1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  35 #include "gc_implementation/g1/g1RemSet.hpp"
  36 #include "gc_implementation/g1/heapRegion.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  38 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  39 #include "gc_implementation/shared/vmGCOperations.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "memory/allocation.hpp"
  44 #include "memory/genOopClosures.inline.hpp"
  45 #include "memory/referencePolicy.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/handles.inline.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/prefetch.inline.hpp"
  52 #include "services/memTracker.hpp"
  53 
  54 // Concurrent marking bit map wrapper
  55 
  56 CMBitMapRO::CMBitMapRO(int shifter) :
  57   _bm(),
  58   _shifter(shifter) {
  59   _bmStartWord = 0;
  60   _bmWordSize = 0;
  61 }
  62 
  63 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  64                                                const HeapWord* limit) const {
  65   // First we must round addr *up* to a possible object boundary.
  66   addr = (HeapWord*)align_size_up((intptr_t)addr,
  67                                   HeapWordSize << _shifter);
  68   size_t addrOffset = heapWordToOffset(addr);
  69   if (limit == NULL) {
  70     limit = _bmStartWord + _bmWordSize;
  71   }
  72   size_t limitOffset = heapWordToOffset(limit);
  73   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  74   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  75   assert(nextAddr >= addr, "get_next_one postcondition");
  76   assert(nextAddr == limit || isMarked(nextAddr),
  77          "get_next_one postcondition");
  78   return nextAddr;
  79 }
  80 
  81 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  82                                                  const HeapWord* limit) const {
  83   size_t addrOffset = heapWordToOffset(addr);
  84   if (limit == NULL) {
  85     limit = _bmStartWord + _bmWordSize;
  86   }
  87   size_t limitOffset = heapWordToOffset(limit);
  88   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  89   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  90   assert(nextAddr >= addr, "get_next_one postcondition");
  91   assert(nextAddr == limit || !isMarked(nextAddr),
  92          "get_next_one postcondition");
  93   return nextAddr;
  94 }
  95 
  96 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  97   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  98   return (int) (diff >> _shifter);
  99 }
 100 
 101 #ifndef PRODUCT
 102 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
 103   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 104   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 105          "size inconsistency");
 106   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
 107          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
 108 }
 109 #endif
 110 
 111 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 112   _bm.print_on_error(st, prefix);
 113 }
 114 
 115 bool CMBitMap::allocate(ReservedSpace heap_rs) {
 116   _bmStartWord = (HeapWord*)(heap_rs.base());
 117   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
 118   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
 119                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
 120   if (!brs.is_reserved()) {
 121     warning("ConcurrentMark marking bit map allocation failure");
 122     return false;
 123   }
 124   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
 125   // For now we'll just commit all of the bit map up front.
 126   // Later on we'll try to be more parsimonious with swap.
 127   if (!_virtual_space.initialize(brs, brs.size())) {
 128     warning("ConcurrentMark marking bit map backing store failure");
 129     return false;
 130   }
 131   assert(_virtual_space.committed_size() == brs.size(),
 132          "didn't reserve backing store for all of concurrent marking bit map?");
 133   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
 134   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
 135          _bmWordSize, "inconsistency in bit map sizing");
 136   _bm.set_size(_bmWordSize >> _shifter);
 137   return true;
 138 }
 139 
 140 void CMBitMap::clearAll() {
 141   _bm.clear();
 142   return;
 143 }
 144 
 145 void CMBitMap::markRange(MemRegion mr) {
 146   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 147   assert(!mr.is_empty(), "unexpected empty region");
 148   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 149           ((HeapWord *) mr.end())),
 150          "markRange memory region end is not card aligned");
 151   // convert address range into offset range
 152   _bm.at_put_range(heapWordToOffset(mr.start()),
 153                    heapWordToOffset(mr.end()), true);
 154 }
 155 
 156 void CMBitMap::clearRange(MemRegion mr) {
 157   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 158   assert(!mr.is_empty(), "unexpected empty region");
 159   // convert address range into offset range
 160   _bm.at_put_range(heapWordToOffset(mr.start()),
 161                    heapWordToOffset(mr.end()), false);
 162 }
 163 
 164 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 165                                             HeapWord* end_addr) {
 166   HeapWord* start = getNextMarkedWordAddress(addr);
 167   start = MIN2(start, end_addr);
 168   HeapWord* end   = getNextUnmarkedWordAddress(start);
 169   end = MIN2(end, end_addr);
 170   assert(start <= end, "Consistency check");
 171   MemRegion mr(start, end);
 172   if (!mr.is_empty()) {
 173     clearRange(mr);
 174   }
 175   return mr;
 176 }
 177 
 178 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 179   _base(NULL), _cm(cm)
 180 #ifdef ASSERT
 181   , _drain_in_progress(false)
 182   , _drain_in_progress_yields(false)
 183 #endif
 184 {}
 185 
 186 bool CMMarkStack::allocate(size_t capacity) {
 187   // allocate a stack of the requisite depth
 188   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 189   if (!rs.is_reserved()) {
 190     warning("ConcurrentMark MarkStack allocation failure");
 191     return false;
 192   }
 193   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 194   if (!_virtual_space.initialize(rs, rs.size())) {
 195     warning("ConcurrentMark MarkStack backing store failure");
 196     // Release the virtual memory reserved for the marking stack
 197     rs.release();
 198     return false;
 199   }
 200   assert(_virtual_space.committed_size() == rs.size(),
 201          "Didn't reserve backing store for all of ConcurrentMark stack?");
 202   _base = (oop*) _virtual_space.low();
 203   setEmpty();
 204   _capacity = (jint) capacity;
 205   _saved_index = -1;
 206   _should_expand = false;
 207   NOT_PRODUCT(_max_depth = 0);
 208   return true;
 209 }
 210 
 211 void CMMarkStack::expand() {
 212   // Called, during remark, if we've overflown the marking stack during marking.
 213   assert(isEmpty(), "stack should been emptied while handling overflow");
 214   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 215   // Clear expansion flag
 216   _should_expand = false;
 217   if (_capacity == (jint) MarkStackSizeMax) {
 218     if (PrintGCDetails && Verbose) {
 219       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 220     }
 221     return;
 222   }
 223   // Double capacity if possible
 224   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 225   // Do not give up existing stack until we have managed to
 226   // get the double capacity that we desired.
 227   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 228                                                            sizeof(oop)));
 229   if (rs.is_reserved()) {
 230     // Release the backing store associated with old stack
 231     _virtual_space.release();
 232     // Reinitialize virtual space for new stack
 233     if (!_virtual_space.initialize(rs, rs.size())) {
 234       fatal("Not enough swap for expanded marking stack capacity");
 235     }
 236     _base = (oop*)(_virtual_space.low());
 237     _index = 0;
 238     _capacity = new_capacity;
 239   } else {
 240     if (PrintGCDetails && Verbose) {
 241       // Failed to double capacity, continue;
 242       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 243                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 244                           _capacity / K, new_capacity / K);
 245     }
 246   }
 247 }
 248 
 249 void CMMarkStack::set_should_expand() {
 250   // If we're resetting the marking state because of an
 251   // marking stack overflow, record that we should, if
 252   // possible, expand the stack.
 253   _should_expand = _cm->has_overflown();
 254 }
 255 
 256 CMMarkStack::~CMMarkStack() {
 257   if (_base != NULL) {
 258     _base = NULL;
 259     _virtual_space.release();
 260   }
 261 }
 262 
 263 void CMMarkStack::par_push(oop ptr) {
 264   while (true) {
 265     if (isFull()) {
 266       _overflow = true;
 267       return;
 268     }
 269     // Otherwise...
 270     jint index = _index;
 271     jint next_index = index+1;
 272     jint res = Atomic::cmpxchg(next_index, &_index, index);
 273     if (res == index) {
 274       _base[index] = ptr;
 275       // Note that we don't maintain this atomically.  We could, but it
 276       // doesn't seem necessary.
 277       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 278       return;
 279     }
 280     // Otherwise, we need to try again.
 281   }
 282 }
 283 
 284 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 285   while (true) {
 286     if (isFull()) {
 287       _overflow = true;
 288       return;
 289     }
 290     // Otherwise...
 291     jint index = _index;
 292     jint next_index = index + n;
 293     if (next_index > _capacity) {
 294       _overflow = true;
 295       return;
 296     }
 297     jint res = Atomic::cmpxchg(next_index, &_index, index);
 298     if (res == index) {
 299       for (int i = 0; i < n; i++) {
 300         int  ind = index + i;
 301         assert(ind < _capacity, "By overflow test above.");
 302         _base[ind] = ptr_arr[i];
 303       }
 304       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 305       return;
 306     }
 307     // Otherwise, we need to try again.
 308   }
 309 }
 310 
 311 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 312   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 313   jint start = _index;
 314   jint next_index = start + n;
 315   if (next_index > _capacity) {
 316     _overflow = true;
 317     return;
 318   }
 319   // Otherwise.
 320   _index = next_index;
 321   for (int i = 0; i < n; i++) {
 322     int ind = start + i;
 323     assert(ind < _capacity, "By overflow test above.");
 324     _base[ind] = ptr_arr[i];
 325   }
 326   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 327 }
 328 
 329 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 330   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 331   jint index = _index;
 332   if (index == 0) {
 333     *n = 0;
 334     return false;
 335   } else {
 336     int k = MIN2(max, index);
 337     jint  new_ind = index - k;
 338     for (int j = 0; j < k; j++) {
 339       ptr_arr[j] = _base[new_ind + j];
 340     }
 341     _index = new_ind;
 342     *n = k;
 343     return true;
 344   }
 345 }
 346 
 347 template<class OopClosureClass>
 348 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 349   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 350          || SafepointSynchronize::is_at_safepoint(),
 351          "Drain recursion must be yield-safe.");
 352   bool res = true;
 353   debug_only(_drain_in_progress = true);
 354   debug_only(_drain_in_progress_yields = yield_after);
 355   while (!isEmpty()) {
 356     oop newOop = pop();
 357     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 358     assert(newOop->is_oop(), "Expected an oop");
 359     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 360            "only grey objects on this stack");
 361     newOop->oop_iterate(cl);
 362     if (yield_after && _cm->do_yield_check()) {
 363       res = false;
 364       break;
 365     }
 366   }
 367   debug_only(_drain_in_progress = false);
 368   return res;
 369 }
 370 
 371 void CMMarkStack::note_start_of_gc() {
 372   assert(_saved_index == -1,
 373          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 374   _saved_index = _index;
 375 }
 376 
 377 void CMMarkStack::note_end_of_gc() {
 378   // This is intentionally a guarantee, instead of an assert. If we
 379   // accidentally add something to the mark stack during GC, it
 380   // will be a correctness issue so it's better if we crash. we'll
 381   // only check this once per GC anyway, so it won't be a performance
 382   // issue in any way.
 383   guarantee(_saved_index == _index,
 384             err_msg("saved index: %d index: %d", _saved_index, _index));
 385   _saved_index = -1;
 386 }
 387 
 388 void CMMarkStack::oops_do(OopClosure* f) {
 389   assert(_saved_index == _index,
 390          err_msg("saved index: %d index: %d", _saved_index, _index));
 391   for (int i = 0; i < _index; i += 1) {
 392     f->do_oop(&_base[i]);
 393   }
 394 }
 395 
 396 bool ConcurrentMark::not_yet_marked(oop obj) const {
 397   return _g1h->is_obj_ill(obj);
 398 }
 399 
 400 CMRootRegions::CMRootRegions() :
 401   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 402   _should_abort(false),  _next_survivor(NULL) { }
 403 
 404 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 405   _young_list = g1h->young_list();
 406   _cm = cm;
 407 }
 408 
 409 void CMRootRegions::prepare_for_scan() {
 410   assert(!scan_in_progress(), "pre-condition");
 411 
 412   // Currently, only survivors can be root regions.
 413   assert(_next_survivor == NULL, "pre-condition");
 414   _next_survivor = _young_list->first_survivor_region();
 415   _scan_in_progress = (_next_survivor != NULL);
 416   _should_abort = false;
 417 }
 418 
 419 HeapRegion* CMRootRegions::claim_next() {
 420   if (_should_abort) {
 421     // If someone has set the should_abort flag, we return NULL to
 422     // force the caller to bail out of their loop.
 423     return NULL;
 424   }
 425 
 426   // Currently, only survivors can be root regions.
 427   HeapRegion* res = _next_survivor;
 428   if (res != NULL) {
 429     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 430     // Read it again in case it changed while we were waiting for the lock.
 431     res = _next_survivor;
 432     if (res != NULL) {
 433       if (res == _young_list->last_survivor_region()) {
 434         // We just claimed the last survivor so store NULL to indicate
 435         // that we're done.
 436         _next_survivor = NULL;
 437       } else {
 438         _next_survivor = res->get_next_young_region();
 439       }
 440     } else {
 441       // Someone else claimed the last survivor while we were trying
 442       // to take the lock so nothing else to do.
 443     }
 444   }
 445   assert(res == NULL || res->is_survivor(), "post-condition");
 446 
 447   return res;
 448 }
 449 
 450 void CMRootRegions::scan_finished() {
 451   assert(scan_in_progress(), "pre-condition");
 452 
 453   // Currently, only survivors can be root regions.
 454   if (!_should_abort) {
 455     assert(_next_survivor == NULL, "we should have claimed all survivors");
 456   }
 457   _next_survivor = NULL;
 458 
 459   {
 460     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 461     _scan_in_progress = false;
 462     RootRegionScan_lock->notify_all();
 463   }
 464 }
 465 
 466 bool CMRootRegions::wait_until_scan_finished() {
 467   if (!scan_in_progress()) return false;
 468 
 469   {
 470     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 471     while (scan_in_progress()) {
 472       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 473     }
 474   }
 475   return true;
 476 }
 477 
 478 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 479 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 480 #endif // _MSC_VER
 481 
 482 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 483   return MAX2((n_par_threads + 2) / 4, 1U);
 484 }
 485 
 486 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
 487   _g1h(g1h),
 488   _markBitMap1(log2_intptr(MinObjAlignment)),
 489   _markBitMap2(log2_intptr(MinObjAlignment)),
 490   _parallel_marking_threads(0),
 491   _max_parallel_marking_threads(0),
 492   _sleep_factor(0.0),
 493   _marking_task_overhead(1.0),
 494   _cleanup_sleep_factor(0.0),
 495   _cleanup_task_overhead(1.0),
 496   _cleanup_list("Cleanup List"),
 497   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 498   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
 499             CardTableModRefBS::card_shift,
 500             false /* in_resource_area*/),
 501 
 502   _prevMarkBitMap(&_markBitMap1),
 503   _nextMarkBitMap(&_markBitMap2),
 504 
 505   _markStack(this),
 506   // _finger set in set_non_marking_state
 507 
 508   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 509   // _active_tasks set in set_non_marking_state
 510   // _tasks set inside the constructor
 511   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 512   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 513 
 514   _has_overflown(false),
 515   _concurrent(false),
 516   _has_aborted(false),
 517   _aborted_gc_id(GCId::undefined()),
 518   _restart_for_overflow(false),
 519   _concurrent_marking_in_progress(false),
 520 
 521   // _verbose_level set below
 522 
 523   _init_times(),
 524   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 525   _cleanup_times(),
 526   _total_counting_time(0.0),
 527   _total_rs_scrub_time(0.0),
 528 
 529   _parallel_workers(NULL),
 530 
 531   _count_card_bitmaps(NULL),
 532   _count_marked_bytes(NULL),
 533   _completed_initialization(false) {
 534   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 535   if (verbose_level < no_verbose) {
 536     verbose_level = no_verbose;
 537   }
 538   if (verbose_level > high_verbose) {
 539     verbose_level = high_verbose;
 540   }
 541   _verbose_level = verbose_level;
 542 
 543   if (verbose_low()) {
 544     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 545                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 546   }
 547 
 548   if (!_markBitMap1.allocate(heap_rs)) {
 549     warning("Failed to allocate first CM bit map");
 550     return;
 551   }
 552   if (!_markBitMap2.allocate(heap_rs)) {
 553     warning("Failed to allocate second CM bit map");
 554     return;
 555   }
 556 
 557   // Create & start a ConcurrentMark thread.
 558   _cmThread = new ConcurrentMarkThread(this);
 559   assert(cmThread() != NULL, "CM Thread should have been created");
 560   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 561   if (_cmThread->osthread() == NULL) {
 562       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 563   }
 564 
 565   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 566   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
 567   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
 568 
 569   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 570   satb_qs.set_buffer_size(G1SATBBufferSize);
 571 
 572   _root_regions.init(_g1h, this);
 573 
 574   if (ConcGCThreads > ParallelGCThreads) {
 575     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 576             "than ParallelGCThreads (" UINTX_FORMAT ").",
 577             ConcGCThreads, ParallelGCThreads);
 578     return;
 579   }
 580   if (ParallelGCThreads == 0) {
 581     // if we are not running with any parallel GC threads we will not
 582     // spawn any marking threads either
 583     _parallel_marking_threads =       0;
 584     _max_parallel_marking_threads =   0;
 585     _sleep_factor             =     0.0;
 586     _marking_task_overhead    =     1.0;
 587   } else {
 588     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 589       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 590       // if both are set
 591       _sleep_factor             = 0.0;
 592       _marking_task_overhead    = 1.0;
 593     } else if (G1MarkingOverheadPercent > 0) {
 594       // We will calculate the number of parallel marking threads based
 595       // on a target overhead with respect to the soft real-time goal
 596       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 597       double overall_cm_overhead =
 598         (double) MaxGCPauseMillis * marking_overhead /
 599         (double) GCPauseIntervalMillis;
 600       double cpu_ratio = 1.0 / (double) os::processor_count();
 601       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 602       double marking_task_overhead =
 603         overall_cm_overhead / marking_thread_num *
 604                                                 (double) os::processor_count();
 605       double sleep_factor =
 606                          (1.0 - marking_task_overhead) / marking_task_overhead;
 607 
 608       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 609       _sleep_factor             = sleep_factor;
 610       _marking_task_overhead    = marking_task_overhead;
 611     } else {
 612       // Calculate the number of parallel marking threads by scaling
 613       // the number of parallel GC threads.
 614       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 615       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 616       _sleep_factor             = 0.0;
 617       _marking_task_overhead    = 1.0;
 618     }
 619 
 620     assert(ConcGCThreads > 0, "Should have been set");
 621     _parallel_marking_threads = (uint) ConcGCThreads;
 622     _max_parallel_marking_threads = _parallel_marking_threads;
 623 
 624     if (parallel_marking_threads() > 1) {
 625       _cleanup_task_overhead = 1.0;
 626     } else {
 627       _cleanup_task_overhead = marking_task_overhead();
 628     }
 629     _cleanup_sleep_factor =
 630                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 631 
 632 #if 0
 633     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 634     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 635     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 636     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 637     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 638 #endif
 639 
 640     guarantee(parallel_marking_threads() > 0, "peace of mind");
 641     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 642          _max_parallel_marking_threads, false, true);
 643     if (_parallel_workers == NULL) {
 644       vm_exit_during_initialization("Failed necessary allocation.");
 645     } else {
 646       _parallel_workers->initialize_workers();
 647     }
 648   }
 649 
 650   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 651     uintx mark_stack_size =
 652       MIN2(MarkStackSizeMax,
 653           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 654     // Verify that the calculated value for MarkStackSize is in range.
 655     // It would be nice to use the private utility routine from Arguments.
 656     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 657       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 658               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 659               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 660       return;
 661     }
 662     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 663   } else {
 664     // Verify MarkStackSize is in range.
