1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1StringDedup.hpp"
  52 #include "gc_implementation/g1/g1YCTypes.hpp"
  53 #include "gc_implementation/g1/heapRegion.inline.hpp"
  54 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  55 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  56 #include "gc_implementation/g1/vm_operations_g1.hpp"
  57 #include "gc_implementation/shared/gcHeapSummary.hpp"
  58 #include "gc_implementation/shared/gcTimer.hpp"
  59 #include "gc_implementation/shared/gcTrace.hpp"
  60 #include "gc_implementation/shared/gcTraceTime.hpp"
  61 #include "gc_implementation/shared/isGCActiveMark.hpp"
  62 #include "memory/allocation.hpp"
  63 #include "memory/gcLocker.inline.hpp"
  64 #include "memory/generationSpec.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "memory/referenceProcessor.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "oops/oop.pcgc.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Notes on implementation of parallelism in different tasks.
  93 //
  94 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism.
  95 // The number of GC workers is passed to heap_region_par_iterate().
  96 // It does use run_task() which sets _n_workers in the task.
  97 // G1ParTask executes g1_process_roots() ->
  98 // SharedHeap::process_roots() which calls eventually to
  99 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
 100 // SequentialSubTasksDone.  SharedHeap::process_roots() also
 101 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 102 //
 103 
 104 // Local to this file.
 105 
 106 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 107   bool _concurrent;
 108 public:
 109   RefineCardTableEntryClosure() : _concurrent(true) { }
 110 
 111   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 112     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 113     // This path is executed by the concurrent refine or mutator threads,
 114     // concurrently, and so we do not care if card_ptr contains references
 115     // that point into the collection set.
 116     assert(!oops_into_cset, "should be");
 117 
 118     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 119       // Caller will actually yield.
 120       return false;
 121     }
 122     // Otherwise, we finished successfully; return true.
 123     return true;
 124   }
 125 
 126   void set_concurrent(bool b) { _concurrent = b; }
 127 };
 128 
 129 
 130 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 131  private:
 132   size_t _num_processed;
 133 
 134  public:
 135   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 136 
 137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 138     *card_ptr = CardTableModRefBS::dirty_card_val();
 139     _num_processed++;
 140     return true;
 141   }
 142 
 143   size_t num_processed() const { return _num_processed; }
 144 };
 145 
 146 YoungList::YoungList(G1CollectedHeap* g1h) :
 147     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 148     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 149   guarantee(check_list_empty(false), "just making sure...");
 150 }
 151 
 152 void YoungList::push_region(HeapRegion *hr) {
 153   assert(!hr->is_young(), "should not already be young");
 154   assert(hr->get_next_young_region() == NULL, "cause it should!");
 155 
 156   hr->set_next_young_region(_head);
 157   _head = hr;
 158 
 159   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 160   ++_length;
 161 }
 162 
 163 void YoungList::add_survivor_region(HeapRegion* hr) {
 164   assert(hr->is_survivor(), "should be flagged as survivor region");
 165   assert(hr->get_next_young_region() == NULL, "cause it should!");
 166 
 167   hr->set_next_young_region(_survivor_head);
 168   if (_survivor_head == NULL) {
 169     _survivor_tail = hr;
 170   }
 171   _survivor_head = hr;
 172   ++_survivor_length;
 173 }
 174 
 175 void YoungList::empty_list(HeapRegion* list) {
 176   while (list != NULL) {
 177     HeapRegion* next = list->get_next_young_region();
 178     list->set_next_young_region(NULL);
 179     list->uninstall_surv_rate_group();
 180     // This is called before a Full GC and all the non-empty /
 181     // non-humongous regions at the end of the Full GC will end up as
 182     // old anyway.
 183     list->set_old();
 184     list = next;
 185   }
 186 }
 187 
 188 void YoungList::empty_list() {
 189   assert(check_list_well_formed(), "young list should be well formed");
 190 
 191   empty_list(_head);
 192   _head = NULL;
 193   _length = 0;
 194 
 195   empty_list(_survivor_head);
 196   _survivor_head = NULL;
 197   _survivor_tail = NULL;
 198   _survivor_length = 0;
 199 
 200   _last_sampled_rs_lengths = 0;
 201 
 202   assert(check_list_empty(false), "just making sure...");
 203 }
 204 
 205 bool YoungList::check_list_well_formed() {
 206   bool ret = true;
 207 
 208   uint length = 0;
 209   HeapRegion* curr = _head;
 210   HeapRegion* last = NULL;
 211   while (curr != NULL) {
 212     if (!curr->is_young()) {
 213       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 214                              "incorrectly tagged (y: %d, surv: %d)",
 215                              curr->bottom(), curr->end(),
 216                              curr->is_young(), curr->is_survivor());
 217       ret = false;
 218     }
 219     ++length;
 220     last = curr;
 221     curr = curr->get_next_young_region();
 222   }
 223   ret = ret && (length == _length);
 224 
 225   if (!ret) {
 226     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 227     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 228                            length, _length);
 229   }
 230 
 231   return ret;
 232 }
 233 
 234 bool YoungList::check_list_empty(bool check_sample) {
 235   bool ret = true;
 236 
 237   if (_length != 0) {
 238     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 239                   _length);
 240     ret = false;
 241   }
 242   if (check_sample && _last_sampled_rs_lengths != 0) {
 243     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 244     ret = false;
 245   }
 246   if (_head != NULL) {
 247     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 248     ret = false;
 249   }
 250   if (!ret) {
 251     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 252   }
 253 
 254   return ret;
 255 }
 256 
 257 void
 258 YoungList::rs_length_sampling_init() {
 259   _sampled_rs_lengths = 0;
 260   _curr               = _head;
 261 }
 262 
 263 bool
 264 YoungList::rs_length_sampling_more() {
 265   return _curr != NULL;
 266 }
 267 
 268 void
 269 YoungList::rs_length_sampling_next() {
 270   assert( _curr != NULL, "invariant" );
 271   size_t rs_length = _curr->rem_set()->occupied();
 272 
 273   _sampled_rs_lengths += rs_length;
 274 
 275   // The current region may not yet have been added to the
 276   // incremental collection set (it gets added when it is
 277   // retired as the current allocation region).
 278   if (_curr->in_collection_set()) {
 279     // Update the collection set policy information for this region
 280     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 281   }
 282 
 283   _curr = _curr->get_next_young_region();
 284   if (_curr == NULL) {
 285     _last_sampled_rs_lengths = _sampled_rs_lengths;
 286     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 287   }
 288 }
 289 
 290 void
 291 YoungList::reset_auxilary_lists() {
 292   guarantee( is_empty(), "young list should be empty" );
 293   assert(check_list_well_formed(), "young list should be well formed");
 294 
 295   // Add survivor regions to SurvRateGroup.
 296   _g1h->g1_policy()->note_start_adding_survivor_regions();
 297   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 298 
 299   int young_index_in_cset = 0;
 300   for (HeapRegion* curr = _survivor_head;
 301        curr != NULL;
 302        curr = curr->get_next_young_region()) {
 303     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 304 
 305     // The region is a non-empty survivor so let's add it to
 306     // the incremental collection set for the next evacuation
 307     // pause.
 308     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 309     young_index_in_cset += 1;
 310   }
 311   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 312   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 313 
 314   _head   = _survivor_head;
 315   _length = _survivor_length;
 316   if (_survivor_head != NULL) {
 317     assert(_survivor_tail != NULL, "cause it shouldn't be");
 318     assert(_survivor_length > 0, "invariant");
 319     _survivor_tail->set_next_young_region(NULL);
 320   }
 321 
 322   // Don't clear the survivor list handles until the start of
 323   // the next evacuation pause - we need it in order to re-tag
 324   // the survivor regions from this evacuation pause as 'young'
 325   // at the start of the next.
 326 
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 328 
 329   assert(check_list_well_formed(), "young list should be well formed");
 330 }
 331 
 332 void YoungList::print() {
 333   HeapRegion* lists[] = {_head,   _survivor_head};
 334   const char* names[] = {"YOUNG", "SURVIVOR"};
 335 
 336   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 337     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 338     HeapRegion *curr = lists[list];
 339     if (curr == NULL)
 340       gclog_or_tty->print_cr("  empty");
 341     while (curr != NULL) {
 342       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 343                              HR_FORMAT_PARAMS(curr),
 344                              curr->prev_top_at_mark_start(),
 345                              curr->next_top_at_mark_start(),
 346                              curr->age_in_surv_rate_group_cond());
 347       curr = curr->get_next_young_region();
 348     }
 349   }
 350 
 351   gclog_or_tty->cr();
 352 }
 353 
 354 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 355   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 356 }
 357 
 358 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 359   // The from card cache is not the memory that is actually committed. So we cannot
 360   // take advantage of the zero_filled parameter.
 361   reset_from_card_cache(start_idx, num_regions);
 362 }
 363 
 364 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 365 {
 366   // Claim the right to put the region on the dirty cards region list
 367   // by installing a self pointer.
 368   HeapRegion* next = hr->get_next_dirty_cards_region();
 369   if (next == NULL) {
 370     HeapRegion* res = (HeapRegion*)
 371       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 372                           NULL);
 373     if (res == NULL) {
 374       HeapRegion* head;
 375       do {
 376         // Put the region to the dirty cards region list.
 377         head = _dirty_cards_region_list;
 378         next = (HeapRegion*)
 379           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 380         if (next == head) {
 381           assert(hr->get_next_dirty_cards_region() == hr,
 382                  "hr->get_next_dirty_cards_region() != hr");
 383           if (next == NULL) {
 384             // The last region in the list points to itself.
 385             hr->set_next_dirty_cards_region(hr);
 386           } else {
 387             hr->set_next_dirty_cards_region(next);
 388           }
 389         }
 390       } while (next != head);
 391     }
 392   }
 393 }
 394 
 395 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 396 {
 397   HeapRegion* head;
 398   HeapRegion* hr;
 399   do {
 400     head = _dirty_cards_region_list;
 401     if (head == NULL) {
 402       return NULL;
 403     }
 404     HeapRegion* new_head = head->get_next_dirty_cards_region();
 405     if (head == new_head) {
 406       // The last region.
 407       new_head = NULL;
 408     }
 409     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 410                                           head);
 411   } while (hr != head);
 412   assert(hr != NULL, "invariant");
 413   hr->set_next_dirty_cards_region(NULL);
 414   return hr;
 415 }
 416 
 417 #ifdef ASSERT
 418 // A region is added to the collection set as it is retired
 419 // so an address p can point to a region which will be in the
 420 // collection set but has not yet been retired.  This method
 421 // therefore is only accurate during a GC pause after all
 422 // regions have been retired.  It is used for debugging
 423 // to check if an nmethod has references to objects that can
 424 // be move during a partial collection.  Though it can be
 425 // inaccurate, it is sufficient for G1 because the conservative
 426 // implementation of is_scavengable() for G1 will indicate that
 427 // all nmethods must be scanned during a partial collection.
 428 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 429   if (p == NULL) {
 430     return false;
 431   }
 432   return heap_region_containing(p)->in_collection_set();
 433 }
 434 #endif
 435 
 436 // Returns true if the reference points to an object that
 437 // can move in an incremental collection.
 438 bool G1CollectedHeap::is_scavengable(const void* p) {
 439   HeapRegion* hr = heap_region_containing(p);
 440   return !hr->is_humongous();
 441 }
 442 
 443 // Private class members.
 444 
 445 G1CollectedHeap* G1CollectedHeap::_g1h;
 446 
 447 // Private methods.
 448 
 449 HeapRegion*
 450 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 451   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 452   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 453     if (!_secondary_free_list.is_empty()) {
 454       if (G1ConcRegionFreeingVerbose) {
 455         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 456                                "secondary_free_list has %u entries",
 457                                _secondary_free_list.length());
 458       }
 459       // It looks as if there are free regions available on the
 460       // secondary_free_list. Let's move them to the free_list and try
 461       // again to allocate from it.
 462       append_secondary_free_list();
 463 
 464       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 465              "empty we should have moved at least one entry to the free_list");
 466       HeapRegion* res = _hrm.allocate_free_region(is_old);
 467       if (G1ConcRegionFreeingVerbose) {
 468         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 469                                "allocated "HR_FORMAT" from secondary_free_list",
 470                                HR_FORMAT_PARAMS(res));
 471       }
 472       return res;
 473     }
 474 
 475     // Wait here until we get notified either when (a) there are no
 476     // more free regions coming or (b) some regions have been moved on
 477     // the secondary_free_list.
 478     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 479   }
 480 
 481   if (G1ConcRegionFreeingVerbose) {
 482     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 483                            "could not allocate from secondary_free_list");
 484   }
 485   return NULL;
 486 }
 487 
 488 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 489   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 490          "the only time we use this to allocate a humongous region is "
 491          "when we are allocating a single humongous region");
 492 
 493   HeapRegion* res;
 494   if (G1StressConcRegionFreeing) {
 495     if (!_secondary_free_list.is_empty()) {
 496       if (G1ConcRegionFreeingVerbose) {
 497         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 498                                "forced to look at the secondary_free_list");
 499       }
 500       res = new_region_try_secondary_free_list(is_old);
 501       if (res != NULL) {
 502         return res;
 503       }
 504     }
 505   }
 506 
 507   res = _hrm.allocate_free_region(is_old);
 508 
 509   if (res == NULL) {
 510     if (G1ConcRegionFreeingVerbose) {
 511       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 512                              "res == NULL, trying the secondary_free_list");
 513     }
 514     res = new_region_try_secondary_free_list(is_old);
 515   }
 516   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 517     // Currently, only attempts to allocate GC alloc regions set
 518     // do_expand to true. So, we should only reach here during a
 519     // safepoint. If this assumption changes we might have to
 520     // reconsider the use of _expand_heap_after_alloc_failure.
 521     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 522 
 523     ergo_verbose1(ErgoHeapSizing,
 524                   "attempt heap expansion",
 525                   ergo_format_reason("region allocation request failed")
 526                   ergo_format_byte("allocation request"),
 527                   word_size * HeapWordSize);
 528     if (expand(word_size * HeapWordSize)) {
 529       // Given that expand() succeeded in expanding the heap, and we
 530       // always expand the heap by an amount aligned to the heap
 531       // region size, the free list should in theory not be empty.
 532       // In either case allocate_free_region() will check for NULL.
 533       res = _hrm.allocate_free_region(is_old);
 534     } else {
 535       _expand_heap_after_alloc_failure = false;
 536     }
 537   }
 538   return res;
 539 }
 540 
 541 HeapWord*
 542 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 543                                                            uint num_regions,
 544                                                            size_t word_size,
 545                                                            AllocationContext_t context) {
 546   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 547   assert(is_humongous(word_size), "word_size should be humongous");
 548   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 549 
 550   // Index of last region in the series + 1.
 551   uint last = first + num_regions;
 552 
 553   // We need to initialize the region(s) we just discovered. This is
 554   // a bit tricky given that it can happen concurrently with
 555   // refinement threads refining cards on these regions and
 556   // potentially wanting to refine the BOT as they are scanning
 557   // those cards (this can happen shortly after a cleanup; see CR
 558   // 6991377). So we have to set up the region(s) carefully and in
 559   // a specific order.
 560 
 561   // The word size sum of all the regions we will allocate.
 562   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 563   assert(word_size <= word_size_sum, "sanity");
 564 
 565   // This will be the "starts humongous" region.
 566   HeapRegion* first_hr = region_at(first);
 567   // The header of the new object will be placed at the bottom of
 568   // the first region.
 569   HeapWord* new_obj = first_hr->bottom();
 570   // This will be the new end of the first region in the series that
 571   // should also match the end of the last region in the series.
 572   HeapWord* new_end = new_obj + word_size_sum;
 573   // This will be the new top of the first region that will reflect
 574   // this allocation.
 575   HeapWord* new_top = new_obj + word_size;
 576 
 577   // First, we need to zero the header of the space that we will be
 578   // allocating. When we update top further down, some refinement
 579   // threads might try to scan the region. By zeroing the header we
 580   // ensure that any thread that will try to scan the region will
 581   // come across the zero klass word and bail out.
 582   //
 583   // NOTE: It would not have been correct to have used
 584   // CollectedHeap::fill_with_object() and make the space look like
 585   // an int array. The thread that is doing the allocation will
 586   // later update the object header to a potentially different array
 587   // type and, for a very short period of time, the klass and length
 588   // fields will be inconsistent. This could cause a refinement
 589   // thread to calculate the object size incorrectly.
 590   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 591 
 592   // We will set up the first region as "starts humongous". This
 593   // will also update the BOT covering all the regions to reflect
 594   // that there is a single object that starts at the bottom of the
 595   // first region.
 596   first_hr->set_starts_humongous(new_top, new_end);
 597   first_hr->set_allocation_context(context);
 598   // Then, if there are any, we will set up the "continues
 599   // humongous" regions.
 600   HeapRegion* hr = NULL;
 601   for (uint i = first + 1; i < last; ++i) {
 602     hr = region_at(i);
 603     hr->set_continues_humongous(first_hr);
 604     hr->set_allocation_context(context);
 605   }
 606   // If we have "continues humongous" regions (hr != NULL), then the
 607   // end of the last one should match new_end.
 608   assert(hr == NULL || hr->end() == new_end, "sanity");
 609 
 610   // Up to this point no concurrent thread would have been able to
 611   // do any scanning on any region in this series. All the top
 612   // fields still point to bottom, so the intersection between
 613   // [bottom,top] and [card_start,card_end] will be empty. Before we
 614   // update the top fields, we'll do a storestore to make sure that
 615   // no thread sees the update to top before the zeroing of the
 616   // object header and the BOT initialization.
 617   OrderAccess::storestore();
 618 
 619   // Now that the BOT and the object header have been initialized,
 620   // we can update top of the "starts humongous" region.
 621   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 622          "new_top should be in this region");
 623   first_hr->set_top(new_top);
 624   if (_hr_printer.is_active()) {
 625     HeapWord* bottom = first_hr->bottom();
 626     HeapWord* end = first_hr->orig_end();
 627     if ((first + 1) == last) {
 628       // the series has a single humongous region
 629       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 630     } else {
 631       // the series has more than one humongous regions
 632       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 633     }
 634   }
 635 
 636   // Now, we will update the top fields of the "continues humongous"
 637   // regions. The reason we need to do this is that, otherwise,
 638   // these regions would look empty and this will confuse parts of
 639   // G1. For example, the code that looks for a consecutive number
 640   // of empty regions will consider them empty and try to
 641   // re-allocate them. We can extend is_empty() to also include
 642   // !is_continues_humongous(), but it is easier to just update the top
 643   // fields here. The way we set top for all regions (i.e., top ==
 644   // end for all regions but the last one, top == new_top for the
 645   // last one) is actually used when we will free up the humongous
 646   // region in free_humongous_region().
 647   hr = NULL;
 648   for (uint i = first + 1; i < last; ++i) {
 649     hr = region_at(i);
 650     if ((i + 1) == last) {
 651       // last continues humongous region
 652       assert(hr->bottom() < new_top && new_top <= hr->end(),
 653              "new_top should fall on this region");
 654       hr->set_top(new_top);
 655       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 656     } else {
 657       // not last one
 658       assert(new_top > hr->end(), "new_top should be above this region");
 659       hr->set_top(hr->end());
 660       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 661     }
 662   }
 663   // If we have continues humongous regions (hr != NULL), then the
 664   // end of the last one should match new_end and its top should
 665   // match new_top.
 666   assert(hr == NULL ||
 667          (hr->end() == new_end && hr->top() == new_top), "sanity");
 668   check_bitmaps("Humongous Region Allocation", first_hr);
 669 
 670   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 671   _allocator->increase_used(first_hr->used());
 672   _humongous_set.add(first_hr);
 673 
 674   return new_obj;
 675 }
 676 
 677 // If could fit into free regions w/o expansion, try.
 678 // Otherwise, if can expand, do so.
 679 // Otherwise, if using ex regions might help, try with ex given back.
 680 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 681   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 682 
 683   verify_region_sets_optional();
 684 
 685   uint first = G1_NO_HRM_INDEX;
 686   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 687 
 688   if (obj_regions == 1) {
 689     // Only one region to allocate, try to use a fast path by directly allocating
 690     // from the free lists. Do not try to expand here, we will potentially do that
 691     // later.
 692     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 693     if (hr != NULL) {
 694       first = hr->hrm_index();
 695     }
 696   } else {
 697     // We can't allocate humongous regions spanning more than one region while
 698     // cleanupComplete() is running, since some of the regions we find to be
 699     // empty might not yet be added to the free list. It is not straightforward
 700     // to know in which list they are on so that we can remove them. We only
 701     // need to do this if we need to allocate more than one region to satisfy the
 702     // current humongous allocation request. If we are only allocating one region
 703     // we use the one-region region allocation code (see above), that already
 704     // potentially waits for regions from the secondary free list.
 705     wait_while_free_regions_coming();
 706     append_secondary_free_list_if_not_empty_with_lock();
 707 
 708     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 709     // are lucky enough to find some.
 710     first = _hrm.find_contiguous_only_empty(obj_regions);
 711     if (first != G1_NO_HRM_INDEX) {
 712       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 713     }
 714   }
 715 
 716   if (first == G1_NO_HRM_INDEX) {
 717     // Policy: We could not find enough regions for the humongous object in the
 718     // free list. Look through the heap to find a mix of free and uncommitted regions.
 719     // If so, try expansion.
 720     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 721     if (first != G1_NO_HRM_INDEX) {
 722       // We found something. Make sure these regions are committed, i.e. expand
 723       // the heap. Alternatively we could do a defragmentation GC.
 724       ergo_verbose1(ErgoHeapSizing,
 725                     "attempt heap expansion",
 726                     ergo_format_reason("humongous allocation request failed")
 727                     ergo_format_byte("allocation request"),
 728                     word_size * HeapWordSize);
 729 
 730       _hrm.expand_at(first, obj_regions);
 731       g1_policy()->record_new_heap_size(num_regions());
 732 
 733 #ifdef ASSERT
 734       for (uint i = first; i < first + obj_regions; ++i) {
 735         HeapRegion* hr = region_at(i);
 736         assert(hr->is_free(), "sanity");
 737         assert(hr->is_empty(), "sanity");
 738         assert(is_on_master_free_list(hr), "sanity");
 739       }
 740 #endif
 741       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 742     } else {
 743       // Policy: Potentially trigger a defragmentation GC.
 744     }
 745   }
 746 
 747   HeapWord* result = NULL;
 748   if (first != G1_NO_HRM_INDEX) {
 749     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 750                                                        word_size, context);
 751     assert(result != NULL, "it should always return a valid result");
 752 
 753     // A successful humongous object allocation changes the used space
 754     // information of the old generation so we need to recalculate the
 755     // sizes and update the jstat counters here.
 756     g1mm()->update_sizes();
 757   }
 758 
 759   verify_region_sets_optional();
 760 
 761   return result;
 762 }
 763 
 764 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 765   assert_heap_not_locked_and_not_at_safepoint();
 766   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 767 
 768   unsigned int dummy_gc_count_before;
 769   int dummy_gclocker_retry_count = 0;
 770   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 771 }
 772 
 773 HeapWord*
 774 G1CollectedHeap::mem_allocate(size_t word_size,
 775                               bool*  gc_overhead_limit_was_exceeded) {
 776   assert_heap_not_locked_and_not_at_safepoint();
 777 
 778   // Loop until the allocation is satisfied, or unsatisfied after GC.
 779   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 780     unsigned int gc_count_before;
 781 
 782     HeapWord* result = NULL;
 783     if (!is_humongous(word_size)) {
 784       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 785     } else {
 786       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 787     }
 788     if (result != NULL) {
 789       return result;
 790     }
 791 
 792     // Create the garbage collection operation...
 793     VM_G1CollectForAllocation op(gc_count_before, word_size);
 794     op.set_allocation_context(AllocationContext::current());
 795 
 796     // ...and get the VM thread to execute it.
 797     VMThread::execute(&op);
 798 
 799     if (op.prologue_succeeded() && op.pause_succeeded()) {
 800       // If the operation was successful we'll return the result even
 801       // if it is NULL. If the allocation attempt failed immediately
 802       // after a Full GC, it's unlikely we'll be able to allocate now.
 803       HeapWord* result = op.result();
 804       if (result != NULL && !is_humongous(word_size)) {
 805         // Allocations that take place on VM operations do not do any
 806         // card dirtying and we have to do it here. We only have to do
 807         // this for non-humongous allocations, though.
 808         dirty_young_block(result, word_size);
 809       }
 810       return result;
 811     } else {
 812       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 813         return NULL;
 814       }
 815       assert(op.result() == NULL,
 816              "the result should be NULL if the VM op did not succeed");
 817     }
 818 
 819     // Give a warning if we seem to be looping forever.
 820     if ((QueuedAllocationWarningCount > 0) &&
 821         (try_count % QueuedAllocationWarningCount == 0)) {
 822       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 823     }
 824   }
 825 
 826   ShouldNotReachHere();
 827   return NULL;
 828 }
 829 
 830 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 831                                                    AllocationContext_t context,
 832                                                    unsigned int *gc_count_before_ret,
 833                                                    int* gclocker_retry_count_ret) {
 834   // Make sure you read the note in attempt_allocation_humongous().
 835 
 836   assert_heap_not_locked_and_not_at_safepoint();
 837   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 838          "be called for humongous allocation requests");
 839 
 840   // We should only get here after the first-level allocation attempt
 841   // (attempt_allocation()) failed to allocate.
 842 
 843   // We will loop until a) we manage to successfully perform the
 844   // allocation or b) we successfully schedule a collection which
 845   // fails to perform the allocation. b) is the only case when we'll
 846   // return NULL.
 847   HeapWord* result = NULL;
 848   for (int try_count = 1; /* we'll return */; try_count += 1) {
 849     bool should_try_gc;
 850     unsigned int gc_count_before;
 851 
 852     {
 853       MutexLockerEx x(Heap_lock);
 854       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 855                                                                                     false /* bot_updates */);
 856       if (result != NULL) {
 857         return result;
 858       }
 859 
 860       // If we reach here, attempt_allocation_locked() above failed to
 861       // allocate a new region. So the mutator alloc region should be NULL.
 862       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 863 
 864       if (GC_locker::is_active_and_needs_gc()) {
 865         if (g1_policy()->can_expand_young_list()) {
 866           // No need for an ergo verbose message here,
 867           // can_expand_young_list() does this when it returns true.
 868           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 869                                                                                        false /* bot_updates */);
 870           if (result != NULL) {
 871             return result;
 872           }
 873         }
 874         should_try_gc = false;
 875       } else {
 876         // The GCLocker may not be active but the GCLocker initiated
 877         // GC may not yet have been performed (GCLocker::needs_gc()
 878         // returns true). In this case we do not try this GC and
 879         // wait until the GCLocker initiated GC is performed, and
 880         // then retry the allocation.
