1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.hpp"
  30 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  33 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  34 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  35 #include "runtime/orderAccess.inline.hpp"
  36 #include "utilities/taskqueue.hpp"
  37 
  38 // Inline functions for G1CollectedHeap
  39 
  40 // Return the region with the given index. It assumes the index is valid.
  41 inline HeapRegion* G1CollectedHeap::region_at(uint index) const { return _hrs.at(index); }
  42 
  43 inline uint G1CollectedHeap::addr_to_region(HeapWord* addr) const {
  44   assert(is_in_reserved(addr),
  45          err_msg("Cannot calculate region index for address "PTR_FORMAT" that is outside of the heap ["PTR_FORMAT", "PTR_FORMAT")",
  46                  p2i(addr), p2i(_reserved.start()), p2i(_reserved.end())));
  47   return (uint)(pointer_delta(addr, _reserved.start(), sizeof(uint8_t)) >> HeapRegion::LogOfHRGrainBytes);
  48 }
  49 
  50 inline HeapWord* G1CollectedHeap::bottom_addr_for_region(uint index) const {
  51   return _hrs.reserved().start() + index * HeapRegion::GrainWords;
  52 }
  53 
  54 template <class T>
  55 inline HeapRegion* G1CollectedHeap::heap_region_containing_raw(const T addr) const {
  56   assert(addr != NULL, "invariant");
  57   assert(is_in_g1_reserved((const void*) addr),
  58       err_msg("Address "PTR_FORMAT" is outside of the heap ranging from ["PTR_FORMAT" to "PTR_FORMAT")",
  59           p2i((void*)addr), p2i(g1_reserved().start()), p2i(g1_reserved().end())));
  60   return _hrs.addr_to_region((HeapWord*) addr);
  61 }
  62 
  63 template <class T>
  64 inline HeapRegion* G1CollectedHeap::heap_region_containing(const T addr) const {
  65   HeapRegion* hr = heap_region_containing_raw(addr);
  66   if (hr->continuesHumongous()) {
  67     return hr->humongous_start_region();
  68   }
  69   return hr;
  70 }
  71 
  72 inline void G1CollectedHeap::reset_gc_time_stamp() {
  73   _gc_time_stamp = 0;
  74   OrderAccess::fence();
  75   // Clear the cached CSet starting regions and time stamps.
  76   // Their validity is dependent on the GC timestamp.
  77   clear_cset_start_regions();
  78 }
  79 
  80 inline void G1CollectedHeap::increment_gc_time_stamp() {
  81   ++_gc_time_stamp;
  82   OrderAccess::fence();
  83 }
  84 
  85 inline void G1CollectedHeap::old_set_remove(HeapRegion* hr) {
  86   _old_set.remove(hr);
  87 }
  88 
  89 inline bool G1CollectedHeap::obj_in_cs(oop obj) {
  90   HeapRegion* r = _hrs.addr_to_region((HeapWord*) obj);
  91   return r != NULL && r->in_collection_set();
  92 }
  93 
  94 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
  95                                                      unsigned int* gc_count_before_ret,
  96                                                      int* gclocker_retry_count_ret) {
  97   assert_heap_not_locked_and_not_at_safepoint();
  98   assert(!isHumongous(word_size), "attempt_allocation() should not "
  99          "be called for humongous allocation requests");
 100 
 101   HeapWord* result = _mutator_alloc_region.attempt_allocation(word_size,
 102                                                       false /* bot_updates */);
 103   if (result == NULL) {
 104     result = attempt_allocation_slow(word_size,
 105                                      gc_count_before_ret,
 106                                      gclocker_retry_count_ret);
 107   }
 108   assert_heap_not_locked();
 109   if (result != NULL) {
 110     dirty_young_block(result, word_size);
 111   }
 112   return result;
 113 }
 114 
 115 inline HeapWord* G1CollectedHeap::survivor_attempt_allocation(size_t
 116                                                               word_size) {
 117   assert(!isHumongous(word_size),
 118          "we should not be seeing humongous-size allocations in this path");
 119 
 120   HeapWord* result = _survivor_gc_alloc_region.attempt_allocation(word_size,
 121                                                       false /* bot_updates */);
 122   if (result == NULL) {
 123     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 124     result = _survivor_gc_alloc_region.attempt_allocation_locked(word_size,
 125                                                       false /* bot_updates */);
 126   }
 127   if (result != NULL) {
 128     dirty_young_block(result, word_size);
 129   }
 130   return result;
 131 }
 132 
 133 inline HeapWord* G1CollectedHeap::old_attempt_allocation(size_t word_size) {
 134   assert(!isHumongous(word_size),
 135          "we should not be seeing humongous-size allocations in this path");
 136 
 137   HeapWord* result = _old_gc_alloc_region.attempt_allocation(word_size,
 138                                                        true /* bot_updates */);
 139   if (result == NULL) {
 140     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
 141     result = _old_gc_alloc_region.attempt_allocation_locked(word_size,
 142                                                        true /* bot_updates */);
 143   }
 144   return result;
 145 }
 146 
 147 // It dirties the cards that cover the block so that so that the post
 148 // write barrier never queues anything when updating objects on this
 149 // block. It is assumed (and in fact we assert) that the block
 150 // belongs to a young region.