 665     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 666       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 667         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 668           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 669                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 670                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 671           return;
 672         }
 673       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 674         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 675           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 676                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 677                   MarkStackSize, MarkStackSizeMax);
 678           return;
 679         }
 680       }
 681     }
 682   }
 683 
 684   if (!_markStack.allocate(MarkStackSize)) {
 685     warning("Failed to allocate CM marking stack");
 686     return;
 687   }
 688 
 689   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 690   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 691 
 692   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 693   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 694 
 695   BitMap::idx_t card_bm_size = _card_bm.size();
 696 
 697   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 698   _active_tasks = _max_worker_id;
 699 
 700   size_t max_regions = (size_t) _g1h->max_regions();
 701   for (uint i = 0; i < _max_worker_id; ++i) {
 702     CMTaskQueue* task_queue = new CMTaskQueue();
 703     task_queue->initialize();
 704     _task_queues->register_queue(i, task_queue);
 705 
 706     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 707     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 708 
 709     _tasks[i] = new CMTask(i, this,
 710                            _count_marked_bytes[i],
 711                            &_count_card_bitmaps[i],
 712                            task_queue, _task_queues);
 713 
 714     _accum_task_vtime[i] = 0.0;
 715   }
 716 
 717   // Calculate the card number for the bottom of the heap. Used
 718   // in biasing indexes into the accounting card bitmaps.
 719   _heap_bottom_card_num =
 720     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 721                                 CardTableModRefBS::card_shift);
 722 
 723   // Clear all the liveness counting data
 724   clear_all_count_data();
 725 
 726   // so that the call below can read a sensible value
 727   _heap_start = (HeapWord*) heap_rs.base();
 728   set_non_marking_state();
 729   _completed_initialization = true;
 730 }
 731 
 732 void ConcurrentMark::update_g1_committed(bool force) {
 733   // If concurrent marking is not in progress, then we do not need to
 734   // update _heap_end.
 735   if (!concurrent_marking_in_progress() && !force) return;
 736 
 737   MemRegion committed = _g1h->g1_committed();
 738   assert(committed.start() == _heap_start, "start shouldn't change");
 739   HeapWord* new_end = committed.end();
 740   if (new_end > _heap_end) {
 741     // The heap has been expanded.
 742 
 743     _heap_end = new_end;
 744   }
 745   // Notice that the heap can also shrink. However, this only happens
 746   // during a Full GC (at least currently) and the entire marking
 747   // phase will bail out and the task will not be restarted. So, let's
 748   // do nothing.
 749 }
 750 
 751 void ConcurrentMark::reset() {
 752   // Starting values for these two. This should be called in a STW
 753   // phase. CM will be notified of any future g1_committed expansions
 754   // will be at the end of evacuation pauses, when tasks are
 755   // inactive.
 756   MemRegion committed = _g1h->g1_committed();
 757   _heap_start = committed.start();
 758   _heap_end   = committed.end();
 759 
 760   // Separated the asserts so that we know which one fires.
 761   assert(_heap_start != NULL, "heap bounds should look ok");
 762   assert(_heap_end != NULL, "heap bounds should look ok");
 763   assert(_heap_start < _heap_end, "heap bounds should look ok");
 764 
 765   // Reset all the marking data structures and any necessary flags
 766   reset_marking_state();
 767 
 768   if (verbose_low()) {
 769     gclog_or_tty->print_cr("[global] resetting");
 770   }
 771 
 772   // We do reset all of them, since different phases will use
 773   // different number of active threads. So, it's easiest to have all
 774   // of them ready.
 775   for (uint i = 0; i < _max_worker_id; ++i) {
 776     _tasks[i]->reset(_nextMarkBitMap);
 777   }
 778 
 779   // we need this to make sure that the flag is on during the evac
 780   // pause with initial mark piggy-backed
 781   set_concurrent_marking_in_progress();
 782 }
 783 
 784 
 785 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 786   _markStack.set_should_expand();
 787   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 788   if (clear_overflow) {
 789     clear_has_overflown();
 790   } else {
 791     assert(has_overflown(), "pre-condition");
 792   }
 793   _finger = _heap_start;
 794 
 795   for (uint i = 0; i < _max_worker_id; ++i) {
 796     CMTaskQueue* queue = _task_queues->queue(i);
 797     queue->set_empty();
 798   }
 799 }
 800 
 801 void ConcurrentMark::set_concurrency(uint active_tasks) {
 802   assert(active_tasks <= _max_worker_id, "we should not have more");
 803 
 804   _active_tasks = active_tasks;
 805   // Need to update the three data structures below according to the
 806   // number of active threads for this phase.
 807   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 808   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 809   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 810 }
 811 
 812 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 813   set_concurrency(active_tasks);
 814 
 815   _concurrent = concurrent;
 816   // We propagate this to all tasks, not just the active ones.
 817   for (uint i = 0; i < _max_worker_id; ++i)
 818     _tasks[i]->set_concurrent(concurrent);
 819 
 820   if (concurrent) {
 821     set_concurrent_marking_in_progress();
 822   } else {
 823     // We currently assume that the concurrent flag has been set to
 824     // false before we start remark. At this point we should also be
 825     // in a STW phase.
 826     assert(!concurrent_marking_in_progress(), "invariant");
 827     assert(out_of_regions(),
 828            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 829                    p2i(_finger), p2i(_heap_end)));
 830     update_g1_committed(true);
 831   }
 832 }
 833 
 834 void ConcurrentMark::set_non_marking_state() {
 835   // We set the global marking state to some default values when we're
 836   // not doing marking.
 837   reset_marking_state();
 838   _active_tasks = 0;
 839   clear_concurrent_marking_in_progress();
 840 }
 841 
 842 ConcurrentMark::~ConcurrentMark() {
 843   // The ConcurrentMark instance is never freed.
 844   ShouldNotReachHere();
 845 }
 846 
 847 void ConcurrentMark::clearNextBitmap() {
 848   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 849   G1CollectorPolicy* g1p = g1h->g1_policy();
 850 
 851   // Make sure that the concurrent mark thread looks to still be in
 852   // the current cycle.
 853   guarantee(cmThread()->during_cycle(), "invariant");
 854 
 855   // We are finishing up the current cycle by clearing the next
 856   // marking bitmap and getting it ready for the next cycle. During
 857   // this time no other cycle can start. So, let's make sure that this
 858   // is the case.
 859   guarantee(!g1h->mark_in_progress(), "invariant");
 860 
 861   // clear the mark bitmap (no grey objects to start with).
 862   // We need to do this in chunks and offer to yield in between
 863   // each chunk.
 864   HeapWord* start  = _nextMarkBitMap->startWord();
 865   HeapWord* end    = _nextMarkBitMap->endWord();
 866   HeapWord* cur    = start;
 867   size_t chunkSize = M;
 868   while (cur < end) {
 869     HeapWord* next = cur + chunkSize;
 870     if (next > end) {
 871       next = end;
 872     }
 873     MemRegion mr(cur,next);
 874     _nextMarkBitMap->clearRange(mr);
 875     cur = next;
 876     do_yield_check();
 877 
 878     // Repeat the asserts from above. We'll do them as asserts here to
 879     // minimize their overhead on the product. However, we'll have
 880     // them as guarantees at the beginning / end of the bitmap
 881     // clearing to get some checking in the product.
 882     assert(cmThread()->during_cycle(), "invariant");
 883     assert(!g1h->mark_in_progress(), "invariant");
 884   }
 885 
 886   // Clear the liveness counting data
 887   clear_all_count_data();
 888 
 889   // Repeat the asserts from above.
 890   guarantee(cmThread()->during_cycle(), "invariant");
 891   guarantee(!g1h->mark_in_progress(), "invariant");
 892 }
 893 
 894 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 895 public:
 896   bool doHeapRegion(HeapRegion* r) {
 897     if (!r->continuesHumongous()) {
 898       r->note_start_of_marking();
 899     }
 900     return false;
 901   }
 902 };
 903 
 904 void ConcurrentMark::checkpointRootsInitialPre() {
 905   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 906   G1CollectorPolicy* g1p = g1h->g1_policy();
 907 
 908   _has_aborted = false;
 909 
 910 #ifndef PRODUCT
 911   if (G1PrintReachableAtInitialMark) {
 912     print_reachable("at-cycle-start",
 913                     VerifyOption_G1UsePrevMarking, true /* all */);
 914   }
 915 #endif
 916 
 917   // Initialize marking structures. This has to be done in a STW phase.
 918   reset();
 919 
 920   // For each region note start of marking.
 921   NoteStartOfMarkHRClosure startcl;
 922   g1h->heap_region_iterate(&startcl);
 923 }
 924 
 925 
 926 void ConcurrentMark::checkpointRootsInitialPost() {
 927   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 928 
 929   // If we force an overflow during remark, the remark operation will
 930   // actually abort and we'll restart concurrent marking. If we always
 931   // force an overflow during remark we'll never actually complete the
 932   // marking phase. So, we initialize this here, at the start of the
 933   // cycle, so that at the remaining overflow number will decrease at
 934   // every remark and we'll eventually not need to cause one.
 935   force_overflow_stw()->init();
 936 
 937   // Start Concurrent Marking weak-reference discovery.
 938   ReferenceProcessor* rp = g1h->ref_processor_cm();
 939   // enable ("weak") refs discovery
 940   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 941   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 942 
 943   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 944   // This is the start of  the marking cycle, we're expected all
 945   // threads to have SATB queues with active set to false.
 946   satb_mq_set.set_active_all_threads(true, /* new active value */
 947                                      false /* expected_active */);
 948 
 949   _root_regions.prepare_for_scan();
 950 
 951   // update_g1_committed() will be called at the end of an evac pause
 952   // when marking is on. So, it's also called at the end of the
 953   // initial-mark pause to update the heap end, if the heap expands
 954   // during it. No need to call it here.
 955 }
 956 
 957 /*
 958  * Notice that in the next two methods, we actually leave the STS
 959  * during the barrier sync and join it immediately afterwards. If we
 960  * do not do this, the following deadlock can occur: one thread could
 961  * be in the barrier sync code, waiting for the other thread to also
 962  * sync up, whereas another one could be trying to yield, while also
 963  * waiting for the other threads to sync up too.
 964  *
 965  * Note, however, that this code is also used during remark and in
 966  * this case we should not attempt to leave / enter the STS, otherwise
 967  * we'll either hit an assert (debug / fastdebug) or deadlock
 968  * (product). So we should only leave / enter the STS if we are
 969  * operating concurrently.
 970  *
 971  * Because the thread that does the sync barrier has left the STS, it
 972  * is possible to be suspended for a Full GC or an evacuation pause
 973  * could occur. This is actually safe, since the entering the sync
 974  * barrier is one of the last things do_marking_step() does, and it
 975  * doesn't manipulate any data structures afterwards.
 976  */
 977 
 978 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 979   if (verbose_low()) {
 980     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 981   }
 982 
 983   if (concurrent()) {
 984     SuspendibleThreadSet::leave();
 985   }
 986 
 987   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
 988 
 989   if (concurrent()) {
 990     SuspendibleThreadSet::join();
 991   }
 992   // at this point everyone should have synced up and not be doing any
 993   // more work
 994 
 995   if (verbose_low()) {
 996     if (barrier_aborted) {
 997       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
 998     } else {
 999       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1000     }
1001   }
1002 
1003   if (barrier_aborted) {
1004     // If the barrier aborted we ignore the overflow condition and
1005     // just abort the whole marking phase as quickly as possible.
1006     return;
1007   }
1008 
1009   // If we're executing the concurrent phase of marking, reset the marking
1010   // state; otherwise the marking state is reset after reference processing,
1011   // during the remark pause.
1012   // If we reset here as a result of an overflow during the remark we will
1013   // see assertion failures from any subsequent set_concurrency_and_phase()
1014   // calls.
1015   if (concurrent()) {
1016     // let the task associated with with worker 0 do this
1017     if (worker_id == 0) {
1018       // task 0 is responsible for clearing the global data structures
1019       // We should be here because of an overflow. During STW we should
1020       // not clear the overflow flag since we rely on it being true when
1021       // we exit this method to abort the pause and restart concurrent
1022       // marking.
1023       reset_marking_state(true /* clear_overflow */);
1024       force_overflow()->update();
1025 
1026       if (G1Log::fine()) {
1027         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1028         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1029       }
1030     }
1031   }
1032 
1033   // after this, each task should reset its own data structures then
1034   // then go into the second barrier
1035 }
1036 
1037 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1038   if (verbose_low()) {
1039     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1040   }
1041 
1042   if (concurrent()) {
1043     SuspendibleThreadSet::leave();
1044   }
1045 
1046   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1047 
1048   if (concurrent()) {
1049     SuspendibleThreadSet::join();
1050   }
1051   // at this point everything should be re-initialized and ready to go
1052 
1053   if (verbose_low()) {
1054     if (barrier_aborted) {
1055       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1056     } else {
1057       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1058     }
1059   }
1060 }
1061 
1062 #ifndef PRODUCT
1063 void ForceOverflowSettings::init() {
1064   _num_remaining = G1ConcMarkForceOverflow;
1065   _force = false;
1066   update();
1067 }
1068 
1069 void ForceOverflowSettings::update() {
1070   if (_num_remaining > 0) {
1071     _num_remaining -= 1;
1072     _force = true;
1073   } else {
1074     _force = false;
1075   }
1076 }
1077 
1078 bool ForceOverflowSettings::should_force() {
1079   if (_force) {
1080     _force = false;
1081     return true;
1082   } else {
1083     return false;
1084   }
1085 }
1086 #endif // !PRODUCT
1087 
1088 class CMConcurrentMarkingTask: public AbstractGangTask {
1089 private:
1090   ConcurrentMark*       _cm;
1091   ConcurrentMarkThread* _cmt;
1092 
1093 public:
1094   void work(uint worker_id) {
1095     assert(Thread::current()->is_ConcurrentGC_thread(),
1096            "this should only be done by a conc GC thread");
1097     ResourceMark rm;
1098 
1099     double start_vtime = os::elapsedVTime();
1100 
1101     SuspendibleThreadSet::join();
1102 
1103     assert(worker_id < _cm->active_tasks(), "invariant");
1104     CMTask* the_task = _cm->task(worker_id);
1105     the_task->record_start_time();
1106     if (!_cm->has_aborted()) {
1107       do {
1108         double start_vtime_sec = os::elapsedVTime();
1109         double start_time_sec = os::elapsedTime();
1110         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1111 
1112         the_task->do_marking_step(mark_step_duration_ms,
1113                                   true  /* do_termination */,
1114                                   false /* is_serial*/);
1115 
1116         double end_time_sec = os::elapsedTime();
1117         double end_vtime_sec = os::elapsedVTime();
1118         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1119         double elapsed_time_sec = end_time_sec - start_time_sec;
1120         _cm->clear_has_overflown();
1121 
1122         bool ret = _cm->do_yield_check(worker_id);
1123 
1124         jlong sleep_time_ms;
1125         if (!_cm->has_aborted() && the_task->has_aborted()) {
1126           sleep_time_ms =
1127             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1128           SuspendibleThreadSet::leave();
1129           os::sleep(Thread::current(), sleep_time_ms, false);
1130           SuspendibleThreadSet::join();
1131         }
1132         double end_time2_sec = os::elapsedTime();
1133         double elapsed_time2_sec = end_time2_sec - start_time_sec;
1134 
1135 #if 0
1136           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
1137                                  "overhead %1.4lf",
1138                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
1139                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
1140           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
1141                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
1142 #endif
1143       } while (!_cm->has_aborted() && the_task->has_aborted());
1144     }
1145     the_task->record_end_time();
1146     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1147 
1148     SuspendibleThreadSet::leave();
1149 
1150     double end_vtime = os::elapsedVTime();
1151     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1152   }
1153 
1154   CMConcurrentMarkingTask(ConcurrentMark* cm,
1155                           ConcurrentMarkThread* cmt) :
1156       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1157 
1158   ~CMConcurrentMarkingTask() { }
1159 };
1160 
1161 // Calculates the number of active workers for a concurrent
1162 // phase.
1163 uint ConcurrentMark::calc_parallel_marking_threads() {
1164   if (G1CollectedHeap::use_parallel_gc_threads()) {
1165     uint n_conc_workers = 0;
1166     if (!UseDynamicNumberOfGCThreads ||
1167         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1168          !ForceDynamicNumberOfGCThreads)) {
1169       n_conc_workers = max_parallel_marking_threads();
1170     } else {
1171       n_conc_workers =
1172         AdaptiveSizePolicy::calc_default_active_workers(
1173                                      max_parallel_marking_threads(),
1174                                      1, /* Minimum workers */
1175                                      parallel_marking_threads(),
1176                                      Threads::number_of_non_daemon_threads());
1177       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1178       // that scaling has already gone into "_max_parallel_marking_threads".
1179     }
1180     assert(n_conc_workers > 0, "Always need at least 1");
1181     return n_conc_workers;
1182   }
1183   // If we are not running with any parallel GC threads we will not
1184   // have spawned any marking threads either. Hence the number of
1185   // concurrent workers should be 0.
1186   return 0;
1187 }
1188 
1189 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1190   // Currently, only survivors can be root regions.
1191   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1192   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1193 
1194   const uintx interval = PrefetchScanIntervalInBytes;
1195   HeapWord* curr = hr->bottom();
1196   const HeapWord* end = hr->top();
1197   while (curr < end) {
1198     Prefetch::read(curr, interval);
1199     oop obj = oop(curr);
1200     int size = obj->oop_iterate(&cl);
1201     assert(size == obj->size(), "sanity");
1202     curr += size;
1203   }
1204 }
1205 
1206 class CMRootRegionScanTask : public AbstractGangTask {
1207 private:
1208   ConcurrentMark* _cm;
1209 
1210 public:
1211   CMRootRegionScanTask(ConcurrentMark* cm) :
1212     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1213 
1214   void work(uint worker_id) {
1215     assert(Thread::current()->is_ConcurrentGC_thread(),
1216            "this should only be done by a conc GC thread");
1217 
1218     CMRootRegions* root_regions = _cm->root_regions();
1219     HeapRegion* hr = root_regions->claim_next();
1220     while (hr != NULL) {
1221       _cm->scanRootRegion(hr, worker_id);
1222       hr = root_regions->claim_next();
1223     }
1224   }
1225 };
1226 
1227 void ConcurrentMark::scanRootRegions() {
1228   // Start of concurrent marking.
1229   ClassLoaderDataGraph::clear_claimed_marks();
1230 
1231   // scan_in_progress() will have been set to true only if there was
1232   // at least one root region to scan. So, if it's false, we
1233   // should not attempt to do any further work.
1234   if (root_regions()->scan_in_progress()) {
1235     _parallel_marking_threads = calc_parallel_marking_threads();
1236     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1237            "Maximum number of marking threads exceeded");
1238     uint active_workers = MAX2(1U, parallel_marking_threads());
1239 
1240     CMRootRegionScanTask task(this);
1241     if (use_parallel_marking_threads()) {
1242       _parallel_workers->set_active_workers((int) active_workers);
1243       _parallel_workers->run_task(&task);
1244     } else {
1245       task.work(0);
1246     }
1247 
1248     // It's possible that has_aborted() is true here without actually
1249     // aborting the survivor scan earlier. This is OK as it's
1250     // mainly used for sanity checking.
1251     root_regions()->scan_finished();
1252   }
1253 }
1254 
1255 void ConcurrentMark::markFromRoots() {
1256   // we might be tempted to assert that:
1257   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1258   //        "inconsistent argument?");
1259   // However that wouldn't be right, because it's possible that
1260   // a safepoint is indeed in progress as a younger generation
1261   // stop-the-world GC happens even as we mark in this generation.
1262 
1263   _restart_for_overflow = false;
1264   force_overflow_conc()->init();
1265 
1266   // _g1h has _n_par_threads
1267   _parallel_marking_threads = calc_parallel_marking_threads();
1268   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1269     "Maximum number of marking threads exceeded");
1270 
1271   uint active_workers = MAX2(1U, parallel_marking_threads());
1272 
1273   // Parallel task terminator is set in "set_concurrency_and_phase()"
1274   set_concurrency_and_phase(active_workers, true /* concurrent */);
1275 
1276   CMConcurrentMarkingTask markingTask(this, cmThread());
1277   if (use_parallel_marking_threads()) {
1278     _parallel_workers->set_active_workers((int)active_workers);
1279     // Don't set _n_par_threads because it affects MT in process_roots()
1280     // and the decisions on that MT processing is made elsewhere.