 881         if (GC_locker::needs_gc()) {
 882           should_try_gc = false;
 883         } else {
 884           // Read the GC count while still holding the Heap_lock.
 885           gc_count_before = total_collections();
 886           should_try_gc = true;
 887         }
 888       }
 889     }
 890 
 891     if (should_try_gc) {
 892       bool succeeded;
 893       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 894           GCCause::_g1_inc_collection_pause);
 895       if (result != NULL) {
 896         assert(succeeded, "only way to get back a non-NULL result");
 897         return result;
 898       }
 899 
 900       if (succeeded) {
 901         // If we get here we successfully scheduled a collection which
 902         // failed to allocate. No point in trying to allocate
 903         // further. We'll just return NULL.
 904         MutexLockerEx x(Heap_lock);
 905         *gc_count_before_ret = total_collections();
 906         return NULL;
 907       }
 908     } else {
 909       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 910         MutexLockerEx x(Heap_lock);
 911         *gc_count_before_ret = total_collections();
 912         return NULL;
 913       }
 914       // The GCLocker is either active or the GCLocker initiated
 915       // GC has not yet been performed. Stall until it is and
 916       // then retry the allocation.
 917       GC_locker::stall_until_clear();
 918       (*gclocker_retry_count_ret) += 1;
 919     }
 920 
 921     // We can reach here if we were unsuccessful in scheduling a
 922     // collection (because another thread beat us to it) or if we were
 923     // stalled due to the GC locker. In either can we should retry the
 924     // allocation attempt in case another thread successfully
 925     // performed a collection and reclaimed enough space. We do the
 926     // first attempt (without holding the Heap_lock) here and the
 927     // follow-on attempt will be at the start of the next loop
 928     // iteration (after taking the Heap_lock).
 929     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 930                                                                            false /* bot_updates */);
 931     if (result != NULL) {
 932       return result;
 933     }
 934 
 935     // Give a warning if we seem to be looping forever.
 936     if ((QueuedAllocationWarningCount > 0) &&
 937         (try_count % QueuedAllocationWarningCount == 0)) {
 938       warning("G1CollectedHeap::attempt_allocation_slow() "
 939               "retries %d times", try_count);
 940     }
 941   }
 942 
 943   ShouldNotReachHere();
 944   return NULL;
 945 }
 946 
 947 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 948                                                         unsigned int * gc_count_before_ret,
 949                                                         int* gclocker_retry_count_ret) {
 950   // The structure of this method has a lot of similarities to
 951   // attempt_allocation_slow(). The reason these two were not merged
 952   // into a single one is that such a method would require several "if
 953   // allocation is not humongous do this, otherwise do that"
 954   // conditional paths which would obscure its flow. In fact, an early
 955   // version of this code did use a unified method which was harder to
 956   // follow and, as a result, it had subtle bugs that were hard to
 957   // track down. So keeping these two methods separate allows each to
 958   // be more readable. It will be good to keep these two in sync as
 959   // much as possible.
 960 
 961   assert_heap_not_locked_and_not_at_safepoint();
 962   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 963          "should only be called for humongous allocations");
 964 
 965   // Humongous objects can exhaust the heap quickly, so we should check if we
 966   // need to start a marking cycle at each humongous object allocation. We do
 967   // the check before we do the actual allocation. The reason for doing it
 968   // before the allocation is that we avoid having to keep track of the newly
 969   // allocated memory while we do a GC.
 970   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 971                                            word_size)) {
 972     collect(GCCause::_g1_humongous_allocation);
 973   }
 974 
 975   // We will loop until a) we manage to successfully perform the
 976   // allocation or b) we successfully schedule a collection which
 977   // fails to perform the allocation. b) is the only case when we'll
 978   // return NULL.
 979   HeapWord* result = NULL;
 980   for (int try_count = 1; /* we'll return */; try_count += 1) {
 981     bool should_try_gc;
 982     unsigned int gc_count_before;
 983 
 984     {
 985       MutexLockerEx x(Heap_lock);
 986 
 987       // Given that humongous objects are not allocated in young
 988       // regions, we'll first try to do the allocation without doing a
 989       // collection hoping that there's enough space in the heap.
 990       result = humongous_obj_allocate(word_size, AllocationContext::current());
 991       if (result != NULL) {
 992         return result;
 993       }
 994 
 995       if (GC_locker::is_active_and_needs_gc()) {
 996         should_try_gc = false;
 997       } else {
 998          // The GCLocker may not be active but the GCLocker initiated
 999         // GC may not yet have been performed (GCLocker::needs_gc()
1000         // returns true). In this case we do not try this GC and
1001         // wait until the GCLocker initiated GC is performed, and
1002         // then retry the allocation.
1003         if (GC_locker::needs_gc()) {
1004           should_try_gc = false;
1005         } else {
1006           // Read the GC count while still holding the Heap_lock.
1007           gc_count_before = total_collections();
1008           should_try_gc = true;
1009         }
1010       }
1011     }
1012 
1013     if (should_try_gc) {
1014       // If we failed to allocate the humongous object, we should try to
1015       // do a collection pause (if we're allowed) in case it reclaims
1016       // enough space for the allocation to succeed after the pause.
1017 
1018       bool succeeded;
1019       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1020           GCCause::_g1_humongous_allocation);
1021       if (result != NULL) {
1022         assert(succeeded, "only way to get back a non-NULL result");
1023         return result;
1024       }
1025 
1026       if (succeeded) {
1027         // If we get here we successfully scheduled a collection which
1028         // failed to allocate. No point in trying to allocate
1029         // further. We'll just return NULL.
1030         MutexLockerEx x(Heap_lock);
1031         *gc_count_before_ret = total_collections();
1032         return NULL;
1033       }
1034     } else {
1035       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1036         MutexLockerEx x(Heap_lock);
1037         *gc_count_before_ret = total_collections();
1038         return NULL;
1039       }
1040       // The GCLocker is either active or the GCLocker initiated
1041       // GC has not yet been performed. Stall until it is and
1042       // then retry the allocation.
1043       GC_locker::stall_until_clear();
1044       (*gclocker_retry_count_ret) += 1;
1045     }
1046 
1047     // We can reach here if we were unsuccessful in scheduling a
1048     // collection (because another thread beat us to it) or if we were
1049     // stalled due to the GC locker. In either can we should retry the
1050     // allocation attempt in case another thread successfully
1051     // performed a collection and reclaimed enough space.  Give a
1052     // warning if we seem to be looping forever.
1053 
1054     if ((QueuedAllocationWarningCount > 0) &&
1055         (try_count % QueuedAllocationWarningCount == 0)) {
1056       warning("G1CollectedHeap::attempt_allocation_humongous() "
1057               "retries %d times", try_count);
1058     }
1059   }
1060 
1061   ShouldNotReachHere();
1062   return NULL;
1063 }
1064 
1065 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1066                                                            AllocationContext_t context,
1067                                                            bool expect_null_mutator_alloc_region) {
1068   assert_at_safepoint(true /* should_be_vm_thread */);
1069   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1070                                              !expect_null_mutator_alloc_region,
1071          "the current alloc region was unexpectedly found to be non-NULL");
1072 
1073   if (!is_humongous(word_size)) {
1074     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1075                                                       false /* bot_updates */);
1076   } else {
1077     HeapWord* result = humongous_obj_allocate(word_size, context);
1078     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1079       g1_policy()->set_initiate_conc_mark_if_possible();
1080     }
1081     return result;
1082   }
1083 
1084   ShouldNotReachHere();
1085 }
1086 
1087 class PostMCRemSetClearClosure: public HeapRegionClosure {
1088   G1CollectedHeap* _g1h;
1089   ModRefBarrierSet* _mr_bs;
1090 public:
1091   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1092     _g1h(g1h), _mr_bs(mr_bs) {}
1093 
1094   bool doHeapRegion(HeapRegion* r) {
1095     HeapRegionRemSet* hrrs = r->rem_set();
1096 
1097     if (r->is_continues_humongous()) {
1098       // We'll assert that the strong code root list and RSet is empty
1099       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1100       assert(hrrs->occupied() == 0, "RSet should be empty");
1101       return false;
1102     }
1103 
1104     _g1h->reset_gc_time_stamps(r);
1105     hrrs->clear();
1106     // You might think here that we could clear just the cards
1107     // corresponding to the used region.  But no: if we leave a dirty card
1108     // in a region we might allocate into, then it would prevent that card
1109     // from being enqueued, and cause it to be missed.
1110     // Re: the performance cost: we shouldn't be doing full GC anyway!
1111     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1112 
1113     return false;
1114   }
1115 };
1116 
1117 void G1CollectedHeap::clear_rsets_post_compaction() {
1118   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1119   heap_region_iterate(&rs_clear);
1120 }
1121 
1122 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1123   G1CollectedHeap*   _g1h;
1124   UpdateRSOopClosure _cl;
1125   int                _worker_i;
1126 public:
1127   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1128     _cl(g1->g1_rem_set(), worker_i),
1129     _worker_i(worker_i),
1130     _g1h(g1)
1131   { }
1132 
1133   bool doHeapRegion(HeapRegion* r) {
1134     if (!r->is_continues_humongous()) {
1135       _cl.set_from(r);
1136       r->oop_iterate(&_cl);
1137     }
1138     return false;
1139   }
1140 };
1141 
1142 class ParRebuildRSTask: public AbstractGangTask {
1143   G1CollectedHeap* _g1;
1144   HeapRegionClaimer _hrclaimer;
1145 
1146 public:
1147   ParRebuildRSTask(G1CollectedHeap* g1) :
1148       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1149 
1150   void work(uint worker_id) {
1151     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1152     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1153   }
1154 };
1155 
1156 class PostCompactionPrinterClosure: public HeapRegionClosure {
1157 private:
1158   G1HRPrinter* _hr_printer;
1159 public:
1160   bool doHeapRegion(HeapRegion* hr) {
1161     assert(!hr->is_young(), "not expecting to find young regions");
1162     if (hr->is_free()) {
1163       // We only generate output for non-empty regions.
1164     } else if (hr->is_starts_humongous()) {
1165       if (hr->region_num() == 1) {
1166         // single humongous region
1167         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1168       } else {
1169         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1170       }
1171     } else if (hr->is_continues_humongous()) {
1172       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1173     } else if (hr->is_old()) {
1174       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1175     } else {
1176       ShouldNotReachHere();
1177     }
1178     return false;
1179   }
1180 
1181   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1182     : _hr_printer(hr_printer) { }
1183 };
1184 
1185 void G1CollectedHeap::print_hrm_post_compaction() {
1186   PostCompactionPrinterClosure cl(hr_printer());
1187   heap_region_iterate(&cl);
1188 }
1189 
1190 bool G1CollectedHeap::do_collection(bool explicit_gc,
1191                                     bool clear_all_soft_refs,
1192                                     size_t word_size) {
1193   assert_at_safepoint(true /* should_be_vm_thread */);
1194 
1195   if (GC_locker::check_active_before_gc()) {
1196     return false;
1197   }
1198 
1199   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1200   gc_timer->register_gc_start();
1201 
1202   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1203   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1204 
1205   SvcGCMarker sgcm(SvcGCMarker::FULL);
1206   ResourceMark rm;
1207 
1208   print_heap_before_gc();
1209   trace_heap_before_gc(gc_tracer);
1210 
1211   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1212 
1213   verify_region_sets_optional();
1214 
1215   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1216                            collector_policy()->should_clear_all_soft_refs();
1217 
1218   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1219 
1220   {
1221     IsGCActiveMark x;
1222 
1223     // Timing
1224     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1225     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1226 
1227     {
1228       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1229       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1230       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1231 
1232       double start = os::elapsedTime();
1233       g1_policy()->record_full_collection_start();
1234 
1235       // Note: When we have a more flexible GC logging framework that
1236       // allows us to add optional attributes to a GC log record we
1237       // could consider timing and reporting how long we wait in the
1238       // following two methods.
1239       wait_while_free_regions_coming();
1240       // If we start the compaction before the CM threads finish
1241       // scanning the root regions we might trip them over as we'll
1242       // be moving objects / updating references. So let's wait until
1243       // they are done. By telling them to abort, they should complete
1244       // early.
1245       _cm->root_regions()->abort();
1246       _cm->root_regions()->wait_until_scan_finished();
1247       append_secondary_free_list_if_not_empty_with_lock();
1248 
1249       gc_prologue(true);
1250       increment_total_collections(true /* full gc */);
1251       increment_old_marking_cycles_started();
1252 
1253       assert(used() == recalculate_used(), "Should be equal");
1254 
1255       verify_before_gc();
1256 
1257       check_bitmaps("Full GC Start");
1258       pre_full_gc_dump(gc_timer);
1259 
1260       COMPILER2_PRESENT(DerivedPointerTable::clear());
1261 
1262       // Disable discovery and empty the discovered lists
1263       // for the CM ref processor.
1264       ref_processor_cm()->disable_discovery();
1265       ref_processor_cm()->abandon_partial_discovery();
1266       ref_processor_cm()->verify_no_references_recorded();
1267 
1268       // Abandon current iterations of concurrent marking and concurrent
1269       // refinement, if any are in progress. We have to do this before
1270       // wait_until_scan_finished() below.
1271       concurrent_mark()->abort();
1272 
1273       // Make sure we'll choose a new allocation region afterwards.
1274       _allocator->release_mutator_alloc_region();
1275       _allocator->abandon_gc_alloc_regions();
1276       g1_rem_set()->cleanupHRRS();
1277 
1278       // We should call this after we retire any currently active alloc
1279       // regions so that all the ALLOC / RETIRE events are generated
1280       // before the start GC event.
1281       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1282 
1283       // We may have added regions to the current incremental collection
1284       // set between the last GC or pause and now. We need to clear the
1285       // incremental collection set and then start rebuilding it afresh
1286       // after this full GC.
1287       abandon_collection_set(g1_policy()->inc_cset_head());
1288       g1_policy()->clear_incremental_cset();
1289       g1_policy()->stop_incremental_cset_building();
1290 
1291       tear_down_region_sets(false /* free_list_only */);
1292       g1_policy()->set_gcs_are_young(true);
1293 
1294       // See the comments in g1CollectedHeap.hpp and
1295       // G1CollectedHeap::ref_processing_init() about
1296       // how reference processing currently works in G1.
1297 
1298       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1299       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1300 
1301       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1302       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1303 
1304       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1305       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1306 
1307       // Do collection work
1308       {
1309         HandleMark hm;  // Discard invalid handles created during gc
1310         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1311       }
1312 
1313       assert(num_free_regions() == 0, "we should not have added any free regions");
1314       rebuild_region_sets(false /* free_list_only */);
1315 
1316       // Enqueue any discovered reference objects that have
1317       // not been removed from the discovered lists.
1318       ref_processor_stw()->enqueue_discovered_references();
1319 
1320       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1321 
1322       MemoryService::track_memory_usage();
1323 
1324       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1325       ref_processor_stw()->verify_no_references_recorded();
1326 
1327       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1328       ClassLoaderDataGraph::purge();
1329       MetaspaceAux::verify_metrics();
1330 
1331       // Note: since we've just done a full GC, concurrent
1332       // marking is no longer active. Therefore we need not
1333       // re-enable reference discovery for the CM ref processor.
1334       // That will be done at the start of the next marking cycle.
1335       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1336       ref_processor_cm()->verify_no_references_recorded();
1337 
1338       reset_gc_time_stamp();
1339       // Since everything potentially moved, we will clear all remembered
1340       // sets, and clear all cards.  Later we will rebuild remembered
1341       // sets. We will also reset the GC time stamps of the regions.
1342       clear_rsets_post_compaction();
1343       check_gc_time_stamps();
1344 
1345       // Resize the heap if necessary.
1346       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1347 
1348       if (_hr_printer.is_active()) {
1349         // We should do this after we potentially resize the heap so
1350         // that all the COMMIT / UNCOMMIT events are generated before
1351         // the end GC event.
1352 
1353         print_hrm_post_compaction();
1354         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1355       }
1356 
1357       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1358       if (hot_card_cache->use_cache()) {
1359         hot_card_cache->reset_card_counts();
1360         hot_card_cache->reset_hot_cache();
1361       }
1362 
1363       // Rebuild remembered sets of all regions.
1364       uint n_workers =
1365         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1366                                                 workers()->active_workers(),
1367                                                 Threads::number_of_non_daemon_threads());
1368       assert(UseDynamicNumberOfGCThreads ||
1369              n_workers == workers()->total_workers(),
1370              "If not dynamic should be using all the  workers");
1371       workers()->set_active_workers(n_workers);
1372       // Set parallel threads in the heap (_n_par_threads) only
1373       // before a parallel phase and always reset it to 0 after
1374       // the phase so that the number of parallel threads does
1375       // no get carried forward to a serial phase where there
1376       // may be code that is "possibly_parallel".
1377       set_par_threads(n_workers);
1378 
1379       ParRebuildRSTask rebuild_rs_task(this);
1380       assert(UseDynamicNumberOfGCThreads ||
1381              workers()->active_workers() == workers()->total_workers(),
1382              "Unless dynamic should use total workers");
1383       // Use the most recent number of  active workers
1384       assert(workers()->active_workers() > 0,
1385              "Active workers not properly set");
1386       set_par_threads(workers()->active_workers());
1387       workers()->run_task(&rebuild_rs_task);
1388       set_par_threads(0);
1389 
1390       // Rebuild the strong code root lists for each region
1391       rebuild_strong_code_roots();
1392 
1393       if (true) { // FIXME
1394         MetaspaceGC::compute_new_size();
1395       }
1396 
1397 #ifdef TRACESPINNING
1398       ParallelTaskTerminator::print_termination_counts();
1399 #endif
1400 
1401       // Discard all rset updates
1402       JavaThread::dirty_card_queue_set().abandon_logs();
1403       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1404 
1405       _young_list->reset_sampled_info();
1406       // At this point there should be no regions in the
1407       // entire heap tagged as young.
1408       assert(check_young_list_empty(true /* check_heap */),
1409              "young list should be empty at this point");
1410 
1411       // Update the number of full collections that have been completed.
1412       increment_old_marking_cycles_completed(false /* concurrent */);
1413 
1414       _hrm.verify_optional();
1415       verify_region_sets_optional();
1416 
1417       verify_after_gc();
1418 
1419       // Clear the previous marking bitmap, if needed for bitmap verification.
1420       // Note we cannot do this when we clear the next marking bitmap in
1421       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1422       // objects marked during a full GC against the previous bitmap.
1423       // But we need to clear it before calling check_bitmaps below since
1424       // the full GC has compacted objects and updated TAMS but not updated
1425       // the prev bitmap.
1426       if (G1VerifyBitmaps) {
1427         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1428       }
1429       check_bitmaps("Full GC End");
1430 
1431       // Start a new incremental collection set for the next pause
1432       assert(g1_policy()->collection_set() == NULL, "must be");
1433       g1_policy()->start_incremental_cset_building();
1434 
1435       clear_cset_fast_test();
1436 
1437       _allocator->init_mutator_alloc_region();
1438 
1439       double end = os::elapsedTime();
1440       g1_policy()->record_full_collection_end();
1441 
1442       if (G1Log::fine()) {
1443         g1_policy()->print_heap_transition();
1444       }
1445 
1446       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1447       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1448       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1449       // before any GC notifications are raised.
1450       g1mm()->update_sizes();
1451 
1452       gc_epilogue(true);
1453     }
1454 
1455     if (G1Log::finer()) {
1456       g1_policy()->print_detailed_heap_transition(true /* full */);
1457     }
1458 
1459     print_heap_after_gc();
1460     trace_heap_after_gc(gc_tracer);
1461 
1462     post_full_gc_dump(gc_timer);
1463 
1464     gc_timer->register_gc_end();
1465     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1466   }
1467 
1468   return true;
1469 }
1470 
1471 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1472   // do_collection() will return whether it succeeded in performing
1473   // the GC. Currently, there is no facility on the
1474   // do_full_collection() API to notify the caller than the collection
1475   // did not succeed (e.g., because it was locked out by the GC
1476   // locker). So, right now, we'll ignore the return value.
1477   bool dummy = do_collection(true,                /* explicit_gc */
1478                              clear_all_soft_refs,
1479                              0                    /* word_size */);
1480 }
1481 
1482 // This code is mostly copied from TenuredGeneration.
1483 void
1484 G1CollectedHeap::
1485 resize_if_necessary_after_full_collection(size_t word_size) {
1486   // Include the current allocation, if any, and bytes that will be
1487   // pre-allocated to support collections, as "used".
1488   const size_t used_after_gc = used();
1489   const size_t capacity_after_gc = capacity();
1490   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1491 
1492   // This is enforced in arguments.cpp.
1493   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1494          "otherwise the code below doesn't make sense");
1495 
1496   // We don't have floating point command-line arguments
1497   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1498   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1499   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1500   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1501 
1502   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1503   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1504 
1505   // We have to be careful here as these two calculations can overflow
1506   // 32-bit size_t's.
1507   double used_after_gc_d = (double) used_after_gc;
1508   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1509   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1510 
1511   // Let's make sure that they are both under the max heap size, which
1512   // by default will make them fit into a size_t.
1513   double desired_capacity_upper_bound = (double) max_heap_size;
1514   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1515                                     desired_capacity_upper_bound);
1516   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1517                                     desired_capacity_upper_bound);
1518 
1519   // We can now safely turn them into size_t's.
1520   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1521   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1522 
1523   // This assert only makes sense here, before we adjust them
1524   // with respect to the min and max heap size.
1525   assert(minimum_desired_capacity <= maximum_desired_capacity,
1526          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1527                  "maximum_desired_capacity = "SIZE_FORMAT,
1528                  minimum_desired_capacity, maximum_desired_capacity));
1529 
1530   // Should not be greater than the heap max size. No need to adjust
1531   // it with respect to the heap min size as it's a lower bound (i.e.,
1532   // we'll try to make the capacity larger than it, not smaller).
1533   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1534   // Should not be less than the heap min size. No need to adjust it
1535   // with respect to the heap max size as it's an upper bound (i.e.,
1536   // we'll try to make the capacity smaller than it, not greater).
1537   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1538 
1539   if (capacity_after_gc < minimum_desired_capacity) {
1540     // Don't expand unless it's significant
1541     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1542     ergo_verbose4(ErgoHeapSizing,
1543                   "attempt heap expansion",
1544                   ergo_format_reason("capacity lower than "
1545                                      "min desired capacity after Full GC")
1546                   ergo_format_byte("capacity")
1547                   ergo_format_byte("occupancy")
1548                   ergo_format_byte_perc("min desired capacity"),
1549                   capacity_after_gc, used_after_gc,
1550                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1551     expand(expand_bytes);
1552 
1553     // No expansion, now see if we want to shrink
1554   } else if (capacity_after_gc > maximum_desired_capacity) {
1555     // Capacity too large, compute shrinking size
1556     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1557     ergo_verbose4(ErgoHeapSizing,
1558                   "attempt heap shrinking",
1559                   ergo_format_reason("capacity higher than "
1560                                      "max desired capacity after Full GC")
1561                   ergo_format_byte("capacity")
1562                   ergo_format_byte("occupancy")
1563                   ergo_format_byte_perc("max desired capacity"),
1564                   capacity_after_gc, used_after_gc,
1565                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1566     shrink(shrink_bytes);
1567   }
1568 }
1569 
1570 
1571 HeapWord*
1572 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1573                                            AllocationContext_t context,
1574                                            bool* succeeded) {
1575   assert_at_safepoint(true /* should_be_vm_thread */);
1576 
1577   *succeeded = true;
1578   // Let's attempt the allocation first.
1579   HeapWord* result =
1580     attempt_allocation_at_safepoint(word_size,
1581                                     context,
1582                                     false /* expect_null_mutator_alloc_region */);
1583   if (result != NULL) {
1584     assert(*succeeded, "sanity");
1585     return result;
1586   }
1587 
1588   // In a G1 heap, we're supposed to keep allocation from failing by
1589   // incremental pauses.  Therefore, at least for now, we'll favor
1590   // expansion over collection.  (This might change in the future if we can
1591   // do something smarter than full collection to satisfy a failed alloc.)
1592   result = expand_and_allocate(word_size, context);
1593   if (result != NULL) {
1594     assert(*succeeded, "sanity");
1595     return result;
1596   }
1597 
1598   // Expansion didn't work, we'll try to do a Full GC.
1599   bool gc_succeeded = do_collection(false, /* explicit_gc */
1600                                     false, /* clear_all_soft_refs */
1601                                     word_size);
1602   if (!gc_succeeded) {
1603     *succeeded = false;
1604     return NULL;
1605   }
1606 
1607   // Retry the allocation
1608   result = attempt_allocation_at_safepoint(word_size,
1609                                            context,
1610                                            true /* expect_null_mutator_alloc_region */);
1611   if (result != NULL) {
1612     assert(*succeeded, "sanity");
1613     return result;
1614   }
1615 
1616   // Then, try a Full GC that will collect all soft references.
1617   gc_succeeded = do_collection(false, /* explicit_gc */
1618                                true,  /* clear_all_soft_refs */
1619                                word_size);
1620   if (!gc_succeeded) {
1621     *succeeded = false;
1622     return NULL;
1623   }
1624 
1625   // Retry the allocation once more
1626   result = attempt_allocation_at_safepoint(word_size,
1627                                            context,
1628                                            true /* expect_null_mutator_alloc_region */);
1629   if (result != NULL) {
1630     assert(*succeeded, "sanity");
1631     return result;
1632   }
1633 
1634   assert(!collector_policy()->should_clear_all_soft_refs(),
1635          "Flag should have been handled and cleared prior to this point");
1636 
1637   // What else?  We might try synchronous finalization later.  If the total
1638   // space available is large enough for the allocation, then a more
1639   // complete compaction phase than we've tried so far might be
1640   // appropriate.
1641   assert(*succeeded, "sanity");
1642   return NULL;
1643 }
1644 
1645 // Attempting to expand the heap sufficiently
1646 // to support an allocation of the given "word_size".  If
1647 // successful, perform the allocation and return the address of the
1648 // allocated block, or else "NULL".
