251     return handle_evacuation_failure_par(old, old_mark);
 252   }
 253 #endif // !PRODUCT
 254 
 255   // We're going to allocate linearly, so might as well prefetch ahead.
 256   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 257 
 258   const oop obj = oop(obj_ptr);
 259   const oop forward_ptr = old->forward_to_atomic(obj);
 260   if (forward_ptr == NULL) {
 261     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 262 
 263     if (dest_state.is_young()) {
 264       if (age < markOopDesc::max_age) {
 265         age++;
 266       }
 267       if (old_mark->has_displaced_mark_helper()) {
 268         // In this case, we have to install the mark word first,
 269         // otherwise obj looks to be forwarded (the old mark word,
 270         // which contains the forward pointer, was copied)
 271         obj->set_mark(old_mark);
 272         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 273         old_mark->set_displaced_mark_helper(new_mark);
 274       } else {
 275         obj->set_mark(old_mark->set_age(age));
 276       }
 277       age_table()->add(age, word_sz);
 278     } else {
 279       obj->set_mark(old_mark);
 280     }
 281 
 282     if (G1StringDedup::is_enabled()) {
 283       const bool is_from_young = state.is_young();
 284       const bool is_to_young = dest_state.is_young();
 285       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
 286              "sanity");
 287       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
 288              "sanity");
 289       G1StringDedup::enqueue_from_evacuation(is_from_young,
 290                                              is_to_young,
 291                                              _worker_id,
 292                                              obj);
 293     }
 294 
 295     size_t* const surv_young_words = surviving_young_words();
 296     surv_young_words[young_index] += word_sz;
 297 
 298     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 299       // We keep track of the next start index in the length field of
 300       // the to-space object. The actual length can be found in the
 301       // length field of the from-space object.
 302       arrayOop(obj)->set_length(0);
 303       oop* old_p = set_partial_array_mask(old);
 304       push_on_queue(old_p);
 305     } else {
 306       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
 307       _scanner.set_region(to_region);
 308       obj->oop_iterate_backwards(&_scanner);
 309     }
 310     return obj;
 311   } else {
 312     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 313     return forward_ptr;
 314   }
 315 }
 316 
 317 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 318   assert(_g1h->obj_in_cs(old),
 319          err_msg("Object " PTR_FORMAT " should be in the CSet", p2i(old)));
 320 
 321   oop forward_ptr = old->forward_to_atomic(old);
 322   if (forward_ptr == NULL) {
 323     // Forward-to-self succeeded. We are the "owner" of the object.
 324     HeapRegion* r = _g1h->heap_region_containing(old);
 325 
 326     if (!r->evacuation_failed()) {
 327       r->set_evacuation_failed(true);
 328      _g1h->hr_printer()->evac_failure(r);
 329     }
 330 
 331     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 332 
 333     _scanner.set_region(r);
 334     old->oop_iterate_backwards(&_scanner);
 335 
 336     return old;
 337   } else {
 338     // Forward-to-self failed. Either someone else managed to allocate
 339     // space for this object (old != forward_ptr) or they beat us in
 340     // self-forwarding it (old == forward_ptr).
 341     assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr),
 342            err_msg("Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 343                    "should not be in the CSet",
 344                    p2i(old), p2i(forward_ptr)));
 345     return forward_ptr;
 346   }
 347 }
 348