1281     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1282     _parallel_workers->run_task(&markingTask);
1283   } else {
1284     markingTask.work(0);
1285   }
1286   print_stats();
1287 }
1288 
1289 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1290   // world is stopped at this checkpoint
1291   assert(SafepointSynchronize::is_at_safepoint(),
1292          "world should be stopped");
1293 
1294   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1295 
1296   // If a full collection has happened, we shouldn't do this.
1297   if (has_aborted()) {
1298     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1299     return;
1300   }
1301 
1302   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1303 
1304   if (VerifyDuringGC) {
1305     HandleMark hm;  // handle scope
1306     Universe::heap()->prepare_for_verify();
1307     Universe::verify(VerifyOption_G1UsePrevMarking,
1308                      " VerifyDuringGC:(before)");
1309   }
1310   g1h->check_bitmaps("Remark Start");
1311 
1312   G1CollectorPolicy* g1p = g1h->g1_policy();
1313   g1p->record_concurrent_mark_remark_start();
1314 
1315   double start = os::elapsedTime();
1316 
1317   checkpointRootsFinalWork();
1318 
1319   double mark_work_end = os::elapsedTime();
1320 
1321   weakRefsWork(clear_all_soft_refs);
1322 
1323   if (has_overflown()) {
1324     // Oops.  We overflowed.  Restart concurrent marking.
1325     _restart_for_overflow = true;
1326     if (G1TraceMarkStackOverflow) {
1327       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1328     }
1329 
1330     // Verify the heap w.r.t. the previous marking bitmap.
1331     if (VerifyDuringGC) {
1332       HandleMark hm;  // handle scope
1333       Universe::heap()->prepare_for_verify();
1334       Universe::verify(VerifyOption_G1UsePrevMarking,
1335                        " VerifyDuringGC:(overflow)");
1336     }
1337 
1338     // Clear the marking state because we will be restarting
1339     // marking due to overflowing the global mark stack.
1340     reset_marking_state();
1341   } else {
1342     // Aggregate the per-task counting data that we have accumulated
1343     // while marking.
1344     aggregate_count_data();
1345 
1346     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1347     // We're done with marking.
1348     // This is the end of  the marking cycle, we're expected all
1349     // threads to have SATB queues with active set to true.
1350     satb_mq_set.set_active_all_threads(false, /* new active value */
1351                                        true /* expected_active */);
1352 
1353     if (VerifyDuringGC) {
1354       HandleMark hm;  // handle scope
1355       Universe::heap()->prepare_for_verify();
1356       Universe::verify(VerifyOption_G1UseNextMarking,
1357                        " VerifyDuringGC:(after)");
1358     }
1359     g1h->check_bitmaps("Remark End");
1360     assert(!restart_for_overflow(), "sanity");
1361     // Completely reset the marking state since marking completed
1362     set_non_marking_state();
1363   }
1364 
1365   // Expand the marking stack, if we have to and if we can.
1366   if (_markStack.should_expand()) {
1367     _markStack.expand();
1368   }
1369 
1370   // Statistics
1371   double now = os::elapsedTime();
1372   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1373   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1374   _remark_times.add((now - start) * 1000.0);
1375 
1376   g1p->record_concurrent_mark_remark_end();
1377 
1378   G1CMIsAliveClosure is_alive(g1h);
1379   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1380 }
1381 
1382 // Base class of the closures that finalize and verify the
1383 // liveness counting data.
1384 class CMCountDataClosureBase: public HeapRegionClosure {
1385 protected:
1386   G1CollectedHeap* _g1h;
1387   ConcurrentMark* _cm;
1388   CardTableModRefBS* _ct_bs;
1389 
1390   BitMap* _region_bm;
1391   BitMap* _card_bm;
1392 
1393   // Takes a region that's not empty (i.e., it has at least one
1394   // live object in it and sets its corresponding bit on the region
1395   // bitmap to 1. If the region is "starts humongous" it will also set
1396   // to 1 the bits on the region bitmap that correspond to its
1397   // associated "continues humongous" regions.
1398   void set_bit_for_region(HeapRegion* hr) {
1399     assert(!hr->continuesHumongous(), "should have filtered those out");
1400 
1401     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1402     if (!hr->startsHumongous()) {
1403       // Normal (non-humongous) case: just set the bit.
1404       _region_bm->par_at_put(index, true);
1405     } else {
1406       // Starts humongous case: calculate how many regions are part of
1407       // this humongous region and then set the bit range.
1408       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1409       _region_bm->par_at_put_range(index, end_index, true);
1410     }
1411   }
1412 
1413 public:
1414   CMCountDataClosureBase(G1CollectedHeap* g1h,
1415                          BitMap* region_bm, BitMap* card_bm):
1416     _g1h(g1h), _cm(g1h->concurrent_mark()),
1417     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1418     _region_bm(region_bm), _card_bm(card_bm) { }
1419 };
1420 
1421 // Closure that calculates the # live objects per region. Used
1422 // for verification purposes during the cleanup pause.
1423 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1424   CMBitMapRO* _bm;
1425   size_t _region_marked_bytes;
1426 
1427 public:
1428   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1429                          BitMap* region_bm, BitMap* card_bm) :
1430     CMCountDataClosureBase(g1h, region_bm, card_bm),
1431     _bm(bm), _region_marked_bytes(0) { }
1432 
1433   bool doHeapRegion(HeapRegion* hr) {
1434 
1435     if (hr->continuesHumongous()) {
1436       // We will ignore these here and process them when their
1437       // associated "starts humongous" region is processed (see
1438       // set_bit_for_heap_region()). Note that we cannot rely on their
1439       // associated "starts humongous" region to have their bit set to
1440       // 1 since, due to the region chunking in the parallel region
1441       // iteration, a "continues humongous" region might be visited
1442       // before its associated "starts humongous".
1443       return false;
1444     }
1445 
1446     HeapWord* ntams = hr->next_top_at_mark_start();
1447     HeapWord* start = hr->bottom();
1448 
1449     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1450            err_msg("Preconditions not met - "
1451                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1452                    p2i(start), p2i(ntams), p2i(hr->end())));
1453 
1454     // Find the first marked object at or after "start".
1455     start = _bm->getNextMarkedWordAddress(start, ntams);
1456 
1457     size_t marked_bytes = 0;
1458 
1459     while (start < ntams) {
1460       oop obj = oop(start);
1461       int obj_sz = obj->size();
1462       HeapWord* obj_end = start + obj_sz;
1463 
1464       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1465       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1466 
1467       // Note: if we're looking at the last region in heap - obj_end
1468       // could be actually just beyond the end of the heap; end_idx
1469       // will then correspond to a (non-existent) card that is also
1470       // just beyond the heap.
1471       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1472         // end of object is not card aligned - increment to cover
1473         // all the cards spanned by the object
1474         end_idx += 1;
1475       }
1476 
1477       // Set the bits in the card BM for the cards spanned by this object.
1478       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1479 
1480       // Add the size of this object to the number of marked bytes.
1481       marked_bytes += (size_t)obj_sz * HeapWordSize;
1482 
1483       // Find the next marked object after this one.
1484       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1485     }
1486 
1487     // Mark the allocated-since-marking portion...
1488     HeapWord* top = hr->top();
1489     if (ntams < top) {
1490       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1491       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1492 
1493       // Note: if we're looking at the last region in heap - top
1494       // could be actually just beyond the end of the heap; end_idx
1495       // will then correspond to a (non-existent) card that is also
1496       // just beyond the heap.
1497       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1498         // end of object is not card aligned - increment to cover
1499         // all the cards spanned by the object
1500         end_idx += 1;
1501       }
1502       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1503 
1504       // This definitely means the region has live objects.
1505       set_bit_for_region(hr);
1506     }
1507 
1508     // Update the live region bitmap.
1509     if (marked_bytes > 0) {
1510       set_bit_for_region(hr);
1511     }
1512 
1513     // Set the marked bytes for the current region so that
1514     // it can be queried by a calling verification routine
1515     _region_marked_bytes = marked_bytes;
1516 
1517     return false;
1518   }
1519 
1520   size_t region_marked_bytes() const { return _region_marked_bytes; }
1521 };
1522 
1523 // Heap region closure used for verifying the counting data
1524 // that was accumulated concurrently and aggregated during
1525 // the remark pause. This closure is applied to the heap
1526 // regions during the STW cleanup pause.
1527 
1528 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1529   G1CollectedHeap* _g1h;
1530   ConcurrentMark* _cm;
1531   CalcLiveObjectsClosure _calc_cl;
1532   BitMap* _region_bm;   // Region BM to be verified
1533   BitMap* _card_bm;     // Card BM to be verified
1534   bool _verbose;        // verbose output?
1535 
1536   BitMap* _exp_region_bm; // Expected Region BM values
1537   BitMap* _exp_card_bm;   // Expected card BM values
1538 
1539   int _failures;
1540 
1541 public:
1542   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1543                                 BitMap* region_bm,
1544                                 BitMap* card_bm,
1545                                 BitMap* exp_region_bm,
1546                                 BitMap* exp_card_bm,
1547                                 bool verbose) :
1548     _g1h(g1h), _cm(g1h->concurrent_mark()),
1549     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1550     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1551     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1552     _failures(0) { }
1553 
1554   int failures() const { return _failures; }
1555 
1556   bool doHeapRegion(HeapRegion* hr) {
1557     if (hr->continuesHumongous()) {
1558       // We will ignore these here and process them when their
1559       // associated "starts humongous" region is processed (see
1560       // set_bit_for_heap_region()). Note that we cannot rely on their
1561       // associated "starts humongous" region to have their bit set to
1562       // 1 since, due to the region chunking in the parallel region
1563       // iteration, a "continues humongous" region might be visited
1564       // before its associated "starts humongous".
1565       return false;
1566     }
1567 
1568     int failures = 0;
1569 
1570     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1571     // this region and set the corresponding bits in the expected region
1572     // and card bitmaps.
1573     bool res = _calc_cl.doHeapRegion(hr);
1574     assert(res == false, "should be continuing");
1575 
1576     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1577                     Mutex::_no_safepoint_check_flag);
1578 
1579     // Verify the marked bytes for this region.
1580     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1581     size_t act_marked_bytes = hr->next_marked_bytes();
1582 
1583     // We're not OK if expected marked bytes > actual marked bytes. It means
1584     // we have missed accounting some objects during the actual marking.
1585     if (exp_marked_bytes > act_marked_bytes) {
1586       if (_verbose) {
1587         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1588                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1589                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
1590       }
1591       failures += 1;
1592     }
1593 
1594     // Verify the bit, for this region, in the actual and expected
1595     // (which was just calculated) region bit maps.
1596     // We're not OK if the bit in the calculated expected region
1597     // bitmap is set and the bit in the actual region bitmap is not.
1598     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1599 
1600     bool expected = _exp_region_bm->at(index);
1601     bool actual = _region_bm->at(index);
1602     if (expected && !actual) {
1603       if (_verbose) {
1604         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1605                                "expected: %s, actual: %s",
1606                                hr->hrs_index(),
1607                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1608       }
1609       failures += 1;
1610     }
1611 
1612     // Verify that the card bit maps for the cards spanned by the current
1613     // region match. We have an error if we have a set bit in the expected
1614     // bit map and the corresponding bit in the actual bitmap is not set.
1615 
1616     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1617     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1618 
1619     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1620       expected = _exp_card_bm->at(i);
1621       actual = _card_bm->at(i);
1622 
1623       if (expected && !actual) {
1624         if (_verbose) {
1625           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1626                                  "expected: %s, actual: %s",
1627                                  hr->hrs_index(), i,
1628                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1629         }
1630         failures += 1;
1631       }
1632     }
1633 
1634     if (failures > 0 && _verbose)  {
1635       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1636                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1637                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1638                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1639     }
1640 
1641     _failures += failures;
1642 
1643     // We could stop iteration over the heap when we
1644     // find the first violating region by returning true.
1645     return false;
1646   }
1647 };
1648 
1649 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1650 protected:
1651   G1CollectedHeap* _g1h;
1652   ConcurrentMark* _cm;
1653   BitMap* _actual_region_bm;
1654   BitMap* _actual_card_bm;
1655 
1656   uint    _n_workers;
1657 
1658   BitMap* _expected_region_bm;
1659   BitMap* _expected_card_bm;
1660 
1661   int  _failures;
1662   bool _verbose;
1663 
1664 public:
1665   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1666                             BitMap* region_bm, BitMap* card_bm,
1667                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1668     : AbstractGangTask("G1 verify final counting"),
1669       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1670       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1671       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1672       _failures(0), _verbose(false),
1673       _n_workers(0) {
1674     assert(VerifyDuringGC, "don't call this otherwise");
1675 
1676     // Use the value already set as the number of active threads
1677     // in the call to run_task().
1678     if (G1CollectedHeap::use_parallel_gc_threads()) {
1679       assert( _g1h->workers()->active_workers() > 0,
1680         "Should have been previously set");
1681       _n_workers = _g1h->workers()->active_workers();
1682     } else {
1683       _n_workers = 1;
1684     }
1685 
1686     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1687     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1688 
1689     _verbose = _cm->verbose_medium();
1690   }
1691 
1692   void work(uint worker_id) {
1693     assert(worker_id < _n_workers, "invariant");
1694 
1695     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1696                                             _actual_region_bm, _actual_card_bm,
1697                                             _expected_region_bm,
1698                                             _expected_card_bm,
1699                                             _verbose);
1700 
1701     if (G1CollectedHeap::use_parallel_gc_threads()) {
1702       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1703                                             worker_id,
1704                                             _n_workers,
1705                                             HeapRegion::VerifyCountClaimValue);
1706     } else {
1707       _g1h->heap_region_iterate(&verify_cl);
1708     }
1709 
1710     Atomic::add(verify_cl.failures(), &_failures);
1711   }
1712 
1713   int failures() const { return _failures; }
1714 };
1715 
1716 // Closure that finalizes the liveness counting data.
1717 // Used during the cleanup pause.
1718 // Sets the bits corresponding to the interval [NTAMS, top]
1719 // (which contains the implicitly live objects) in the
1720 // card liveness bitmap. Also sets the bit for each region,
1721 // containing live data, in the region liveness bitmap.
1722 
1723 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1724  public:
1725   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1726                               BitMap* region_bm,
1727                               BitMap* card_bm) :
1728     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1729 
1730   bool doHeapRegion(HeapRegion* hr) {
1731 
1732     if (hr->continuesHumongous()) {
1733       // We will ignore these here and process them when their
1734       // associated "starts humongous" region is processed (see
1735       // set_bit_for_heap_region()). Note that we cannot rely on their
1736       // associated "starts humongous" region to have their bit set to
1737       // 1 since, due to the region chunking in the parallel region
1738       // iteration, a "continues humongous" region might be visited
1739       // before its associated "starts humongous".
1740       return false;
1741     }
1742 
1743     HeapWord* ntams = hr->next_top_at_mark_start();
1744     HeapWord* top   = hr->top();
1745 
1746     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1747 
1748     // Mark the allocated-since-marking portion...
1749     if (ntams < top) {
1750       // This definitely means the region has live objects.
1751       set_bit_for_region(hr);
1752 
1753       // Now set the bits in the card bitmap for [ntams, top)
1754       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1755       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1756 
1757       // Note: if we're looking at the last region in heap - top
1758       // could be actually just beyond the end of the heap; end_idx
1759       // will then correspond to a (non-existent) card that is also
1760       // just beyond the heap.
1761       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1762         // end of object is not card aligned - increment to cover
1763         // all the cards spanned by the object
1764         end_idx += 1;
1765       }
1766 
1767       assert(end_idx <= _card_bm->size(),
1768              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1769                      end_idx, _card_bm->size()));
1770       assert(start_idx < _card_bm->size(),
1771              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1772                      start_idx, _card_bm->size()));
1773 
1774       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1775     }
1776 
1777     // Set the bit for the region if it contains live data
1778     if (hr->next_marked_bytes() > 0) {
1779       set_bit_for_region(hr);
1780     }
1781 
1782     return false;
1783   }
1784 };
1785 
1786 class G1ParFinalCountTask: public AbstractGangTask {
1787 protected:
1788   G1CollectedHeap* _g1h;
1789   ConcurrentMark* _cm;
1790   BitMap* _actual_region_bm;
1791   BitMap* _actual_card_bm;
1792 
1793   uint    _n_workers;
1794 
1795 public:
1796   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1797     : AbstractGangTask("G1 final counting"),
1798       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1799       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1800       _n_workers(0) {
1801     // Use the value already set as the number of active threads
1802     // in the call to run_task().
1803     if (G1CollectedHeap::use_parallel_gc_threads()) {
1804       assert( _g1h->workers()->active_workers() > 0,
1805         "Should have been previously set");
1806       _n_workers = _g1h->workers()->active_workers();
1807     } else {
1808       _n_workers = 1;
1809     }
1810   }
1811 
1812   void work(uint worker_id) {
1813     assert(worker_id < _n_workers, "invariant");
1814 
1815     FinalCountDataUpdateClosure final_update_cl(_g1h,
1816                                                 _actual_region_bm,
1817                                                 _actual_card_bm);
1818 
1819     if (G1CollectedHeap::use_parallel_gc_threads()) {
1820       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1821                                             worker_id,
1822                                             _n_workers,
1823                                             HeapRegion::FinalCountClaimValue);
1824     } else {
1825       _g1h->heap_region_iterate(&final_update_cl);
1826     }
1827   }
1828 };
1829 
1830 class G1ParNoteEndTask;
1831 
1832 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1833   G1CollectedHeap* _g1;
1834   size_t _max_live_bytes;
1835   uint _regions_claimed;
1836   size_t _freed_bytes;
1837   FreeRegionList* _local_cleanup_list;
1838   HeapRegionSetCount _old_regions_removed;
1839   HeapRegionSetCount _humongous_regions_removed;
1840   HRRSCleanupTask* _hrrs_cleanup_task;
1841   double _claimed_region_time;
1842   double _max_region_time;
1843 
1844 public:
1845   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1846                              FreeRegionList* local_cleanup_list,
1847                              HRRSCleanupTask* hrrs_cleanup_task) :
1848     _g1(g1),
1849     _max_live_bytes(0), _regions_claimed(0),
1850     _freed_bytes(0),
1851     _claimed_region_time(0.0), _max_region_time(0.0),
1852     _local_cleanup_list(local_cleanup_list),
1853     _old_regions_removed(),
1854     _humongous_regions_removed(),
1855     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1856 
1857   size_t freed_bytes() { return _freed_bytes; }
1858   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1859   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1860 
1861   bool doHeapRegion(HeapRegion *hr) {
1862     if (hr->continuesHumongous()) {
1863       return false;
1864     }
1865     // We use a claim value of zero here because all regions
1866     // were claimed with value 1 in the FinalCount task.