1649 
1650 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1651   assert_at_safepoint(true /* should_be_vm_thread */);
1652 
1653   verify_region_sets_optional();
1654 
1655   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1656   ergo_verbose1(ErgoHeapSizing,
1657                 "attempt heap expansion",
1658                 ergo_format_reason("allocation request failed")
1659                 ergo_format_byte("allocation request"),
1660                 word_size * HeapWordSize);
1661   if (expand(expand_bytes)) {
1662     _hrm.verify_optional();
1663     verify_region_sets_optional();
1664     return attempt_allocation_at_safepoint(word_size,
1665                                            context,
1666                                            false /* expect_null_mutator_alloc_region */);
1667   }
1668   return NULL;
1669 }
1670 
1671 bool G1CollectedHeap::expand(size_t expand_bytes) {
1672   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1673   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1674                                        HeapRegion::GrainBytes);
1675   ergo_verbose2(ErgoHeapSizing,
1676                 "expand the heap",
1677                 ergo_format_byte("requested expansion amount")
1678                 ergo_format_byte("attempted expansion amount"),
1679                 expand_bytes, aligned_expand_bytes);
1680 
1681   if (is_maximal_no_gc()) {
1682     ergo_verbose0(ErgoHeapSizing,
1683                       "did not expand the heap",
1684                       ergo_format_reason("heap already fully expanded"));
1685     return false;
1686   }
1687 
1688   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1689   assert(regions_to_expand > 0, "Must expand by at least one region");
1690 
1691   uint expanded_by = _hrm.expand_by(regions_to_expand);
1692 
1693   if (expanded_by > 0) {
1694     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1695     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1696     g1_policy()->record_new_heap_size(num_regions());
1697   } else {
1698     ergo_verbose0(ErgoHeapSizing,
1699                   "did not expand the heap",
1700                   ergo_format_reason("heap expansion operation failed"));
1701     // The expansion of the virtual storage space was unsuccessful.
1702     // Let's see if it was because we ran out of swap.
1703     if (G1ExitOnExpansionFailure &&
1704         _hrm.available() >= regions_to_expand) {
1705       // We had head room...
1706       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1707     }
1708   }
1709   return regions_to_expand > 0;
1710 }
1711 
1712 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1713   size_t aligned_shrink_bytes =
1714     ReservedSpace::page_align_size_down(shrink_bytes);
1715   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1716                                          HeapRegion::GrainBytes);
1717   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1718 
1719   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1720   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1721 
1722   ergo_verbose3(ErgoHeapSizing,
1723                 "shrink the heap",
1724                 ergo_format_byte("requested shrinking amount")
1725                 ergo_format_byte("aligned shrinking amount")
1726                 ergo_format_byte("attempted shrinking amount"),
1727                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1728   if (num_regions_removed > 0) {
1729     g1_policy()->record_new_heap_size(num_regions());
1730   } else {
1731     ergo_verbose0(ErgoHeapSizing,
1732                   "did not shrink the heap",
1733                   ergo_format_reason("heap shrinking operation failed"));
1734   }
1735 }
1736 
1737 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1738   verify_region_sets_optional();
1739 
1740   // We should only reach here at the end of a Full GC which means we
1741   // should not not be holding to any GC alloc regions. The method
1742   // below will make sure of that and do any remaining clean up.
1743   _allocator->abandon_gc_alloc_regions();
1744 
1745   // Instead of tearing down / rebuilding the free lists here, we
1746   // could instead use the remove_all_pending() method on free_list to
1747   // remove only the ones that we need to remove.
1748   tear_down_region_sets(true /* free_list_only */);
1749   shrink_helper(shrink_bytes);
1750   rebuild_region_sets(true /* free_list_only */);
1751 
1752   _hrm.verify_optional();
1753   verify_region_sets_optional();
1754 }
1755 
1756 // Public methods.
1757 
1758 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1759 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1760 #endif // _MSC_VER
1761 
1762 
1763 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1764   SharedHeap(policy_),
1765   _g1_policy(policy_),
1766   _dirty_card_queue_set(false),
1767   _into_cset_dirty_card_queue_set(false),
1768   _is_alive_closure_cm(this),
1769   _is_alive_closure_stw(this),
1770   _ref_processor_cm(NULL),
1771   _ref_processor_stw(NULL),
1772   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1773   _bot_shared(NULL),
1774   _evac_failure_scan_stack(NULL),
1775   _mark_in_progress(false),
1776   _cg1r(NULL),
1777   _g1mm(NULL),
1778   _refine_cte_cl(NULL),
1779   _full_collection(false),
1780   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1781   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1782   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1783   _humongous_is_live(),
1784   _has_humongous_reclaim_candidates(false),
1785   _free_regions_coming(false),
1786   _young_list(new YoungList(this)),
1787   _gc_time_stamp(0),
1788   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1789   _old_plab_stats(OldPLABSize, PLABWeight),
1790   _expand_heap_after_alloc_failure(true),
1791   _surviving_young_words(NULL),
1792   _old_marking_cycles_started(0),
1793   _old_marking_cycles_completed(0),
1794   _concurrent_cycle_started(false),
1795   _heap_summary_sent(false),
1796   _in_cset_fast_test(),
1797   _dirty_cards_region_list(NULL),
1798   _worker_cset_start_region(NULL),
1799   _worker_cset_start_region_time_stamp(NULL),
1800   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1801   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1802   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1803   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1804 
1805   _g1h = this;
1806   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1807     vm_exit_during_initialization("Failed necessary allocation.");
1808   }
1809 
1810   _allocator = G1Allocator::create_allocator(_g1h);
1811   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1812 
1813   int n_queues = MAX2((int)ParallelGCThreads, 1);
1814   _task_queues = new RefToScanQueueSet(n_queues);
1815 
1816   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1817   assert(n_rem_sets > 0, "Invariant.");
1818 
1819   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1820   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1821   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1822 
1823   for (int i = 0; i < n_queues; i++) {
1824     RefToScanQueue* q = new RefToScanQueue();
1825     q->initialize();
1826     _task_queues->register_queue(i, q);
1827     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1828   }
1829   clear_cset_start_regions();
1830 
1831   // Initialize the G1EvacuationFailureALot counters and flags.
1832   NOT_PRODUCT(reset_evacuation_should_fail();)
1833 
1834   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1835 }
1836 
1837 jint G1CollectedHeap::initialize() {
1838   CollectedHeap::pre_initialize();
1839   os::enable_vtime();
1840 
1841   G1Log::init();
1842 
1843   // Necessary to satisfy locking discipline assertions.
1844 
1845   MutexLocker x(Heap_lock);
1846 
1847   // We have to initialize the printer before committing the heap, as
1848   // it will be used then.
1849   _hr_printer.set_active(G1PrintHeapRegions);
1850 
1851   // While there are no constraints in the GC code that HeapWordSize
1852   // be any particular value, there are multiple other areas in the
1853   // system which believe this to be true (e.g. oop->object_size in some
1854   // cases incorrectly returns the size in wordSize units rather than
1855   // HeapWordSize).
1856   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1857 
1858   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1859   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1860   size_t heap_alignment = collector_policy()->heap_alignment();
1861 
1862   // Ensure that the sizes are properly aligned.
1863   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1864   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1865   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1866 
1867   _refine_cte_cl = new RefineCardTableEntryClosure();
1868 
1869   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1870 
1871   // Reserve the maximum.
1872 
1873   // When compressed oops are enabled, the preferred heap base
1874   // is calculated by subtracting the requested size from the
1875   // 32Gb boundary and using the result as the base address for
1876   // heap reservation. If the requested size is not aligned to
1877   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1878   // into the ReservedHeapSpace constructor) then the actual
1879   // base of the reserved heap may end up differing from the
1880   // address that was requested (i.e. the preferred heap base).
1881   // If this happens then we could end up using a non-optimal
1882   // compressed oops mode.
1883 
1884   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1885                                                  heap_alignment);
1886 
1887   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1888 
1889   // Create the gen rem set (and barrier set) for the entire reserved region.
1890   _rem_set = collector_policy()->create_rem_set(reserved_region());
1891   set_barrier_set(rem_set()->bs());
1892   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1893     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1894     return JNI_ENOMEM;
1895   }
1896 
1897   // Also create a G1 rem set.
1898   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1899 
1900   // Carve out the G1 part of the heap.
1901 
1902   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1903   G1RegionToSpaceMapper* heap_storage =
1904     G1RegionToSpaceMapper::create_mapper(g1_rs,
1905                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1906                                          HeapRegion::GrainBytes,
1907                                          1,
1908                                          mtJavaHeap);
1909   heap_storage->set_mapping_changed_listener(&_listener);
1910 
1911   // Reserve space for the block offset table. We do not support automatic uncommit
1912   // for the card table at this time. BOT only.
1913   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1914   G1RegionToSpaceMapper* bot_storage =
1915     G1RegionToSpaceMapper::create_mapper(bot_rs,
1916                                          os::vm_page_size(),
1917                                          HeapRegion::GrainBytes,
1918                                          G1BlockOffsetSharedArray::N_bytes,
1919                                          mtGC);
1920 
1921   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1922   G1RegionToSpaceMapper* cardtable_storage =
1923     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1924                                          os::vm_page_size(),
1925                                          HeapRegion::GrainBytes,
1926                                          G1BlockOffsetSharedArray::N_bytes,
1927                                          mtGC);
1928 
1929   // Reserve space for the card counts table.
1930   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1931   G1RegionToSpaceMapper* card_counts_storage =
1932     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1933                                          os::vm_page_size(),
1934                                          HeapRegion::GrainBytes,
1935                                          G1BlockOffsetSharedArray::N_bytes,
1936                                          mtGC);
1937 
1938   // Reserve space for prev and next bitmap.
1939   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1940 
1941   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1942   G1RegionToSpaceMapper* prev_bitmap_storage =
1943     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1944                                          os::vm_page_size(),
1945                                          HeapRegion::GrainBytes,
1946                                          CMBitMap::mark_distance(),
1947                                          mtGC);
1948 
1949   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1950   G1RegionToSpaceMapper* next_bitmap_storage =
1951     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1952                                          os::vm_page_size(),
1953                                          HeapRegion::GrainBytes,
1954                                          CMBitMap::mark_distance(),
1955                                          mtGC);
1956 
1957   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1958   g1_barrier_set()->initialize(cardtable_storage);
1959    // Do later initialization work for concurrent refinement.
1960   _cg1r->init(card_counts_storage);
1961 
1962   // 6843694 - ensure that the maximum region index can fit
1963   // in the remembered set structures.
1964   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1965   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1966 
1967   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1968   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1969   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1970             "too many cards per region");
1971 
1972   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1973 
1974   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1975 
1976   _g1h = this;
1977 
1978   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1979   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1980 
1981   // Create the ConcurrentMark data structure and thread.
1982   // (Must do this late, so that "max_regions" is defined.)
1983   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1984   if (_cm == NULL || !_cm->completed_initialization()) {
1985     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1986     return JNI_ENOMEM;
1987   }
1988   _cmThread = _cm->cmThread();
1989 
1990   // Initialize the from_card cache structure of HeapRegionRemSet.
1991   HeapRegionRemSet::init_heap(max_regions());
1992 
1993   // Now expand into the initial heap size.
1994   if (!expand(init_byte_size)) {
1995     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1996     return JNI_ENOMEM;
1997   }
1998 
1999   // Perform any initialization actions delegated to the policy.
2000   g1_policy()->init();
2001 
2002   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2003                                                SATB_Q_FL_lock,
2004                                                G1SATBProcessCompletedThreshold,
2005                                                Shared_SATB_Q_lock);
2006 
2007   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2008                                                 DirtyCardQ_CBL_mon,
2009                                                 DirtyCardQ_FL_lock,
2010                                                 concurrent_g1_refine()->yellow_zone(),
2011                                                 concurrent_g1_refine()->red_zone(),
2012                                                 Shared_DirtyCardQ_lock);
2013 
2014   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2015                                     DirtyCardQ_CBL_mon,
2016                                     DirtyCardQ_FL_lock,
2017                                     -1, // never trigger processing
2018                                     -1, // no limit on length
2019                                     Shared_DirtyCardQ_lock,
2020                                     &JavaThread::dirty_card_queue_set());
2021 
2022   // Initialize the card queue set used to hold cards containing
2023   // references into the collection set.
2024   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2025                                              DirtyCardQ_CBL_mon,
2026                                              DirtyCardQ_FL_lock,
2027                                              -1, // never trigger processing
2028                                              -1, // no limit on length
2029                                              Shared_DirtyCardQ_lock,
2030                                              &JavaThread::dirty_card_queue_set());
2031 
2032   // In case we're keeping closure specialization stats, initialize those
2033   // counts and that mechanism.
2034   SpecializationStats::clear();
2035 
2036   // Here we allocate the dummy HeapRegion that is required by the
2037   // G1AllocRegion class.
2038   HeapRegion* dummy_region = _hrm.get_dummy_region();
2039 
2040   // We'll re-use the same region whether the alloc region will
2041   // require BOT updates or not and, if it doesn't, then a non-young
2042   // region will complain that it cannot support allocations without
2043   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2044   dummy_region->set_eden();
2045   // Make sure it's full.
2046   dummy_region->set_top(dummy_region->end());
2047   G1AllocRegion::setup(this, dummy_region);
2048 
2049   _allocator->init_mutator_alloc_region();
2050 
2051   // Do create of the monitoring and management support so that
2052   // values in the heap have been properly initialized.
2053   _g1mm = new G1MonitoringSupport(this);
2054 
2055   G1StringDedup::initialize();
2056 
2057   return JNI_OK;
2058 }
2059 
2060 void G1CollectedHeap::stop() {
2061   // Stop all concurrent threads. We do this to make sure these threads
2062   // do not continue to execute and access resources (e.g. gclog_or_tty)
2063   // that are destroyed during shutdown.
2064   _cg1r->stop();
2065   _cmThread->stop();
2066   if (G1StringDedup::is_enabled()) {
2067     G1StringDedup::stop();
2068   }
2069 }
2070 
2071 void G1CollectedHeap::clear_humongous_is_live_table() {
2072   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2073   _humongous_is_live.clear();
2074 }
2075 
2076 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2077   return HeapRegion::max_region_size();
2078 }
2079 
2080 void G1CollectedHeap::ref_processing_init() {
2081   // Reference processing in G1 currently works as follows:
2082   //
2083   // * There are two reference processor instances. One is
2084   //   used to record and process discovered references
2085   //   during concurrent marking; the other is used to
2086   //   record and process references during STW pauses
2087   //   (both full and incremental).
2088   // * Both ref processors need to 'span' the entire heap as
2089   //   the regions in the collection set may be dotted around.
2090   //
2091   // * For the concurrent marking ref processor:
2092   //   * Reference discovery is enabled at initial marking.
2093   //   * Reference discovery is disabled and the discovered
2094   //     references processed etc during remarking.
2095   //   * Reference discovery is MT (see below).
2096   //   * Reference discovery requires a barrier (see below).
2097   //   * Reference processing may or may not be MT
2098   //     (depending on the value of ParallelRefProcEnabled
2099   //     and ParallelGCThreads).
2100   //   * A full GC disables reference discovery by the CM
2101   //     ref processor and abandons any entries on it's
2102   //     discovered lists.
2103   //
2104   // * For the STW processor:
2105   //   * Non MT discovery is enabled at the start of a full GC.
2106   //   * Processing and enqueueing during a full GC is non-MT.
2107   //   * During a full GC, references are processed after marking.
2108   //
2109   //   * Discovery (may or may not be MT) is enabled at the start
2110   //     of an incremental evacuation pause.
2111   //   * References are processed near the end of a STW evacuation pause.
2112   //   * For both types of GC:
2113   //     * Discovery is atomic - i.e. not concurrent.
2114   //     * Reference discovery will not need a barrier.
2115 
2116   SharedHeap::ref_processing_init();
2117   MemRegion mr = reserved_region();
2118 
2119   // Concurrent Mark ref processor
2120   _ref_processor_cm =
2121     new ReferenceProcessor(mr,    // span
2122                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2123                                 // mt processing
2124                            (int) ParallelGCThreads,
2125                                 // degree of mt processing
2126                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2127                                 // mt discovery
2128                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2129                                 // degree of mt discovery
2130                            false,
2131                                 // Reference discovery is not atomic
2132                            &_is_alive_closure_cm);
2133                                 // is alive closure
2134                                 // (for efficiency/performance)
2135 
2136   // STW ref processor
2137   _ref_processor_stw =
2138     new ReferenceProcessor(mr,    // span
2139                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2140                                 // mt processing
2141                            MAX2((int)ParallelGCThreads, 1),
2142                                 // degree of mt processing
2143                            (ParallelGCThreads > 1),
2144                                 // mt discovery
2145                            MAX2((int)ParallelGCThreads, 1),
2146                                 // degree of mt discovery
2147                            true,
2148                                 // Reference discovery is atomic
2149                            &_is_alive_closure_stw);
2150                                 // is alive closure
2151                                 // (for efficiency/performance)
2152 }
2153 
2154 size_t G1CollectedHeap::capacity() const {
2155   return _hrm.length() * HeapRegion::GrainBytes;
2156 }
2157 
2158 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2159   assert(!hr->is_continues_humongous(), "pre-condition");
2160   hr->reset_gc_time_stamp();
2161   if (hr->is_starts_humongous()) {
2162     uint first_index = hr->hrm_index() + 1;
2163     uint last_index = hr->last_hc_index();
2164     for (uint i = first_index; i < last_index; i += 1) {
2165       HeapRegion* chr = region_at(i);
2166       assert(chr->is_continues_humongous(), "sanity");
2167       chr->reset_gc_time_stamp();
2168     }
2169   }
2170 }
2171 
2172 #ifndef PRODUCT
2173 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2174 private:
2175   unsigned _gc_time_stamp;
2176   bool _failures;
2177 
2178 public:
2179   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2180     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2181 
2182   virtual bool doHeapRegion(HeapRegion* hr) {
2183     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2184     if (_gc_time_stamp != region_gc_time_stamp) {
2185       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2186                              "expected %d", HR_FORMAT_PARAMS(hr),
2187                              region_gc_time_stamp, _gc_time_stamp);
2188       _failures = true;
2189     }
2190     return false;
2191   }
2192 
2193   bool failures() { return _failures; }
2194 };
2195 
2196 void G1CollectedHeap::check_gc_time_stamps() {
2197   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2198   heap_region_iterate(&cl);
2199   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2200 }
2201 #endif // PRODUCT
2202 
2203 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2204                                                  DirtyCardQueue* into_cset_dcq,
2205                                                  bool concurrent,
2206                                                  uint worker_i) {
2207   // Clean cards in the hot card cache
2208   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2209   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2210 
2211   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2212   int n_completed_buffers = 0;
2213   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2214     n_completed_buffers++;
2215   }
2216   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2217   dcqs.clear_n_completed_buffers();
2218   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2219 }
2220 
2221 
2222 // Computes the sum of the storage used by the various regions.
2223 size_t G1CollectedHeap::used() const {
2224   return _allocator->used();
2225 }
2226 
2227 size_t G1CollectedHeap::used_unlocked() const {
2228   return _allocator->used_unlocked();
2229 }
2230 
2231 class SumUsedClosure: public HeapRegionClosure {
2232   size_t _used;
2233 public:
2234   SumUsedClosure() : _used(0) {}
2235   bool doHeapRegion(HeapRegion* r) {
2236     if (!r->is_continues_humongous()) {
2237       _used += r->used();
2238     }
2239     return false;
2240   }
2241   size_t result() { return _used; }
2242 };
2243 
2244 size_t G1CollectedHeap::recalculate_used() const {
2245   double recalculate_used_start = os::elapsedTime();
2246 
2247   SumUsedClosure blk;
2248   heap_region_iterate(&blk);
2249 
2250   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2251   return blk.result();
2252 }
2253 
2254 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2255   switch (cause) {
2256     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2257     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2258     case GCCause::_g1_humongous_allocation: return true;
2259     case GCCause::_update_allocation_context_stats_inc: return true;
2260     case GCCause::_wb_conc_mark:            return true;
2261     default:                                return false;
2262   }
2263 }
2264 
2265 #ifndef PRODUCT
2266 void G1CollectedHeap::allocate_dummy_regions() {
2267   // Let's fill up most of the region
2268   size_t word_size = HeapRegion::GrainWords - 1024;
2269   // And as a result the region we'll allocate will be humongous.
2270   guarantee(is_humongous(word_size), "sanity");
2271 
2272   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2273     // Let's use the existing mechanism for the allocation
2274     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2275                                                  AllocationContext::system());
2276     if (dummy_obj != NULL) {
2277       MemRegion mr(dummy_obj, word_size);
2278       CollectedHeap::fill_with_object(mr);
2279     } else {
2280       // If we can't allocate once, we probably cannot allocate
2281       // again. Let's get out of the loop.
2282       break;
2283     }
2284   }
2285 }
2286 #endif // !PRODUCT
2287 
2288 void G1CollectedHeap::increment_old_marking_cycles_started() {
2289   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2290     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2291     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2292     _old_marking_cycles_started, _old_marking_cycles_completed));
2293 
2294   _old_marking_cycles_started++;
2295 }
2296 
2297 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2298   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2299 
2300   // We assume that if concurrent == true, then the caller is a
2301   // concurrent thread that was joined the Suspendible Thread
2302   // Set. If there's ever a cheap way to check this, we should add an
2303   // assert here.
2304 
2305   // Given that this method is called at the end of a Full GC or of a
2306   // concurrent cycle, and those can be nested (i.e., a Full GC can
2307   // interrupt a concurrent cycle), the number of full collections
2308   // completed should be either one (in the case where there was no
2309   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2310   // behind the number of full collections started.
2311 
2312   // This is the case for the inner caller, i.e. a Full GC.
2313   assert(concurrent ||
2314          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2315          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2316          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2317                  "is inconsistent with _old_marking_cycles_completed = %u",
2318                  _old_marking_cycles_started, _old_marking_cycles_completed));
2319 
2320   // This is the case for the outer caller, i.e. the concurrent cycle.
2321   assert(!concurrent ||
2322          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2323          err_msg("for outer caller (concurrent cycle): "
2324                  "_old_marking_cycles_started = %u "
2325                  "is inconsistent with _old_marking_cycles_completed = %u",
2326                  _old_marking_cycles_started, _old_marking_cycles_completed));
2327 
2328   _old_marking_cycles_completed += 1;
2329 
2330   // We need to clear the "in_progress" flag in the CM thread before
2331   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2332   // is set) so that if a waiter requests another System.gc() it doesn't
2333   // incorrectly see that a marking cycle is still in progress.
2334   if (concurrent) {
2335     _cmThread->clear_in_progress();
2336   }
2337 
2338   // This notify_all() will ensure that a thread that called
2339   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2340   // and it's waiting for a full GC to finish will be woken up. It is
2341   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2342   FullGCCount_lock->notify_all();
2343 }
2344 
2345 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2346   _concurrent_cycle_started = true;
2347   _gc_timer_cm->register_gc_start(start_time);
2348 
2349   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2350   trace_heap_before_gc(_gc_tracer_cm);
2351 }
2352 
2353 void G1CollectedHeap::register_concurrent_cycle_end() {
2354   if (_concurrent_cycle_started) {
2355     if (_cm->has_aborted()) {
2356       _gc_tracer_cm->report_concurrent_mode_failure();
2357     }
2358 
2359     _gc_timer_cm->register_gc_end();
2360     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2361 
2362     // Clear state variables to prepare for the next concurrent cycle.
2363     _concurrent_cycle_started = false;
2364     _heap_summary_sent = false;
2365   }
2366 }
2367 
2368 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2369   if (_concurrent_cycle_started) {
2370     // This function can be called when:
2371     //  the cleanup pause is run
2372     //  the concurrent cycle is aborted before the cleanup pause.
2373     //  the concurrent cycle is aborted after the cleanup pause,
2374     //   but before the concurrent cycle end has been registered.
2375     // Make sure that we only send the heap information once.
2376     if (!_heap_summary_sent) {
2377       trace_heap_after_gc(_gc_tracer_cm);
2378       _heap_summary_sent = true;
2379     }
2380   }
2381 }
2382 
2383 G1YCType G1CollectedHeap::yc_type() {
2384   bool is_young = g1_policy()->gcs_are_young();
2385   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2386   bool is_during_mark = mark_in_progress();
2387 
2388   if (is_initial_mark) {
2389     return InitialMark;
2390   } else if (is_during_mark) {
2391     return DuringMark;
2392   } else if (is_young) {
2393     return Normal;
2394   } else {
2395     return Mixed;
2396   }
2397 }
2398 
2399 void G1CollectedHeap::collect(GCCause::Cause cause) {
2400   assert_heap_not_locked();
2401 
2402   unsigned int gc_count_before;
2403   unsigned int old_marking_count_before;
2404   unsigned int full_gc_count_before;
2405   bool retry_gc;
2406 
2407   do {
2408     retry_gc = false;
2409 
2410     {
2411       MutexLocker ml(Heap_lock);
2412 
2413       // Read the GC count while holding the Heap_lock
2414       gc_count_before = total_collections();
2415       full_gc_count_before = total_full_collections();
2416       old_marking_count_before = _old_marking_cycles_started;
2417     }
2418 
2419     if (should_do_concurrent_full_gc(cause)) {
2420       // Schedule an initial-mark evacuation pause that will start a
2421       // concurrent cycle. We're setting word_size to 0 which means that
2422       // we are not requesting a post-GC allocation.
2423       VM_G1IncCollectionPause op(gc_count_before,
2424                                  0,     /* word_size */
2425                                  true,  /* should_initiate_conc_mark */
2426                                  g1_policy()->max_pause_time_ms(),
2427                                  cause);
2428       op.set_allocation_context(AllocationContext::current());
2429 
2430       VMThread::execute(&op);
2431       if (!op.pause_succeeded()) {
2432         if (old_marking_count_before == _old_marking_cycles_started) {
2433           retry_gc = op.should_retry_gc();
2434         } else {
2435           // A Full GC happened while we were trying to schedule the
2436           // initial-mark GC. No point in starting a new cycle given
2437           // that the whole heap was collected anyway.
2438         }
2439 
2440         if (retry_gc) {
2441           if (GC_locker::is_active_and_needs_gc()) {
2442             GC_locker::stall_until_clear();
2443           }
2444         }
2445       }
2446     } else {
2447       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2448           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2449 
2450         // Schedule a standard evacuation pause. We're setting word_size
2451         // to 0 which means that we are not requesting a post-GC allocation.
2452         VM_G1IncCollectionPause op(gc_count_before,
2453                                    0,     /* word_size */
2454                                    false, /* should_initiate_conc_mark */
2455                                    g1_policy()->max_pause_time_ms(),
2456                                    cause);
2457         VMThread::execute(&op);
2458       } else {
2459         // Schedule a Full GC.
2460         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2461         VMThread::execute(&op);
2462       }
2463     }
2464   } while (retry_gc);
2465 }
2466 
2467 bool G1CollectedHeap::is_in(const void* p) const {
2468   if (_hrm.reserved().contains(p)) {
2469     // Given that we know that p is in the reserved space,
2470     // heap_region_containing_raw() should successfully
2471     // return the containing region.
2472     HeapRegion* hr = heap_region_containing_raw(p);
2473     return hr->is_in(p);
2474   } else {
2475     return false;
2476   }
2477 }
2478 
2479 #ifdef ASSERT
2480 bool G1CollectedHeap::is_in_exact(const void* p) const {
2481   bool contains = reserved_region().contains(p);
2482   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2483   if (contains && available) {
2484     return true;
2485   } else {
2486     return false;
2487   }
2488 }
2489 #endif
2490 
2491 // Iteration functions.
