1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1OopClosures.inline.hpp"
  29 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  30 #include "gc/g1/g1StringDedup.hpp"
  31 #include "gc/shared/taskqueue.inline.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/prefetch.inline.hpp"
  34 
  35 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id)
  36   : _g1h(g1h),
  37     _refs(g1h->task_queue(worker_id)),
  38     _dcq(&g1h->dirty_card_queue_set()),
  39     _ct_bs(g1h->g1_barrier_set()),
  40     _g1_rem(g1h->g1_rem_set()),
  41     _hash_seed(17),
  42     _worker_id(worker_id),
  43     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  44     _age_table(false),
  45     _scanner(g1h),
  46     _old_gen_is_full(false)
  47 {
  48   _scanner.set_par_scan_thread_state(this);
  49   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  50   // we "sacrifice" entry 0 to keep track of surviving bytes for
  51   // non-young regions (where the age is -1)
  52   // We also add a few elements at the beginning and at the end in
  53   // an attempt to eliminate cache contention
  54   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  55   uint array_length = PADDING_ELEM_NUM +
  56                       real_length +
  57                       PADDING_ELEM_NUM;
  58   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  59   if (_surviving_young_words_base == NULL)
  60     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  61                           "Not enough space for young surv histo.");
  62   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  63   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  64 
  65   _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
  66 
  67   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  68   // The dest for Young is used when the objects are aged enough to
  69   // need to be moved to the next space.
  70   _dest[InCSetState::Young]        = InCSetState::Old;
  71   _dest[InCSetState::Old]          = InCSetState::Old;
  72 }
  73 
  74 G1ParScanThreadState::~G1ParScanThreadState() {
  75   _plab_allocator->flush_and_retire_stats();
  76   delete _plab_allocator;
  77   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  78 }
  79 
  80 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
  81   _plab_allocator->waste(wasted, undo_wasted);
  82 }
  83 
  84 #ifdef ASSERT
  85 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  86   assert(ref != NULL, "invariant");
  87   assert(UseCompressedOops, "sanity");
  88   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
  89   oop p = oopDesc::load_decode_heap_oop(ref);
  90   assert(_g1h->is_in_g1_reserved(p),
  91          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
  92   return true;
  93 }
  94 
  95 bool G1ParScanThreadState::verify_ref(oop* ref) const {
  96   assert(ref != NULL, "invariant");
  97   if (has_partial_array_mask(ref)) {
  98     // Must be in the collection set--it's already been copied.
  99     oop p = clear_partial_array_mask(ref);
 100     assert(_g1h->obj_in_cs(p),
 101            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 102   } else {
 103     oop p = oopDesc::load_decode_heap_oop(ref);
 104     assert(_g1h->is_in_g1_reserved(p),
 105            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 106   }
 107   return true;
 108 }
 109 
 110 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 111   if (ref.is_narrow()) {
 112     return verify_ref((narrowOop*) ref);
 113   } else {
 114     return verify_ref((oop*) ref);
 115   }
 116 }
 117 #endif // ASSERT
 118 
 119 void G1ParScanThreadState::trim_queue() {
 120   StarTask ref;
 121   do {
 122     // Drain the overflow stack first, so other threads can steal.
 123     while (_refs->pop_overflow(ref)) {
 124       dispatch_reference(ref);
 125     }
 126 
 127     while (_refs->pop_local(ref)) {
 128       dispatch_reference(ref);
 129     }
 130   } while (!_refs->is_empty());
 131 }
 132 
 133 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 134                                                       InCSetState* dest,
 135                                                       size_t word_sz,
 136                                                       AllocationContext_t const context,
 137                                                       bool previous_plab_refill_failed) {
 138   assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
 139   assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 140 
 141   // Right now we only have two types of regions (young / old) so
 142   // let's keep the logic here simple. We can generalize it when necessary.
 143   if (dest->is_young()) {
 144     bool plab_refill_in_old_failed = false;
 145     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 146                                                         word_sz,
 147                                                         context,
 148                                                         &plab_refill_in_old_failed);
 149     // Make sure that we won't attempt to copy any other objects out
 150     // of a survivor region (given that apparently we cannot allocate
 151     // any new ones) to avoid coming into this slow path again and again.
 152     // Only consider failed PLAB refill here: failed inline allocations are
 153     // typically large, so not indicative of remaining space.
 154     if (previous_plab_refill_failed) {
 155       _tenuring_threshold = 0;
 156     }
 157 
 158     if (obj_ptr != NULL) {
 159       dest->set_old();
 160     } else {
 161       // We just failed to allocate in old gen. The same idea as explained above
 162       // for making survivor gen unavailable for allocation applies for old gen.
 163       _old_gen_is_full = plab_refill_in_old_failed;
 164     }
 165     return obj_ptr;
 166   } else {
 167     _old_gen_is_full = previous_plab_refill_failed;
 168     assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 169     // no other space to try.