1867     _g1->reset_gc_time_stamps(hr);
1868     double start = os::elapsedTime();
1869     _regions_claimed++;
1870     hr->note_end_of_marking();
1871     _max_live_bytes += hr->max_live_bytes();
1872 
1873     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1874       _freed_bytes += hr->used();
1875       hr->set_containing_set(NULL);
1876       if (hr->isHumongous()) {
1877         assert(hr->startsHumongous(), "we should only see starts humongous");
1878         _humongous_regions_removed.increment(1u, hr->capacity());
1879         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1880       } else {
1881         _old_regions_removed.increment(1u, hr->capacity());
1882         _g1->free_region(hr, _local_cleanup_list, true);
1883       }
1884     } else {
1885       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1886     }
1887 
1888     double region_time = (os::elapsedTime() - start);
1889     _claimed_region_time += region_time;
1890     if (region_time > _max_region_time) {
1891       _max_region_time = region_time;
1892     }
1893     return false;
1894   }
1895 
1896   size_t max_live_bytes() { return _max_live_bytes; }
1897   uint regions_claimed() { return _regions_claimed; }
1898   double claimed_region_time_sec() { return _claimed_region_time; }
1899   double max_region_time_sec() { return _max_region_time; }
1900 };
1901 
1902 class G1ParNoteEndTask: public AbstractGangTask {
1903   friend class G1NoteEndOfConcMarkClosure;
1904 
1905 protected:
1906   G1CollectedHeap* _g1h;
1907   size_t _max_live_bytes;
1908   size_t _freed_bytes;
1909   FreeRegionList* _cleanup_list;
1910 
1911 public:
1912   G1ParNoteEndTask(G1CollectedHeap* g1h,
1913                    FreeRegionList* cleanup_list) :
1914     AbstractGangTask("G1 note end"), _g1h(g1h),
1915     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1916 
1917   void work(uint worker_id) {
1918     double start = os::elapsedTime();
1919     FreeRegionList local_cleanup_list("Local Cleanup List");
1920     HRRSCleanupTask hrrs_cleanup_task;
1921     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1922                                            &hrrs_cleanup_task);
1923     if (G1CollectedHeap::use_parallel_gc_threads()) {
1924       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1925                                             _g1h->workers()->active_workers(),
1926                                             HeapRegion::NoteEndClaimValue);
1927     } else {
1928       _g1h->heap_region_iterate(&g1_note_end);
1929     }
1930     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1931 
1932     // Now update the lists
1933     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1934     {
1935       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1936       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1937       _max_live_bytes += g1_note_end.max_live_bytes();
1938       _freed_bytes += g1_note_end.freed_bytes();
1939 
1940       // If we iterate over the global cleanup list at the end of
1941       // cleanup to do this printing we will not guarantee to only
1942       // generate output for the newly-reclaimed regions (the list
1943       // might not be empty at the beginning of cleanup; we might
1944       // still be working on its previous contents). So we do the
1945       // printing here, before we append the new regions to the global
1946       // cleanup list.
1947 
1948       G1HRPrinter* hr_printer = _g1h->hr_printer();
1949       if (hr_printer->is_active()) {
1950         FreeRegionListIterator iter(&local_cleanup_list);
1951         while (iter.more_available()) {
1952           HeapRegion* hr = iter.get_next();
1953           hr_printer->cleanup(hr);
1954         }
1955       }
1956 
1957       _cleanup_list->add_ordered(&local_cleanup_list);
1958       assert(local_cleanup_list.is_empty(), "post-condition");
1959 
1960       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1961     }
1962   }
1963   size_t max_live_bytes() { return _max_live_bytes; }
1964   size_t freed_bytes() { return _freed_bytes; }
1965 };
1966 
1967 class G1ParScrubRemSetTask: public AbstractGangTask {
1968 protected:
1969   G1RemSet* _g1rs;
1970   BitMap* _region_bm;
1971   BitMap* _card_bm;
1972 public:
1973   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1974                        BitMap* region_bm, BitMap* card_bm) :
1975     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1976     _region_bm(region_bm), _card_bm(card_bm) { }
1977 
1978   void work(uint worker_id) {
1979     if (G1CollectedHeap::use_parallel_gc_threads()) {
1980       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1981                        HeapRegion::ScrubRemSetClaimValue);
1982     } else {
1983       _g1rs->scrub(_region_bm, _card_bm);
1984     }
1985   }
1986 
1987 };
1988 
1989 void ConcurrentMark::cleanup() {
1990   // world is stopped at this checkpoint
1991   assert(SafepointSynchronize::is_at_safepoint(),
1992          "world should be stopped");
1993   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1994 
1995   // If a full collection has happened, we shouldn't do this.
1996   if (has_aborted()) {
1997     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1998     return;
1999   }
2000 
2001   g1h->verify_region_sets_optional();
2002 
2003   if (VerifyDuringGC) {
2004     HandleMark hm;  // handle scope
2005     Universe::heap()->prepare_for_verify();
2006     Universe::verify(VerifyOption_G1UsePrevMarking,
2007                      " VerifyDuringGC:(before)");
2008   }
2009   g1h->check_bitmaps("Cleanup Start");
2010 
2011   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
2012   g1p->record_concurrent_mark_cleanup_start();
2013 
2014   double start = os::elapsedTime();
2015 
2016   HeapRegionRemSet::reset_for_cleanup_tasks();
2017 
2018   uint n_workers;
2019 
2020   // Do counting once more with the world stopped for good measure.
2021   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2022 
2023   if (G1CollectedHeap::use_parallel_gc_threads()) {
2024    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2025            "sanity check");
2026 
2027     g1h->set_par_threads();
2028     n_workers = g1h->n_par_threads();
2029     assert(g1h->n_par_threads() == n_workers,
2030            "Should not have been reset");
2031     g1h->workers()->run_task(&g1_par_count_task);
2032     // Done with the parallel phase so reset to 0.
2033     g1h->set_par_threads(0);
2034 
2035     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2036            "sanity check");
2037   } else {
2038     n_workers = 1;
2039     g1_par_count_task.work(0);
2040   }
2041 
2042   if (VerifyDuringGC) {
2043     // Verify that the counting data accumulated during marking matches
2044     // that calculated by walking the marking bitmap.
2045 
2046     // Bitmaps to hold expected values
2047     BitMap expected_region_bm(_region_bm.size(), true);
2048     BitMap expected_card_bm(_card_bm.size(), true);
2049 
2050     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2051                                                  &_region_bm,
2052                                                  &_card_bm,
2053                                                  &expected_region_bm,
2054                                                  &expected_card_bm);
2055 
2056     if (G1CollectedHeap::use_parallel_gc_threads()) {
2057       g1h->set_par_threads((int)n_workers);
2058       g1h->workers()->run_task(&g1_par_verify_task);
2059       // Done with the parallel phase so reset to 0.
2060       g1h->set_par_threads(0);
2061 
2062       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2063              "sanity check");
2064     } else {
2065       g1_par_verify_task.work(0);
2066     }
2067 
2068     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2069   }
2070 
2071   size_t start_used_bytes = g1h->used();
2072   g1h->set_marking_complete();
2073 
2074   double count_end = os::elapsedTime();
2075   double this_final_counting_time = (count_end - start);
2076   _total_counting_time += this_final_counting_time;
2077 
2078   if (G1PrintRegionLivenessInfo) {
2079     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2080     _g1h->heap_region_iterate(&cl);
2081   }
2082 
2083   // Install newly created mark bitMap as "prev".
2084   swapMarkBitMaps();
2085 
2086   g1h->reset_gc_time_stamp();
2087 
2088   // Note end of marking in all heap regions.
2089   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2090   if (G1CollectedHeap::use_parallel_gc_threads()) {
2091     g1h->set_par_threads((int)n_workers);
2092     g1h->workers()->run_task(&g1_par_note_end_task);
2093     g1h->set_par_threads(0);
2094 
2095     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2096            "sanity check");
2097   } else {
2098     g1_par_note_end_task.work(0);
2099   }
2100   g1h->check_gc_time_stamps();
2101 
2102   if (!cleanup_list_is_empty()) {
2103     // The cleanup list is not empty, so we'll have to process it
2104     // concurrently. Notify anyone else that might be wanting free
2105     // regions that there will be more free regions coming soon.
2106     g1h->set_free_regions_coming();
2107   }
2108 
2109   // call below, since it affects the metric by which we sort the heap
2110   // regions.
2111   if (G1ScrubRemSets) {
2112     double rs_scrub_start = os::elapsedTime();
2113     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2114     if (G1CollectedHeap::use_parallel_gc_threads()) {
2115       g1h->set_par_threads((int)n_workers);
2116       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2117       g1h->set_par_threads(0);
2118 
2119       assert(g1h->check_heap_region_claim_values(
2120                                             HeapRegion::ScrubRemSetClaimValue),
2121              "sanity check");
2122     } else {
2123       g1_par_scrub_rs_task.work(0);
2124     }
2125 
2126     double rs_scrub_end = os::elapsedTime();
2127     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2128     _total_rs_scrub_time += this_rs_scrub_time;
2129   }
2130 
2131   // this will also free any regions totally full of garbage objects,
2132   // and sort the regions.
2133   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2134 
2135   // Statistics.
2136   double end = os::elapsedTime();
2137   _cleanup_times.add((end - start) * 1000.0);
2138 
2139   if (G1Log::fine()) {
2140     g1h->print_size_transition(gclog_or_tty,
2141                                start_used_bytes,
2142                                g1h->used(),
2143                                g1h->capacity());
2144   }
2145 
2146   // Clean up will have freed any regions completely full of garbage.
2147   // Update the soft reference policy with the new heap occupancy.
2148   Universe::update_heap_info_at_gc();
2149 
2150   if (VerifyDuringGC) {
2151     HandleMark hm;  // handle scope
2152     Universe::heap()->prepare_for_verify();
2153     Universe::verify(VerifyOption_G1UsePrevMarking,
2154                      " VerifyDuringGC:(after)");
2155   }
2156 
2157   g1h->check_bitmaps("Cleanup End");
2158 
2159   g1h->verify_region_sets_optional();
2160 
2161   // We need to make this be a "collection" so any collection pause that
2162   // races with it goes around and waits for completeCleanup to finish.
2163   g1h->increment_total_collections();
2164 
2165   // Clean out dead classes and update Metaspace sizes.
2166   ClassLoaderDataGraph::purge();
2167   MetaspaceGC::compute_new_size();
2168 
2169   // We reclaimed old regions so we should calculate the sizes to make
2170   // sure we update the old gen/space data.
2171   g1h->g1mm()->update_sizes();
2172 
2173   g1h->trace_heap_after_concurrent_cycle();
2174 }
2175 
2176 void ConcurrentMark::completeCleanup() {
2177   if (has_aborted()) return;
2178 
2179   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2180 
2181   _cleanup_list.verify_optional();
2182   FreeRegionList tmp_free_list("Tmp Free List");
2183 
2184   if (G1ConcRegionFreeingVerbose) {
2185     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2186                            "cleanup list has %u entries",
2187                            _cleanup_list.length());
2188   }
2189 
2190   // Noone else should be accessing the _cleanup_list at this point,
2191   // so it's not necessary to take any locks
2192   while (!_cleanup_list.is_empty()) {
2193     HeapRegion* hr = _cleanup_list.remove_head();
2194     assert(hr != NULL, "Got NULL from a non-empty list");
2195     hr->par_clear();
2196     tmp_free_list.add_ordered(hr);
2197 
2198     // Instead of adding one region at a time to the secondary_free_list,
2199     // we accumulate them in the local list and move them a few at a
2200     // time. This also cuts down on the number of notify_all() calls
2201     // we do during this process. We'll also append the local list when
2202     // _cleanup_list is empty (which means we just removed the last
2203     // region from the _cleanup_list).
2204     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2205         _cleanup_list.is_empty()) {
2206       if (G1ConcRegionFreeingVerbose) {
2207         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2208                                "appending %u entries to the secondary_free_list, "
2209                                "cleanup list still has %u entries",
2210                                tmp_free_list.length(),
2211                                _cleanup_list.length());
2212       }
2213 
2214       {
2215         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2216         g1h->secondary_free_list_add(&tmp_free_list);
2217         SecondaryFreeList_lock->notify_all();
2218       }
2219 
2220       if (G1StressConcRegionFreeing) {
2221         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2222           os::sleep(Thread::current(), (jlong) 1, false);
2223         }
2224       }
2225     }
2226   }
2227   assert(tmp_free_list.is_empty(), "post-condition");
2228 }
2229 
2230 // Supporting Object and Oop closures for reference discovery
2231 // and processing in during marking
2232 
2233 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2234   HeapWord* addr = (HeapWord*)obj;
2235   return addr != NULL &&
2236          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2237 }
2238 
2239 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2240 // Uses the CMTask associated with a worker thread (for serial reference
2241 // processing the CMTask for worker 0 is used) to preserve (mark) and
2242 // trace referent objects.
2243 //
2244 // Using the CMTask and embedded local queues avoids having the worker
2245 // threads operating on the global mark stack. This reduces the risk
2246 // of overflowing the stack - which we would rather avoid at this late
2247 // state. Also using the tasks' local queues removes the potential
2248 // of the workers interfering with each other that could occur if
2249 // operating on the global stack.
2250 
2251 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2252   ConcurrentMark* _cm;
2253   CMTask*         _task;
2254   int             _ref_counter_limit;
2255   int             _ref_counter;
2256   bool            _is_serial;
2257  public:
2258   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2259     _cm(cm), _task(task), _is_serial(is_serial),
2260     _ref_counter_limit(G1RefProcDrainInterval) {
2261     assert(_ref_counter_limit > 0, "sanity");
2262     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2263     _ref_counter = _ref_counter_limit;
2264   }
2265 
2266   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2267   virtual void do_oop(      oop* p) { do_oop_work(p); }
2268 
2269   template <class T> void do_oop_work(T* p) {
2270     if (!_cm->has_overflown()) {
2271       oop obj = oopDesc::load_decode_heap_oop(p);
2272       if (_cm->verbose_high()) {
2273         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2274                                "*"PTR_FORMAT" = "PTR_FORMAT,
2275                                _task->worker_id(), p2i(p), p2i((void*) obj));
2276       }
2277 
2278       _task->deal_with_reference(obj);
2279       _ref_counter--;
2280 
2281       if (_ref_counter == 0) {
2282         // We have dealt with _ref_counter_limit references, pushing them
2283         // and objects reachable from them on to the local stack (and
2284         // possibly the global stack). Call CMTask::do_marking_step() to
2285         // process these entries.
2286         //
2287         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2288         // there's nothing more to do (i.e. we're done with the entries that
2289         // were pushed as a result of the CMTask::deal_with_reference() calls
2290         // above) or we overflow.
2291         //
2292         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2293         // flag while there may still be some work to do. (See the comment at
2294         // the beginning of CMTask::do_marking_step() for those conditions -
2295         // one of which is reaching the specified time target.) It is only
2296         // when CMTask::do_marking_step() returns without setting the
2297         // has_aborted() flag that the marking step has completed.
2298         do {
2299           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2300           _task->do_marking_step(mark_step_duration_ms,
2301                                  false      /* do_termination */,
2302                                  _is_serial);
2303         } while (_task->has_aborted() && !_cm->has_overflown());
2304         _ref_counter = _ref_counter_limit;
2305       }
2306     } else {
2307       if (_cm->verbose_high()) {
2308          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2309       }
2310     }
2311   }
2312 };
2313 
2314 // 'Drain' oop closure used by both serial and parallel reference processing.
2315 // Uses the CMTask associated with a given worker thread (for serial
2316 // reference processing the CMtask for worker 0 is used). Calls the
2317 // do_marking_step routine, with an unbelievably large timeout value,
2318 // to drain the marking data structures of the remaining entries
2319 // added by the 'keep alive' oop closure above.
2320 
2321 class G1CMDrainMarkingStackClosure: public VoidClosure {
2322   ConcurrentMark* _cm;
2323   CMTask*         _task;
2324   bool            _is_serial;
2325  public:
2326   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2327     _cm(cm), _task(task), _is_serial(is_serial) {
2328     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2329   }
2330 
2331   void do_void() {
2332     do {
2333       if (_cm->verbose_high()) {
2334         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2335                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2336       }
2337 
2338       // We call CMTask::do_marking_step() to completely drain the local
2339       // and global marking stacks of entries pushed by the 'keep alive'
2340       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2341       //
2342       // CMTask::do_marking_step() is called in a loop, which we'll exit
2343       // if there's nothing more to do (i.e. we've completely drained the
2344       // entries that were pushed as a a result of applying the 'keep alive'
2345       // closure to the entries on the discovered ref lists) or we overflow
2346       // the global marking stack.
2347       //
2348       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2349       // flag while there may still be some work to do. (See the comment at
2350       // the beginning of CMTask::do_marking_step() for those conditions -
2351       // one of which is reaching the specified time target.) It is only
2352       // when CMTask::do_marking_step() returns without setting the
2353       // has_aborted() flag that the marking step has completed.
2354 
2355       _task->do_marking_step(1000000000.0 /* something very large */,
2356                              true         /* do_termination */,
2357                              _is_serial);
2358     } while (_task->has_aborted() && !_cm->has_overflown());
2359   }
2360 };
2361 
2362 // Implementation of AbstractRefProcTaskExecutor for parallel
2363 // reference processing at the end of G1 concurrent marking
2364 
2365 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2366 private:
2367   G1CollectedHeap* _g1h;
2368   ConcurrentMark*  _cm;
2369   WorkGang*        _workers;
2370   int              _active_workers;
2371 
2372 public:
2373   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2374                         ConcurrentMark* cm,
2375                         WorkGang* workers,
2376                         int n_workers) :
2377     _g1h(g1h), _cm(cm),
2378     _workers(workers), _active_workers(n_workers) { }
2379 
2380   // Executes the given task using concurrent marking worker threads.
2381   virtual void execute(ProcessTask& task);
2382   virtual void execute(EnqueueTask& task);
2383 };
2384 
2385 class G1CMRefProcTaskProxy: public AbstractGangTask {
2386   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2387   ProcessTask&     _proc_task;
2388   G1CollectedHeap* _g1h;
2389   ConcurrentMark*  _cm;
2390 
2391 public:
2392   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2393                      G1CollectedHeap* g1h,
2394                      ConcurrentMark* cm) :
2395     AbstractGangTask("Process reference objects in parallel"),
2396     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2397     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2398     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2399   }
2400 
2401   virtual void work(uint worker_id) {
2402     CMTask* task = _cm->task(worker_id);
2403     G1CMIsAliveClosure g1_is_alive(_g1h);
2404     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2405     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2406 
2407     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2408   }
2409 };
2410 
2411 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2412   assert(_workers != NULL, "Need parallel worker threads.");
2413   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2414 
2415   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2416 
2417   // We need to reset the concurrency level before each
2418   // proxy task execution, so that the termination protocol
2419   // and overflow handling in CMTask::do_marking_step() knows
2420   // how many workers to wait for.
2421   _cm->set_concurrency(_active_workers);
2422   _g1h->set_par_threads(_active_workers);
2423   _workers->run_task(&proc_task_proxy);
2424   _g1h->set_par_threads(0);
2425 }
2426 
2427 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2428   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2429   EnqueueTask& _enq_task;
2430 
2431 public:
2432   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2433     AbstractGangTask("Enqueue reference objects in parallel"),
2434     _enq_task(enq_task) { }
2435 
2436   virtual void work(uint worker_id) {
2437     _enq_task.work(worker_id);
2438   }
2439 };
2440 
2441 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2442   assert(_workers != NULL, "Need parallel worker threads.");
2443   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2444 
2445   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2446 
2447   // Not strictly necessary but...
2448   //
2449   // We need to reset the concurrency level before each
2450   // proxy task execution, so that the termination protocol
2451   // and overflow handling in CMTask::do_marking_step() knows
2452   // how many workers to wait for.
2453   _cm->set_concurrency(_active_workers);
2454   _g1h->set_par_threads(_active_workers);
2455   _workers->run_task(&enq_task_proxy);
2456   _g1h->set_par_threads(0);
2457 }
2458 
2459 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2460   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2461 }
2462 
2463 // Helper class to get rid of some boilerplate code.
2464 class G1RemarkGCTraceTime : public GCTraceTime {
2465   static bool doit_and_prepend(bool doit) {
2466     if (doit) {
2467       gclog_or_tty->put(' ');
2468     }
2469     return doit;
2470   }
2471 
2472  public:
2473   G1RemarkGCTraceTime(const char* title, bool doit)
2474     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
2475         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
2476   }
2477 };
2478 
2479 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2480   if (has_overflown()) {
2481     // Skip processing the discovered references if we have
2482     // overflown the global marking stack. Reference objects
2483     // only get discovered once so it is OK to not
2484     // de-populate the discovered reference lists. We could have,
2485     // but the only benefit would be that, when marking restarts,
2486     // less reference objects are discovered.