2492 
2493 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2494 
2495 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2496   ExtendedOopClosure* _cl;
2497 public:
2498   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2499   bool doHeapRegion(HeapRegion* r) {
2500     if (!r->is_continues_humongous()) {
2501       r->oop_iterate(_cl);
2502     }
2503     return false;
2504   }
2505 };
2506 
2507 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2508   IterateOopClosureRegionClosure blk(cl);
2509   heap_region_iterate(&blk);
2510 }
2511 
2512 // Iterates an ObjectClosure over all objects within a HeapRegion.
2513 
2514 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2515   ObjectClosure* _cl;
2516 public:
2517   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2518   bool doHeapRegion(HeapRegion* r) {
2519     if (!r->is_continues_humongous()) {
2520       r->object_iterate(_cl);
2521     }
2522     return false;
2523   }
2524 };
2525 
2526 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2527   IterateObjectClosureRegionClosure blk(cl);
2528   heap_region_iterate(&blk);
2529 }
2530 
2531 // Calls a SpaceClosure on a HeapRegion.
2532 
2533 class SpaceClosureRegionClosure: public HeapRegionClosure {
2534   SpaceClosure* _cl;
2535 public:
2536   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2537   bool doHeapRegion(HeapRegion* r) {
2538     _cl->do_space(r);
2539     return false;
2540   }
2541 };
2542 
2543 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2544   SpaceClosureRegionClosure blk(cl);
2545   heap_region_iterate(&blk);
2546 }
2547 
2548 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2549   _hrm.iterate(cl);
2550 }
2551 
2552 void
2553 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2554                                          uint worker_id,
2555                                          HeapRegionClaimer *hrclaimer,
2556                                          bool concurrent) const {
2557   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2558 }
2559 
2560 // Clear the cached CSet starting regions and (more importantly)
2561 // the time stamps. Called when we reset the GC time stamp.
2562 void G1CollectedHeap::clear_cset_start_regions() {
2563   assert(_worker_cset_start_region != NULL, "sanity");
2564   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2565 
2566   int n_queues = MAX2((int)ParallelGCThreads, 1);
2567   for (int i = 0; i < n_queues; i++) {
2568     _worker_cset_start_region[i] = NULL;
2569     _worker_cset_start_region_time_stamp[i] = 0;
2570   }
2571 }
2572 
2573 // Given the id of a worker, obtain or calculate a suitable
2574 // starting region for iterating over the current collection set.
2575 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2576   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2577 
2578   HeapRegion* result = NULL;
2579   unsigned gc_time_stamp = get_gc_time_stamp();
2580 
2581   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2582     // Cached starting region for current worker was set
2583     // during the current pause - so it's valid.
2584     // Note: the cached starting heap region may be NULL
2585     // (when the collection set is empty).
2586     result = _worker_cset_start_region[worker_i];
2587     assert(result == NULL || result->in_collection_set(), "sanity");
2588     return result;
2589   }
2590 
2591   // The cached entry was not valid so let's calculate
2592   // a suitable starting heap region for this worker.
2593 
2594   // We want the parallel threads to start their collection
2595   // set iteration at different collection set regions to
2596   // avoid contention.
2597   // If we have:
2598   //          n collection set regions
2599   //          p threads
2600   // Then thread t will start at region floor ((t * n) / p)
2601 
2602   result = g1_policy()->collection_set();
2603   uint cs_size = g1_policy()->cset_region_length();
2604   uint active_workers = workers()->active_workers();
2605   assert(UseDynamicNumberOfGCThreads ||
2606            active_workers == workers()->total_workers(),
2607            "Unless dynamic should use total workers");
2608 
2609   uint end_ind   = (cs_size * worker_i) / active_workers;
2610   uint start_ind = 0;
2611 
2612   if (worker_i > 0 &&
2613       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2614     // Previous workers starting region is valid
2615     // so let's iterate from there
2616     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2617     result = _worker_cset_start_region[worker_i - 1];
2618   }
2619 
2620   for (uint i = start_ind; i < end_ind; i++) {
2621     result = result->next_in_collection_set();
2622   }
2623 
2624   // Note: the calculated starting heap region may be NULL
2625   // (when the collection set is empty).
2626   assert(result == NULL || result->in_collection_set(), "sanity");
2627   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2628          "should be updated only once per pause");
2629   _worker_cset_start_region[worker_i] = result;
2630   OrderAccess::storestore();
2631   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2632   return result;
2633 }
2634 
2635 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2636   HeapRegion* r = g1_policy()->collection_set();
2637   while (r != NULL) {
2638     HeapRegion* next = r->next_in_collection_set();
2639     if (cl->doHeapRegion(r)) {
2640       cl->incomplete();
2641       return;
2642     }
2643     r = next;
2644   }
2645 }
2646 
2647 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2648                                                   HeapRegionClosure *cl) {
2649   if (r == NULL) {
2650     // The CSet is empty so there's nothing to do.
2651     return;
2652   }
2653 
2654   assert(r->in_collection_set(),
2655          "Start region must be a member of the collection set.");
2656   HeapRegion* cur = r;
2657   while (cur != NULL) {
2658     HeapRegion* next = cur->next_in_collection_set();
2659     if (cl->doHeapRegion(cur) && false) {
2660       cl->incomplete();
2661       return;
2662     }
2663     cur = next;
2664   }
2665   cur = g1_policy()->collection_set();
2666   while (cur != r) {
2667     HeapRegion* next = cur->next_in_collection_set();
2668     if (cl->doHeapRegion(cur) && false) {
2669       cl->incomplete();
2670       return;
2671     }
2672     cur = next;
2673   }
2674 }
2675 
2676 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2677   HeapRegion* result = _hrm.next_region_in_heap(from);
2678   while (result != NULL && result->is_humongous()) {
2679     result = _hrm.next_region_in_heap(result);
2680   }
2681   return result;
2682 }
2683 
2684 Space* G1CollectedHeap::space_containing(const void* addr) const {
2685   return heap_region_containing(addr);
2686 }
2687 
2688 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2689   Space* sp = space_containing(addr);
2690   return sp->block_start(addr);
2691 }
2692 
2693 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2694   Space* sp = space_containing(addr);
2695   return sp->block_size(addr);
2696 }
2697 
2698 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2699   Space* sp = space_containing(addr);
2700   return sp->block_is_obj(addr);
2701 }
2702 
2703 bool G1CollectedHeap::supports_tlab_allocation() const {
2704   return true;
2705 }
2706 
2707 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2708   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2709 }
2710 
2711 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2712   return young_list()->eden_used_bytes();
2713 }
2714 
2715 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2716 // must be smaller than the humongous object limit.
2717 size_t G1CollectedHeap::max_tlab_size() const {
2718   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2719 }
2720 
2721 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2722   // Return the remaining space in the cur alloc region, but not less than
2723   // the min TLAB size.
2724 
2725   // Also, this value can be at most the humongous object threshold,
2726   // since we can't allow tlabs to grow big enough to accommodate
2727   // humongous objects.
2728 
2729   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2730   size_t max_tlab = max_tlab_size() * wordSize;
2731   if (hr == NULL) {
2732     return max_tlab;
2733   } else {
2734     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2735   }
2736 }
2737 
2738 size_t G1CollectedHeap::max_capacity() const {
2739   return _hrm.reserved().byte_size();
2740 }
2741 
2742 jlong G1CollectedHeap::millis_since_last_gc() {
2743   // assert(false, "NYI");
2744   return 0;
2745 }
2746 
2747 void G1CollectedHeap::prepare_for_verify() {
2748   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2749     ensure_parsability(false);
2750   }
2751   g1_rem_set()->prepare_for_verify();
2752 }
2753 
2754 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2755                                               VerifyOption vo) {
2756   switch (vo) {
2757   case VerifyOption_G1UsePrevMarking:
2758     return hr->obj_allocated_since_prev_marking(obj);
2759   case VerifyOption_G1UseNextMarking:
2760     return hr->obj_allocated_since_next_marking(obj);
2761   case VerifyOption_G1UseMarkWord:
2762     return false;
2763   default:
2764     ShouldNotReachHere();
2765   }
2766   return false; // keep some compilers happy
2767 }
2768 
2769 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2770   switch (vo) {
2771   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2772   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2773   case VerifyOption_G1UseMarkWord:    return NULL;
2774   default:                            ShouldNotReachHere();
2775   }
2776   return NULL; // keep some compilers happy
2777 }
2778 
2779 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2780   switch (vo) {
2781   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2782   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2783   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2784   default:                            ShouldNotReachHere();
2785   }
2786   return false; // keep some compilers happy
2787 }
2788 
2789 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2790   switch (vo) {
2791   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2792   case VerifyOption_G1UseNextMarking: return "NTAMS";
2793   case VerifyOption_G1UseMarkWord:    return "NONE";
2794   default:                            ShouldNotReachHere();
2795   }
2796   return NULL; // keep some compilers happy
2797 }
2798 
2799 class VerifyRootsClosure: public OopClosure {
2800 private:
2801   G1CollectedHeap* _g1h;
2802   VerifyOption     _vo;
2803   bool             _failures;
2804 public:
2805   // _vo == UsePrevMarking -> use "prev" marking information,
2806   // _vo == UseNextMarking -> use "next" marking information,
2807   // _vo == UseMarkWord    -> use mark word from object header.
2808   VerifyRootsClosure(VerifyOption vo) :
2809     _g1h(G1CollectedHeap::heap()),
2810     _vo(vo),
2811     _failures(false) { }
2812 
2813   bool failures() { return _failures; }
2814 
2815   template <class T> void do_oop_nv(T* p) {
2816     T heap_oop = oopDesc::load_heap_oop(p);
2817     if (!oopDesc::is_null(heap_oop)) {
2818       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2819       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2820         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2821                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2822         if (_vo == VerifyOption_G1UseMarkWord) {
2823           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2824         }
2825         obj->print_on(gclog_or_tty);
2826         _failures = true;
2827       }
2828     }
2829   }
2830 
2831   void do_oop(oop* p)       { do_oop_nv(p); }
2832   void do_oop(narrowOop* p) { do_oop_nv(p); }
2833 };
2834 
2835 class G1VerifyCodeRootOopClosure: public OopClosure {
2836   G1CollectedHeap* _g1h;
2837   OopClosure* _root_cl;
2838   nmethod* _nm;
2839   VerifyOption _vo;
2840   bool _failures;
2841 
2842   template <class T> void do_oop_work(T* p) {
2843     // First verify that this root is live
2844     _root_cl->do_oop(p);
2845 
2846     if (!G1VerifyHeapRegionCodeRoots) {
2847       // We're not verifying the code roots attached to heap region.
2848       return;
2849     }
2850 
2851     // Don't check the code roots during marking verification in a full GC
2852     if (_vo == VerifyOption_G1UseMarkWord) {
2853       return;
2854     }
2855 
2856     // Now verify that the current nmethod (which contains p) is
2857     // in the code root list of the heap region containing the
2858     // object referenced by p.
2859 
2860     T heap_oop = oopDesc::load_heap_oop(p);
2861     if (!oopDesc::is_null(heap_oop)) {
2862       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2863 
2864       // Now fetch the region containing the object
2865       HeapRegion* hr = _g1h->heap_region_containing(obj);
2866       HeapRegionRemSet* hrrs = hr->rem_set();
2867       // Verify that the strong code root list for this region
2868       // contains the nmethod
2869       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2870         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2871                               "from nmethod "PTR_FORMAT" not in strong "
2872                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2873                               p, _nm, hr->bottom(), hr->end());
2874         _failures = true;
2875       }
2876     }
2877   }
2878 
2879 public:
2880   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2881     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2882 
2883   void do_oop(oop* p) { do_oop_work(p); }
2884   void do_oop(narrowOop* p) { do_oop_work(p); }
2885 
2886   void set_nmethod(nmethod* nm) { _nm = nm; }
2887   bool failures() { return _failures; }
2888 };
2889 
2890 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2891   G1VerifyCodeRootOopClosure* _oop_cl;
2892 
2893 public:
2894   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2895     _oop_cl(oop_cl) {}
2896 
2897   void do_code_blob(CodeBlob* cb) {
2898     nmethod* nm = cb->as_nmethod_or_null();
2899     if (nm != NULL) {
2900       _oop_cl->set_nmethod(nm);
2901       nm->oops_do(_oop_cl);
2902     }
2903   }
2904 };
2905 
2906 class YoungRefCounterClosure : public OopClosure {
2907   G1CollectedHeap* _g1h;
2908   int              _count;
2909  public:
2910   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2911   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2912   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2913 
2914   int count() { return _count; }
2915   void reset_count() { _count = 0; };
2916 };
2917 
2918 class VerifyKlassClosure: public KlassClosure {
2919   YoungRefCounterClosure _young_ref_counter_closure;
2920   OopClosure *_oop_closure;
2921  public:
2922   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2923   void do_klass(Klass* k) {
2924     k->oops_do(_oop_closure);
2925 
2926     _young_ref_counter_closure.reset_count();
2927     k->oops_do(&_young_ref_counter_closure);
2928     if (_young_ref_counter_closure.count() > 0) {
2929       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2930     }
2931   }
2932 };
2933 
2934 class VerifyLivenessOopClosure: public OopClosure {
2935   G1CollectedHeap* _g1h;
2936   VerifyOption _vo;
2937 public:
2938   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2939     _g1h(g1h), _vo(vo)
2940   { }
2941   void do_oop(narrowOop *p) { do_oop_work(p); }
2942   void do_oop(      oop *p) { do_oop_work(p); }
2943 
2944   template <class T> void do_oop_work(T *p) {
2945     oop obj = oopDesc::load_decode_heap_oop(p);
2946     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2947               "Dead object referenced by a not dead object");
2948   }
2949 };
2950 
2951 class VerifyObjsInRegionClosure: public ObjectClosure {
2952 private:
2953   G1CollectedHeap* _g1h;
2954   size_t _live_bytes;
2955   HeapRegion *_hr;
2956   VerifyOption _vo;
2957 public:
2958   // _vo == UsePrevMarking -> use "prev" marking information,
2959   // _vo == UseNextMarking -> use "next" marking information,
2960   // _vo == UseMarkWord    -> use mark word from object header.
2961   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2962     : _live_bytes(0), _hr(hr), _vo(vo) {
2963     _g1h = G1CollectedHeap::heap();
2964   }
2965   void do_object(oop o) {
2966     VerifyLivenessOopClosure isLive(_g1h, _vo);
2967     assert(o != NULL, "Huh?");
2968     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2969       // If the object is alive according to the mark word,
2970       // then verify that the marking information agrees.
2971       // Note we can't verify the contra-positive of the
2972       // above: if the object is dead (according to the mark
2973       // word), it may not be marked, or may have been marked
2974       // but has since became dead, or may have been allocated
2975       // since the last marking.
2976       if (_vo == VerifyOption_G1UseMarkWord) {
2977         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2978       }
2979 
2980       o->oop_iterate_no_header(&isLive);
2981       if (!_hr->obj_allocated_since_prev_marking(o)) {
2982         size_t obj_size = o->size();    // Make sure we don't overflow
2983         _live_bytes += (obj_size * HeapWordSize);
2984       }
2985     }
2986   }
2987   size_t live_bytes() { return _live_bytes; }
2988 };
2989 
2990 class PrintObjsInRegionClosure : public ObjectClosure {
2991   HeapRegion *_hr;
2992   G1CollectedHeap *_g1;
2993 public:
2994   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2995     _g1 = G1CollectedHeap::heap();
2996   };
2997 
2998   void do_object(oop o) {
2999     if (o != NULL) {
3000       HeapWord *start = (HeapWord *) o;
3001       size_t word_sz = o->size();
3002       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3003                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3004                           (void*) o, word_sz,
3005                           _g1->isMarkedPrev(o),
3006                           _g1->isMarkedNext(o),
3007                           _hr->obj_allocated_since_prev_marking(o));
3008       HeapWord *end = start + word_sz;
3009       HeapWord *cur;
3010       int *val;
3011       for (cur = start; cur < end; cur++) {
3012         val = (int *) cur;
3013         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3014       }
3015     }
3016   }
3017 };
3018 
3019 class VerifyRegionClosure: public HeapRegionClosure {
3020 private:
3021   bool             _par;
3022   VerifyOption     _vo;
3023   bool             _failures;
3024 public:
3025   // _vo == UsePrevMarking -> use "prev" marking information,
3026   // _vo == UseNextMarking -> use "next" marking information,
3027   // _vo == UseMarkWord    -> use mark word from object header.
3028   VerifyRegionClosure(bool par, VerifyOption vo)
3029     : _par(par),
3030       _vo(vo),
3031       _failures(false) {}
3032 
3033   bool failures() {
3034     return _failures;
3035   }
3036 
3037   bool doHeapRegion(HeapRegion* r) {
3038     if (!r->is_continues_humongous()) {
3039       bool failures = false;
3040       r->verify(_vo, &failures);
3041       if (failures) {
3042         _failures = true;
3043       } else {
3044         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3045         r->object_iterate(&not_dead_yet_cl);
3046         if (_vo != VerifyOption_G1UseNextMarking) {
3047           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3048             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3049                                    "max_live_bytes "SIZE_FORMAT" "
3050                                    "< calculated "SIZE_FORMAT,
3051                                    r->bottom(), r->end(),
3052                                    r->max_live_bytes(),
3053                                  not_dead_yet_cl.live_bytes());
3054             _failures = true;
3055           }
3056         } else {
3057           // When vo == UseNextMarking we cannot currently do a sanity
3058           // check on the live bytes as the calculation has not been
3059           // finalized yet.
3060         }
3061       }
3062     }
3063     return false; // stop the region iteration if we hit a failure
3064   }
3065 };
3066 
3067 // This is the task used for parallel verification of the heap regions
3068 
3069 class G1ParVerifyTask: public AbstractGangTask {
3070 private:
3071   G1CollectedHeap*  _g1h;
3072   VerifyOption      _vo;
3073   bool              _failures;
3074   HeapRegionClaimer _hrclaimer;
3075 
3076 public:
3077   // _vo == UsePrevMarking -> use "prev" marking information,
3078   // _vo == UseNextMarking -> use "next" marking information,
3079   // _vo == UseMarkWord    -> use mark word from object header.
3080   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3081       AbstractGangTask("Parallel verify task"),
3082       _g1h(g1h),
3083       _vo(vo),
3084       _failures(false),
3085       _hrclaimer(g1h->workers()->active_workers()) {}
3086 
3087   bool failures() {
3088     return _failures;
3089   }
3090 
3091   void work(uint worker_id) {
3092     HandleMark hm;
3093     VerifyRegionClosure blk(true, _vo);
3094     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3095     if (blk.failures()) {
3096       _failures = true;
3097     }
3098   }
3099 };
3100 
3101 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3102   if (SafepointSynchronize::is_at_safepoint()) {
3103     assert(Thread::current()->is_VM_thread(),
3104            "Expected to be executed serially by the VM thread at this point");
3105 
3106     if (!silent) { gclog_or_tty->print("Roots "); }
3107     VerifyRootsClosure rootsCl(vo);
3108     VerifyKlassClosure klassCl(this, &rootsCl);
3109     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3110 
3111     // We apply the relevant closures to all the oops in the
3112     // system dictionary, class loader data graph, the string table
3113     // and the nmethods in the code cache.
3114     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3115     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3116 
3117     process_all_roots(true,            // activate StrongRootsScope
3118                       SO_AllCodeCache, // roots scanning options
3119                       &rootsCl,
3120                       &cldCl,
3121                       &blobsCl);
3122 
3123     bool failures = rootsCl.failures() || codeRootsCl.failures();
3124 
3125     if (vo != VerifyOption_G1UseMarkWord) {
3126       // If we're verifying during a full GC then the region sets
3127       // will have been torn down at the start of the GC. Therefore
3128       // verifying the region sets will fail. So we only verify
3129       // the region sets when not in a full GC.
3130       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3131       verify_region_sets();
3132     }
3133 
3134     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3135     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3136 
3137       G1ParVerifyTask task(this, vo);
3138       assert(UseDynamicNumberOfGCThreads ||
3139         workers()->active_workers() == workers()->total_workers(),
3140         "If not dynamic should be using all the workers");
3141       int n_workers = workers()->active_workers();
3142       set_par_threads(n_workers);
3143       workers()->run_task(&task);
3144       set_par_threads(0);
3145       if (task.failures()) {
3146         failures = true;
3147       }
3148 
3149     } else {
3150       VerifyRegionClosure blk(false, vo);
3151       heap_region_iterate(&blk);
3152       if (blk.failures()) {
3153         failures = true;
3154       }
3155     }
3156     if (!silent) gclog_or_tty->print("RemSet ");
3157     rem_set()->verify();
3158 
3159     if (G1StringDedup::is_enabled()) {
3160       if (!silent) gclog_or_tty->print("StrDedup ");
3161       G1StringDedup::verify();
3162     }
3163 
3164     if (failures) {
3165       gclog_or_tty->print_cr("Heap:");
3166       // It helps to have the per-region information in the output to
3167       // help us track down what went wrong. This is why we call
3168       // print_extended_on() instead of print_on().
3169       print_extended_on(gclog_or_tty);
3170       gclog_or_tty->cr();
3171 #ifndef PRODUCT
3172       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3173         concurrent_mark()->print_reachable("at-verification-failure",
3174                                            vo, false /* all */);
3175       }
3176 #endif
3177       gclog_or_tty->flush();
3178     }
3179     guarantee(!failures, "there should not have been any failures");
3180   } else {
3181     if (!silent) {
3182       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3183       if (G1StringDedup::is_enabled()) {
3184         gclog_or_tty->print(", StrDedup");
3185       }
3186       gclog_or_tty->print(") ");
3187     }
3188   }
3189 }
3190 
3191 void G1CollectedHeap::verify(bool silent) {
3192   verify(silent, VerifyOption_G1UsePrevMarking);
3193 }
3194 
3195 double G1CollectedHeap::verify(bool guard, const char* msg) {
3196   double verify_time_ms = 0.0;
3197 
3198   if (guard && total_collections() >= VerifyGCStartAt) {
3199     double verify_start = os::elapsedTime();
3200     HandleMark hm;  // Discard invalid handles created during verification
3201     prepare_for_verify();
3202     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3203     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3204   }
3205 
3206   return verify_time_ms;
3207 }
3208 
3209 void G1CollectedHeap::verify_before_gc() {
3210   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3211   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3212 }
3213 
3214 void G1CollectedHeap::verify_after_gc() {
3215   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3216   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3217 }
3218 
3219 class PrintRegionClosure: public HeapRegionClosure {
3220   outputStream* _st;
3221 public:
3222   PrintRegionClosure(outputStream* st) : _st(st) {}
3223   bool doHeapRegion(HeapRegion* r) {
3224     r->print_on(_st);
3225     return false;
3226   }
3227 };
3228 
3229 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3230                                        const HeapRegion* hr,
3231                                        const VerifyOption vo) const {
3232   switch (vo) {
3233   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3234   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3235   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3236   default:                            ShouldNotReachHere();
3237   }
3238   return false; // keep some compilers happy
3239 }
3240 
3241 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3242                                        const VerifyOption vo) const {
3243   switch (vo) {
3244   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3245   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3246   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3247   default:                            ShouldNotReachHere();
3248   }
3249   return false; // keep some compilers happy
3250 }
3251 
3252 void G1CollectedHeap::print_on(outputStream* st) const {
3253   st->print(" %-20s", "garbage-first heap");
3254   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3255             capacity()/K, used_unlocked()/K);
3256   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3257             _hrm.reserved().start(),
3258             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3259             _hrm.reserved().end());
3260   st->cr();
3261   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3262   uint young_regions = _young_list->length();
3263   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3264             (size_t) young_regions * HeapRegion::GrainBytes / K);
3265   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3266   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3267             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3268   st->cr();
3269   MetaspaceAux::print_on(st);
3270 }
3271 
3272 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3273   print_on(st);
3274 
3275   // Print the per-region information.
3276   st->cr();
3277   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3278                "HS=humongous(starts), HC=humongous(continues), "
3279                "CS=collection set, F=free, TS=gc time stamp, "
3280                "PTAMS=previous top-at-mark-start, "
3281                "NTAMS=next top-at-mark-start)");
3282   PrintRegionClosure blk(st);
3283   heap_region_iterate(&blk);
3284 }
3285 
3286 void G1CollectedHeap::print_on_error(outputStream* st) const {
3287   this->CollectedHeap::print_on_error(st);
3288 
3289   if (_cm != NULL) {
3290     st->cr();
3291     _cm->print_on_error(st);
3292   }
3293 }
3294 
3295 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3296   workers()->print_worker_threads_on(st);
3297   _cmThread->print_on(st);
3298   st->cr();
3299   _cm->print_worker_threads_on(st);
3300   _cg1r->print_worker_threads_on(st);
3301   if (G1StringDedup::is_enabled()) {
3302     G1StringDedup::print_worker_threads_on(st);
3303   }
3304 }
3305 
3306 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3307   workers()->threads_do(tc);
3308   tc->do_thread(_cmThread);
3309   _cg1r->threads_do(tc);
3310   if (G1StringDedup::is_enabled()) {
3311     G1StringDedup::threads_do(tc);
3312   }
3313 }
3314 
3315 void G1CollectedHeap::print_tracing_info() const {
3316   // We'll overload this to mean "trace GC pause statistics."
3317   if (TraceYoungGenTime || TraceOldGenTime) {
3318     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3319     // to that.
3320     g1_policy()->print_tracing_info();
3321   }
3322   if (G1SummarizeRSetStats) {
3323     g1_rem_set()->print_summary_info();
3324   }
3325   if (G1SummarizeConcMark) {
3326     concurrent_mark()->print_summary_info();
3327   }
3328   g1_policy()->print_yg_surv_rate_info();
3329   SpecializationStats::print();
3330 }
3331 
3332 #ifndef PRODUCT
3333 // Helpful for debugging RSet issues.