 170     return NULL;
 171   }
 172 }
 173 
 174 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 175   if (state.is_young()) {
 176     age = !m->has_displaced_mark_helper() ? m->age()
 177                                           : m->displaced_mark_helper()->age();
 178     if (age < _tenuring_threshold) {
 179       return state;
 180     }
 181   }
 182   return dest(state);
 183 }
 184 
 185 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 186                                                  oop const old,
 187                                                  markOop const old_mark) {
 188   const size_t word_sz = old->size();
 189   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
 190   // +1 to make the -1 indexes valid...
 191   const int young_index = from_region->young_index_in_cset()+1;
 192   assert( (from_region->is_young() && young_index >  0) ||
 193          (!from_region->is_young() && young_index == 0), "invariant" );
 194   const AllocationContext_t context = from_region->allocation_context();
 195 
 196   uint age = 0;
 197   InCSetState dest_state = next_state(state, old_mark, age);
 198   // The second clause is to prevent premature evacuation failure in case there
 199   // is still space in survivor, but old gen is full.
 200   if (_old_gen_is_full && dest_state.is_old()) {
 201     return handle_evacuation_failure_par(old, old_mark);
 202   }
 203   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context);
 204 
 205   // PLAB allocations should succeed most of the time, so we'll
 206   // normally check against NULL once and that's it.
 207   if (obj_ptr == NULL) {
 208     bool plab_refill_failed = false;
 209     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context, &plab_refill_failed);
 210     if (obj_ptr == NULL) {
 211       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed);
 212       if (obj_ptr == NULL) {
 213         // This will either forward-to-self, or detect that someone else has
 214         // installed a forwarding pointer.
 215         return handle_evacuation_failure_par(old, old_mark);
 216       }
 217     }
 218   }
 219 
 220   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 221   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 222 
 223 #ifndef PRODUCT
 224   // Should this evacuation fail?
 225   if (_g1h->evacuation_should_fail()) {
 226     // Doing this after all the allocation attempts also tests the
 227     // undo_allocation() method too.
 228     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 229     return handle_evacuation_failure_par(old, old_mark);
 230   }
 231 #endif // !PRODUCT
 232 
 233   // We're going to allocate linearly, so might as well prefetch ahead.
 234   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 235 
 236   const oop obj = oop(obj_ptr);
 237   const oop forward_ptr = old->forward_to_atomic(obj);
 238   if (forward_ptr == NULL) {
 239     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 240 
 241     if (dest_state.is_young()) {
 242       if (age < markOopDesc::max_age) {
 243         age++;
 244       }
 245       if (old_mark->has_displaced_mark_helper()) {
 246         // In this case, we have to install the mark word first,
 247         // otherwise obj looks to be forwarded (the old mark word,
 248         // which contains the forward pointer, was copied)
 249         obj->set_mark(old_mark);
 250         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 251         old_mark->set_displaced_mark_helper(new_mark);
 252       } else {
 253         obj->set_mark(old_mark->set_age(age));
 254       }
 255       age_table()->add(age, word_sz);
 256     } else {
 257       obj->set_mark(old_mark);
 258     }
 259 
 260     if (G1StringDedup::is_enabled()) {
 261       const bool is_from_young = state.is_young();
 262       const bool is_to_young = dest_state.is_young();
 263       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
 264              "sanity");
 265       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
 266              "sanity");
 267       G1StringDedup::enqueue_from_evacuation(is_from_young,
 268                                              is_to_young,
 269                                              _worker_id,
 270                                              obj);
 271     }
 272 
 273     _surviving_young_words[young_index] += word_sz;
 274 
 275     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 276       // We keep track of the next start index in the length field of
 277       // the to-space object. The actual length can be found in the
 278       // length field of the from-space object.
 279       arrayOop(obj)->set_length(0);
 280       oop* old_p = set_partial_array_mask(old);
 281       push_on_queue(old_p);
 282     } else {
 283       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
 284       _scanner.set_region(to_region);
 285       obj->oop_iterate_backwards(&_scanner);
 286     }
 287     return obj;
 288   } else {
 289     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 290     return forward_ptr;
 291   }
 292 }
 293 
 294 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 295   assert(_g1h->obj_in_cs(old),
 296          err_msg("Object " PTR_FORMAT " should be in the CSet", p2i(old)));
 297 
 298   oop forward_ptr = old->forward_to_atomic(old);
 299   if (forward_ptr == NULL) {
 300     // Forward-to-self succeeded. We are the "owner" of the object.
 301     HeapRegion* r = _g1h->heap_region_containing(old);
 302 
 303     if (!r->evacuation_failed()) {
 304       r->set_evacuation_failed(true);
 305      _g1h->hr_printer()->evac_failure(r);
 306     }
 307 
 308     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 309 
 310     _scanner.set_region(r);
 311     old->oop_iterate_backwards(&_scanner);
 312 
 313     return old;
 314   } else {
 315     // Forward-to-self failed. Either someone else managed to allocate
 316     // space for this object (old != forward_ptr) or they beat us in
 317     // self-forwarding it (old == forward_ptr).
 318     assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr),
 319            err_msg("Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 320                    "should not be in the CSet",
 321                    p2i(old), p2i(forward_ptr)));
 322     return forward_ptr;
 323   }
 324 }
 325