2487     return;
2488   }
2489 
2490   ResourceMark rm;
2491   HandleMark   hm;
2492 
2493   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2494 
2495   // Is alive closure.
2496   G1CMIsAliveClosure g1_is_alive(g1h);
2497 
2498   // Inner scope to exclude the cleaning of the string and symbol
2499   // tables from the displayed time.
2500   {
2501     if (G1Log::finer()) {
2502       gclog_or_tty->put(' ');
2503     }
2504     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm(), concurrent_gc_id());
2505 
2506     ReferenceProcessor* rp = g1h->ref_processor_cm();
2507 
2508     // See the comment in G1CollectedHeap::ref_processing_init()
2509     // about how reference processing currently works in G1.
2510 
2511     // Set the soft reference policy
2512     rp->setup_policy(clear_all_soft_refs);
2513     assert(_markStack.isEmpty(), "mark stack should be empty");
2514 
2515     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2516     // in serial reference processing. Note these closures are also
2517     // used for serially processing (by the the current thread) the
2518     // JNI references during parallel reference processing.
2519     //
2520     // These closures do not need to synchronize with the worker
2521     // threads involved in parallel reference processing as these
2522     // instances are executed serially by the current thread (e.g.
2523     // reference processing is not multi-threaded and is thus
2524     // performed by the current thread instead of a gang worker).
2525     //
2526     // The gang tasks involved in parallel reference processing create
2527     // their own instances of these closures, which do their own
2528     // synchronization among themselves.
2529     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2530     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2531 
2532     // We need at least one active thread. If reference processing
2533     // is not multi-threaded we use the current (VMThread) thread,
2534     // otherwise we use the work gang from the G1CollectedHeap and
2535     // we utilize all the worker threads we can.
2536     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2537     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2538     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2539 
2540     // Parallel processing task executor.
2541     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2542                                               g1h->workers(), active_workers);
2543     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2544 
2545     // Set the concurrency level. The phase was already set prior to
2546     // executing the remark task.
2547     set_concurrency(active_workers);
2548 
2549     // Set the degree of MT processing here.  If the discovery was done MT,
2550     // the number of threads involved during discovery could differ from
2551     // the number of active workers.  This is OK as long as the discovered
2552     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2553     rp->set_active_mt_degree(active_workers);
2554 
2555     // Process the weak references.
2556     const ReferenceProcessorStats& stats =
2557         rp->process_discovered_references(&g1_is_alive,
2558                                           &g1_keep_alive,
2559                                           &g1_drain_mark_stack,
2560                                           executor,
2561                                           g1h->gc_timer_cm(),
2562                                           concurrent_gc_id());
2563     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2564 
2565     // The do_oop work routines of the keep_alive and drain_marking_stack
2566     // oop closures will set the has_overflown flag if we overflow the
2567     // global marking stack.
2568 
2569     assert(_markStack.overflow() || _markStack.isEmpty(),
2570             "mark stack should be empty (unless it overflowed)");
2571 
2572     if (_markStack.overflow()) {
2573       // This should have been done already when we tried to push an
2574       // entry on to the global mark stack. But let's do it again.
2575       set_has_overflown();
2576     }
2577 
2578     assert(rp->num_q() == active_workers, "why not");
2579 
2580     rp->enqueue_discovered_references(executor);
2581 
2582     rp->verify_no_references_recorded();
2583     assert(!rp->discovery_enabled(), "Post condition");
2584   }
2585 
2586   if (has_overflown()) {
2587     // We can not trust g1_is_alive if the marking stack overflowed
2588     return;
2589   }
2590 
2591   assert(_markStack.isEmpty(), "Marking should have completed");
2592 
2593   // Unload Klasses, String, Symbols, Code Cache, etc.
2594 
2595   G1RemarkGCTraceTime trace("Unloading", G1Log::finer());
2596 
2597   bool purged_classes;
2598 
2599   {
2600     G1RemarkGCTraceTime trace("System Dictionary Unloading", G1Log::finest());
2601     purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
2602   }
2603 
2604   {
2605     G1RemarkGCTraceTime trace("Parallel Unloading", G1Log::finest());
2606     weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2607   }
2608 
2609   if (G1StringDedup::is_enabled()) {
2610     G1RemarkGCTraceTime trace("String Deduplication Unlink", G1Log::finest());
2611     G1StringDedup::unlink(&g1_is_alive);
2612   }
2613 }
2614 
2615 void ConcurrentMark::swapMarkBitMaps() {
2616   CMBitMapRO* temp = _prevMarkBitMap;
2617   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2618   _nextMarkBitMap  = (CMBitMap*)  temp;
2619 }
2620 
2621 class CMObjectClosure;
2622 
2623 // Closure for iterating over objects, currently only used for
2624 // processing SATB buffers.
2625 class CMObjectClosure : public ObjectClosure {
2626 private:
2627   CMTask* _task;
2628 
2629 public:
2630   void do_object(oop obj) {
2631     _task->deal_with_reference(obj);
2632   }
2633 
2634   CMObjectClosure(CMTask* task) : _task(task) { }
2635 };
2636 
2637 class G1RemarkThreadsClosure : public ThreadClosure {
2638   CMObjectClosure _cm_obj;
2639   G1CMOopClosure _cm_cl;
2640   MarkingCodeBlobClosure _code_cl;
2641   int _thread_parity;
2642   bool _is_par;
2643 
2644  public:
2645   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
2646     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2647     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
2648 
2649   void do_thread(Thread* thread) {
2650     if (thread->is_Java_thread()) {
2651       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2652         JavaThread* jt = (JavaThread*)thread;
2653 
2654         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2655         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2656         // * Alive if on the stack of an executing method
2657         // * Weakly reachable otherwise
2658         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2659         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2660         jt->nmethods_do(&_code_cl);
2661 
2662         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2663       }
2664     } else if (thread->is_VM_thread()) {
2665       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2666         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2667       }
2668     }
2669   }
2670 };
2671 
2672 class CMRemarkTask: public AbstractGangTask {
2673 private:
2674   ConcurrentMark* _cm;
2675   bool            _is_serial;
2676 public:
2677   void work(uint worker_id) {
2678     // Since all available tasks are actually started, we should
2679     // only proceed if we're supposed to be active.
2680     if (worker_id < _cm->active_tasks()) {
2681       CMTask* task = _cm->task(worker_id);
2682       task->record_start_time();
2683       {
2684         ResourceMark rm;
2685         HandleMark hm;
2686 
2687         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
2688         Threads::threads_do(&threads_f);
2689       }
2690 
2691       do {
2692         task->do_marking_step(1000000000.0 /* something very large */,
2693                               true         /* do_termination       */,
2694                               _is_serial);
2695       } while (task->has_aborted() && !_cm->has_overflown());
2696       // If we overflow, then we do not want to restart. We instead
2697       // want to abort remark and do concurrent marking again.
2698       task->record_end_time();
2699     }
2700   }
2701 
2702   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2703     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2704     _cm->terminator()->reset_for_reuse(active_workers);
2705   }
2706 };
2707 
2708 void ConcurrentMark::checkpointRootsFinalWork() {
2709   ResourceMark rm;
2710   HandleMark   hm;
2711   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2712 
2713   G1RemarkGCTraceTime trace("Finalize Marking", G1Log::finer());
2714 
2715   g1h->ensure_parsability(false);
2716 
2717   if (G1CollectedHeap::use_parallel_gc_threads()) {
2718     G1CollectedHeap::StrongRootsScope srs(g1h);
2719     // this is remark, so we'll use up all active threads
2720     uint active_workers = g1h->workers()->active_workers();
2721     if (active_workers == 0) {
2722       assert(active_workers > 0, "Should have been set earlier");
2723       active_workers = (uint) ParallelGCThreads;
2724       g1h->workers()->set_active_workers(active_workers);
2725     }
2726     set_concurrency_and_phase(active_workers, false /* concurrent */);
2727     // Leave _parallel_marking_threads at it's
2728     // value originally calculated in the ConcurrentMark
2729     // constructor and pass values of the active workers
2730     // through the gang in the task.
2731 
2732     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2733     // We will start all available threads, even if we decide that the
2734     // active_workers will be fewer. The extra ones will just bail out
2735     // immediately.
2736     g1h->set_par_threads(active_workers);
2737     g1h->workers()->run_task(&remarkTask);
2738     g1h->set_par_threads(0);
2739   } else {
2740     G1CollectedHeap::StrongRootsScope srs(g1h);
2741     uint active_workers = 1;
2742     set_concurrency_and_phase(active_workers, false /* concurrent */);
2743 
2744     // Note - if there's no work gang then the VMThread will be
2745     // the thread to execute the remark - serially. We have
2746     // to pass true for the is_serial parameter so that
2747     // CMTask::do_marking_step() doesn't enter the sync
2748     // barriers in the event of an overflow. Doing so will
2749     // cause an assert that the current thread is not a
2750     // concurrent GC thread.
2751     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2752     remarkTask.work(0);
2753   }
2754   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2755   guarantee(has_overflown() ||
2756             satb_mq_set.completed_buffers_num() == 0,
2757             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2758                     BOOL_TO_STR(has_overflown()),
2759                     satb_mq_set.completed_buffers_num()));
2760 
2761   print_stats();
2762 }
2763 
2764 #ifndef PRODUCT
2765 
2766 class PrintReachableOopClosure: public OopClosure {
2767 private:
2768   G1CollectedHeap* _g1h;
2769   outputStream*    _out;
2770   VerifyOption     _vo;
2771   bool             _all;
2772 
2773 public:
2774   PrintReachableOopClosure(outputStream* out,
2775                            VerifyOption  vo,
2776                            bool          all) :
2777     _g1h(G1CollectedHeap::heap()),
2778     _out(out), _vo(vo), _all(all) { }
2779 
2780   void do_oop(narrowOop* p) { do_oop_work(p); }
2781   void do_oop(      oop* p) { do_oop_work(p); }
2782 
2783   template <class T> void do_oop_work(T* p) {
2784     oop         obj = oopDesc::load_decode_heap_oop(p);
2785     const char* str = NULL;
2786     const char* str2 = "";
2787 
2788     if (obj == NULL) {
2789       str = "";
2790     } else if (!_g1h->is_in_g1_reserved(obj)) {
2791       str = " O";
2792     } else {
2793       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2794       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2795       bool marked = _g1h->is_marked(obj, _vo);
2796 
2797       if (over_tams) {
2798         str = " >";
2799         if (marked) {
2800           str2 = " AND MARKED";
2801         }
2802       } else if (marked) {
2803         str = " M";
2804       } else {
2805         str = " NOT";
2806       }
2807     }
2808 
2809     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2810                    p2i(p), p2i((void*) obj), str, str2);
2811   }
2812 };
2813 
2814 class PrintReachableObjectClosure : public ObjectClosure {
2815 private:
2816   G1CollectedHeap* _g1h;
2817   outputStream*    _out;
2818   VerifyOption     _vo;
2819   bool             _all;
2820   HeapRegion*      _hr;
2821 
2822 public:
2823   PrintReachableObjectClosure(outputStream* out,
2824                               VerifyOption  vo,
2825                               bool          all,
2826                               HeapRegion*   hr) :
2827     _g1h(G1CollectedHeap::heap()),
2828     _out(out), _vo(vo), _all(all), _hr(hr) { }
2829 
2830   void do_object(oop o) {
2831     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2832     bool marked = _g1h->is_marked(o, _vo);
2833     bool print_it = _all || over_tams || marked;
2834 
2835     if (print_it) {
2836       _out->print_cr(" "PTR_FORMAT"%s",
2837                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2838       PrintReachableOopClosure oopCl(_out, _vo, _all);
2839       o->oop_iterate_no_header(&oopCl);
2840     }
2841   }
2842 };
2843 
2844 class PrintReachableRegionClosure : public HeapRegionClosure {
2845 private:
2846   G1CollectedHeap* _g1h;
2847   outputStream*    _out;
2848   VerifyOption     _vo;
2849   bool             _all;
2850 
2851 public:
2852   bool doHeapRegion(HeapRegion* hr) {
2853     HeapWord* b = hr->bottom();
2854     HeapWord* e = hr->end();
2855     HeapWord* t = hr->top();
2856     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2857     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2858                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2859     _out->cr();
2860 
2861     HeapWord* from = b;
2862     HeapWord* to   = t;
2863 
2864     if (to > from) {
2865       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2866       _out->cr();
2867       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2868       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2869       _out->cr();
2870     }
2871 
2872     return false;
2873   }
2874 
2875   PrintReachableRegionClosure(outputStream* out,
2876                               VerifyOption  vo,
2877                               bool          all) :
2878     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2879 };
2880 
2881 void ConcurrentMark::print_reachable(const char* str,
2882                                      VerifyOption vo,
2883                                      bool all) {
2884   gclog_or_tty->cr();
2885   gclog_or_tty->print_cr("== Doing heap dump... ");
2886 
2887   if (G1PrintReachableBaseFile == NULL) {
2888     gclog_or_tty->print_cr("  #### error: no base file defined");
2889     return;
2890   }
2891 
2892   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2893       (JVM_MAXPATHLEN - 1)) {
2894     gclog_or_tty->print_cr("  #### error: file name too long");
2895     return;
2896   }
2897 
2898   char file_name[JVM_MAXPATHLEN];
2899   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2900   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2901 
2902   fileStream fout(file_name);
2903   if (!fout.is_open()) {
2904     gclog_or_tty->print_cr("  #### error: could not open file");
2905     return;
2906   }
2907 
2908   outputStream* out = &fout;
2909   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2910   out->cr();
2911 
2912   out->print_cr("--- ITERATING OVER REGIONS");
2913   out->cr();
2914   PrintReachableRegionClosure rcl(out, vo, all);
2915   _g1h->heap_region_iterate(&rcl);
2916   out->cr();
2917 
2918   gclog_or_tty->print_cr("  done");
2919   gclog_or_tty->flush();
2920 }
2921 
2922 #endif // PRODUCT
2923 
2924 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2925   // Note we are overriding the read-only view of the prev map here, via
2926   // the cast.
2927   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2928 }
2929 
2930 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2931   _nextMarkBitMap->clearRange(mr);
2932 }
2933 
2934 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
2935   clearRangePrevBitmap(mr);
2936   clearRangeNextBitmap(mr);
2937 }
2938 
2939 HeapRegion*
2940 ConcurrentMark::claim_region(uint worker_id) {
2941   // "checkpoint" the finger
2942   HeapWord* finger = _finger;
2943 
2944   // _heap_end will not change underneath our feet; it only changes at
2945   // yield points.
2946   while (finger < _heap_end) {
2947     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2948 
2949     // Note on how this code handles humongous regions. In the
2950     // normal case the finger will reach the start of a "starts
2951     // humongous" (SH) region. Its end will either be the end of the
2952     // last "continues humongous" (CH) region in the sequence, or the
2953     // standard end of the SH region (if the SH is the only region in
2954     // the sequence). That way claim_region() will skip over the CH
2955     // regions. However, there is a subtle race between a CM thread
2956     // executing this method and a mutator thread doing a humongous
2957     // object allocation. The two are not mutually exclusive as the CM
2958     // thread does not need to hold the Heap_lock when it gets
2959     // here. So there is a chance that claim_region() will come across
2960     // a free region that's in the progress of becoming a SH or a CH
2961     // region. In the former case, it will either
2962     //   a) Miss the update to the region's end, in which case it will
2963     //      visit every subsequent CH region, will find their bitmaps
2964     //      empty, and do nothing, or
2965     //   b) Will observe the update of the region's end (in which case
2966     //      it will skip the subsequent CH regions).
2967     // If it comes across a region that suddenly becomes CH, the
2968     // scenario will be similar to b). So, the race between
2969     // claim_region() and a humongous object allocation might force us
2970     // to do a bit of unnecessary work (due to some unnecessary bitmap
2971     // iterations) but it should not introduce and correctness issues.
2972     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2973     HeapWord*   bottom        = curr_region->bottom();
2974     HeapWord*   end           = curr_region->end();
2975     HeapWord*   limit         = curr_region->next_top_at_mark_start();
2976 
2977     if (verbose_low()) {
2978       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2979                              "["PTR_FORMAT", "PTR_FORMAT"), "
2980                              "limit = "PTR_FORMAT,
2981                              worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2982     }
2983 
2984     // Is the gap between reading the finger and doing the CAS too long?
2985     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2986     if (res == finger) {
2987       // we succeeded
2988 
2989       // notice that _finger == end cannot be guaranteed here since,
2990       // someone else might have moved the finger even further
2991       assert(_finger >= end, "the finger should have moved forward");
2992 
2993       if (verbose_low()) {
2994         gclog_or_tty->print_cr("[%u] we were successful with region = "
2995                                PTR_FORMAT, worker_id, p2i(curr_region));
2996       }
2997 
2998       if (limit > bottom) {
2999         if (verbose_low()) {
3000           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
3001                                  "returning it ", worker_id, p2i(curr_region));
3002         }
3003         return curr_region;
3004       } else {
3005         assert(limit == bottom,
3006                "the region limit should be at bottom");
3007         if (verbose_low()) {
3008           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3009                                  "returning NULL", worker_id, p2i(curr_region));
3010         }
3011         // we return NULL and the caller should try calling
3012         // claim_region() again.
3013         return NULL;
3014       }
3015     } else {
3016       assert(_finger > finger, "the finger should have moved forward");
3017       if (verbose_low()) {
3018         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3019                                "global finger = "PTR_FORMAT", "
3020                                "our finger = "PTR_FORMAT,
3021                                worker_id, p2i(_finger), p2i(finger));
3022       }
3023 
3024       // read it again
3025       finger = _finger;
3026     }
3027   }
3028 
3029   return NULL;
3030 }
3031 
3032 #ifndef PRODUCT
3033 enum VerifyNoCSetOopsPhase {
3034   VerifyNoCSetOopsStack,
3035   VerifyNoCSetOopsQueues,
3036   VerifyNoCSetOopsSATBCompleted,
3037   VerifyNoCSetOopsSATBThread
3038 };
3039 
3040 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
3041 private:
3042   G1CollectedHeap* _g1h;
3043   VerifyNoCSetOopsPhase _phase;
3044   int _info;
3045 
3046   const char* phase_str() {
3047     switch (_phase) {
3048     case VerifyNoCSetOopsStack:         return "Stack";
3049     case VerifyNoCSetOopsQueues:        return "Queue";
3050     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
3051     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
3052     default:                            ShouldNotReachHere();
3053     }
3054     return NULL;
3055   }
3056 
3057   void do_object_work(oop obj) {
3058     guarantee(!_g1h->obj_in_cs(obj),
3059               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3060                       p2i((void*) obj), phase_str(), _info));
3061   }
3062 
3063 public:
3064   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3065 
3066   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3067     _phase = phase;
3068     _info = info;
3069   }
3070 
3071   virtual void do_oop(oop* p) {
3072     oop obj = oopDesc::load_decode_heap_oop(p);
3073     do_object_work(obj);
3074   }
3075 
3076   virtual void do_oop(narrowOop* p) {
3077     // We should not come across narrow oops while scanning marking
3078     // stacks and SATB buffers.