3334 
3335 class PrintRSetsClosure : public HeapRegionClosure {
3336 private:
3337   const char* _msg;
3338   size_t _occupied_sum;
3339 
3340 public:
3341   bool doHeapRegion(HeapRegion* r) {
3342     HeapRegionRemSet* hrrs = r->rem_set();
3343     size_t occupied = hrrs->occupied();
3344     _occupied_sum += occupied;
3345 
3346     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3347                            HR_FORMAT_PARAMS(r));
3348     if (occupied == 0) {
3349       gclog_or_tty->print_cr("  RSet is empty");
3350     } else {
3351       hrrs->print();
3352     }
3353     gclog_or_tty->print_cr("----------");
3354     return false;
3355   }
3356 
3357   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3358     gclog_or_tty->cr();
3359     gclog_or_tty->print_cr("========================================");
3360     gclog_or_tty->print_cr("%s", msg);
3361     gclog_or_tty->cr();
3362   }
3363 
3364   ~PrintRSetsClosure() {
3365     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3366     gclog_or_tty->print_cr("========================================");
3367     gclog_or_tty->cr();
3368   }
3369 };
3370 
3371 void G1CollectedHeap::print_cset_rsets() {
3372   PrintRSetsClosure cl("Printing CSet RSets");
3373   collection_set_iterate(&cl);
3374 }
3375 
3376 void G1CollectedHeap::print_all_rsets() {
3377   PrintRSetsClosure cl("Printing All RSets");;
3378   heap_region_iterate(&cl);
3379 }
3380 #endif // PRODUCT
3381 
3382 G1CollectedHeap* G1CollectedHeap::heap() {
3383   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3384          "not a garbage-first heap");
3385   return _g1h;
3386 }
3387 
3388 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3389   // always_do_update_barrier = false;
3390   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3391   // Fill TLAB's and such
3392   accumulate_statistics_all_tlabs();
3393   ensure_parsability(true);
3394 
3395   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3396       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3397     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3398   }
3399 }
3400 
3401 void G1CollectedHeap::gc_epilogue(bool full) {
3402 
3403   if (G1SummarizeRSetStats &&
3404       (G1SummarizeRSetStatsPeriod > 0) &&
3405       // we are at the end of the GC. Total collections has already been increased.
3406       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3407     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3408   }
3409 
3410   // FIXME: what is this about?
3411   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3412   // is set.
3413   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3414                         "derived pointer present"));
3415   // always_do_update_barrier = true;
3416 
3417   resize_all_tlabs();
3418   allocation_context_stats().update(full);
3419 
3420   // We have just completed a GC. Update the soft reference
3421   // policy with the new heap occupancy
3422   Universe::update_heap_info_at_gc();
3423 }
3424 
3425 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3426                                                unsigned int gc_count_before,
3427                                                bool* succeeded,
3428                                                GCCause::Cause gc_cause) {
3429   assert_heap_not_locked_and_not_at_safepoint();
3430   g1_policy()->record_stop_world_start();
3431   VM_G1IncCollectionPause op(gc_count_before,
3432                              word_size,
3433                              false, /* should_initiate_conc_mark */
3434                              g1_policy()->max_pause_time_ms(),
3435                              gc_cause);
3436 
3437   op.set_allocation_context(AllocationContext::current());
3438   VMThread::execute(&op);
3439 
3440   HeapWord* result = op.result();
3441   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3442   assert(result == NULL || ret_succeeded,
3443          "the result should be NULL if the VM did not succeed");
3444   *succeeded = ret_succeeded;
3445 
3446   assert_heap_not_locked();
3447   return result;
3448 }
3449 
3450 void
3451 G1CollectedHeap::doConcurrentMark() {
3452   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3453   if (!_cmThread->in_progress()) {
3454     _cmThread->set_started();
3455     CGC_lock->notify();
3456   }
3457 }
3458 
3459 size_t G1CollectedHeap::pending_card_num() {
3460   size_t extra_cards = 0;
3461   JavaThread *curr = Threads::first();
3462   while (curr != NULL) {
3463     DirtyCardQueue& dcq = curr->dirty_card_queue();
3464     extra_cards += dcq.size();
3465     curr = curr->next();
3466   }
3467   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3468   size_t buffer_size = dcqs.buffer_size();
3469   size_t buffer_num = dcqs.completed_buffers_num();
3470 
3471   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3472   // in bytes - not the number of 'entries'. We need to convert
3473   // into a number of cards.
3474   return (buffer_size * buffer_num + extra_cards) / oopSize;
3475 }
3476 
3477 size_t G1CollectedHeap::cards_scanned() {
3478   return g1_rem_set()->cardsScanned();
3479 }
3480 
3481 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3482   HeapRegion* region = region_at(index);
3483   assert(region->is_starts_humongous(), "Must start a humongous object");
3484   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3485 }
3486 
3487 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3488  private:
3489   size_t _total_humongous;
3490   size_t _candidate_humongous;
3491 
3492   DirtyCardQueue _dcq;
3493 
3494   bool humongous_region_is_candidate(uint index) {
3495     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3496     assert(region->is_starts_humongous(), "Must start a humongous object");
3497     HeapRegionRemSet* const rset = region->rem_set();
3498     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3499     return !oop(region->bottom())->is_objArray() &&
3500            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3501             (!allow_stale_refs && rset->is_empty()));
3502   }
3503 
3504  public:
3505   RegisterHumongousWithInCSetFastTestClosure()
3506   : _total_humongous(0),
3507     _candidate_humongous(0),
3508     _dcq(&JavaThread::dirty_card_queue_set()) {
3509   }
3510 
3511   virtual bool doHeapRegion(HeapRegion* r) {
3512     if (!r->is_starts_humongous()) {
3513       return false;
3514     }
3515     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3516 
3517     uint region_idx = r->hrm_index();
3518     bool is_candidate = humongous_region_is_candidate(region_idx);
3519     // Is_candidate already filters out humongous object with large remembered sets.
3520     // If we have a humongous object with a few remembered sets, we simply flush these
3521     // remembered set entries into the DCQS. That will result in automatic
3522     // re-evaluation of their remembered set entries during the following evacuation
3523     // phase.
3524     if (is_candidate) {
3525       if (!r->rem_set()->is_empty()) {
3526         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3527                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3528         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3529         HeapRegionRemSetIterator hrrs(r->rem_set());
3530         size_t card_index;
3531         while (hrrs.has_next(card_index)) {
3532           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3533           if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3534             *card_ptr = CardTableModRefBS::dirty_card_val();
3535             _dcq.enqueue(card_ptr);
3536           }
3537         }
3538         r->rem_set()->clear_locked();
3539       }
3540       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3541       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3542       _candidate_humongous++;
3543     }
3544     _total_humongous++;
3545 
3546     return false;
3547   }
3548 
3549   size_t total_humongous() const { return _total_humongous; }
3550   size_t candidate_humongous() const { return _candidate_humongous; }
3551 
3552   void flush_rem_set_entries() { _dcq.flush(); }
3553 };
3554 
3555 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3556   if (!G1EagerReclaimHumongousObjects) {
3557     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3558     return;
3559   }
3560   double time = os::elapsed_counter();
3561 
3562   RegisterHumongousWithInCSetFastTestClosure cl;
3563   heap_region_iterate(&cl);
3564 
3565   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3566   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3567                                                                   cl.total_humongous(),
3568                                                                   cl.candidate_humongous());
3569   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3570 
3571   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3572     clear_humongous_is_live_table();
3573   }
3574 
3575   // Finally flush all remembered set entries to re-check into the global DCQS.
3576   cl.flush_rem_set_entries();
3577 }
3578 
3579 void
3580 G1CollectedHeap::setup_surviving_young_words() {
3581   assert(_surviving_young_words == NULL, "pre-condition");
3582   uint array_length = g1_policy()->young_cset_region_length();
3583   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3584   if (_surviving_young_words == NULL) {
3585     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3586                           "Not enough space for young surv words summary.");
3587   }
3588   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3589 #ifdef ASSERT
3590   for (uint i = 0;  i < array_length; ++i) {
3591     assert( _surviving_young_words[i] == 0, "memset above" );
3592   }
3593 #endif // !ASSERT
3594 }
3595 
3596 void
3597 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3598   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3599   uint array_length = g1_policy()->young_cset_region_length();
3600   for (uint i = 0; i < array_length; ++i) {
3601     _surviving_young_words[i] += surv_young_words[i];
3602   }
3603 }
3604 
3605 void
3606 G1CollectedHeap::cleanup_surviving_young_words() {
3607   guarantee( _surviving_young_words != NULL, "pre-condition" );
3608   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3609   _surviving_young_words = NULL;
3610 }
3611 
3612 #ifdef ASSERT
3613 class VerifyCSetClosure: public HeapRegionClosure {
3614 public:
3615   bool doHeapRegion(HeapRegion* hr) {
3616     // Here we check that the CSet region's RSet is ready for parallel
3617     // iteration. The fields that we'll verify are only manipulated
3618     // when the region is part of a CSet and is collected. Afterwards,
3619     // we reset these fields when we clear the region's RSet (when the
3620     // region is freed) so they are ready when the region is
3621     // re-allocated. The only exception to this is if there's an
3622     // evacuation failure and instead of freeing the region we leave
3623     // it in the heap. In that case, we reset these fields during
3624     // evacuation failure handling.
3625     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3626 
3627     // Here's a good place to add any other checks we'd like to
3628     // perform on CSet regions.
3629     return false;
3630   }
3631 };
3632 #endif // ASSERT
3633 
3634 #if TASKQUEUE_STATS
3635 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3636   st->print_raw_cr("GC Task Stats");
3637   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3638   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3639 }
3640 
3641 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3642   print_taskqueue_stats_hdr(st);
3643 
3644   TaskQueueStats totals;
3645   const int n = workers()->total_workers();
3646   for (int i = 0; i < n; ++i) {
3647     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3648     totals += task_queue(i)->stats;
3649   }
3650   st->print_raw("tot "); totals.print(st); st->cr();
3651 
3652   DEBUG_ONLY(totals.verify());
3653 }
3654 
3655 void G1CollectedHeap::reset_taskqueue_stats() {
3656   const int n = workers()->total_workers();
3657   for (int i = 0; i < n; ++i) {
3658     task_queue(i)->stats.reset();
3659   }
3660 }
3661 #endif // TASKQUEUE_STATS
3662 
3663 void G1CollectedHeap::log_gc_header() {
3664   if (!G1Log::fine()) {
3665     return;
3666   }
3667 
3668   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3669 
3670   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3671     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3672     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3673 
3674   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3675 }
3676 
3677 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3678   if (!G1Log::fine()) {
3679     return;
3680   }
3681 
3682   if (G1Log::finer()) {
3683     if (evacuation_failed()) {
3684       gclog_or_tty->print(" (to-space exhausted)");
3685     }
3686     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3687     g1_policy()->phase_times()->note_gc_end();
3688     g1_policy()->phase_times()->print(pause_time_sec);
3689     g1_policy()->print_detailed_heap_transition();
3690   } else {
3691     if (evacuation_failed()) {
3692       gclog_or_tty->print("--");
3693     }
3694     g1_policy()->print_heap_transition();
3695     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3696   }
3697   gclog_or_tty->flush();
3698 }
3699 
3700 bool
3701 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3702   assert_at_safepoint(true /* should_be_vm_thread */);
3703   guarantee(!is_gc_active(), "collection is not reentrant");
3704 
3705   if (GC_locker::check_active_before_gc()) {
3706     return false;
3707   }
3708 
3709   _gc_timer_stw->register_gc_start();
3710 
3711   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3712 
3713   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3714   ResourceMark rm;
3715 
3716   print_heap_before_gc();
3717   trace_heap_before_gc(_gc_tracer_stw);
3718 
3719   verify_region_sets_optional();
3720   verify_dirty_young_regions();
3721 
3722   // This call will decide whether this pause is an initial-mark
3723   // pause. If it is, during_initial_mark_pause() will return true
3724   // for the duration of this pause.
3725   g1_policy()->decide_on_conc_mark_initiation();
3726 
3727   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3728   assert(!g1_policy()->during_initial_mark_pause() ||
3729           g1_policy()->gcs_are_young(), "sanity");
3730 
3731   // We also do not allow mixed GCs during marking.
3732   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3733 
3734   // Record whether this pause is an initial mark. When the current
3735   // thread has completed its logging output and it's safe to signal
3736   // the CM thread, the flag's value in the policy has been reset.
3737   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3738 
3739   // Inner scope for scope based logging, timers, and stats collection
3740   {
3741     EvacuationInfo evacuation_info;
3742 
3743     if (g1_policy()->during_initial_mark_pause()) {
3744       // We are about to start a marking cycle, so we increment the
3745       // full collection counter.
3746       increment_old_marking_cycles_started();
3747       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3748     }
3749 
3750     _gc_tracer_stw->report_yc_type(yc_type());
3751 
3752     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3753 
3754     int active_workers = workers()->active_workers();
3755     double pause_start_sec = os::elapsedTime();
3756     g1_policy()->phase_times()->note_gc_start(active_workers);
3757     log_gc_header();
3758 
3759     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3760     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3761 
3762     // If the secondary_free_list is not empty, append it to the
3763     // free_list. No need to wait for the cleanup operation to finish;
3764     // the region allocation code will check the secondary_free_list
3765     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3766     // set, skip this step so that the region allocation code has to
3767     // get entries from the secondary_free_list.
3768     if (!G1StressConcRegionFreeing) {
3769       append_secondary_free_list_if_not_empty_with_lock();
3770     }
3771 
3772     assert(check_young_list_well_formed(), "young list should be well formed");
3773 
3774     // Don't dynamically change the number of GC threads this early.  A value of
3775     // 0 is used to indicate serial work.  When parallel work is done,
3776     // it will be set.
3777 
3778     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3779       IsGCActiveMark x;
3780 
3781       gc_prologue(false);
3782       increment_total_collections(false /* full gc */);
3783       increment_gc_time_stamp();
3784 
3785       verify_before_gc();
3786 
3787       check_bitmaps("GC Start");
3788 
3789       COMPILER2_PRESENT(DerivedPointerTable::clear());
3790 
3791       // Please see comment in g1CollectedHeap.hpp and
3792       // G1CollectedHeap::ref_processing_init() to see how
3793       // reference processing currently works in G1.
3794 
3795       // Enable discovery in the STW reference processor
3796       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3797                                             true /*verify_no_refs*/);
3798 
3799       {
3800         // We want to temporarily turn off discovery by the
3801         // CM ref processor, if necessary, and turn it back on
3802         // on again later if we do. Using a scoped
3803         // NoRefDiscovery object will do this.
3804         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3805 
3806         // Forget the current alloc region (we might even choose it to be part
3807         // of the collection set!).
3808         _allocator->release_mutator_alloc_region();
3809 
3810         // We should call this after we retire the mutator alloc
3811         // region(s) so that all the ALLOC / RETIRE events are generated
3812         // before the start GC event.
3813         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3814 
3815         // This timing is only used by the ergonomics to handle our pause target.
3816         // It is unclear why this should not include the full pause. We will
3817         // investigate this in CR 7178365.
3818         //
3819         // Preserving the old comment here if that helps the investigation:
3820         //
3821         // The elapsed time induced by the start time below deliberately elides
3822         // the possible verification above.
3823         double sample_start_time_sec = os::elapsedTime();
3824 
3825 #if YOUNG_LIST_VERBOSE
3826         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3827         _young_list->print();
3828         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3829 #endif // YOUNG_LIST_VERBOSE
3830 
3831         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3832 
3833         double scan_wait_start = os::elapsedTime();
3834         // We have to wait until the CM threads finish scanning the
3835         // root regions as it's the only way to ensure that all the
3836         // objects on them have been correctly scanned before we start
3837         // moving them during the GC.
3838         bool waited = _cm->root_regions()->wait_until_scan_finished();
3839         double wait_time_ms = 0.0;
3840         if (waited) {
3841           double scan_wait_end = os::elapsedTime();
3842           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3843         }
3844         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3845 
3846 #if YOUNG_LIST_VERBOSE
3847         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3848         _young_list->print();
3849 #endif // YOUNG_LIST_VERBOSE
3850 
3851         if (g1_policy()->during_initial_mark_pause()) {
3852           concurrent_mark()->checkpointRootsInitialPre();
3853         }
3854 
3855 #if YOUNG_LIST_VERBOSE
3856         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3857         _young_list->print();
3858         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3859 #endif // YOUNG_LIST_VERBOSE
3860 
3861         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3862 
3863         register_humongous_regions_with_in_cset_fast_test();
3864 
3865         _cm->note_start_of_gc();
3866         // We should not verify the per-thread SATB buffers given that
3867         // we have not filtered them yet (we'll do so during the
3868         // GC). We also call this after finalize_cset() to
3869         // ensure that the CSet has been finalized.
3870         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3871                                  true  /* verify_enqueued_buffers */,
3872                                  false /* verify_thread_buffers */,
3873                                  true  /* verify_fingers */);
3874 
3875         if (_hr_printer.is_active()) {
3876           HeapRegion* hr = g1_policy()->collection_set();
3877           while (hr != NULL) {
3878             _hr_printer.cset(hr);
3879             hr = hr->next_in_collection_set();
3880           }
3881         }
3882 
3883 #ifdef ASSERT
3884         VerifyCSetClosure cl;
3885         collection_set_iterate(&cl);
3886 #endif // ASSERT
3887 
3888         setup_surviving_young_words();
3889 
3890         // Initialize the GC alloc regions.
3891         _allocator->init_gc_alloc_regions(evacuation_info);
3892 
3893         // Actually do the work...
3894         evacuate_collection_set(evacuation_info);
3895 
3896         // We do this to mainly verify the per-thread SATB buffers
3897         // (which have been filtered by now) since we didn't verify
3898         // them earlier. No point in re-checking the stacks / enqueued
3899         // buffers given that the CSet has not changed since last time
3900         // we checked.
3901         _cm->verify_no_cset_oops(false /* verify_stacks */,
3902                                  false /* verify_enqueued_buffers */,
3903                                  true  /* verify_thread_buffers */,
3904                                  true  /* verify_fingers */);
3905 
3906         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3907 
3908         eagerly_reclaim_humongous_regions();
3909 
3910         g1_policy()->clear_collection_set();
3911 
3912         cleanup_surviving_young_words();
3913 
3914         // Start a new incremental collection set for the next pause.
3915         g1_policy()->start_incremental_cset_building();
3916 
3917         clear_cset_fast_test();
3918 
3919         _young_list->reset_sampled_info();
3920 
3921         // Don't check the whole heap at this point as the
3922         // GC alloc regions from this pause have been tagged
3923         // as survivors and moved on to the survivor list.
3924         // Survivor regions will fail the !is_young() check.
3925         assert(check_young_list_empty(false /* check_heap */),
3926           "young list should be empty");
3927 
3928 #if YOUNG_LIST_VERBOSE
3929         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3930         _young_list->print();
3931 #endif // YOUNG_LIST_VERBOSE
3932 
3933         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3934                                              _young_list->first_survivor_region(),
3935                                              _young_list->last_survivor_region());
3936 
3937         _young_list->reset_auxilary_lists();
3938 
3939         if (evacuation_failed()) {
3940           _allocator->set_used(recalculate_used());
3941           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3942           for (uint i = 0; i < n_queues; i++) {
3943             if (_evacuation_failed_info_array[i].has_failed()) {
3944               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3945             }
3946           }
3947         } else {
3948           // The "used" of the the collection set have already been subtracted
3949           // when they were freed.  Add in the bytes evacuated.
3950           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3951         }
3952 
3953         if (g1_policy()->during_initial_mark_pause()) {
3954           // We have to do this before we notify the CM threads that
3955           // they can start working to make sure that all the
3956           // appropriate initialization is done on the CM object.
3957           concurrent_mark()->checkpointRootsInitialPost();
3958           set_marking_started();
3959           // Note that we don't actually trigger the CM thread at
3960           // this point. We do that later when we're sure that
3961           // the current thread has completed its logging output.
3962         }
3963 
3964         allocate_dummy_regions();
3965 
3966 #if YOUNG_LIST_VERBOSE
3967         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3968         _young_list->print();
3969         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3970 #endif // YOUNG_LIST_VERBOSE
3971 
3972         _allocator->init_mutator_alloc_region();
3973 
3974         {
3975           size_t expand_bytes = g1_policy()->expansion_amount();
3976           if (expand_bytes > 0) {
3977             size_t bytes_before = capacity();
3978             // No need for an ergo verbose message here,
3979             // expansion_amount() does this when it returns a value > 0.
3980             if (!expand(expand_bytes)) {
3981               // We failed to expand the heap. Cannot do anything about it.
3982             }
3983           }
3984         }
3985 
3986         // We redo the verification but now wrt to the new CSet which
3987         // has just got initialized after the previous CSet was freed.
3988         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3989                                  true  /* verify_enqueued_buffers */,
3990                                  true  /* verify_thread_buffers */,
3991                                  true  /* verify_fingers */);
3992         _cm->note_end_of_gc();
3993 
3994         // This timing is only used by the ergonomics to handle our pause target.
3995         // It is unclear why this should not include the full pause. We will
3996         // investigate this in CR 7178365.
3997         double sample_end_time_sec = os::elapsedTime();
3998         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3999         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4000 
4001         MemoryService::track_memory_usage();
4002 
4003         // In prepare_for_verify() below we'll need to scan the deferred
4004         // update buffers to bring the RSets up-to-date if
4005         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4006         // the update buffers we'll probably need to scan cards on the
4007         // regions we just allocated to (i.e., the GC alloc
4008         // regions). However, during the last GC we called
4009         // set_saved_mark() on all the GC alloc regions, so card
4010         // scanning might skip the [saved_mark_word()...top()] area of
4011         // those regions (i.e., the area we allocated objects into
4012         // during the last GC). But it shouldn't. Given that
4013         // saved_mark_word() is conditional on whether the GC time stamp
4014         // on the region is current or not, by incrementing the GC time
4015         // stamp here we invalidate all the GC time stamps on all the
4016         // regions and saved_mark_word() will simply return top() for
4017         // all the regions. This is a nicer way of ensuring this rather
4018         // than iterating over the regions and fixing them. In fact, the
4019         // GC time stamp increment here also ensures that
4020         // saved_mark_word() will return top() between pauses, i.e.,
4021         // during concurrent refinement. So we don't need the
4022         // is_gc_active() check to decided which top to use when
4023         // scanning cards (see CR 7039627).
4024         increment_gc_time_stamp();
4025 
4026         verify_after_gc();
4027         check_bitmaps("GC End");
4028 
4029         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4030         ref_processor_stw()->verify_no_references_recorded();
4031 
4032         // CM reference discovery will be re-enabled if necessary.
4033       }
4034 
4035       // We should do this after we potentially expand the heap so
4036       // that all the COMMIT events are generated before the end GC
4037       // event, and after we retire the GC alloc regions so that all
4038       // RETIRE events are generated before the end GC event.
4039       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4040 
4041 #ifdef TRACESPINNING
4042       ParallelTaskTerminator::print_termination_counts();
4043 #endif
4044 
4045       gc_epilogue(false);
4046     }
4047 
4048     // Print the remainder of the GC log output.
4049     log_gc_footer(os::elapsedTime() - pause_start_sec);
4050 
4051     // It is not yet to safe to tell the concurrent mark to
4052     // start as we have some optional output below. We don't want the
4053     // output from the concurrent mark thread interfering with this
4054     // logging output either.
4055 
4056     _hrm.verify_optional();
4057     verify_region_sets_optional();
4058 
4059     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4060     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4061 
4062     print_heap_after_gc();
4063     trace_heap_after_gc(_gc_tracer_stw);
4064 
4065     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4066     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4067     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4068     // before any GC notifications are raised.
4069     g1mm()->update_sizes();
4070 
4071     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4072     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4073     _gc_timer_stw->register_gc_end();
4074     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4075   }
4076   // It should now be safe to tell the concurrent mark thread to start
4077   // without its logging output interfering with the logging output
4078   // that came from the pause.
4079 
4080   if (should_start_conc_mark) {
4081     // CAUTION: after the doConcurrentMark() call below,
4082     // the concurrent marking thread(s) could be running
4083     // concurrently with us. Make sure that anything after
4084     // this point does not assume that we are the only GC thread
4085     // running. Note: of course, the actual marking work will
4086     // not start until the safepoint itself is released in
4087     // SuspendibleThreadSet::desynchronize().
4088     doConcurrentMark();
4089   }
4090 
4091   return true;
4092 }
4093 
4094 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4095 {
4096   size_t gclab_word_size;
4097   switch (purpose) {
4098     case GCAllocForSurvived:
4099       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4100       break;
4101     case GCAllocForTenured:
4102       gclab_word_size = _old_plab_stats.desired_plab_sz();
4103       break;
4104     default:
4105       assert(false, "unknown GCAllocPurpose");
4106       gclab_word_size = _old_plab_stats.desired_plab_sz();
4107       break;
4108   }
4109 
4110   // Prevent humongous PLAB sizes for two reasons:
4111   // * PLABs are allocated using a similar paths as oops, but should
4112   //   never be in a humongous region
4113   // * Allowing humongous PLABs needlessly churns the region free lists
4114   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4115 }
4116 
4117 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4118   _drain_in_progress = false;
4119   set_evac_failure_closure(cl);
4120   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4121 }
4122 
4123 void G1CollectedHeap::finalize_for_evac_failure() {
4124   assert(_evac_failure_scan_stack != NULL &&
4125          _evac_failure_scan_stack->length() == 0,
4126          "Postcondition");
4127   assert(!_drain_in_progress, "Postcondition");
4128   delete _evac_failure_scan_stack;
4129   _evac_failure_scan_stack = NULL;
4130 }
4131 
4132 void G1CollectedHeap::remove_self_forwarding_pointers() {
4133   double remove_self_forwards_start = os::elapsedTime();
4134 
4135   set_par_threads();
4136   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4137   workers()->run_task(&rsfp_task);
4138   set_par_threads(0);
4139 
4140   // Now restore saved marks, if any.
4141   assert(_objs_with_preserved_marks.size() ==
4142             _preserved_marks_of_objs.size(), "Both or none.");
4143   while (!_objs_with_preserved_marks.is_empty()) {
4144     oop obj = _objs_with_preserved_marks.pop();
4145     markOop m = _preserved_marks_of_objs.pop();
4146     obj->set_mark(m);
4147   }
4148   _objs_with_preserved_marks.clear(true);
4149   _preserved_marks_of_objs.clear(true);
4150 
4151   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4152 }
4153 
4154 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4155   _evac_failure_scan_stack->push(obj);
4156 }
4157 
4158 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4159   assert(_evac_failure_scan_stack != NULL, "precondition");
4160 
4161   while (_evac_failure_scan_stack->length() > 0) {
4162      oop obj = _evac_failure_scan_stack->pop();
4163      _evac_failure_closure->set_region(heap_region_containing(obj));
4164      obj->oop_iterate_backwards(_evac_failure_closure);
4165   }
4166 }
4167 
4168 oop
4169 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4170                                                oop old) {
4171   assert(obj_in_cs(old),
4172          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4173                  (HeapWord*) old));
4174   markOop m = old->mark();
4175   oop forward_ptr = old->forward_to_atomic(old);
4176   if (forward_ptr == NULL) {
4177     // Forward-to-self succeeded.
4178     assert(_par_scan_state != NULL, "par scan state");
4179     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4180     uint queue_num = _par_scan_state->queue_num();
4181 
4182     _evacuation_failed = true;
4183     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4184     if (_evac_failure_closure != cl) {
4185       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4186       assert(!_drain_in_progress,
4187              "Should only be true while someone holds the lock.");
4188       // Set the global evac-failure closure to the current thread's.
4189       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4190       set_evac_failure_closure(cl);
4191       // Now do the common part.
4192       handle_evacuation_failure_common(old, m);
4193       // Reset to NULL.
4194       set_evac_failure_closure(NULL);
4195     } else {
4196       // The lock is already held, and this is recursive.
4197       assert(_drain_in_progress, "This should only be the recursive case.");
4198       handle_evacuation_failure_common(old, m);
4199     }
4200     return old;
4201   } else {
4202     // Forward-to-self failed. Either someone else managed to allocate
4203     // space for this object (old != forward_ptr) or they beat us in
4204     // self-forwarding it (old == forward_ptr).
4205     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4206            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4207                    "should not be in the CSet",
4208                    (HeapWord*) old, (HeapWord*) forward_ptr));
4209     return forward_ptr;
4210   }
4211 }
4212 
4213 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4214   preserve_mark_if_necessary(old, m);
4215 
4216   HeapRegion* r = heap_region_containing(old);
4217   if (!r->evacuation_failed()) {
4218     r->set_evacuation_failed(true);
4219     _hr_printer.evac_failure(r);
4220   }
4221 
4222   push_on_evac_failure_scan_stack(old);
4223 
4224   if (!_drain_in_progress) {
4225     // prevent recursion in copy_to_survivor_space()
4226     _drain_in_progress = true;
4227     drain_evac_failure_scan_stack();
4228     _drain_in_progress = false;
4229   }
4230 }
4231 
4232 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4233   assert(evacuation_failed(), "Oversaving!");
4234   // We want to call the "for_promotion_failure" version only in the
4235   // case of a promotion failure.
4236   if (m->must_be_preserved_for_promotion_failure(obj)) {
4237     _objs_with_preserved_marks.push(obj);
4238     _preserved_marks_of_objs.push(m);
4239   }
4240 }
4241 
4242 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4243                                                   size_t word_size,
4244                                                   AllocationContext_t context) {
4245   if (purpose == GCAllocForSurvived) {
4246     HeapWord* result = survivor_attempt_allocation(word_size, context);
4247     if (result != NULL) {
4248       return result;
4249     } else {
4250       // Let's try to allocate in the old gen in case we can fit the
4251       // object there.
4252       return old_attempt_allocation(word_size, context);
4253     }
4254   } else {
4255     assert(purpose ==  GCAllocForTenured, "sanity");
4256     HeapWord* result = old_attempt_allocation(word_size, context);
4257     if (result != NULL) {
4258       return result;
4259     } else {
4260       // Let's try to allocate in the survivors in case we can fit the
4261       // object there.
4262       return survivor_attempt_allocation(word_size, context);
4263     }
4264   }
4265 
4266   ShouldNotReachHere();
4267   // Trying to keep some compilers happy.
4268   return NULL;
4269 }
4270 
4271 void G1ParCopyHelper::mark_object(oop obj) {
4272   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4273 
4274   // We know that the object is not moving so it's safe to read its size.
4275   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4276 }
4277 
4278 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4279   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4280   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4281   assert(from_obj != to_obj, "should not be self-forwarded");
4282 
4283   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4284   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4285 
4286   // The object might be in the process of being copied by another
4287   // worker so we cannot trust that its to-space image is
4288   // well-formed. So we have to read its size from its from-space
4289   // image which we know should not be changing.
4290   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4291 }
4292 
4293 template <class T>
4294 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4295   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4296     _scanned_klass->record_modified_oops();
4297   }
4298 }
4299 
4300 template <G1Barrier barrier, G1Mark do_mark_object>
4301 template <class T>
4302 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4303   T heap_oop = oopDesc::load_heap_oop(p);
4304 
4305   if (oopDesc::is_null(heap_oop)) {
4306     return;
4307   }
4308 
4309   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4310 
4311   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4312 
4313   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
4314 
4315   if (state == G1CollectedHeap::InCSet) {
4316     oop forwardee;
4317     markOop m = obj->mark();
4318     if (m->is_marked()) {
4319       forwardee = (oop) m->decode_pointer();
4320     } else {
4321       forwardee = _par_scan_state->copy_to_survivor_space(obj, m);
4322     }
4323     assert(forwardee != NULL, "forwardee should not be NULL");
4324     oopDesc::encode_store_heap_oop(p, forwardee);
4325     if (do_mark_object != G1MarkNone && forwardee != obj) {
4326       // If the object is self-forwarded we don't need to explicitly
4327       // mark it, the evacuation failure protocol will do so.
4328       mark_forwarded_object(obj, forwardee);
4329     }
4330 
4331     if (barrier == G1BarrierKlass) {
4332       do_klass_barrier(p, forwardee);
4333     }
4334   } else {
4335     if (state == G1CollectedHeap::IsHumongous) {
4336       _g1->set_humongous_is_live(obj);
4337     }
4338     // The object is not in collection set. If we're a root scanning
4339     // closure during an initial mark pause then attempt to mark the object.
4340     if (do_mark_object == G1MarkFromRoot) {
4341       mark_object(obj);
4342     }
4343   }
4344 
4345   if (barrier == G1BarrierEvac) {
4346     _par_scan_state->update_rs(_from, p, _worker_id);
4347   }
4348 }
4349 
4350 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4351 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4352 
4353 class G1ParEvacuateFollowersClosure : public VoidClosure {
4354 protected:
4355   G1CollectedHeap*              _g1h;
4356   G1ParScanThreadState*         _par_scan_state;
4357   RefToScanQueueSet*            _queues;
4358   ParallelTaskTerminator*       _terminator;
4359 
4360   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4361   RefToScanQueueSet*      queues()         { return _queues; }
4362   ParallelTaskTerminator* terminator()     { return _terminator; }
4363 
4364 public:
4365   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4366                                 G1ParScanThreadState* par_scan_state,
4367                                 RefToScanQueueSet* queues,
4368                                 ParallelTaskTerminator* terminator)
4369     : _g1h(g1h), _par_scan_state(par_scan_state),
4370       _queues(queues), _terminator(terminator) {}
4371 
4372   void do_void();
4373 
4374 private:
4375   inline bool offer_termination();
4376 };
4377 
4378 bool G1ParEvacuateFollowersClosure::offer_termination() {
4379   G1ParScanThreadState* const pss = par_scan_state();
4380   pss->start_term_time();
4381   const bool res = terminator()->offer_termination();
4382   pss->end_term_time();
4383   return res;
4384 }
4385 
4386 void G1ParEvacuateFollowersClosure::do_void() {
4387   G1ParScanThreadState* const pss = par_scan_state();
4388   pss->trim_queue();
4389   do {
4390     pss->steal_and_trim_queue(queues());
4391   } while (!offer_termination());
4392 }
4393 
4394 class G1KlassScanClosure : public KlassClosure {
4395  G1ParCopyHelper* _closure;
4396  bool             _process_only_dirty;
4397  int              _count;
4398  public:
4399   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4400       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4401   void do_klass(Klass* klass) {
4402     // If the klass has not been dirtied we know that there's
4403     // no references into  the young gen and we can skip it.
4404    if (!_process_only_dirty || klass->has_modified_oops()) {
4405       // Clean the klass since we're going to scavenge all the metadata.
4406       klass->clear_modified_oops();
4407 
4408       // Tell the closure that this klass is the Klass to scavenge
4409       // and is the one to dirty if oops are left pointing into the young gen.
4410       _closure->set_scanned_klass(klass);
4411 
4412       klass->oops_do(_closure);
4413 
4414       _closure->set_scanned_klass(NULL);
4415     }
4416     _count++;
4417   }
4418 };
4419 
4420 class G1CodeBlobClosure : public CodeBlobClosure {
4421   class HeapRegionGatheringOopClosure : public OopClosure {
4422     G1CollectedHeap* _g1h;
4423     OopClosure* _work;
4424     nmethod* _nm;
4425 
4426     template <typename T>
4427     void do_oop_work(T* p) {
4428       _work->do_oop(p);
4429       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
4430       if (!oopDesc::is_null(oop_or_narrowoop)) {
4431         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
4432         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
4433         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
4434         hr->add_strong_code_root(_nm);
4435       }
4436     }
4437 
4438   public:
4439     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
4440 
4441     void do_oop(oop* o) {
4442       do_oop_work(o);
4443     }
4444 
4445     void do_oop(narrowOop* o) {
4446       do_oop_work(o);
4447     }
4448 
4449     void set_nm(nmethod* nm) {
4450       _nm = nm;
4451     }
4452   };
4453 
4454   HeapRegionGatheringOopClosure _oc;
4455 public:
4456   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
4457 
4458   void do_code_blob(CodeBlob* cb) {
4459     nmethod* nm = cb->as_nmethod_or_null();
4460     if (nm != NULL) {
4461       if (!nm->test_set_oops_do_mark()) {
4462         _oc.set_nm(nm);
4463         nm->oops_do(&_oc);
4464         nm->fix_oop_relocations();
4465       }
4466     }
4467   }
4468 };
4469 
4470 class G1ParTask : public AbstractGangTask {
4471 protected:
4472   G1CollectedHeap*       _g1h;
4473   RefToScanQueueSet      *_queues;
4474   ParallelTaskTerminator _terminator;
4475   uint _n_workers;
4476 
4477   Mutex _stats_lock;
4478   Mutex* stats_lock() { return &_stats_lock; }
4479 
4480 public:
4481   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4482     : AbstractGangTask("G1 collection"),
4483       _g1h(g1h),
4484       _queues(task_queues),
4485       _terminator(0, _queues),
4486       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4487   {}
4488 
4489   RefToScanQueueSet* queues() { return _queues; }
4490 
4491   RefToScanQueue *work_queue(int i) {
4492     return queues()->queue(i);
4493   }
4494 
4495   ParallelTaskTerminator* terminator() { return &_terminator; }
4496 
4497   virtual void set_for_termination(int active_workers) {
4498     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4499     // in the young space (_par_seq_tasks) in the G1 heap
4500     // for SequentialSubTasksDone.
4501     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4502     // both of which need setting by set_n_termination().
4503     _g1h->SharedHeap::set_n_termination(active_workers);
4504     _g1h->set_n_termination(active_workers);
4505     terminator()->reset_for_reuse(active_workers);
4506     _n_workers = active_workers;
4507   }
4508 
4509   // Helps out with CLD processing.
4510   //
4511   // During InitialMark we need to:
4512   // 1) Scavenge all CLDs for the young GC.
4513   // 2) Mark all objects directly reachable from strong CLDs.
4514   template <G1Mark do_mark_object>
4515   class G1CLDClosure : public CLDClosure {
4516     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4517     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4518     G1KlassScanClosure                                _klass_in_cld_closure;
4519     bool                                              _claim;
4520 
4521    public:
4522     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4523                  bool only_young, bool claim)
4524         : _oop_closure(oop_closure),
4525           _oop_in_klass_closure(oop_closure->g1(),
4526                                 oop_closure->pss(),
4527                                 oop_closure->rp()),
4528           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4529           _claim(claim) {
4530 
4531     }
4532 
4533     void do_cld(ClassLoaderData* cld) {
4534       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4535     }
4536   };
4537 
4538   void work(uint worker_id) {
4539     if (worker_id >= _n_workers) return;  // no work needed this round
4540 
4541     double start_time_ms = os::elapsedTime() * 1000.0;
4542     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4543 
4544     {
4545       ResourceMark rm;
4546       HandleMark   hm;
4547 
4548       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4549 
4550       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4551       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4552 
4553       pss.set_evac_failure_closure(&evac_failure_cl);
4554 
4555       bool only_young = _g1h->g1_policy()->gcs_are_young();
4556 
4557       // Non-IM young GC.
4558       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4559       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4560                                                                                only_young, // Only process dirty klasses.
4561                                                                                false);     // No need to claim CLDs.
4562       // IM young GC.
4563       //    Strong roots closures.
4564       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4565       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4566                                                                                false, // Process all klasses.
4567                                                                                true); // Need to claim CLDs.
4568       //    Weak roots closures.
4569       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4570       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4571                                                                                     false, // Process all klasses.
4572                                                                                     true); // Need to claim CLDs.
4573 
4574       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4575       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4576       // IM Weak code roots are handled later.
4577 
4578       OopClosure* strong_root_cl;
4579       OopClosure* weak_root_cl;
4580       CLDClosure* strong_cld_cl;
4581       CLDClosure* weak_cld_cl;
4582       CodeBlobClosure* strong_code_cl;
4583 
4584       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4585         // We also need to mark copied objects.
4586         strong_root_cl = &scan_mark_root_cl;
4587         strong_cld_cl  = &scan_mark_cld_cl;
4588         strong_code_cl = &scan_mark_code_cl;
4589         if (ClassUnloadingWithConcurrentMark) {
4590           weak_root_cl = &scan_mark_weak_root_cl;
4591           weak_cld_cl  = &scan_mark_weak_cld_cl;
4592         } else {
4593           weak_root_cl = &scan_mark_root_cl;
4594           weak_cld_cl  = &scan_mark_cld_cl;
4595         }
4596       } else {
4597         strong_root_cl = &scan_only_root_cl;
4598         weak_root_cl   = &scan_only_root_cl;
4599         strong_cld_cl  = &scan_only_cld_cl;
4600         weak_cld_cl    = &scan_only_cld_cl;
4601         strong_code_cl = &scan_only_code_cl;
4602       }
4603 
4604 
4605       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4606 
4607       pss.start_strong_roots();
4608       _g1h->g1_process_roots(strong_root_cl,
4609                              weak_root_cl,
4610                              &push_heap_rs_cl,
4611                              strong_cld_cl,
4612                              weak_cld_cl,
4613                              strong_code_cl,
4614                              worker_id);
4615 
4616       pss.end_strong_roots();
4617 
4618       {
4619         double start = os::elapsedTime();
4620         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4621         evac.do_void();
4622         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4623         double term_ms = pss.term_time()*1000.0;
4624         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4625         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4626       }
4627       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4628       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4629 
4630       if (PrintTerminationStats) {
4631         MutexLocker x(stats_lock());
4632         pss.print_termination_stats(worker_id);
4633       }
4634 
4635       assert(pss.queue_is_empty(), "should be empty");
4636 
4637       // Close the inner scope so that the ResourceMark and HandleMark
4638       // destructors are executed here and are included as part of the
4639       // "GC Worker Time".
4640     }
4641 
4642     double end_time_ms = os::elapsedTime() * 1000.0;
4643     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4644   }
4645 };
4646 
4647 // *** Common G1 Evacuation Stuff
4648 
4649 // This method is run in a GC worker.
4650 
4651 void
4652 G1CollectedHeap::
4653 g1_process_roots(OopClosure* scan_non_heap_roots,
4654                  OopClosure* scan_non_heap_weak_roots,
4655                  OopsInHeapRegionClosure* scan_rs,
4656                  CLDClosure* scan_strong_clds,
4657                  CLDClosure* scan_weak_clds,
4658                  CodeBlobClosure* scan_strong_code,
4659                  uint worker_i) {
4660 
4661   // First scan the shared roots.
4662   double ext_roots_start = os::elapsedTime();
4663   double closure_app_time_sec = 0.0;
4664 
4665   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4666   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4667 
4668   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4669   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4670 
4671   process_roots(false, // no scoping; this is parallel code
4672                 SharedHeap::SO_None,
4673                 &buf_scan_non_heap_roots,
4674                 &buf_scan_non_heap_weak_roots,
4675                 scan_strong_clds,
4676                 // Unloading Initial Marks handle the weak CLDs separately.
4677                 (trace_metadata ? NULL : scan_weak_clds),
4678                 scan_strong_code);
4679 
4680   // Now the CM ref_processor roots.
4681   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4682     // We need to treat the discovered reference lists of the
4683     // concurrent mark ref processor as roots and keep entries
4684     // (which are added by the marking threads) on them live
4685     // until they can be processed at the end of marking.
4686     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4687   }
4688 
4689   if (trace_metadata) {
4690     // Barrier to make sure all workers passed
4691     // the strong CLD and strong nmethods phases.
4692     active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4693 
4694     // Now take the complement of the strong CLDs.
4695     ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4696   }
4697 
4698   // Finish up any enqueued closure apps (attributed as object copy time).
4699   buf_scan_non_heap_roots.done();
4700   buf_scan_non_heap_weak_roots.done();
4701 
4702   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4703       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4704 
4705   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4706 
4707   double ext_root_time_ms =
4708     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4709 
4710   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4711 
4712   // During conc marking we have to filter the per-thread SATB buffers
4713   // to make sure we remove any oops into the CSet (which will show up
4714   // as implicitly live).
4715   double satb_filtering_ms = 0.0;
4716   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4717     if (mark_in_progress()) {
4718       double satb_filter_start = os::elapsedTime();
4719 
4720       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4721 
4722       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4723     }
4724   }
4725   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4726 
4727   // Now scan the complement of the collection set.
4728   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4729 
4730   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4731 
4732   _process_strong_tasks->all_tasks_completed();
4733 }
4734 
4735 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4736 private:
4737   BoolObjectClosure* _is_alive;
4738   int _initial_string_table_size;
4739   int _initial_symbol_table_size;
4740 
4741   bool  _process_strings;
4742   int _strings_processed;
4743   int _strings_removed;
4744 
4745   bool  _process_symbols;
4746   int _symbols_processed;
4747   int _symbols_removed;
4748 
4749 public:
4750   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4751     AbstractGangTask("String/Symbol Unlinking"),
4752     _is_alive(is_alive),
4753     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4754     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4755 
4756     _initial_string_table_size = StringTable::the_table()->table_size();
4757     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4758     if (process_strings) {
4759       StringTable::clear_parallel_claimed_index();
4760     }
4761     if (process_symbols) {
4762       SymbolTable::clear_parallel_claimed_index();
4763     }
4764   }
4765 
4766   ~G1StringSymbolTableUnlinkTask() {
4767     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4768               err_msg("claim value %d after unlink less than initial string table size %d",
4769                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4770     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4771               err_msg("claim value %d after unlink less than initial symbol table size %d",
4772                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4773 
4774     if (G1TraceStringSymbolTableScrubbing) {
4775       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4776                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4777                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4778                              strings_processed(), strings_removed(),
4779                              symbols_processed(), symbols_removed());
4780     }
4781   }
4782 
4783   void work(uint worker_id) {
4784     int strings_processed = 0;
4785     int strings_removed = 0;
4786     int symbols_processed = 0;
4787     int symbols_removed = 0;
4788     if (_process_strings) {
4789       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4790       Atomic::add(strings_processed, &_strings_processed);
4791       Atomic::add(strings_removed, &_strings_removed);
4792     }
4793     if (_process_symbols) {
4794       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4795       Atomic::add(symbols_processed, &_symbols_processed);
4796       Atomic::add(symbols_removed, &_symbols_removed);
4797     }
4798   }
4799 
4800   size_t strings_processed() const { return (size_t)_strings_processed; }
4801   size_t strings_removed()   const { return (size_t)_strings_removed; }
4802 
4803   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4804   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4805 };
4806 
4807 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4808 private:
4809   static Monitor* _lock;
4810 
4811   BoolObjectClosure* const _is_alive;
4812   const bool               _unloading_occurred;
4813   const uint               _num_workers;
4814 
4815   // Variables used to claim nmethods.
4816   nmethod* _first_nmethod;
4817   volatile nmethod* _claimed_nmethod;
4818 
4819   // The list of nmethods that need to be processed by the second pass.
4820   volatile nmethod* _postponed_list;
4821   volatile uint     _num_entered_barrier;
4822 
4823  public:
4824   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4825       _is_alive(is_alive),
4826       _unloading_occurred(unloading_occurred),
4827       _num_workers(num_workers),
4828       _first_nmethod(NULL),
4829       _claimed_nmethod(NULL),
4830       _postponed_list(NULL),
4831       _num_entered_barrier(0)
4832   {
4833     nmethod::increase_unloading_clock();
4834     // Get first alive nmethod
4835     NMethodIterator iter = NMethodIterator();
4836     if(iter.next_alive()) {
4837       _first_nmethod = iter.method();
4838     }
4839     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4840   }
4841 
4842   ~G1CodeCacheUnloadingTask() {
4843     CodeCache::verify_clean_inline_caches();
4844 
4845     CodeCache::set_needs_cache_clean(false);
4846     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4847 
4848     CodeCache::verify_icholder_relocations();
4849   }
4850 
4851  private:
4852   void add_to_postponed_list(nmethod* nm) {
4853       nmethod* old;
4854       do {
4855         old = (nmethod*)_postponed_list;
4856         nm->set_unloading_next(old);
4857       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4858   }
4859 
4860   void clean_nmethod(nmethod* nm) {
4861     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4862 
4863     if (postponed) {
4864       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4865       add_to_postponed_list(nm);
4866     }
4867 
4868     // Mark that this thread has been cleaned/unloaded.
4869     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4870     nm->set_unloading_clock(nmethod::global_unloading_clock());
4871   }
4872 
4873   void clean_nmethod_postponed(nmethod* nm) {
4874     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4875   }
4876 
4877   static const int MaxClaimNmethods = 16;
4878 
4879   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4880     nmethod* first;
4881     NMethodIterator last;
4882 
4883     do {
4884       *num_claimed_nmethods = 0;
4885 
4886       first = (nmethod*)_claimed_nmethod;
4887       last = NMethodIterator(first);
4888 
4889       if (first != NULL) {
4890 
4891         for (int i = 0; i < MaxClaimNmethods; i++) {
4892           if (!last.next_alive()) {
4893             break;
4894           }
4895           claimed_nmethods[i] = last.method();
4896           (*num_claimed_nmethods)++;
4897         }
4898       }
4899 
4900     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4901   }
4902 
4903   nmethod* claim_postponed_nmethod() {
4904     nmethod* claim;
4905     nmethod* next;
4906 
4907     do {
4908       claim = (nmethod*)_postponed_list;
4909       if (claim == NULL) {
4910         return NULL;
4911       }
4912 
4913       next = claim->unloading_next();
4914 
4915     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4916 
4917     return claim;
4918   }
4919 
4920  public:
4921   // Mark that we're done with the first pass of nmethod cleaning.
4922   void barrier_mark(uint worker_id) {
4923     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4924     _num_entered_barrier++;
4925     if (_num_entered_barrier == _num_workers) {
4926       ml.notify_all();
4927     }
4928   }
4929 
4930   // See if we have to wait for the other workers to
4931   // finish their first-pass nmethod cleaning work.
4932   void barrier_wait(uint worker_id) {
4933     if (_num_entered_barrier < _num_workers) {
4934       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4935       while (_num_entered_barrier < _num_workers) {
4936           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4937       }
4938     }
4939   }
4940 
4941   // Cleaning and unloading of nmethods. Some work has to be postponed
4942   // to the second pass, when we know which nmethods survive.
4943   void work_first_pass(uint worker_id) {
4944     // The first nmethods is claimed by the first worker.
4945     if (worker_id == 0 && _first_nmethod != NULL) {
4946       clean_nmethod(_first_nmethod);
4947       _first_nmethod = NULL;
4948     }
4949 
4950     int num_claimed_nmethods;
4951     nmethod* claimed_nmethods[MaxClaimNmethods];
4952 
4953     while (true) {
4954       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4955 
4956       if (num_claimed_nmethods == 0) {
4957         break;
4958       }
4959 
4960       for (int i = 0; i < num_claimed_nmethods; i++) {
4961         clean_nmethod(claimed_nmethods[i]);
4962       }
4963     }
4964 
4965     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
4966     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
4967     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
4968   }
4969 
4970   void work_second_pass(uint worker_id) {
4971     nmethod* nm;
4972     // Take care of postponed nmethods.
4973     while ((nm = claim_postponed_nmethod()) != NULL) {
4974       clean_nmethod_postponed(nm);
4975     }
4976   }
4977 };
4978 
4979 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
4980 
4981 class G1KlassCleaningTask : public StackObj {
4982   BoolObjectClosure*                      _is_alive;
4983   volatile jint                           _clean_klass_tree_claimed;
4984   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4985 
4986  public:
4987   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4988       _is_alive(is_alive),
4989       _clean_klass_tree_claimed(0),
4990       _klass_iterator() {
4991   }
4992 
4993  private:
4994   bool claim_clean_klass_tree_task() {
4995     if (_clean_klass_tree_claimed) {
4996       return false;
4997     }
4998 
4999     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5000   }
5001 
5002   InstanceKlass* claim_next_klass() {
5003     Klass* klass;
5004     do {
5005       klass =_klass_iterator.next_klass();
5006     } while (klass != NULL && !klass->oop_is_instance());
5007 
5008     return (InstanceKlass*)klass;
5009   }
5010 
5011 public:
5012 
5013   void clean_klass(InstanceKlass* ik) {
5014     ik->clean_implementors_list(_is_alive);
5015     ik->clean_method_data(_is_alive);
5016 
5017     // G1 specific cleanup work that has
5018     // been moved here to be done in parallel.
5019     ik->clean_dependent_nmethods();
5020     if (JvmtiExport::has_redefined_a_class()) {
5021       InstanceKlass::purge_previous_versions(ik);
5022     }
5023   }
5024 
5025   void work() {
5026     ResourceMark rm;
5027 
5028     // One worker will clean the subklass/sibling klass tree.
5029     if (claim_clean_klass_tree_task()) {
5030       Klass::clean_subklass_tree(_is_alive);
5031     }
5032 
5033     // All workers will help cleaning the classes,
5034     InstanceKlass* klass;
5035     while ((klass = claim_next_klass()) != NULL) {
5036       clean_klass(klass);
5037     }
5038   }
5039 };
5040 
5041 // To minimize the remark pause times, the tasks below are done in parallel.
5042 class G1ParallelCleaningTask : public AbstractGangTask {
5043 private:
5044   G1StringSymbolTableUnlinkTask _string_symbol_task;
5045   G1CodeCacheUnloadingTask      _code_cache_task;
5046   G1KlassCleaningTask           _klass_cleaning_task;
5047 
5048 public:
5049   // The constructor is run in the VMThread.
5050   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5051       AbstractGangTask("Parallel Cleaning"),
5052       _string_symbol_task(is_alive, process_strings, process_symbols),
5053       _code_cache_task(num_workers, is_alive, unloading_occurred),
5054       _klass_cleaning_task(is_alive) {
5055   }
5056 
5057   void pre_work_verification() {
5058     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5059   }
5060 
5061   void post_work_verification() {
5062     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5063   }
5064 
5065   // The parallel work done by all worker threads.
5066   void work(uint worker_id) {
5067     pre_work_verification();
5068 
5069     // Do first pass of code cache cleaning.
5070     _code_cache_task.work_first_pass(worker_id);
5071 
5072     // Let the threads mark that the first pass is done.
5073     _code_cache_task.barrier_mark(worker_id);
5074 
5075     // Clean the Strings and Symbols.