3079     ShouldNotReachHere();
3080   }
3081 
3082   virtual void do_object(oop obj) {
3083     do_object_work(obj);
3084   }
3085 };
3086 
3087 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3088                                          bool verify_enqueued_buffers,
3089                                          bool verify_thread_buffers,
3090                                          bool verify_fingers) {
3091   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3092   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3093     return;
3094   }
3095 
3096   VerifyNoCSetOopsClosure cl;
3097 
3098   if (verify_stacks) {
3099     // Verify entries on the global mark stack
3100     cl.set_phase(VerifyNoCSetOopsStack);
3101     _markStack.oops_do(&cl);
3102 
3103     // Verify entries on the task queues
3104     for (uint i = 0; i < _max_worker_id; i += 1) {
3105       cl.set_phase(VerifyNoCSetOopsQueues, i);
3106       CMTaskQueue* queue = _task_queues->queue(i);
3107       queue->oops_do(&cl);
3108     }
3109   }
3110 
3111   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3112 
3113   // Verify entries on the enqueued SATB buffers
3114   if (verify_enqueued_buffers) {
3115     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3116     satb_qs.iterate_completed_buffers_read_only(&cl);
3117   }
3118 
3119   // Verify entries on the per-thread SATB buffers
3120   if (verify_thread_buffers) {
3121     cl.set_phase(VerifyNoCSetOopsSATBThread);
3122     satb_qs.iterate_thread_buffers_read_only(&cl);
3123   }
3124 
3125   if (verify_fingers) {
3126     // Verify the global finger
3127     HeapWord* global_finger = finger();
3128     if (global_finger != NULL && global_finger < _heap_end) {
3129       // The global finger always points to a heap region boundary. We
3130       // use heap_region_containing_raw() to get the containing region
3131       // given that the global finger could be pointing to a free region
3132       // which subsequently becomes continues humongous. If that
3133       // happens, heap_region_containing() will return the bottom of the
3134       // corresponding starts humongous region and the check below will
3135       // not hold any more.
3136       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3137       guarantee(global_finger == global_hr->bottom(),
3138                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3139                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3140     }
3141 
3142     // Verify the task fingers
3143     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3144     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3145       CMTask* task = _tasks[i];
3146       HeapWord* task_finger = task->finger();
3147       if (task_finger != NULL && task_finger < _heap_end) {
3148         // See above note on the global finger verification.
3149         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3150         guarantee(task_finger == task_hr->bottom() ||
3151                   !task_hr->in_collection_set(),
3152                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3153                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3154       }
3155     }
3156   }
3157 }
3158 #endif // PRODUCT
3159 
3160 // Aggregate the counting data that was constructed concurrently
3161 // with marking.
3162 class AggregateCountDataHRClosure: public HeapRegionClosure {
3163   G1CollectedHeap* _g1h;
3164   ConcurrentMark* _cm;
3165   CardTableModRefBS* _ct_bs;
3166   BitMap* _cm_card_bm;
3167   uint _max_worker_id;
3168 
3169  public:
3170   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3171                               BitMap* cm_card_bm,
3172                               uint max_worker_id) :
3173     _g1h(g1h), _cm(g1h->concurrent_mark()),
3174     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3175     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3176 
3177   bool doHeapRegion(HeapRegion* hr) {
3178     if (hr->continuesHumongous()) {
3179       // We will ignore these here and process them when their
3180       // associated "starts humongous" region is processed.
3181       // Note that we cannot rely on their associated
3182       // "starts humongous" region to have their bit set to 1
3183       // since, due to the region chunking in the parallel region
3184       // iteration, a "continues humongous" region might be visited
3185       // before its associated "starts humongous".
3186       return false;
3187     }
3188 
3189     HeapWord* start = hr->bottom();
3190     HeapWord* limit = hr->next_top_at_mark_start();
3191     HeapWord* end = hr->end();
3192 
3193     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3194            err_msg("Preconditions not met - "
3195                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3196                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3197                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3198 
3199     assert(hr->next_marked_bytes() == 0, "Precondition");
3200 
3201     if (start == limit) {
3202       // NTAMS of this region has not been set so nothing to do.
3203       return false;
3204     }
3205 
3206     // 'start' should be in the heap.
3207     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3208     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3209     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3210 
3211     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3212     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3213     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3214 
3215     // If ntams is not card aligned then we bump card bitmap index
3216     // for limit so that we get the all the cards spanned by
3217     // the object ending at ntams.
3218     // Note: if this is the last region in the heap then ntams
3219     // could be actually just beyond the end of the the heap;
3220     // limit_idx will then  correspond to a (non-existent) card
3221     // that is also outside the heap.
3222     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3223       limit_idx += 1;
3224     }
3225 
3226     assert(limit_idx <= end_idx, "or else use atomics");
3227 
3228     // Aggregate the "stripe" in the count data associated with hr.
3229     uint hrs_index = hr->hrs_index();
3230     size_t marked_bytes = 0;
3231 
3232     for (uint i = 0; i < _max_worker_id; i += 1) {
3233       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3234       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3235 
3236       // Fetch the marked_bytes in this region for task i and
3237       // add it to the running total for this region.
3238       marked_bytes += marked_bytes_array[hrs_index];
3239 
3240       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3241       // into the global card bitmap.
3242       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3243 
3244       while (scan_idx < limit_idx) {
3245         assert(task_card_bm->at(scan_idx) == true, "should be");
3246         _cm_card_bm->set_bit(scan_idx);
3247         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3248 
3249         // BitMap::get_next_one_offset() can handle the case when
3250         // its left_offset parameter is greater than its right_offset
3251         // parameter. It does, however, have an early exit if
3252         // left_offset == right_offset. So let's limit the value
3253         // passed in for left offset here.
3254         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3255         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3256       }
3257     }
3258 
3259     // Update the marked bytes for this region.
3260     hr->add_to_marked_bytes(marked_bytes);
3261 
3262     // Next heap region
3263     return false;
3264   }
3265 };
3266 
3267 class G1AggregateCountDataTask: public AbstractGangTask {
3268 protected:
3269   G1CollectedHeap* _g1h;
3270   ConcurrentMark* _cm;
3271   BitMap* _cm_card_bm;
3272   uint _max_worker_id;
3273   int _active_workers;
3274 
3275 public:
3276   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3277                            ConcurrentMark* cm,
3278                            BitMap* cm_card_bm,
3279                            uint max_worker_id,
3280                            int n_workers) :
3281     AbstractGangTask("Count Aggregation"),
3282     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3283     _max_worker_id(max_worker_id),
3284     _active_workers(n_workers) { }
3285 
3286   void work(uint worker_id) {
3287     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3288 
3289     if (G1CollectedHeap::use_parallel_gc_threads()) {
3290       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3291                                             _active_workers,
3292                                             HeapRegion::AggregateCountClaimValue);
3293     } else {
3294       _g1h->heap_region_iterate(&cl);
3295     }
3296   }
3297 };
3298 
3299 
3300 void ConcurrentMark::aggregate_count_data() {
3301   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3302                         _g1h->workers()->active_workers() :
3303                         1);
3304 
3305   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3306                                            _max_worker_id, n_workers);
3307 
3308   if (G1CollectedHeap::use_parallel_gc_threads()) {
3309     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3310            "sanity check");
3311     _g1h->set_par_threads(n_workers);
3312     _g1h->workers()->run_task(&g1_par_agg_task);
3313     _g1h->set_par_threads(0);
3314 
3315     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3316            "sanity check");
3317     _g1h->reset_heap_region_claim_values();
3318   } else {
3319     g1_par_agg_task.work(0);
3320   }
3321 }
3322 
3323 // Clear the per-worker arrays used to store the per-region counting data
3324 void ConcurrentMark::clear_all_count_data() {
3325   // Clear the global card bitmap - it will be filled during
3326   // liveness count aggregation (during remark) and the
3327   // final counting task.
3328   _card_bm.clear();
3329 
3330   // Clear the global region bitmap - it will be filled as part
3331   // of the final counting task.
3332   _region_bm.clear();
3333 
3334   uint max_regions = _g1h->max_regions();
3335   assert(_max_worker_id > 0, "uninitialized");
3336 
3337   for (uint i = 0; i < _max_worker_id; i += 1) {
3338     BitMap* task_card_bm = count_card_bitmap_for(i);
3339     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3340 
3341     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3342     assert(marked_bytes_array != NULL, "uninitialized");
3343 
3344     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3345     task_card_bm->clear();
3346   }
3347 }
3348 
3349 void ConcurrentMark::print_stats() {
3350   if (verbose_stats()) {
3351     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3352     for (size_t i = 0; i < _active_tasks; ++i) {
3353       _tasks[i]->print_stats();
3354       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3355     }
3356   }
3357 }
3358 
3359 // abandon current marking iteration due to a Full GC
3360 void ConcurrentMark::abort() {
3361   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3362   // concurrent bitmap clearing.
3363   _nextMarkBitMap->clearAll();
3364 
3365   // Note we cannot clear the previous marking bitmap here
3366   // since VerifyDuringGC verifies the objects marked during
3367   // a full GC against the previous bitmap.
3368 
3369   // Clear the liveness counting data
3370   clear_all_count_data();
3371   // Empty mark stack
3372   reset_marking_state();
3373   for (uint i = 0; i < _max_worker_id; ++i) {
3374     _tasks[i]->clear_region_fields();
3375   }
3376   _first_overflow_barrier_sync.abort();
3377   _second_overflow_barrier_sync.abort();
3378   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3379   if (!gc_id.is_undefined()) {
3380     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3381     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3382     _aborted_gc_id = gc_id;
3383    }
3384   _has_aborted = true;
3385 
3386   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3387   satb_mq_set.abandon_partial_marking();
3388   // This can be called either during or outside marking, we'll read
3389   // the expected_active value from the SATB queue set.
3390   satb_mq_set.set_active_all_threads(
3391                                  false, /* new active value */
3392                                  satb_mq_set.is_active() /* expected_active */);
3393 
3394   _g1h->trace_heap_after_concurrent_cycle();
3395   _g1h->register_concurrent_cycle_end();
3396 }
3397 
3398 const GCId& ConcurrentMark::concurrent_gc_id() {
3399   if (has_aborted()) {
3400     return _aborted_gc_id;
3401   }
3402   return _g1h->gc_tracer_cm()->gc_id();
3403 }
3404 
3405 static void print_ms_time_info(const char* prefix, const char* name,
3406                                NumberSeq& ns) {
3407   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3408                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3409   if (ns.num() > 0) {
3410     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3411                            prefix, ns.sd(), ns.maximum());
3412   }
3413 }
3414 
3415 void ConcurrentMark::print_summary_info() {
3416   gclog_or_tty->print_cr(" Concurrent marking:");
3417   print_ms_time_info("  ", "init marks", _init_times);
3418   print_ms_time_info("  ", "remarks", _remark_times);
3419   {
3420     print_ms_time_info("     ", "final marks", _remark_mark_times);
3421     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3422 
3423   }
3424   print_ms_time_info("  ", "cleanups", _cleanup_times);
3425   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3426                          _total_counting_time,
3427                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3428                           (double)_cleanup_times.num()
3429                          : 0.0));
3430   if (G1ScrubRemSets) {
3431     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3432                            _total_rs_scrub_time,
3433                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3434                             (double)_cleanup_times.num()
3435                            : 0.0));
3436   }
3437   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3438                          (_init_times.sum() + _remark_times.sum() +
3439                           _cleanup_times.sum())/1000.0);
3440   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3441                 "(%8.2f s marking).",
3442                 cmThread()->vtime_accum(),
3443                 cmThread()->vtime_mark_accum());
3444 }
3445 
3446 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3447   if (use_parallel_marking_threads()) {
3448     _parallel_workers->print_worker_threads_on(st);
3449   }
3450 }
3451 
3452 void ConcurrentMark::print_on_error(outputStream* st) const {
3453   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3454       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3455   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3456   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3457 }
3458 
3459 // We take a break if someone is trying to stop the world.
3460 bool ConcurrentMark::do_yield_check(uint worker_id) {
3461   if (SuspendibleThreadSet::should_yield()) {
3462     if (worker_id == 0) {
3463       _g1h->g1_policy()->record_concurrent_pause();
3464     }
3465     SuspendibleThreadSet::yield();
3466     return true;
3467   } else {
3468     return false;
3469   }
3470 }
3471 
3472 bool ConcurrentMark::containing_card_is_marked(void* p) {
3473   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
3474   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
3475 }
3476 
3477 bool ConcurrentMark::containing_cards_are_marked(void* start,
3478                                                  void* last) {
3479   return containing_card_is_marked(start) &&
3480          containing_card_is_marked(last);
3481 }
3482 
3483 #ifndef PRODUCT
3484 // for debugging purposes
3485 void ConcurrentMark::print_finger() {
3486   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3487                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3488   for (uint i = 0; i < _max_worker_id; ++i) {
3489     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3490   }
3491   gclog_or_tty->cr();
3492 }
3493 #endif
3494 
3495 void CMTask::scan_object(oop obj) {
3496   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3497 
3498   if (_cm->verbose_high()) {
3499     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3500                            _worker_id, p2i((void*) obj));
3501   }
3502 
3503   size_t obj_size = obj->size();
3504   _words_scanned += obj_size;
3505 
3506   obj->oop_iterate(_cm_oop_closure);
3507   statsOnly( ++_objs_scanned );
3508   check_limits();
3509 }
3510 
3511 // Closure for iteration over bitmaps
3512 class CMBitMapClosure : public BitMapClosure {
3513 private:
3514   // the bitmap that is being iterated over
3515   CMBitMap*                   _nextMarkBitMap;
3516   ConcurrentMark*             _cm;
3517   CMTask*                     _task;
3518 
3519 public:
3520   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3521     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3522 
3523   bool do_bit(size_t offset) {
3524     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3525     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3526     assert( addr < _cm->finger(), "invariant");
3527 
3528     statsOnly( _task->increase_objs_found_on_bitmap() );
3529     assert(addr >= _task->finger(), "invariant");
3530 
3531     // We move that task's local finger along.
3532     _task->move_finger_to(addr);
3533 
3534     _task->scan_object(oop(addr));
3535     // we only partially drain the local queue and global stack
3536     _task->drain_local_queue(true);
3537     _task->drain_global_stack(true);
3538 
3539     // if the has_aborted flag has been raised, we need to bail out of
3540     // the iteration
3541     return !_task->has_aborted();
3542   }
3543 };
3544 
3545 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3546                                ConcurrentMark* cm,
3547                                CMTask* task)
3548   : _g1h(g1h), _cm(cm), _task(task) {
3549   assert(_ref_processor == NULL, "should be initialized to NULL");
3550 
3551   if (G1UseConcMarkReferenceProcessing) {
3552     _ref_processor = g1h->ref_processor_cm();
3553     assert(_ref_processor != NULL, "should not be NULL");
3554   }
3555 }
3556 
3557 void CMTask::setup_for_region(HeapRegion* hr) {
3558   assert(hr != NULL,
3559         "claim_region() should have filtered out NULL regions");
3560   assert(!hr->continuesHumongous(),
3561         "claim_region() should have filtered out continues humongous regions");
3562 
3563   if (_cm->verbose_low()) {
3564     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3565                            _worker_id, p2i(hr));
3566   }
3567 
3568   _curr_region  = hr;
3569   _finger       = hr->bottom();
3570   update_region_limit();
3571 }
3572 
3573 void CMTask::update_region_limit() {
3574   HeapRegion* hr            = _curr_region;
3575   HeapWord* bottom          = hr->bottom();
3576   HeapWord* limit           = hr->next_top_at_mark_start();
3577 
3578   if (limit == bottom) {
3579     if (_cm->verbose_low()) {
3580       gclog_or_tty->print_cr("[%u] found an empty region "
3581                              "["PTR_FORMAT", "PTR_FORMAT")",
3582                              _worker_id, p2i(bottom), p2i(limit));
3583     }
3584     // The region was collected underneath our feet.
3585     // We set the finger to bottom to ensure that the bitmap
3586     // iteration that will follow this will not do anything.
3587     // (this is not a condition that holds when we set the region up,
3588     // as the region is not supposed to be empty in the first place)
3589     _finger = bottom;
3590   } else if (limit >= _region_limit) {
3591     assert(limit >= _finger, "peace of mind");
3592   } else {
3593     assert(limit < _region_limit, "only way to get here");
3594     // This can happen under some pretty unusual circumstances.  An
3595     // evacuation pause empties the region underneath our feet (NTAMS
3596     // at bottom). We then do some allocation in the region (NTAMS
3597     // stays at bottom), followed by the region being used as a GC
3598     // alloc region (NTAMS will move to top() and the objects
3599     // originally below it will be grayed). All objects now marked in
3600     // the region are explicitly grayed, if below the global finger,
3601     // and we do not need in fact to scan anything else. So, we simply
3602     // set _finger to be limit to ensure that the bitmap iteration
3603     // doesn't do anything.
3604     _finger = limit;
3605   }
3606 
3607   _region_limit = limit;
3608 }
3609 
3610 void CMTask::giveup_current_region() {
3611   assert(_curr_region != NULL, "invariant");
3612   if (_cm->verbose_low()) {
3613     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3614                            _worker_id, p2i(_curr_region));
3615   }
3616   clear_region_fields();
3617 }
3618 
3619 void CMTask::clear_region_fields() {
3620   // Values for these three fields that indicate that we're not
3621   // holding on to a region.
3622   _curr_region   = NULL;
3623   _finger        = NULL;
3624   _region_limit  = NULL;
3625 }
3626 
3627 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3628   if (cm_oop_closure == NULL) {
3629     assert(_cm_oop_closure != NULL, "invariant");
3630   } else {
3631     assert(_cm_oop_closure == NULL, "invariant");
3632   }
3633   _cm_oop_closure = cm_oop_closure;
3634 }
3635 
3636 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3637   guarantee(nextMarkBitMap != NULL, "invariant");
3638 
3639   if (_cm->verbose_low()) {
3640     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3641   }
3642 
3643   _nextMarkBitMap                = nextMarkBitMap;
3644   clear_region_fields();
3645 
3646   _calls                         = 0;
3647   _elapsed_time_ms               = 0.0;
3648   _termination_time_ms           = 0.0;
3649   _termination_start_time_ms     = 0.0;
3650 
3651 #if _MARKING_STATS_
3652   _local_pushes                  = 0;
3653   _local_pops                    = 0;
3654   _local_max_size                = 0;
3655   _objs_scanned                  = 0;
3656   _global_pushes                 = 0;
3657   _global_pops                   = 0;
3658   _global_max_size               = 0;
3659   _global_transfers_to           = 0;
3660   _global_transfers_from         = 0;
3661   _regions_claimed               = 0;
3662   _objs_found_on_bitmap          = 0;
3663   _satb_buffers_processed        = 0;
3664   _steal_attempts                = 0;
3665   _steals                        = 0;
3666   _aborted                       = 0;
3667   _aborted_overflow              = 0;
3668   _aborted_cm_aborted            = 0;
3669   _aborted_yield                 = 0;
3670   _aborted_timed_out             = 0;
3671   _aborted_satb                  = 0;
3672   _aborted_termination           = 0;
3673 #endif // _MARKING_STATS_
3674 }
3675 
3676 bool CMTask::should_exit_termination() {
3677   regular_clock_call();
3678   // This is called when we are in the termination protocol. We should
3679   // quit if, for some reason, this task wants to abort or the global
3680   // stack is not empty (this means that we can get work from it).
3681   return !_cm->mark_stack_empty() || has_aborted();
3682 }
3683 
3684 void CMTask::reached_limit() {
3685   assert(_words_scanned >= _words_scanned_limit ||
3686          _refs_reached >= _refs_reached_limit ,
3687          "shouldn't have been called otherwise");
3688   regular_clock_call();
3689 }
3690 
3691 void CMTask::regular_clock_call() {
3692   if (has_aborted()) return;
3693 
3694   // First, we need to recalculate the words scanned and refs reached
3695   // limits for the next clock call.
3696   recalculate_limits();
3697 
3698   // During the regular clock call we do the following
3699 
3700   // (1) If an overflow has been flagged, then we abort.
3701   if (_cm->has_overflown()) {
3702     set_has_aborted();
3703     return;
3704   }
3705 
3706   // If we are not concurrent (i.e. we're doing remark) we don't need
3707   // to check anything else. The other steps are only needed during
3708   // the concurrent marking phase.
3709   if (!concurrent()) return;
3710 
3711   // (2) If marking has been aborted for Full GC, then we also abort.
3712   if (_cm->has_aborted()) {
3713     set_has_aborted();
3714     statsOnly( ++_aborted_cm_aborted );
3715     return;
3716   }
3717 
3718   double curr_time_ms = os::elapsedVTime() * 1000.0;
3719 
3720   // (3) If marking stats are enabled, then we update the step history.
3721 #if _MARKING_STATS_
3722   if (_words_scanned >= _words_scanned_limit) {
3723     ++_clock_due_to_scanning;
3724   }
3725   if (_refs_reached >= _refs_reached_limit) {
3726     ++_clock_due_to_marking;
3727   }
3728 
3729   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3730   _interval_start_time_ms = curr_time_ms;
3731   _all_clock_intervals_ms.add(last_interval_ms);
3732 
3733   if (_cm->verbose_medium()) {
3734       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3735                         "scanned = %d%s, refs reached = %d%s",
3736                         _worker_id, last_interval_ms,
3737                         _words_scanned,
3738                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3739                         _refs_reached,
3740                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3741   }
3742 #endif // _MARKING_STATS_
3743 
3744   // (4) We check whether we should yield. If we have to, then we abort.
3745   if (SuspendibleThreadSet::should_yield()) {
3746     // We should yield. To do this we abort the task. The caller is
3747     // responsible for yielding.
3748     set_has_aborted();
3749     statsOnly( ++_aborted_yield );
3750     return;
3751   }
3752 
3753   // (5) We check whether we've reached our time quota. If we have,
3754   // then we abort.
3755   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3756   if (elapsed_time_ms > _time_target_ms) {
3757     set_has_aborted();
3758     _has_timed_out = true;
3759     statsOnly( ++_aborted_timed_out );
3760     return;
3761   }
3762 
3763   // (6) Finally, we check whether there are enough completed STAB
3764   // buffers available for processing. If there are, we abort.
3765   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3766   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3767     if (_cm->verbose_low()) {
3768       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3769                              _worker_id);
3770     }
3771     // we do need to process SATB buffers, we'll abort and restart
3772     // the marking task to do so
3773     set_has_aborted();
3774     statsOnly( ++_aborted_satb );
3775     return;
3776   }
3777 }
3778 
3779 void CMTask::recalculate_limits() {
3780   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3781   _words_scanned_limit      = _real_words_scanned_limit;
3782 
3783   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3784   _refs_reached_limit       = _real_refs_reached_limit;
3785 }
3786 
3787 void CMTask::decrease_limits() {
3788   // This is called when we believe that we're going to do an infrequent
3789   // operation which will increase the per byte scanned cost (i.e. move
3790   // entries to/from the global stack). It basically tries to decrease the
3791   // scanning limit so that the clock is called earlier.
3792 
3793   if (_cm->verbose_medium()) {
3794     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3795   }
3796 
3797   _words_scanned_limit = _real_words_scanned_limit -
3798     3 * words_scanned_period / 4;
3799   _refs_reached_limit  = _real_refs_reached_limit -
3800     3 * refs_reached_period / 4;
3801 }
3802 
3803 void CMTask::move_entries_to_global_stack() {
3804   // local array where we'll store the entries that will be popped
3805   // from the local queue
3806   oop buffer[global_stack_transfer_size];
3807 
3808   int n = 0;
3809   oop obj;
3810   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3811     buffer[n] = obj;
3812     ++n;
3813   }
3814 
3815   if (n > 0) {
3816     // we popped at least one entry from the local queue
3817 
3818     statsOnly( ++_global_transfers_to; _local_pops += n );
3819 
3820     if (!_cm->mark_stack_push(buffer, n)) {
3821       if (_cm->verbose_low()) {
3822         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3823                                _worker_id);
3824       }
3825       set_has_aborted();
3826     } else {
3827       // the transfer was successful
3828 
3829       if (_cm->verbose_medium()) {
3830         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3831                                _worker_id, n);
3832       }
3833       statsOnly( int tmp_size = _cm->mark_stack_size();
3834                  if (tmp_size > _global_max_size) {
3835                    _global_max_size = tmp_size;
3836                  }
3837                  _global_pushes += n );
3838     }
3839   }
3840 
3841   // this operation was quite expensive, so decrease the limits
3842   decrease_limits();
3843 }
3844 
3845 void CMTask::get_entries_from_global_stack() {
3846   // local array where we'll store the entries that will be popped
3847   // from the global stack.
3848   oop buffer[global_stack_transfer_size];
3849   int n;
3850   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3851   assert(n <= global_stack_transfer_size,
3852          "we should not pop more than the given limit");
3853   if (n > 0) {
3854     // yes, we did actually pop at least one entry
3855 
3856     statsOnly( ++_global_transfers_from; _global_pops += n );
3857     if (_cm->verbose_medium()) {
3858       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3859                              _worker_id, n);
3860     }
3861     for (int i = 0; i < n; ++i) {
3862       bool success = _task_queue->push(buffer[i]);
3863       // We only call this when the local queue is empty or under a
3864       // given target limit. So, we do not expect this push to fail.
3865       assert(success, "invariant");
3866     }
3867 
3868     statsOnly( int tmp_size = _task_queue->size();
3869                if (tmp_size > _local_max_size) {
3870                  _local_max_size = tmp_size;
3871                }
3872                _local_pushes += n );
3873   }
3874 
3875   // this operation was quite expensive, so decrease the limits
3876   decrease_limits();
3877 }
3878 
3879 void CMTask::drain_local_queue(bool partially) {
3880   if (has_aborted()) return;
3881 
3882   // Decide what the target size is, depending whether we're going to
3883   // drain it partially (so that other tasks can steal if they run out
3884   // of things to do) or totally (at the very end).
3885   size_t target_size;
3886   if (partially) {
3887     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3888   } else {
3889     target_size = 0;
3890   }
3891 
3892   if (_task_queue->size() > target_size) {
3893     if (_cm->verbose_high()) {
3894       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3895                              _worker_id, target_size);
3896     }
3897 
3898     oop obj;
3899     bool ret = _task_queue->pop_local(obj);
3900     while (ret) {
3901       statsOnly( ++_local_pops );
3902 
3903       if (_cm->verbose_high()) {
3904         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3905                                p2i((void*) obj));
3906       }
3907 
3908       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3909       assert(!_g1h->is_on_master_free_list(
3910                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3911 
3912       scan_object(obj);
3913 
3914       if (_task_queue->size() <= target_size || has_aborted()) {
3915         ret = false;
3916       } else {
3917         ret = _task_queue->pop_local(obj);
3918       }
3919     }
3920 
3921     if (_cm->verbose_high()) {
3922       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3923                              _worker_id, _task_queue->size());
3924     }
3925   }
3926 }
3927 
3928 void CMTask::drain_global_stack(bool partially) {
3929   if (has_aborted()) return;
3930 
3931   // We have a policy to drain the local queue before we attempt to
3932   // drain the global stack.
3933   assert(partially || _task_queue->size() == 0, "invariant");
3934 
3935   // Decide what the target size is, depending whether we're going to
3936   // drain it partially (so that other tasks can steal if they run out
3937   // of things to do) or totally (at the very end).  Notice that,
3938   // because we move entries from the global stack in chunks or
3939   // because another task might be doing the same, we might in fact
3940   // drop below the target. But, this is not a problem.
3941   size_t target_size;
3942   if (partially) {
3943     target_size = _cm->partial_mark_stack_size_target();
3944   } else {
3945     target_size = 0;
3946   }
3947 
3948   if (_cm->mark_stack_size() > target_size) {
3949     if (_cm->verbose_low()) {
3950       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3951                              _worker_id, target_size);
3952     }
3953 
3954     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3955       get_entries_from_global_stack();
3956       drain_local_queue(partially);
3957     }
3958 
3959     if (_cm->verbose_low()) {
3960       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3961                              _worker_id, _cm->mark_stack_size());
3962     }
3963   }
3964 }
3965 
3966 // SATB Queue has several assumptions on whether to call the par or
3967 // non-par versions of the methods. this is why some of the code is
3968 // replicated. We should really get rid of the single-threaded version
3969 // of the code to simplify things.
3970 void CMTask::drain_satb_buffers() {
3971   if (has_aborted()) return;
3972 
3973   // We set this so that the regular clock knows that we're in the
3974   // middle of draining buffers and doesn't set the abort flag when it
3975   // notices that SATB buffers are available for draining. It'd be
3976   // very counter productive if it did that. :-)
3977   _draining_satb_buffers = true;
3978 
3979   CMObjectClosure oc(this);
3980   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3981   if (G1CollectedHeap::use_parallel_gc_threads()) {
3982     satb_mq_set.set_par_closure(_worker_id, &oc);
3983   } else {
3984     satb_mq_set.set_closure(&oc);
3985   }
3986 
3987   // This keeps claiming and applying the closure to completed buffers
3988   // until we run out of buffers or we need to abort.
3989   if (G1CollectedHeap::use_parallel_gc_threads()) {
3990     while (!has_aborted() &&
3991            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3992       if (_cm->verbose_medium()) {
3993         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3994       }
3995       statsOnly( ++_satb_buffers_processed );
3996       regular_clock_call();
3997     }
3998   } else {
3999     while (!has_aborted() &&
4000            satb_mq_set.apply_closure_to_completed_buffer()) {
4001       if (_cm->verbose_medium()) {
4002         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4003       }
4004       statsOnly( ++_satb_buffers_processed );
4005       regular_clock_call();
4006     }
4007   }
4008 
4009   _draining_satb_buffers = false;
4010 
4011   assert(has_aborted() ||
4012          concurrent() ||
4013          satb_mq_set.completed_buffers_num() == 0, "invariant");
4014 
4015   if (G1CollectedHeap::use_parallel_gc_threads()) {
4016     satb_mq_set.set_par_closure(_worker_id, NULL);
4017   } else {
4018     satb_mq_set.set_closure(NULL);
4019   }
4020 
4021   // again, this was a potentially expensive operation, decrease the
4022   // limits to get the regular clock call early
4023   decrease_limits();
4024 }
4025 
4026 void CMTask::print_stats() {
4027   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
4028                          _worker_id, _calls);
4029   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
4030                          _elapsed_time_ms, _termination_time_ms);
4031   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4032                          _step_times_ms.num(), _step_times_ms.avg(),
4033                          _step_times_ms.sd());
4034   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
4035                          _step_times_ms.maximum(), _step_times_ms.sum());
4036 
4037 #if _MARKING_STATS_
4038   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4039                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
4040                          _all_clock_intervals_ms.sd());
4041   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
4042                          _all_clock_intervals_ms.maximum(),
4043                          _all_clock_intervals_ms.sum());
4044   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
4045                          _clock_due_to_scanning, _clock_due_to_marking);
4046   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
4047                          _objs_scanned, _objs_found_on_bitmap);
4048   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
4049                          _local_pushes, _local_pops, _local_max_size);
4050   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
4051                          _global_pushes, _global_pops, _global_max_size);
4052   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
4053                          _global_transfers_to,_global_transfers_from);
4054   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4055   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
4056   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
4057                          _steal_attempts, _steals);
4058   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
4059   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
4060                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
4061   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
4062                          _aborted_timed_out, _aborted_satb, _aborted_termination);
4063 #endif // _MARKING_STATS_
4064 }
4065 
4066 /*****************************************************************************
4067 
4068     The do_marking_step(time_target_ms, ...) method is the building
4069     block of the parallel marking framework. It can be called in parallel
4070     with other invocations of do_marking_step() on different tasks
4071     (but only one per task, obviously) and concurrently with the
4072     mutator threads, or during remark, hence it eliminates the need
4073     for two versions of the code. When called during remark, it will
4074     pick up from where the task left off during the concurrent marking
4075     phase. Interestingly, tasks are also claimable during evacuation
4076     pauses too, since do_marking_step() ensures that it aborts before
4077     it needs to yield.
4078 
4079     The data structures that it uses to do marking work are the
4080     following:
4081 
4082       (1) Marking Bitmap. If there are gray objects that appear only
4083       on the bitmap (this happens either when dealing with an overflow
4084       or when the initial marking phase has simply marked the roots
4085       and didn't push them on the stack), then tasks claim heap
4086       regions whose bitmap they then scan to find gray objects. A
4087       global finger indicates where the end of the last claimed region
4088       is. A local finger indicates how far into the region a task has
4089       scanned. The two fingers are used to determine how to gray an
4090       object (i.e. whether simply marking it is OK, as it will be
4091       visited by a task in the future, or whether it needs to be also
4092       pushed on a stack).
4093 
4094       (2) Local Queue. The local queue of the task which is accessed
4095       reasonably efficiently by the task. Other tasks can steal from
4096       it when they run out of work. Throughout the marking phase, a
4097       task attempts to keep its local queue short but not totally
4098       empty, so that entries are available for stealing by other
4099       tasks. Only when there is no more work, a task will totally
4100       drain its local queue.
4101 
4102       (3) Global Mark Stack. This handles local queue overflow. During
4103       marking only sets of entries are moved between it and the local
4104       queues, as access to it requires a mutex and more fine-grain
4105       interaction with it which might cause contention. If it
4106       overflows, then the marking phase should restart and iterate
4107       over the bitmap to identify gray objects. Throughout the marking
4108       phase, tasks attempt to keep the global mark stack at a small
4109       length but not totally empty, so that entries are available for
4110       popping by other tasks. Only when there is no more work, tasks
4111       will totally drain the global mark stack.
4112 
4113       (4) SATB Buffer Queue. This is where completed SATB buffers are
4114       made available. Buffers are regularly removed from this queue
4115       and scanned for roots, so that the queue doesn't get too
4116       long. During remark, all completed buffers are processed, as
4117       well as the filled in parts of any uncompleted buffers.
4118 
4119     The do_marking_step() method tries to abort when the time target
4120     has been reached. There are a few other cases when the
4121     do_marking_step() method also aborts:
4122 
4123       (1) When the marking phase has been aborted (after a Full GC).
4124 
4125       (2) When a global overflow (on the global stack) has been
4126       triggered. Before the task aborts, it will actually sync up with
4127       the other tasks to ensure that all the marking data structures
4128       (local queues, stacks, fingers etc.)  are re-initialized so that
4129       when do_marking_step() completes, the marking phase can
4130       immediately restart.
4131 
4132       (3) When enough completed SATB buffers are available. The
4133       do_marking_step() method only tries to drain SATB buffers right
4134       at the beginning. So, if enough buffers are available, the
4135       marking step aborts and the SATB buffers are processed at
4136       the beginning of the next invocation.
4137 
4138       (4) To yield. when we have to yield then we abort and yield
4139       right at the end of do_marking_step(). This saves us from a lot
4140       of hassle as, by yielding we might allow a Full GC. If this
4141       happens then objects will be compacted underneath our feet, the
4142       heap might shrink, etc. We save checking for this by just
4143       aborting and doing the yield right at the end.
4144 
4145     From the above it follows that the do_marking_step() method should
4146     be called in a loop (or, otherwise, regularly) until it completes.
4147 
4148     If a marking step completes without its has_aborted() flag being
4149     true, it means it has completed the current marking phase (and
4150     also all other marking tasks have done so and have all synced up).
4151 
4152     A method called regular_clock_call() is invoked "regularly" (in
4153     sub ms intervals) throughout marking. It is this clock method that
4154     checks all the abort conditions which were mentioned above and
4155     decides when the task should abort. A work-based scheme is used to
4156     trigger this clock method: when the number of object words the
4157     marking phase has scanned or the number of references the marking
4158     phase has visited reach a given limit. Additional invocations to
4159     the method clock have been planted in a few other strategic places
4160     too. The initial reason for the clock method was to avoid calling
4161     vtime too regularly, as it is quite expensive. So, once it was in
4162     place, it was natural to piggy-back all the other conditions on it
4163     too and not constantly check them throughout the code.
4164 
4165     If do_termination is true then do_marking_step will enter its
4166     termination protocol.
4167 
4168     The value of is_serial must be true when do_marking_step is being
4169     called serially (i.e. by the VMThread) and do_marking_step should
4170     skip any synchronization in the termination and overflow code.
4171     Examples include the serial remark code and the serial reference
4172     processing closures.
4173 
4174     The value of is_serial must be false when do_marking_step is
4175     being called by any of the worker threads in a work gang.
4176     Examples include the concurrent marking code (CMMarkingTask),
4177     the MT remark code, and the MT reference processing closures.
4178 
4179  *****************************************************************************/
4180 
4181 void CMTask::do_marking_step(double time_target_ms,
4182                              bool do_termination,
4183                              bool is_serial) {
4184   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4185   assert(concurrent() == _cm->concurrent(), "they should be the same");
4186 
4187   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4188   assert(_task_queues != NULL, "invariant");
4189   assert(_task_queue != NULL, "invariant");
4190   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4191 
4192   assert(!_claimed,
4193          "only one thread should claim this task at any one time");
4194 
4195   // OK, this doesn't safeguard again all possible scenarios, as it is
4196   // possible for two threads to set the _claimed flag at the same
4197   // time. But it is only for debugging purposes anyway and it will
4198   // catch most problems.
4199   _claimed = true;
4200 
4201   _start_time_ms = os::elapsedVTime() * 1000.0;
4202   statsOnly( _interval_start_time_ms = _start_time_ms );
4203 
4204   // If do_stealing is true then do_marking_step will attempt to
4205   // steal work from the other CMTasks. It only makes sense to
4206   // enable stealing when the termination protocol is enabled
4207   // and do_marking_step() is not being called serially.
4208   bool do_stealing = do_termination && !is_serial;
4209 
4210   double diff_prediction_ms =
4211     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4212   _time_target_ms = time_target_ms - diff_prediction_ms;
4213 
4214   // set up the variables that are used in the work-based scheme to
4215   // call the regular clock method
4216   _words_scanned = 0;
4217   _refs_reached  = 0;
4218   recalculate_limits();
4219 
4220   // clear all flags
4221   clear_has_aborted();
4222   _has_timed_out = false;
4223   _draining_satb_buffers = false;
4224 
4225   ++_calls;
4226 
4227   if (_cm->verbose_low()) {
4228     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4229                            "target = %1.2lfms >>>>>>>>>>",
4230                            _worker_id, _calls, _time_target_ms);
4231   }
4232 
4233   // Set up the bitmap and oop closures. Anything that uses them is
4234   // eventually called from this method, so it is OK to allocate these
4235   // statically.
4236   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4237   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4238   set_cm_oop_closure(&cm_oop_closure);
4239 
4240   if (_cm->has_overflown()) {
4241     // This can happen if the mark stack overflows during a GC pause
4242     // and this task, after a yield point, restarts. We have to abort
4243     // as we need to get into the overflow protocol which happens
4244     // right at the end of this task.
4245     set_has_aborted();
4246   }
4247 
4248   // First drain any available SATB buffers. After this, we will not
4249   // look at SATB buffers before the next invocation of this method.
4250   // If enough completed SATB buffers are queued up, the regular clock
4251   // will abort this task so that it restarts.
4252   drain_satb_buffers();
4253   // ...then partially drain the local queue and the global stack
4254   drain_local_queue(true);
4255   drain_global_stack(true);
4256 
4257   do {
4258     if (!has_aborted() && _curr_region != NULL) {
4259       // This means that we're already holding on to a region.
4260       assert(_finger != NULL, "if region is not NULL, then the finger "
4261              "should not be NULL either");
4262 
4263       // We might have restarted this task after an evacuation pause
4264       // which might have evacuated the region we're holding on to
4265       // underneath our feet. Let's read its limit again to make sure
4266       // that we do not iterate over a region of the heap that
4267       // contains garbage (update_region_limit() will also move
4268       // _finger to the start of the region if it is found empty).
4269       update_region_limit();
4270       // We will start from _finger not from the start of the region,
4271       // as we might be restarting this task after aborting half-way
4272       // through scanning this region. In this case, _finger points to
4273       // the address where we last found a marked object. If this is a
4274       // fresh region, _finger points to start().