5076     _string_symbol_task.work(worker_id);
5077 
5078     // Wait for all workers to finish the first code cache cleaning pass.
5079     _code_cache_task.barrier_wait(worker_id);
5080 
5081     // Do the second code cache cleaning work, which realize on
5082     // the liveness information gathered during the first pass.
5083     _code_cache_task.work_second_pass(worker_id);
5084 
5085     // Clean all klasses that were not unloaded.
5086     _klass_cleaning_task.work();
5087 
5088     post_work_verification();
5089   }
5090 };
5091 
5092 
5093 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5094                                         bool process_strings,
5095                                         bool process_symbols,
5096                                         bool class_unloading_occurred) {
5097   uint n_workers = workers()->active_workers();
5098 
5099   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5100                                         n_workers, class_unloading_occurred);
5101   set_par_threads(n_workers);
5102   workers()->run_task(&g1_unlink_task);
5103   set_par_threads(0);
5104 }
5105 
5106 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5107                                                      bool process_strings, bool process_symbols) {
5108   {
5109     uint n_workers = _g1h->workers()->active_workers();
5110     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5111     set_par_threads(n_workers);
5112     workers()->run_task(&g1_unlink_task);
5113     set_par_threads(0);
5114   }
5115 
5116   if (G1StringDedup::is_enabled()) {
5117     G1StringDedup::unlink(is_alive);
5118   }
5119 }
5120 
5121 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5122  private:
5123   DirtyCardQueueSet* _queue;
5124  public:
5125   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5126 
5127   virtual void work(uint worker_id) {
5128     double start_time = os::elapsedTime();
5129 
5130     RedirtyLoggedCardTableEntryClosure cl;
5131     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5132 
5133     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5134     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5135     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5136   }
5137 };
5138 
5139 void G1CollectedHeap::redirty_logged_cards() {
5140   double redirty_logged_cards_start = os::elapsedTime();
5141 
5142   uint n_workers = _g1h->workers()->active_workers();
5143 
5144   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5145   dirty_card_queue_set().reset_for_par_iteration();
5146   set_par_threads(n_workers);
5147   workers()->run_task(&redirty_task);
5148   set_par_threads(0);
5149 
5150   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5151   dcq.merge_bufferlists(&dirty_card_queue_set());
5152   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5153 
5154   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5155 }
5156 
5157 // Weak Reference Processing support
5158 
5159 // An always "is_alive" closure that is used to preserve referents.
5160 // If the object is non-null then it's alive.  Used in the preservation
5161 // of referent objects that are pointed to by reference objects
5162 // discovered by the CM ref processor.
5163 class G1AlwaysAliveClosure: public BoolObjectClosure {
5164   G1CollectedHeap* _g1;
5165 public:
5166   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5167   bool do_object_b(oop p) {
5168     if (p != NULL) {
5169       return true;
5170     }
5171     return false;
5172   }
5173 };
5174 
5175 bool G1STWIsAliveClosure::do_object_b(oop p) {
5176   // An object is reachable if it is outside the collection set,
5177   // or is inside and copied.
5178   return !_g1->obj_in_cs(p) || p->is_forwarded();
5179 }
5180 
5181 // Non Copying Keep Alive closure
5182 class G1KeepAliveClosure: public OopClosure {
5183   G1CollectedHeap* _g1;
5184 public:
5185   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5186   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5187   void do_oop(oop* p) {
5188     oop obj = *p;
5189     assert(obj != NULL, "the caller should have filtered out NULL values");
5190 
5191     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5192     if (cset_state == G1CollectedHeap::InNeither) {
5193       return;
5194     }
5195     if (cset_state == G1CollectedHeap::InCSet) {
5196       assert( obj->is_forwarded(), "invariant" );
5197       *p = obj->forwardee();
5198     } else {
5199       assert(!obj->is_forwarded(), "invariant" );
5200       assert(cset_state == G1CollectedHeap::IsHumongous,
5201              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
5202       _g1->set_humongous_is_live(obj);
5203     }
5204   }
5205 };
5206 
5207 // Copying Keep Alive closure - can be called from both
5208 // serial and parallel code as long as different worker
5209 // threads utilize different G1ParScanThreadState instances
5210 // and different queues.
5211 
5212 class G1CopyingKeepAliveClosure: public OopClosure {
5213   G1CollectedHeap*         _g1h;
5214   OopClosure*              _copy_non_heap_obj_cl;
5215   G1ParScanThreadState*    _par_scan_state;
5216 
5217 public:
5218   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5219                             OopClosure* non_heap_obj_cl,
5220                             G1ParScanThreadState* pss):
5221     _g1h(g1h),
5222     _copy_non_heap_obj_cl(non_heap_obj_cl),
5223     _par_scan_state(pss)
5224   {}
5225 
5226   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5227   virtual void do_oop(      oop* p) { do_oop_work(p); }
5228 
5229   template <class T> void do_oop_work(T* p) {
5230     oop obj = oopDesc::load_decode_heap_oop(p);
5231 
5232     if (_g1h->is_in_cset_or_humongous(obj)) {
5233       // If the referent object has been forwarded (either copied
5234       // to a new location or to itself in the event of an
5235       // evacuation failure) then we need to update the reference
5236       // field and, if both reference and referent are in the G1
5237       // heap, update the RSet for the referent.
5238       //
5239       // If the referent has not been forwarded then we have to keep
5240       // it alive by policy. Therefore we have copy the referent.
5241       //
5242       // If the reference field is in the G1 heap then we can push
5243       // on the PSS queue. When the queue is drained (after each
5244       // phase of reference processing) the object and it's followers
5245       // will be copied, the reference field set to point to the
5246       // new location, and the RSet updated. Otherwise we need to
5247       // use the the non-heap or metadata closures directly to copy
5248       // the referent object and update the pointer, while avoiding
5249       // updating the RSet.
5250 
5251       if (_g1h->is_in_g1_reserved(p)) {
5252         _par_scan_state->push_on_queue(p);
5253       } else {
5254         assert(!Metaspace::contains((const void*)p),
5255                err_msg("Unexpectedly found a pointer from metadata: "
5256                               PTR_FORMAT, p));
5257         _copy_non_heap_obj_cl->do_oop(p);
5258       }
5259     }
5260   }
5261 };
5262 
5263 // Serial drain queue closure. Called as the 'complete_gc'
5264 // closure for each discovered list in some of the
5265 // reference processing phases.
5266 
5267 class G1STWDrainQueueClosure: public VoidClosure {
5268 protected:
5269   G1CollectedHeap* _g1h;
5270   G1ParScanThreadState* _par_scan_state;
5271 
5272   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5273 
5274 public:
5275   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5276     _g1h(g1h),
5277     _par_scan_state(pss)
5278   { }
5279 
5280   void do_void() {
5281     G1ParScanThreadState* const pss = par_scan_state();
5282     pss->trim_queue();
5283   }
5284 };
5285 
5286 // Parallel Reference Processing closures
5287 
5288 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5289 // processing during G1 evacuation pauses.
5290 
5291 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5292 private:
5293   G1CollectedHeap*   _g1h;
5294   RefToScanQueueSet* _queues;
5295   FlexibleWorkGang*  _workers;
5296   int                _active_workers;
5297 
5298 public:
5299   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5300                         FlexibleWorkGang* workers,
5301                         RefToScanQueueSet *task_queues,
5302                         int n_workers) :
5303     _g1h(g1h),
5304     _queues(task_queues),
5305     _workers(workers),
5306     _active_workers(n_workers)
5307   {
5308     assert(n_workers > 0, "shouldn't call this otherwise");
5309   }
5310 
5311   // Executes the given task using concurrent marking worker threads.
5312   virtual void execute(ProcessTask& task);
5313   virtual void execute(EnqueueTask& task);
5314 };
5315 
5316 // Gang task for possibly parallel reference processing
5317 
5318 class G1STWRefProcTaskProxy: public AbstractGangTask {
5319   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5320   ProcessTask&     _proc_task;
5321   G1CollectedHeap* _g1h;
5322   RefToScanQueueSet *_task_queues;
5323   ParallelTaskTerminator* _terminator;
5324 
5325 public:
5326   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5327                      G1CollectedHeap* g1h,
5328                      RefToScanQueueSet *task_queues,
5329                      ParallelTaskTerminator* terminator) :
5330     AbstractGangTask("Process reference objects in parallel"),
5331     _proc_task(proc_task),
5332     _g1h(g1h),
5333     _task_queues(task_queues),
5334     _terminator(terminator)
5335   {}
5336 
5337   virtual void work(uint worker_id) {
5338     // The reference processing task executed by a single worker.
5339     ResourceMark rm;
5340     HandleMark   hm;
5341 
5342     G1STWIsAliveClosure is_alive(_g1h);
5343 
5344     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5345     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5346 
5347     pss.set_evac_failure_closure(&evac_failure_cl);
5348 
5349     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5350 
5351     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5352 
5353     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5354 
5355     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5356       // We also need to mark copied objects.
5357       copy_non_heap_cl = &copy_mark_non_heap_cl;
5358     }
5359 
5360     // Keep alive closure.
5361     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5362 
5363     // Complete GC closure
5364     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5365 
5366     // Call the reference processing task's work routine.
5367     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5368 
5369     // Note we cannot assert that the refs array is empty here as not all
5370     // of the processing tasks (specifically phase2 - pp2_work) execute
5371     // the complete_gc closure (which ordinarily would drain the queue) so
5372     // the queue may not be empty.
5373   }
5374 };
5375 
5376 // Driver routine for parallel reference processing.
5377 // Creates an instance of the ref processing gang
5378 // task and has the worker threads execute it.
5379 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5380   assert(_workers != NULL, "Need parallel worker threads.");
5381 
5382   ParallelTaskTerminator terminator(_active_workers, _queues);
5383   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5384 
5385   _g1h->set_par_threads(_active_workers);
5386   _workers->run_task(&proc_task_proxy);
5387   _g1h->set_par_threads(0);
5388 }
5389 
5390 // Gang task for parallel reference enqueueing.
5391 
5392 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5393   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5394   EnqueueTask& _enq_task;
5395 
5396 public:
5397   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5398     AbstractGangTask("Enqueue reference objects in parallel"),
5399     _enq_task(enq_task)
5400   { }
5401 
5402   virtual void work(uint worker_id) {
5403     _enq_task.work(worker_id);
5404   }
5405 };
5406 
5407 // Driver routine for parallel reference enqueueing.
5408 // Creates an instance of the ref enqueueing gang
5409 // task and has the worker threads execute it.
5410 
5411 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5412   assert(_workers != NULL, "Need parallel worker threads.");
5413 
5414   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5415 
5416   _g1h->set_par_threads(_active_workers);
5417   _workers->run_task(&enq_task_proxy);
5418   _g1h->set_par_threads(0);
5419 }
5420 
5421 // End of weak reference support closures
5422 
5423 // Abstract task used to preserve (i.e. copy) any referent objects
5424 // that are in the collection set and are pointed to by reference
5425 // objects discovered by the CM ref processor.
5426 
5427 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5428 protected:
5429   G1CollectedHeap* _g1h;
5430   RefToScanQueueSet      *_queues;
5431   ParallelTaskTerminator _terminator;
5432   uint _n_workers;
5433 
5434 public:
5435   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5436     AbstractGangTask("ParPreserveCMReferents"),
5437     _g1h(g1h),
5438     _queues(task_queues),
5439     _terminator(workers, _queues),
5440     _n_workers(workers)
5441   { }
5442 
5443   void work(uint worker_id) {
5444     ResourceMark rm;
5445     HandleMark   hm;
5446 
5447     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5448     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5449 
5450     pss.set_evac_failure_closure(&evac_failure_cl);
5451 
5452     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5453 
5454     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5455 
5456     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5457 
5458     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5459 
5460     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5461       // We also need to mark copied objects.
5462       copy_non_heap_cl = &copy_mark_non_heap_cl;
5463     }
5464 
5465     // Is alive closure
5466     G1AlwaysAliveClosure always_alive(_g1h);
5467 
5468     // Copying keep alive closure. Applied to referent objects that need
5469     // to be copied.
5470     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5471 
5472     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5473 
5474     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5475     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5476 
5477     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5478     // So this must be true - but assert just in case someone decides to
5479     // change the worker ids.
5480     assert(0 <= worker_id && worker_id < limit, "sanity");
5481     assert(!rp->discovery_is_atomic(), "check this code");
5482 
5483     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5484     for (uint idx = worker_id; idx < limit; idx += stride) {
5485       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5486 
5487       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5488       while (iter.has_next()) {
5489         // Since discovery is not atomic for the CM ref processor, we
5490         // can see some null referent objects.
5491         iter.load_ptrs(DEBUG_ONLY(true));
5492         oop ref = iter.obj();
5493 
5494         // This will filter nulls.
5495         if (iter.is_referent_alive()) {
5496           iter.make_referent_alive();
5497         }
5498         iter.move_to_next();
5499       }
5500     }
5501 
5502     // Drain the queue - which may cause stealing
5503     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5504     drain_queue.do_void();
5505     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5506     assert(pss.queue_is_empty(), "should be");
5507   }
5508 };
5509 
5510 // Weak Reference processing during an evacuation pause (part 1).
5511 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5512   double ref_proc_start = os::elapsedTime();
5513 
5514   ReferenceProcessor* rp = _ref_processor_stw;
5515   assert(rp->discovery_enabled(), "should have been enabled");
5516 
5517   // Any reference objects, in the collection set, that were 'discovered'
5518   // by the CM ref processor should have already been copied (either by
5519   // applying the external root copy closure to the discovered lists, or
5520   // by following an RSet entry).
5521   //
5522   // But some of the referents, that are in the collection set, that these
5523   // reference objects point to may not have been copied: the STW ref
5524   // processor would have seen that the reference object had already
5525   // been 'discovered' and would have skipped discovering the reference,
5526   // but would not have treated the reference object as a regular oop.
5527   // As a result the copy closure would not have been applied to the
5528   // referent object.
5529   //
5530   // We need to explicitly copy these referent objects - the references
5531   // will be processed at the end of remarking.
5532   //
5533   // We also need to do this copying before we process the reference
5534   // objects discovered by the STW ref processor in case one of these
5535   // referents points to another object which is also referenced by an
5536   // object discovered by the STW ref processor.
5537 
5538   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5539 
5540   set_par_threads(no_of_gc_workers);
5541   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5542                                                  no_of_gc_workers,
5543                                                  _task_queues);
5544 
5545   workers()->run_task(&keep_cm_referents);
5546 
5547   set_par_threads(0);
5548 
5549   // Closure to test whether a referent is alive.
5550   G1STWIsAliveClosure is_alive(this);
5551 
5552   // Even when parallel reference processing is enabled, the processing
5553   // of JNI refs is serial and performed serially by the current thread
5554   // rather than by a worker. The following PSS will be used for processing
5555   // JNI refs.
5556 
5557   // Use only a single queue for this PSS.
5558   G1ParScanThreadState            pss(this, 0, NULL);
5559 
5560   // We do not embed a reference processor in the copying/scanning
5561   // closures while we're actually processing the discovered
5562   // reference objects.
5563   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5564 
5565   pss.set_evac_failure_closure(&evac_failure_cl);
5566 
5567   assert(pss.queue_is_empty(), "pre-condition");
5568 
5569   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5570 
5571   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5572 
5573   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5574 
5575   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5576     // We also need to mark copied objects.
5577     copy_non_heap_cl = &copy_mark_non_heap_cl;
5578   }
5579 
5580   // Keep alive closure.
5581   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5582 
5583   // Serial Complete GC closure
5584   G1STWDrainQueueClosure drain_queue(this, &pss);
5585 
5586   // Setup the soft refs policy...
5587   rp->setup_policy(false);
5588 
5589   ReferenceProcessorStats stats;
5590   if (!rp->processing_is_mt()) {
5591     // Serial reference processing...
5592     stats = rp->process_discovered_references(&is_alive,
5593                                               &keep_alive,
5594                                               &drain_queue,
5595                                               NULL,
5596                                               _gc_timer_stw,
5597                                               _gc_tracer_stw->gc_id());
5598   } else {
5599     // Parallel reference processing
5600     assert(rp->num_q() == no_of_gc_workers, "sanity");
5601     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5602 
5603     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5604     stats = rp->process_discovered_references(&is_alive,
5605                                               &keep_alive,
5606                                               &drain_queue,
5607                                               &par_task_executor,
5608                                               _gc_timer_stw,
5609                                               _gc_tracer_stw->gc_id());
5610   }
5611 
5612   _gc_tracer_stw->report_gc_reference_stats(stats);
5613 
5614   // We have completed copying any necessary live referent objects.
5615   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5616 
5617   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5618   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5619 }
5620 
5621 // Weak Reference processing during an evacuation pause (part 2).
5622 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5623   double ref_enq_start = os::elapsedTime();
5624 
5625   ReferenceProcessor* rp = _ref_processor_stw;
5626   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5627 
5628   // Now enqueue any remaining on the discovered lists on to
5629   // the pending list.
5630   if (!rp->processing_is_mt()) {
5631     // Serial reference processing...
5632     rp->enqueue_discovered_references();
5633   } else {
5634     // Parallel reference enqueueing
5635 
5636     assert(no_of_gc_workers == workers()->active_workers(),
5637            "Need to reset active workers");
5638     assert(rp->num_q() == no_of_gc_workers, "sanity");
5639     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5640 
5641     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5642     rp->enqueue_discovered_references(&par_task_executor);
5643   }
5644 
5645   rp->verify_no_references_recorded();
5646   assert(!rp->discovery_enabled(), "should have been disabled");
5647 
5648   // FIXME
5649   // CM's reference processing also cleans up the string and symbol tables.
5650   // Should we do that here also? We could, but it is a serial operation
5651   // and could significantly increase the pause time.
5652 
5653   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5654   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5655 }
5656 
5657 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5658   _expand_heap_after_alloc_failure = true;
5659   _evacuation_failed = false;
5660 
5661   // Should G1EvacuationFailureALot be in effect for this GC?
5662   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5663 
5664   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5665 
5666   // Disable the hot card cache.
5667   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5668   hot_card_cache->reset_hot_cache_claimed_index();
5669   hot_card_cache->set_use_cache(false);
5670 
5671   uint n_workers;
5672   n_workers =
5673     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5674                                    workers()->active_workers(),
5675                                    Threads::number_of_non_daemon_threads());
5676   assert(UseDynamicNumberOfGCThreads ||
5677          n_workers == workers()->total_workers(),
5678          "If not dynamic should be using all the  workers");
5679   workers()->set_active_workers(n_workers);
5680   set_par_threads(n_workers);
5681 
5682   G1ParTask g1_par_task(this, _task_queues);
5683 
5684   init_for_evac_failure(NULL);
5685 
5686   rem_set()->prepare_for_younger_refs_iterate(true);
5687 
5688   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5689   double start_par_time_sec = os::elapsedTime();
5690   double end_par_time_sec;
5691 
5692   {
5693     StrongRootsScope srs(this);
5694     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5695     if (g1_policy()->during_initial_mark_pause()) {
5696       ClassLoaderDataGraph::clear_claimed_marks();
5697     }
5698 
5699      // The individual threads will set their evac-failure closures.
5700      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5701      // These tasks use ShareHeap::_process_strong_tasks
5702      assert(UseDynamicNumberOfGCThreads ||
5703             workers()->active_workers() == workers()->total_workers(),
5704             "If not dynamic should be using all the  workers");
5705     workers()->run_task(&g1_par_task);
5706     end_par_time_sec = os::elapsedTime();
5707 
5708     // Closing the inner scope will execute the destructor
5709     // for the StrongRootsScope object. We record the current
5710     // elapsed time before closing the scope so that time
5711     // taken for the SRS destructor is NOT included in the
5712     // reported parallel time.
5713   }
5714 
5715   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5716   g1_policy()->phase_times()->record_par_time(par_time_ms);
5717 
5718   double code_root_fixup_time_ms =
5719         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5720   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5721 
5722   set_par_threads(0);
5723 
5724   // Process any discovered reference objects - we have
5725   // to do this _before_ we retire the GC alloc regions
5726   // as we may have to copy some 'reachable' referent
5727   // objects (and their reachable sub-graphs) that were
5728   // not copied during the pause.
5729   process_discovered_references(n_workers);
5730 
5731   if (G1StringDedup::is_enabled()) {
5732     G1STWIsAliveClosure is_alive(this);
5733     G1KeepAliveClosure keep_alive(this);
5734     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5735   }
5736 
5737   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5738   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5739 
5740   // Reset and re-enable the hot card cache.
5741   // Note the counts for the cards in the regions in the
5742   // collection set are reset when the collection set is freed.
5743   hot_card_cache->reset_hot_cache();
5744   hot_card_cache->set_use_cache(true);
5745 
5746   purge_code_root_memory();
5747 
5748   finalize_for_evac_failure();
5749 
5750   if (evacuation_failed()) {
5751     remove_self_forwarding_pointers();
5752 
5753     // Reset the G1EvacuationFailureALot counters and flags
5754     // Note: the values are reset only when an actual
5755     // evacuation failure occurs.
5756     NOT_PRODUCT(reset_evacuation_should_fail();)
5757   }
5758 
5759   // Enqueue any remaining references remaining on the STW
5760   // reference processor's discovered lists. We need to do
5761   // this after the card table is cleaned (and verified) as
5762   // the act of enqueueing entries on to the pending list
5763   // will log these updates (and dirty their associated
5764   // cards). We need these updates logged to update any
5765   // RSets.
5766   enqueue_discovered_references(n_workers);
5767 
5768   redirty_logged_cards();
5769   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5770 }
5771 
5772 void G1CollectedHeap::free_region(HeapRegion* hr,
5773                                   FreeRegionList* free_list,
5774                                   bool par,
5775                                   bool locked) {
5776   assert(!hr->is_free(), "the region should not be free");
5777   assert(!hr->is_empty(), "the region should not be empty");
5778   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5779   assert(free_list != NULL, "pre-condition");
5780 
5781   if (G1VerifyBitmaps) {
5782     MemRegion mr(hr->bottom(), hr->end());
5783     concurrent_mark()->clearRangePrevBitmap(mr);
5784   }
5785 
5786   // Clear the card counts for this region.
5787   // Note: we only need to do this if the region is not young
5788   // (since we don't refine cards in young regions).
5789   if (!hr->is_young()) {
5790     _cg1r->hot_card_cache()->reset_card_counts(hr);
5791   }
5792   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5793   free_list->add_ordered(hr);
5794 }
5795 
5796 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5797                                      FreeRegionList* free_list,
5798                                      bool par) {
5799   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5800   assert(free_list != NULL, "pre-condition");
5801 
5802   size_t hr_capacity = hr->capacity();
5803   // We need to read this before we make the region non-humongous,
5804   // otherwise the information will be gone.
5805   uint last_index = hr->last_hc_index();
5806   hr->clear_humongous();
5807   free_region(hr, free_list, par);
5808 
5809   uint i = hr->hrm_index() + 1;
5810   while (i < last_index) {
5811     HeapRegion* curr_hr = region_at(i);
5812     assert(curr_hr->is_continues_humongous(), "invariant");
5813     curr_hr->clear_humongous();
5814     free_region(curr_hr, free_list, par);
5815     i += 1;
5816   }
5817 }
5818 
5819 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5820                                        const HeapRegionSetCount& humongous_regions_removed) {
5821   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5822     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5823     _old_set.bulk_remove(old_regions_removed);
5824     _humongous_set.bulk_remove(humongous_regions_removed);
5825   }
5826 
5827 }
5828 
5829 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5830   assert(list != NULL, "list can't be null");
5831   if (!list->is_empty()) {
5832     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5833     _hrm.insert_list_into_free_list(list);
5834   }
5835 }
5836 
5837 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5838   _allocator->decrease_used(bytes);
5839 }
5840 
5841 class G1ParCleanupCTTask : public AbstractGangTask {
5842   G1SATBCardTableModRefBS* _ct_bs;
5843   G1CollectedHeap* _g1h;
5844   HeapRegion* volatile _su_head;
5845 public:
5846   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5847                      G1CollectedHeap* g1h) :
5848     AbstractGangTask("G1 Par Cleanup CT Task"),
5849     _ct_bs(ct_bs), _g1h(g1h) { }
5850 
5851   void work(uint worker_id) {
5852     HeapRegion* r;
5853     while (r = _g1h->pop_dirty_cards_region()) {
5854       clear_cards(r);
5855     }
5856   }
5857 
5858   void clear_cards(HeapRegion* r) {
5859     // Cards of the survivors should have already been dirtied.
5860     if (!r->is_survivor()) {
5861       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5862     }
5863   }
5864 };
5865 
5866 #ifndef PRODUCT
5867 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5868   G1CollectedHeap* _g1h;
5869   G1SATBCardTableModRefBS* _ct_bs;
5870 public:
5871   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5872     : _g1h(g1h), _ct_bs(ct_bs) { }
5873   virtual bool doHeapRegion(HeapRegion* r) {
5874     if (r->is_survivor()) {
5875       _g1h->verify_dirty_region(r);
5876     } else {
5877       _g1h->verify_not_dirty_region(r);
5878     }
5879     return false;
5880   }
5881 };
5882 
5883 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5884   // All of the region should be clean.
5885   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5886   MemRegion mr(hr->bottom(), hr->end());
5887   ct_bs->verify_not_dirty_region(mr);
5888 }
5889 
5890 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5891   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5892   // dirty allocated blocks as they allocate them. The thread that
5893   // retires each region and replaces it with a new one will do a
5894   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5895   // not dirty that area (one less thing to have to do while holding
5896   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5897   // is dirty.
5898   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5899   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5900   if (hr->is_young()) {
5901     ct_bs->verify_g1_young_region(mr);
5902   } else {
5903     ct_bs->verify_dirty_region(mr);
5904   }
5905 }
5906 
5907 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5908   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5909   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5910     verify_dirty_region(hr);
5911   }
5912 }
5913 
5914 void G1CollectedHeap::verify_dirty_young_regions() {
5915   verify_dirty_young_list(_young_list->first_region());
5916 }
5917 
5918 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5919                                                HeapWord* tams, HeapWord* end) {
5920   guarantee(tams <= end,
5921             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5922   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5923   if (result < end) {
5924     gclog_or_tty->cr();
5925     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5926                            bitmap_name, result);
5927     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5928                            bitmap_name, tams, end);
5929     return false;
5930   }
5931   return true;
5932 }
5933 
5934 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5935   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5936   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5937 
5938   HeapWord* bottom = hr->bottom();
5939   HeapWord* ptams  = hr->prev_top_at_mark_start();
5940   HeapWord* ntams  = hr->next_top_at_mark_start();
5941   HeapWord* end    = hr->end();
5942 
5943   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5944 
5945   bool res_n = true;
5946   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5947   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5948   // if we happen to be in that state.