4275       MemRegion mr = MemRegion(_finger, _region_limit);
4276 
4277       if (_cm->verbose_low()) {
4278         gclog_or_tty->print_cr("[%u] we're scanning part "
4279                                "["PTR_FORMAT", "PTR_FORMAT") "
4280                                "of region "HR_FORMAT,
4281                                _worker_id, p2i(_finger), p2i(_region_limit),
4282                                HR_FORMAT_PARAMS(_curr_region));
4283       }
4284 
4285       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
4286              "humongous regions should go around loop once only");
4287 
4288       // Some special cases:
4289       // If the memory region is empty, we can just give up the region.
4290       // If the current region is humongous then we only need to check
4291       // the bitmap for the bit associated with the start of the object,
4292       // scan the object if it's live, and give up the region.
4293       // Otherwise, let's iterate over the bitmap of the part of the region
4294       // that is left.
4295       // If the iteration is successful, give up the region.
4296       if (mr.is_empty()) {
4297         giveup_current_region();
4298         regular_clock_call();
4299       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
4300         if (_nextMarkBitMap->isMarked(mr.start())) {
4301           // The object is marked - apply the closure
4302           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4303           bitmap_closure.do_bit(offset);
4304         }
4305         // Even if this task aborted while scanning the humongous object
4306         // we can (and should) give up the current region.
4307         giveup_current_region();
4308         regular_clock_call();
4309       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4310         giveup_current_region();
4311         regular_clock_call();
4312       } else {
4313         assert(has_aborted(), "currently the only way to do so");
4314         // The only way to abort the bitmap iteration is to return
4315         // false from the do_bit() method. However, inside the
4316         // do_bit() method we move the _finger to point to the
4317         // object currently being looked at. So, if we bail out, we
4318         // have definitely set _finger to something non-null.
4319         assert(_finger != NULL, "invariant");
4320 
4321         // Region iteration was actually aborted. So now _finger
4322         // points to the address of the object we last scanned. If we
4323         // leave it there, when we restart this task, we will rescan
4324         // the object. It is easy to avoid this. We move the finger by
4325         // enough to point to the next possible object header (the
4326         // bitmap knows by how much we need to move it as it knows its
4327         // granularity).
4328         assert(_finger < _region_limit, "invariant");
4329         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4330         // Check if bitmap iteration was aborted while scanning the last object
4331         if (new_finger >= _region_limit) {
4332           giveup_current_region();
4333         } else {
4334           move_finger_to(new_finger);
4335         }
4336       }
4337     }
4338     // At this point we have either completed iterating over the
4339     // region we were holding on to, or we have aborted.
4340 
4341     // We then partially drain the local queue and the global stack.
4342     // (Do we really need this?)
4343     drain_local_queue(true);
4344     drain_global_stack(true);
4345 
4346     // Read the note on the claim_region() method on why it might
4347     // return NULL with potentially more regions available for
4348     // claiming and why we have to check out_of_regions() to determine
4349     // whether we're done or not.
4350     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4351       // We are going to try to claim a new region. We should have
4352       // given up on the previous one.
4353       // Separated the asserts so that we know which one fires.
4354       assert(_curr_region  == NULL, "invariant");
4355       assert(_finger       == NULL, "invariant");
4356       assert(_region_limit == NULL, "invariant");
4357       if (_cm->verbose_low()) {
4358         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4359       }
4360       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4361       if (claimed_region != NULL) {
4362         // Yes, we managed to claim one
4363         statsOnly( ++_regions_claimed );
4364 
4365         if (_cm->verbose_low()) {
4366           gclog_or_tty->print_cr("[%u] we successfully claimed "
4367                                  "region "PTR_FORMAT,
4368                                  _worker_id, p2i(claimed_region));
4369         }
4370 
4371         setup_for_region(claimed_region);
4372         assert(_curr_region == claimed_region, "invariant");
4373       }
4374       // It is important to call the regular clock here. It might take
4375       // a while to claim a region if, for example, we hit a large
4376       // block of empty regions. So we need to call the regular clock
4377       // method once round the loop to make sure it's called
4378       // frequently enough.
4379       regular_clock_call();
4380     }
4381 
4382     if (!has_aborted() && _curr_region == NULL) {
4383       assert(_cm->out_of_regions(),
4384              "at this point we should be out of regions");
4385     }
4386   } while ( _curr_region != NULL && !has_aborted());
4387 
4388   if (!has_aborted()) {
4389     // We cannot check whether the global stack is empty, since other
4390     // tasks might be pushing objects to it concurrently.
4391     assert(_cm->out_of_regions(),
4392            "at this point we should be out of regions");
4393 
4394     if (_cm->verbose_low()) {
4395       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4396     }
4397 
4398     // Try to reduce the number of available SATB buffers so that
4399     // remark has less work to do.
4400     drain_satb_buffers();
4401   }
4402 
4403   // Since we've done everything else, we can now totally drain the
4404   // local queue and global stack.
4405   drain_local_queue(false);
4406   drain_global_stack(false);
4407 
4408   // Attempt at work stealing from other task's queues.
4409   if (do_stealing && !has_aborted()) {
4410     // We have not aborted. This means that we have finished all that
4411     // we could. Let's try to do some stealing...
4412 
4413     // We cannot check whether the global stack is empty, since other
4414     // tasks might be pushing objects to it concurrently.
4415     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4416            "only way to reach here");
4417 
4418     if (_cm->verbose_low()) {
4419       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4420     }
4421 
4422     while (!has_aborted()) {
4423       oop obj;
4424       statsOnly( ++_steal_attempts );
4425 
4426       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4427         if (_cm->verbose_medium()) {
4428           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4429                                  _worker_id, p2i((void*) obj));
4430         }
4431 
4432         statsOnly( ++_steals );
4433 
4434         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4435                "any stolen object should be marked");
4436         scan_object(obj);
4437 
4438         // And since we're towards the end, let's totally drain the
4439         // local queue and global stack.
4440         drain_local_queue(false);
4441         drain_global_stack(false);
4442       } else {
4443         break;
4444       }
4445     }
4446   }
4447 
4448   // If we are about to wrap up and go into termination, check if we
4449   // should raise the overflow flag.
4450   if (do_termination && !has_aborted()) {
4451     if (_cm->force_overflow()->should_force()) {
4452       _cm->set_has_overflown();
4453       regular_clock_call();
4454     }
4455   }
4456 
4457   // We still haven't aborted. Now, let's try to get into the
4458   // termination protocol.
4459   if (do_termination && !has_aborted()) {
4460     // We cannot check whether the global stack is empty, since other
4461     // tasks might be concurrently pushing objects on it.
4462     // Separated the asserts so that we know which one fires.
4463     assert(_cm->out_of_regions(), "only way to reach here");
4464     assert(_task_queue->size() == 0, "only way to reach here");
4465 
4466     if (_cm->verbose_low()) {
4467       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4468     }
4469 
4470     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4471 
4472     // The CMTask class also extends the TerminatorTerminator class,
4473     // hence its should_exit_termination() method will also decide
4474     // whether to exit the termination protocol or not.
4475     bool finished = (is_serial ||
4476                      _cm->terminator()->offer_termination(this));
4477     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4478     _termination_time_ms +=
4479       termination_end_time_ms - _termination_start_time_ms;
4480 
4481     if (finished) {
4482       // We're all done.
4483 
4484       if (_worker_id == 0) {
4485         // let's allow task 0 to do this
4486         if (concurrent()) {
4487           assert(_cm->concurrent_marking_in_progress(), "invariant");
4488           // we need to set this to false before the next
4489           // safepoint. This way we ensure that the marking phase
4490           // doesn't observe any more heap expansions.
4491           _cm->clear_concurrent_marking_in_progress();
4492         }
4493       }
4494 
4495       // We can now guarantee that the global stack is empty, since
4496       // all other tasks have finished. We separated the guarantees so
4497       // that, if a condition is false, we can immediately find out
4498       // which one.
4499       guarantee(_cm->out_of_regions(), "only way to reach here");
4500       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4501       guarantee(_task_queue->size() == 0, "only way to reach here");
4502       guarantee(!_cm->has_overflown(), "only way to reach here");
4503       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4504 
4505       if (_cm->verbose_low()) {
4506         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4507       }
4508     } else {
4509       // Apparently there's more work to do. Let's abort this task. It
4510       // will restart it and we can hopefully find more things to do.
4511 
4512       if (_cm->verbose_low()) {
4513         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4514                                _worker_id);
4515       }
4516 
4517       set_has_aborted();
4518       statsOnly( ++_aborted_termination );
4519     }
4520   }
4521 
4522   // Mainly for debugging purposes to make sure that a pointer to the
4523   // closure which was statically allocated in this frame doesn't
4524   // escape it by accident.
4525   set_cm_oop_closure(NULL);
4526   double end_time_ms = os::elapsedVTime() * 1000.0;
4527   double elapsed_time_ms = end_time_ms - _start_time_ms;
4528   // Update the step history.
4529   _step_times_ms.add(elapsed_time_ms);
4530 
4531   if (has_aborted()) {
4532     // The task was aborted for some reason.
4533 
4534     statsOnly( ++_aborted );
4535 
4536     if (_has_timed_out) {
4537       double diff_ms = elapsed_time_ms - _time_target_ms;
4538       // Keep statistics of how well we did with respect to hitting
4539       // our target only if we actually timed out (if we aborted for
4540       // other reasons, then the results might get skewed).
4541       _marking_step_diffs_ms.add(diff_ms);
4542     }
4543 
4544     if (_cm->has_overflown()) {
4545       // This is the interesting one. We aborted because a global
4546       // overflow was raised. This means we have to restart the
4547       // marking phase and start iterating over regions. However, in
4548       // order to do this we have to make sure that all tasks stop
4549       // what they are doing and re-initialize in a safe manner. We
4550       // will achieve this with the use of two barrier sync points.
4551 
4552       if (_cm->verbose_low()) {
4553         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4554       }
4555 
4556       if (!is_serial) {
4557         // We only need to enter the sync barrier if being called
4558         // from a parallel context
4559         _cm->enter_first_sync_barrier(_worker_id);
4560 
4561         // When we exit this sync barrier we know that all tasks have
4562         // stopped doing marking work. So, it's now safe to
4563         // re-initialize our data structures. At the end of this method,
4564         // task 0 will clear the global data structures.
4565       }
4566 
4567       statsOnly( ++_aborted_overflow );
4568 
4569       // We clear the local state of this task...
4570       clear_region_fields();
4571 
4572       if (!is_serial) {
4573         // ...and enter the second barrier.
4574         _cm->enter_second_sync_barrier(_worker_id);
4575       }
4576       // At this point, if we're during the concurrent phase of
4577       // marking, everything has been re-initialized and we're
4578       // ready to restart.
4579     }
4580 
4581     if (_cm->verbose_low()) {
4582       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4583                              "elapsed = %1.2lfms <<<<<<<<<<",
4584                              _worker_id, _time_target_ms, elapsed_time_ms);
4585       if (_cm->has_aborted()) {
4586         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4587                                _worker_id);
4588       }
4589     }
4590   } else {
4591     if (_cm->verbose_low()) {
4592       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4593                              "elapsed = %1.2lfms <<<<<<<<<<",
4594                              _worker_id, _time_target_ms, elapsed_time_ms);
4595     }
4596   }
4597 
4598   _claimed = false;
4599 }
4600 
4601 CMTask::CMTask(uint worker_id,
4602                ConcurrentMark* cm,
4603                size_t* marked_bytes,
4604                BitMap* card_bm,
4605                CMTaskQueue* task_queue,
4606                CMTaskQueueSet* task_queues)
4607   : _g1h(G1CollectedHeap::heap()),
4608     _worker_id(worker_id), _cm(cm),
4609     _claimed(false),
4610     _nextMarkBitMap(NULL), _hash_seed(17),
4611     _task_queue(task_queue),
4612     _task_queues(task_queues),
4613     _cm_oop_closure(NULL),
4614     _marked_bytes_array(marked_bytes),
4615     _card_bm(card_bm) {
4616   guarantee(task_queue != NULL, "invariant");
4617   guarantee(task_queues != NULL, "invariant");
4618 
4619   statsOnly( _clock_due_to_scanning = 0;
4620              _clock_due_to_marking  = 0 );
4621 
4622   _marking_step_diffs_ms.add(0.5);
4623 }
4624 
4625 // These are formatting macros that are used below to ensure
4626 // consistent formatting. The *_H_* versions are used to format the
4627 // header for a particular value and they should be kept consistent
4628 // with the corresponding macro. Also note that most of the macros add
4629 // the necessary white space (as a prefix) which makes them a bit
4630 // easier to compose.
4631 
4632 // All the output lines are prefixed with this string to be able to
4633 // identify them easily in a large log file.
4634 #define G1PPRL_LINE_PREFIX            "###"
4635 
4636 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4637 #ifdef _LP64
4638 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4639 #else // _LP64
4640 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4641 #endif // _LP64
4642 
4643 // For per-region info
4644 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4645 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4646 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4647 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4648 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4649 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4650 
4651 // For summary info
4652 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4653 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4654 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4655 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4656 
4657 G1PrintRegionLivenessInfoClosure::
4658 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4659   : _out(out),
4660     _total_used_bytes(0), _total_capacity_bytes(0),
4661     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4662     _hum_used_bytes(0), _hum_capacity_bytes(0),
4663     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4664     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4665   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4666   MemRegion g1_committed = g1h->g1_committed();
4667   MemRegion g1_reserved = g1h->g1_reserved();
4668   double now = os::elapsedTime();
4669 
4670   // Print the header of the output.
4671   _out->cr();
4672   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4673   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4674                  G1PPRL_SUM_ADDR_FORMAT("committed")
4675                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4676                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4677                  p2i(g1_committed.start()), p2i(g1_committed.end()),
4678                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4679                  HeapRegion::GrainBytes);
4680   _out->print_cr(G1PPRL_LINE_PREFIX);
4681   _out->print_cr(G1PPRL_LINE_PREFIX
4682                 G1PPRL_TYPE_H_FORMAT
4683                 G1PPRL_ADDR_BASE_H_FORMAT
4684                 G1PPRL_BYTE_H_FORMAT
4685                 G1PPRL_BYTE_H_FORMAT
4686                 G1PPRL_BYTE_H_FORMAT
4687                 G1PPRL_DOUBLE_H_FORMAT
4688                 G1PPRL_BYTE_H_FORMAT
4689                 G1PPRL_BYTE_H_FORMAT,
4690                 "type", "address-range",
4691                 "used", "prev-live", "next-live", "gc-eff",
4692                 "remset", "code-roots");
4693   _out->print_cr(G1PPRL_LINE_PREFIX
4694                 G1PPRL_TYPE_H_FORMAT
4695                 G1PPRL_ADDR_BASE_H_FORMAT
4696                 G1PPRL_BYTE_H_FORMAT
4697                 G1PPRL_BYTE_H_FORMAT
4698                 G1PPRL_BYTE_H_FORMAT
4699                 G1PPRL_DOUBLE_H_FORMAT
4700                 G1PPRL_BYTE_H_FORMAT
4701                 G1PPRL_BYTE_H_FORMAT,
4702                 "", "",
4703                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4704                 "(bytes)", "(bytes)");
4705 }
4706 
4707 // It takes as a parameter a reference to one of the _hum_* fields, it
4708 // deduces the corresponding value for a region in a humongous region
4709 // series (either the region size, or what's left if the _hum_* field
4710 // is < the region size), and updates the _hum_* field accordingly.
4711 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4712   size_t bytes = 0;
4713   // The > 0 check is to deal with the prev and next live bytes which
4714   // could be 0.
4715   if (*hum_bytes > 0) {
4716     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4717     *hum_bytes -= bytes;
4718   }
4719   return bytes;
4720 }
4721 
4722 // It deduces the values for a region in a humongous region series
4723 // from the _hum_* fields and updates those accordingly. It assumes
4724 // that that _hum_* fields have already been set up from the "starts
4725 // humongous" region and we visit the regions in address order.
4726 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4727                                                      size_t* capacity_bytes,
4728                                                      size_t* prev_live_bytes,
4729                                                      size_t* next_live_bytes) {
4730   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4731   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4732   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4733   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4734   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4735 }
4736 
4737 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4738   const char* type = "";
4739   HeapWord* bottom       = r->bottom();
4740   HeapWord* end          = r->end();
4741   size_t capacity_bytes  = r->capacity();
4742   size_t used_bytes      = r->used();
4743   size_t prev_live_bytes = r->live_bytes();
4744   size_t next_live_bytes = r->next_live_bytes();
4745   double gc_eff          = r->gc_efficiency();
4746   size_t remset_bytes    = r->rem_set()->mem_size();
4747   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4748 
4749   if (r->used() == 0) {
4750     type = "FREE";
4751   } else if (r->is_survivor()) {
4752     type = "SURV";
4753   } else if (r->is_young()) {
4754     type = "EDEN";
4755   } else if (r->startsHumongous()) {
4756     type = "HUMS";
4757 
4758     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4759            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4760            "they should have been zeroed after the last time we used them");
4761     // Set up the _hum_* fields.
4762     _hum_capacity_bytes  = capacity_bytes;
4763     _hum_used_bytes      = used_bytes;
4764     _hum_prev_live_bytes = prev_live_bytes;
4765     _hum_next_live_bytes = next_live_bytes;
4766     get_hum_bytes(&used_bytes, &capacity_bytes,
4767                   &prev_live_bytes, &next_live_bytes);
4768     end = bottom + HeapRegion::GrainWords;
4769   } else if (r->continuesHumongous()) {
4770     type = "HUMC";
4771     get_hum_bytes(&used_bytes, &capacity_bytes,
4772                   &prev_live_bytes, &next_live_bytes);
4773     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4774   } else {
4775     type = "OLD";
4776   }
4777 
4778   _total_used_bytes      += used_bytes;
4779   _total_capacity_bytes  += capacity_bytes;
4780   _total_prev_live_bytes += prev_live_bytes;
4781   _total_next_live_bytes += next_live_bytes;
4782   _total_remset_bytes    += remset_bytes;
4783   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4784 
4785   // Print a line for this particular region.
4786   _out->print_cr(G1PPRL_LINE_PREFIX
4787                  G1PPRL_TYPE_FORMAT
4788                  G1PPRL_ADDR_BASE_FORMAT
4789                  G1PPRL_BYTE_FORMAT
4790                  G1PPRL_BYTE_FORMAT
4791                  G1PPRL_BYTE_FORMAT
4792                  G1PPRL_DOUBLE_FORMAT
4793                  G1PPRL_BYTE_FORMAT
4794                  G1PPRL_BYTE_FORMAT,
4795                  type, p2i(bottom), p2i(end),
4796                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4797                  remset_bytes, strong_code_roots_bytes);
4798 
4799   return false;
4800 }
4801 
4802 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4803   // add static memory usages to remembered set sizes
4804   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4805   // Print the footer of the output.
4806   _out->print_cr(G1PPRL_LINE_PREFIX);
4807   _out->print_cr(G1PPRL_LINE_PREFIX
4808                  " SUMMARY"
4809                  G1PPRL_SUM_MB_FORMAT("capacity")
4810                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4811                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4812                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4813                  G1PPRL_SUM_MB_FORMAT("remset")
4814                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4815                  bytes_to_mb(_total_capacity_bytes),
4816                  bytes_to_mb(_total_used_bytes),
4817                  perc(_total_used_bytes, _total_capacity_bytes),
4818                  bytes_to_mb(_total_prev_live_bytes),
4819                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4820                  bytes_to_mb(_total_next_live_bytes),
4821                  perc(_total_next_live_bytes, _total_capacity_bytes),
4822                  bytes_to_mb(_total_remset_bytes),
4823                  bytes_to_mb(_total_strong_code_roots_bytes));
4824   _out->cr();
4825 }