5949   if (mark_in_progress() || !_cmThread->in_progress()) {
5950     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5951   }
5952   if (!res_p || !res_n) {
5953     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5954                            HR_FORMAT_PARAMS(hr));
5955     gclog_or_tty->print_cr("#### Caller: %s", caller);
5956     return false;
5957   }
5958   return true;
5959 }
5960 
5961 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5962   if (!G1VerifyBitmaps) return;
5963 
5964   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5965 }
5966 
5967 class G1VerifyBitmapClosure : public HeapRegionClosure {
5968 private:
5969   const char* _caller;
5970   G1CollectedHeap* _g1h;
5971   bool _failures;
5972 
5973 public:
5974   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5975     _caller(caller), _g1h(g1h), _failures(false) { }
5976 
5977   bool failures() { return _failures; }
5978 
5979   virtual bool doHeapRegion(HeapRegion* hr) {
5980     if (hr->is_continues_humongous()) return false;
5981 
5982     bool result = _g1h->verify_bitmaps(_caller, hr);
5983     if (!result) {
5984       _failures = true;
5985     }
5986     return false;
5987   }
5988 };
5989 
5990 void G1CollectedHeap::check_bitmaps(const char* caller) {
5991   if (!G1VerifyBitmaps) return;
5992 
5993   G1VerifyBitmapClosure cl(caller, this);
5994   heap_region_iterate(&cl);
5995   guarantee(!cl.failures(), "bitmap verification");
5996 }
5997 #endif // PRODUCT
5998 
5999 void G1CollectedHeap::cleanUpCardTable() {
6000   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6001   double start = os::elapsedTime();
6002 
6003   {
6004     // Iterate over the dirty cards region list.
6005     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6006 
6007     set_par_threads();
6008     workers()->run_task(&cleanup_task);
6009     set_par_threads(0);
6010 #ifndef PRODUCT
6011     if (G1VerifyCTCleanup || VerifyAfterGC) {
6012       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6013       heap_region_iterate(&cleanup_verifier);
6014     }
6015 #endif
6016   }
6017 
6018   double elapsed = os::elapsedTime() - start;
6019   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6020 }
6021 
6022 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6023   size_t pre_used = 0;
6024   FreeRegionList local_free_list("Local List for CSet Freeing");
6025 
6026   double young_time_ms     = 0.0;
6027   double non_young_time_ms = 0.0;
6028 
6029   // Since the collection set is a superset of the the young list,
6030   // all we need to do to clear the young list is clear its
6031   // head and length, and unlink any young regions in the code below
6032   _young_list->clear();
6033 
6034   G1CollectorPolicy* policy = g1_policy();
6035 
6036   double start_sec = os::elapsedTime();
6037   bool non_young = true;
6038 
6039   HeapRegion* cur = cs_head;
6040   int age_bound = -1;
6041   size_t rs_lengths = 0;
6042 
6043   while (cur != NULL) {
6044     assert(!is_on_master_free_list(cur), "sanity");
6045     if (non_young) {
6046       if (cur->is_young()) {
6047         double end_sec = os::elapsedTime();
6048         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6049         non_young_time_ms += elapsed_ms;
6050 
6051         start_sec = os::elapsedTime();
6052         non_young = false;
6053       }
6054     } else {
6055       if (!cur->is_young()) {
6056         double end_sec = os::elapsedTime();
6057         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6058         young_time_ms += elapsed_ms;
6059 
6060         start_sec = os::elapsedTime();
6061         non_young = true;
6062       }
6063     }
6064 
6065     rs_lengths += cur->rem_set()->occupied_locked();
6066 
6067     HeapRegion* next = cur->next_in_collection_set();
6068     assert(cur->in_collection_set(), "bad CS");
6069     cur->set_next_in_collection_set(NULL);
6070     cur->set_in_collection_set(false);
6071 
6072     if (cur->is_young()) {
6073       int index = cur->young_index_in_cset();
6074       assert(index != -1, "invariant");
6075       assert((uint) index < policy->young_cset_region_length(), "invariant");
6076       size_t words_survived = _surviving_young_words[index];
6077       cur->record_surv_words_in_group(words_survived);
6078 
6079       // At this point the we have 'popped' cur from the collection set
6080       // (linked via next_in_collection_set()) but it is still in the
6081       // young list (linked via next_young_region()). Clear the
6082       // _next_young_region field.
6083       cur->set_next_young_region(NULL);
6084     } else {
6085       int index = cur->young_index_in_cset();
6086       assert(index == -1, "invariant");
6087     }
6088 
6089     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6090             (!cur->is_young() && cur->young_index_in_cset() == -1),
6091             "invariant" );
6092 
6093     if (!cur->evacuation_failed()) {
6094       MemRegion used_mr = cur->used_region();
6095 
6096       // And the region is empty.
6097       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6098       pre_used += cur->used();
6099       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6100     } else {
6101       cur->uninstall_surv_rate_group();
6102       if (cur->is_young()) {
6103         cur->set_young_index_in_cset(-1);
6104       }
6105       cur->set_evacuation_failed(false);
6106       // The region is now considered to be old.
6107       cur->set_old();
6108       _old_set.add(cur);
6109       evacuation_info.increment_collectionset_used_after(cur->used());
6110     }
6111     cur = next;
6112   }
6113 
6114   evacuation_info.set_regions_freed(local_free_list.length());
6115   policy->record_max_rs_lengths(rs_lengths);
6116   policy->cset_regions_freed();
6117 
6118   double end_sec = os::elapsedTime();
6119   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6120 
6121   if (non_young) {
6122     non_young_time_ms += elapsed_ms;
6123   } else {
6124     young_time_ms += elapsed_ms;
6125   }
6126 
6127   prepend_to_freelist(&local_free_list);
6128   decrement_summary_bytes(pre_used);
6129   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6130   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6131 }
6132 
6133 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6134  private:
6135   FreeRegionList* _free_region_list;
6136   HeapRegionSet* _proxy_set;
6137   HeapRegionSetCount _humongous_regions_removed;
6138   size_t _freed_bytes;
6139  public:
6140 
6141   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6142     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6143   }
6144 
6145   virtual bool doHeapRegion(HeapRegion* r) {
6146     if (!r->is_starts_humongous()) {
6147       return false;
6148     }
6149 
6150     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6151 
6152     oop obj = (oop)r->bottom();
6153     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6154 
6155     // The following checks whether the humongous object is live are sufficient.
6156     // The main additional check (in addition to having a reference from the roots
6157     // or the young gen) is whether the humongous object has a remembered set entry.
6158     //
6159     // A humongous object cannot be live if there is no remembered set for it
6160     // because:
6161     // - there can be no references from within humongous starts regions referencing
6162     // the object because we never allocate other objects into them.
6163     // (I.e. there are no intra-region references that may be missed by the
6164     // remembered set)
6165     // - as soon there is a remembered set entry to the humongous starts region
6166     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6167     // until the end of a concurrent mark.
6168     //
6169     // It is not required to check whether the object has been found dead by marking
6170     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6171     // all objects allocated during that time are considered live.
6172     // SATB marking is even more conservative than the remembered set.
6173     // So if at this point in the collection there is no remembered set entry,
6174     // nobody has a reference to it.
6175     // At the start of collection we flush all refinement logs, and remembered sets
6176     // are completely up-to-date wrt to references to the humongous object.
6177     //
6178     // Other implementation considerations:
6179     // - never consider object arrays at this time because they would pose
6180     // considerable effort for cleaning up the the remembered sets. This is
6181     // required because stale remembered sets might reference locations that
6182     // are currently allocated into.
6183     uint region_idx = r->hrm_index();
6184     if (g1h->humongous_is_live(region_idx) ||
6185         g1h->humongous_region_is_always_live(region_idx)) {
6186 
6187       if (G1TraceEagerReclaimHumongousObjects) {
6188         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6189                                region_idx,
6190                                obj->size()*HeapWordSize,
6191                                r->bottom(),
6192                                r->region_num(),
6193                                r->rem_set()->occupied(),
6194                                r->rem_set()->strong_code_roots_list_length(),
6195                                next_bitmap->isMarked(r->bottom()),
6196                                g1h->humongous_is_live(region_idx),
6197                                obj->is_objArray()
6198                               );
6199       }
6200 
6201       return false;
6202     }
6203 
6204     guarantee(!obj->is_objArray(),
6205               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6206                       r->bottom()));
6207 
6208     if (G1TraceEagerReclaimHumongousObjects) {
6209       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6210                              region_idx,
6211                              obj->size()*HeapWordSize,
6212                              r->bottom(),
6213                              r->region_num(),
6214                              r->rem_set()->occupied(),
6215                              r->rem_set()->strong_code_roots_list_length(),
6216                              next_bitmap->isMarked(r->bottom()),
6217                              g1h->humongous_is_live(region_idx),
6218                              obj->is_objArray()
6219                             );
6220     }
6221     // Need to clear mark bit of the humongous object if already set.
6222     if (next_bitmap->isMarked(r->bottom())) {
6223       next_bitmap->clear(r->bottom());
6224     }
6225     _freed_bytes += r->used();
6226     r->set_containing_set(NULL);
6227     _humongous_regions_removed.increment(1u, r->capacity());
6228     g1h->free_humongous_region(r, _free_region_list, false);
6229 
6230     return false;
6231   }
6232 
6233   HeapRegionSetCount& humongous_free_count() {
6234     return _humongous_regions_removed;
6235   }
6236 
6237   size_t bytes_freed() const {
6238     return _freed_bytes;
6239   }
6240 
6241   size_t humongous_reclaimed() const {
6242     return _humongous_regions_removed.length();
6243   }
6244 };
6245 
6246 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6247   assert_at_safepoint(true);
6248 
6249   if (!G1EagerReclaimHumongousObjects ||
6250       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6251     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6252     return;
6253   }
6254 
6255   double start_time = os::elapsedTime();
6256 
6257   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6258 
6259   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6260   heap_region_iterate(&cl);
6261 
6262   HeapRegionSetCount empty_set;
6263   remove_from_old_sets(empty_set, cl.humongous_free_count());
6264 
6265   G1HRPrinter* hr_printer = _g1h->hr_printer();
6266   if (hr_printer->is_active()) {
6267     FreeRegionListIterator iter(&local_cleanup_list);
6268     while (iter.more_available()) {
6269       HeapRegion* hr = iter.get_next();
6270       hr_printer->cleanup(hr);
6271     }
6272   }
6273 
6274   prepend_to_freelist(&local_cleanup_list);
6275   decrement_summary_bytes(cl.bytes_freed());
6276 
6277   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6278                                                                     cl.humongous_reclaimed());
6279 }
6280 
6281 // This routine is similar to the above but does not record
6282 // any policy statistics or update free lists; we are abandoning
6283 // the current incremental collection set in preparation of a
6284 // full collection. After the full GC we will start to build up
6285 // the incremental collection set again.
6286 // This is only called when we're doing a full collection
6287 // and is immediately followed by the tearing down of the young list.
6288 
6289 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6290   HeapRegion* cur = cs_head;
6291 
6292   while (cur != NULL) {
6293     HeapRegion* next = cur->next_in_collection_set();
6294     assert(cur->in_collection_set(), "bad CS");
6295     cur->set_next_in_collection_set(NULL);
6296     cur->set_in_collection_set(false);
6297     cur->set_young_index_in_cset(-1);
6298     cur = next;
6299   }
6300 }
6301 
6302 void G1CollectedHeap::set_free_regions_coming() {
6303   if (G1ConcRegionFreeingVerbose) {
6304     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6305                            "setting free regions coming");
6306   }
6307 
6308   assert(!free_regions_coming(), "pre-condition");
6309   _free_regions_coming = true;
6310 }
6311 
6312 void G1CollectedHeap::reset_free_regions_coming() {
6313   assert(free_regions_coming(), "pre-condition");
6314 
6315   {
6316     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6317     _free_regions_coming = false;
6318     SecondaryFreeList_lock->notify_all();
6319   }
6320 
6321   if (G1ConcRegionFreeingVerbose) {
6322     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6323                            "reset free regions coming");
6324   }
6325 }
6326 
6327 void G1CollectedHeap::wait_while_free_regions_coming() {
6328   // Most of the time we won't have to wait, so let's do a quick test
6329   // first before we take the lock.
6330   if (!free_regions_coming()) {
6331     return;
6332   }
6333 
6334   if (G1ConcRegionFreeingVerbose) {
6335     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6336                            "waiting for free regions");
6337   }
6338 
6339   {
6340     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6341     while (free_regions_coming()) {
6342       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6343     }
6344   }
6345 
6346   if (G1ConcRegionFreeingVerbose) {
6347     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6348                            "done waiting for free regions");
6349   }
6350 }
6351 
6352 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6353   assert(heap_lock_held_for_gc(),
6354               "the heap lock should already be held by or for this thread");
6355   _young_list->push_region(hr);
6356 }
6357 
6358 class NoYoungRegionsClosure: public HeapRegionClosure {
6359 private:
6360   bool _success;
6361 public:
6362   NoYoungRegionsClosure() : _success(true) { }
6363   bool doHeapRegion(HeapRegion* r) {
6364     if (r->is_young()) {
6365       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6366                              r->bottom(), r->end());
6367       _success = false;
6368     }
6369     return false;
6370   }
6371   bool success() { return _success; }
6372 };
6373 
6374 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6375   bool ret = _young_list->check_list_empty(check_sample);
6376 
6377   if (check_heap) {
6378     NoYoungRegionsClosure closure;
6379     heap_region_iterate(&closure);
6380     ret = ret && closure.success();
6381   }
6382 
6383   return ret;
6384 }
6385 
6386 class TearDownRegionSetsClosure : public HeapRegionClosure {
6387 private:
6388   HeapRegionSet *_old_set;
6389 
6390 public:
6391   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6392 
6393   bool doHeapRegion(HeapRegion* r) {
6394     if (r->is_old()) {
6395       _old_set->remove(r);
6396     } else {
6397       // We ignore free regions, we'll empty the free list afterwards.
6398       // We ignore young regions, we'll empty the young list afterwards.
6399       // We ignore humongous regions, we're not tearing down the
6400       // humongous regions set.
6401       assert(r->is_free() || r->is_young() || r->is_humongous(),
6402              "it cannot be another type");
6403     }
6404     return false;
6405   }
6406 
6407   ~TearDownRegionSetsClosure() {
6408     assert(_old_set->is_empty(), "post-condition");
6409   }
6410 };
6411 
6412 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6413   assert_at_safepoint(true /* should_be_vm_thread */);
6414 
6415   if (!free_list_only) {
6416     TearDownRegionSetsClosure cl(&_old_set);
6417     heap_region_iterate(&cl);
6418 
6419     // Note that emptying the _young_list is postponed and instead done as
6420     // the first step when rebuilding the regions sets again. The reason for
6421     // this is that during a full GC string deduplication needs to know if
6422     // a collected region was young or old when the full GC was initiated.
6423   }
6424   _hrm.remove_all_free_regions();
6425 }
6426 
6427 class RebuildRegionSetsClosure : public HeapRegionClosure {
6428 private:
6429   bool            _free_list_only;
6430   HeapRegionSet*   _old_set;
6431   HeapRegionManager*   _hrm;
6432   size_t          _total_used;
6433 
6434 public:
6435   RebuildRegionSetsClosure(bool free_list_only,
6436                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6437     _free_list_only(free_list_only),
6438     _old_set(old_set), _hrm(hrm), _total_used(0) {
6439     assert(_hrm->num_free_regions() == 0, "pre-condition");
6440     if (!free_list_only) {
6441       assert(_old_set->is_empty(), "pre-condition");
6442     }
6443   }
6444 
6445   bool doHeapRegion(HeapRegion* r) {
6446     if (r->is_continues_humongous()) {
6447       return false;
6448     }
6449 
6450     if (r->is_empty()) {
6451       // Add free regions to the free list
6452       r->set_free();
6453       r->set_allocation_context(AllocationContext::system());
6454       _hrm->insert_into_free_list(r);
6455     } else if (!_free_list_only) {
6456       assert(!r->is_young(), "we should not come across young regions");
6457 
6458       if (r->is_humongous()) {
6459         // We ignore humongous regions, we left the humongous set unchanged
6460       } else {
6461         // Objects that were compacted would have ended up on regions
6462         // that were previously old or free.
6463         assert(r->is_free() || r->is_old(), "invariant");
6464         // We now consider them old, so register as such.
6465         r->set_old();
6466         _old_set->add(r);
6467       }
6468       _total_used += r->used();
6469     }
6470 
6471     return false;
6472   }
6473 
6474   size_t total_used() {
6475     return _total_used;
6476   }
6477 };
6478 
6479 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6480   assert_at_safepoint(true /* should_be_vm_thread */);
6481 
6482   if (!free_list_only) {
6483     _young_list->empty_list();
6484   }
6485 
6486   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6487   heap_region_iterate(&cl);
6488 
6489   if (!free_list_only) {
6490     _allocator->set_used(cl.total_used());
6491   }
6492   assert(_allocator->used_unlocked() == recalculate_used(),
6493          err_msg("inconsistent _allocator->used_unlocked(), "
6494                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6495                  _allocator->used_unlocked(), recalculate_used()));
6496 }
6497 
6498 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6499   _refine_cte_cl->set_concurrent(concurrent);
6500 }
6501 
6502 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6503   HeapRegion* hr = heap_region_containing(p);
6504   return hr->is_in(p);
6505 }
6506 
6507 // Methods for the mutator alloc region
6508 
6509 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6510                                                       bool force) {
6511   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6512   assert(!force || g1_policy()->can_expand_young_list(),
6513          "if force is true we should be able to expand the young list");
6514   bool young_list_full = g1_policy()->is_young_list_full();
6515   if (force || !young_list_full) {
6516     HeapRegion* new_alloc_region = new_region(word_size,
6517                                               false /* is_old */,
6518                                               false /* do_expand */);
6519     if (new_alloc_region != NULL) {
6520       set_region_short_lived_locked(new_alloc_region);
6521       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6522       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6523       return new_alloc_region;
6524     }
6525   }
6526   return NULL;
6527 }
6528 
6529 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6530                                                   size_t allocated_bytes) {
6531   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6532   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6533 
6534   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6535   _allocator->increase_used(allocated_bytes);
6536   _hr_printer.retire(alloc_region);
6537   // We update the eden sizes here, when the region is retired,
6538   // instead of when it's allocated, since this is the point that its
6539   // used space has been recored in _summary_bytes_used.
6540   g1mm()->update_eden_size();
6541 }
6542 
6543 void G1CollectedHeap::set_par_threads() {
6544   // Don't change the number of workers.  Use the value previously set
6545   // in the workgroup.
6546   uint n_workers = workers()->active_workers();
6547   assert(UseDynamicNumberOfGCThreads ||
6548            n_workers == workers()->total_workers(),
6549       "Otherwise should be using the total number of workers");
6550   if (n_workers == 0) {
6551     assert(false, "Should have been set in prior evacuation pause.");
6552     n_workers = ParallelGCThreads;
6553     workers()->set_active_workers(n_workers);
6554   }
6555   set_par_threads(n_workers);
6556 }
6557 
6558 // Methods for the GC alloc regions
6559 
6560 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6561                                                  uint count,
6562                                                  GCAllocPurpose ap) {
6563   assert(FreeList_lock->owned_by_self(), "pre-condition");
6564 
6565   if (count < g1_policy()->max_regions(ap)) {
6566     bool survivor = (ap == GCAllocForSurvived);
6567     HeapRegion* new_alloc_region = new_region(word_size,
6568                                               !survivor,
6569                                               true /* do_expand */);
6570     if (new_alloc_region != NULL) {
6571       // We really only need to do this for old regions given that we
6572       // should never scan survivors. But it doesn't hurt to do it
6573       // for survivors too.
6574       new_alloc_region->record_timestamp();
6575       if (survivor) {
6576         new_alloc_region->set_survivor();
6577         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6578         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6579       } else {
6580         new_alloc_region->set_old();
6581         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6582         check_bitmaps("Old Region Allocation", new_alloc_region);
6583       }
6584       bool during_im = g1_policy()->during_initial_mark_pause();
6585       new_alloc_region->note_start_of_copying(during_im);
6586       return new_alloc_region;
6587     } else {
6588       g1_policy()->note_alloc_region_limit_reached(ap);
6589     }
6590   }
6591   return NULL;
6592 }
6593 
6594 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6595                                              size_t allocated_bytes,
6596                                              GCAllocPurpose ap) {
6597   bool during_im = g1_policy()->during_initial_mark_pause();
6598   alloc_region->note_end_of_copying(during_im);
6599   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6600   if (ap == GCAllocForSurvived) {
6601     young_list()->add_survivor_region(alloc_region);
6602   } else {
6603     _old_set.add(alloc_region);
6604   }
6605   _hr_printer.retire(alloc_region);
6606 }
6607 
6608 // Heap region set verification
6609 
6610 class VerifyRegionListsClosure : public HeapRegionClosure {
6611 private:
6612   HeapRegionSet*   _old_set;
6613   HeapRegionSet*   _humongous_set;
6614   HeapRegionManager*   _hrm;
6615 
6616 public:
6617   HeapRegionSetCount _old_count;
6618   HeapRegionSetCount _humongous_count;
6619   HeapRegionSetCount _free_count;
6620 
6621   VerifyRegionListsClosure(HeapRegionSet* old_set,
6622                            HeapRegionSet* humongous_set,
6623                            HeapRegionManager* hrm) :
6624     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6625     _old_count(), _humongous_count(), _free_count(){ }
6626 
6627   bool doHeapRegion(HeapRegion* hr) {
6628     if (hr->is_continues_humongous()) {
6629       return false;
6630     }
6631 
6632     if (hr->is_young()) {
6633       // TODO
6634     } else if (hr->is_starts_humongous()) {
6635       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6636       _humongous_count.increment(1u, hr->capacity());
6637     } else if (hr->is_empty()) {
6638       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6639       _free_count.increment(1u, hr->capacity());
6640     } else if (hr->is_old()) {
6641       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6642       _old_count.increment(1u, hr->capacity());
6643     } else {
6644       ShouldNotReachHere();
6645     }
6646     return false;
6647   }
6648 
6649   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6650     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6651     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6652         old_set->total_capacity_bytes(), _old_count.capacity()));
6653 
6654     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6655     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6656         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6657 
6658     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6659     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6660         free_list->total_capacity_bytes(), _free_count.capacity()));
6661   }
6662 };
6663 
6664 void G1CollectedHeap::verify_region_sets() {
6665   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6666 
6667   // First, check the explicit lists.
6668   _hrm.verify();
6669   {
6670     // Given that a concurrent operation might be adding regions to
6671     // the secondary free list we have to take the lock before
6672     // verifying it.
6673     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6674     _secondary_free_list.verify_list();
6675   }
6676 
6677   // If a concurrent region freeing operation is in progress it will
6678   // be difficult to correctly attributed any free regions we come
6679   // across to the correct free list given that they might belong to
6680   // one of several (free_list, secondary_free_list, any local lists,
6681   // etc.). So, if that's the case we will skip the rest of the
6682   // verification operation. Alternatively, waiting for the concurrent
6683   // operation to complete will have a non-trivial effect on the GC's
6684   // operation (no concurrent operation will last longer than the
6685   // interval between two calls to verification) and it might hide
6686   // any issues that we would like to catch during testing.
6687   if (free_regions_coming()) {
6688     return;
6689   }
6690 
6691   // Make sure we append the secondary_free_list on the free_list so
6692   // that all free regions we will come across can be safely
6693   // attributed to the free_list.
6694   append_secondary_free_list_if_not_empty_with_lock();
6695 
6696   // Finally, make sure that the region accounting in the lists is
6697   // consistent with what we see in the heap.
6698 
6699   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6700   heap_region_iterate(&cl);
6701   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6702 }
6703 
6704 // Optimized nmethod scanning
6705 
6706 class RegisterNMethodOopClosure: public OopClosure {
6707   G1CollectedHeap* _g1h;
6708   nmethod* _nm;
6709 
6710   template <class T> void do_oop_work(T* p) {
6711     T heap_oop = oopDesc::load_heap_oop(p);
6712     if (!oopDesc::is_null(heap_oop)) {
6713       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6714       HeapRegion* hr = _g1h->heap_region_containing(obj);
6715       assert(!hr->is_continues_humongous(),
6716              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6717                      " starting at "HR_FORMAT,
6718                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6719 
6720       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6721       hr->add_strong_code_root_locked(_nm);
6722     }
6723   }
6724 
6725 public:
6726   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6727     _g1h(g1h), _nm(nm) {}
6728 
6729   void do_oop(oop* p)       { do_oop_work(p); }
6730   void do_oop(narrowOop* p) { do_oop_work(p); }
6731 };
6732 
6733 class UnregisterNMethodOopClosure: public OopClosure {
6734   G1CollectedHeap* _g1h;
6735   nmethod* _nm;
6736 
6737   template <class T> void do_oop_work(T* p) {
6738     T heap_oop = oopDesc::load_heap_oop(p);
6739     if (!oopDesc::is_null(heap_oop)) {
6740       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6741       HeapRegion* hr = _g1h->heap_region_containing(obj);
6742       assert(!hr->is_continues_humongous(),
6743              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6744                      " starting at "HR_FORMAT,
6745                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6746 
6747       hr->remove_strong_code_root(_nm);
6748     }
6749   }
6750 
6751 public:
6752   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6753     _g1h(g1h), _nm(nm) {}
6754 
6755   void do_oop(oop* p)       { do_oop_work(p); }
6756   void do_oop(narrowOop* p) { do_oop_work(p); }
6757 };
6758 
6759 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6760   CollectedHeap::register_nmethod(nm);
6761 
6762   guarantee(nm != NULL, "sanity");
6763   RegisterNMethodOopClosure reg_cl(this, nm);
6764   nm->oops_do(&reg_cl);
6765 }
6766 
6767 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6768   CollectedHeap::unregister_nmethod(nm);
6769 
6770   guarantee(nm != NULL, "sanity");
6771   UnregisterNMethodOopClosure reg_cl(this, nm);
6772   nm->oops_do(&reg_cl, true);
6773 }
6774 
6775 void G1CollectedHeap::purge_code_root_memory() {
6776   double purge_start = os::elapsedTime();
6777   G1CodeRootSet::purge();
6778   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6779   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6780 }
6781 
6782 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6783   G1CollectedHeap* _g1h;
6784 
6785 public:
6786   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6787     _g1h(g1h) {}
6788 
6789   void do_code_blob(CodeBlob* cb) {
6790     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6791     if (nm == NULL) {
6792       return;
6793     }
6794 
6795     if (ScavengeRootsInCode) {
6796       _g1h->register_nmethod(nm);
6797     }
6798   }
6799 };
6800 
6801 void G1CollectedHeap::rebuild_strong_code_roots() {
6802   RebuildStrongCodeRootClosure blob_cl(this);
6803   CodeCache::blobs_do(&blob_cl);
6804 }