 151 inline void
 152 G1CollectedHeap::dirty_young_block(HeapWord* start, size_t word_size) {
 153   assert_heap_not_locked();
 154 
 155   // Assign the containing region to containing_hr so that we don't
 156   // have to keep calling heap_region_containing_raw() in the
 157   // asserts below.
 158   DEBUG_ONLY(HeapRegion* containing_hr = heap_region_containing_raw(start);)
 159   assert(word_size > 0, "pre-condition");
 160   assert(containing_hr->is_in(start), "it should contain start");
 161   assert(containing_hr->is_young(), "it should be young");
 162   assert(!containing_hr->isHumongous(), "it should not be humongous");
 163 
 164   HeapWord* end = start + word_size;
 165   assert(containing_hr->is_in(end - 1), "it should also contain end - 1");
 166 
 167   MemRegion mr(start, end);
 168   g1_barrier_set()->g1_mark_as_young(mr);
 169 }
 170 
 171 inline RefToScanQueue* G1CollectedHeap::task_queue(int i) const {
 172   return _task_queues->queue(i);
 173 }
 174 
 175 inline bool G1CollectedHeap::isMarkedPrev(oop obj) const {
 176   return _cm->prevMarkBitMap()->isMarked((HeapWord *)obj);
 177 }
 178 
 179 inline bool G1CollectedHeap::isMarkedNext(oop obj) const {
 180   return _cm->nextMarkBitMap()->isMarked((HeapWord *)obj);
 181 }
 182 
 183 // This is a fast test on whether a reference points into the
 184 // collection set or not. Assume that the reference
 185 // points into the heap.
 186 inline bool G1CollectedHeap::is_in_cset(oop obj) {
 187   bool ret = _in_cset_fast_test.is_in_cset((HeapWord*)obj);
 188   // let's make sure the result is consistent with what the slower
 189   // test returns
 190   assert( ret || !obj_in_cs(obj), "sanity");
 191   assert(!ret ||  obj_in_cs(obj), "sanity");
 192   return ret;
 193 }
 194 
 195 bool G1CollectedHeap::is_in_cset_or_humongous(const oop obj) {
 196   return _in_cset_fast_test.is_in_cset_or_humongous((HeapWord*)obj);
 197 }
 198 
 199 G1CollectedHeap::in_cset_state_t G1CollectedHeap::in_cset_state(const oop obj) {
 200   return _in_cset_fast_test.at((HeapWord*)obj);
 201 }
 202 
 203 void G1CollectedHeap::register_humongous_region_with_in_cset_fast_test(uint index) {
 204   _in_cset_fast_test.set_humongous(index);
 205 }
 206 
 207 #ifndef PRODUCT
 208 // Support for G1EvacuationFailureALot
 209 
 210 inline bool
 211 G1CollectedHeap::evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 212                                                      bool during_initial_mark,
 213                                                      bool during_marking) {
 214   bool res = false;
 215   if (during_marking) {
 216     res |= G1EvacuationFailureALotDuringConcMark;
 217   }
 218   if (during_initial_mark) {
 219     res |= G1EvacuationFailureALotDuringInitialMark;
 220   }
 221   if (gcs_are_young) {
 222     res |= G1EvacuationFailureALotDuringYoungGC;
 223   } else {
 224     // GCs are mixed
 225     res |= G1EvacuationFailureALotDuringMixedGC;
 226   }
 227   return res;
 228 }
 229 
 230 inline void
 231 G1CollectedHeap::set_evacuation_failure_alot_for_current_gc() {
 232   if (G1EvacuationFailureALot) {
 233     // Note we can't assert that _evacuation_failure_alot_for_current_gc
 234     // is clear here. It may have been set during a previous GC but that GC
 235     // did not copy enough objects (i.e. G1EvacuationFailureALotCount) to
 236     // trigger an evacuation failure and clear the flags and and counts.
 237 
 238     // Check if we have gone over the interval.
 239     const size_t gc_num = total_collections();
 240     const size_t elapsed_gcs = gc_num - _evacuation_failure_alot_gc_number;
 241 
 242     _evacuation_failure_alot_for_current_gc = (elapsed_gcs >= G1EvacuationFailureALotInterval);
 243 
 244     // Now check if G1EvacuationFailureALot is enabled for the current GC type.
 245     const bool gcs_are_young = g1_policy()->gcs_are_young();
 246     const bool during_im = g1_policy()->during_initial_mark_pause();
 247     const bool during_marking = mark_in_progress();
 248 
 249     _evacuation_failure_alot_for_current_gc &=
 250       evacuation_failure_alot_for_gc_type(gcs_are_young,
 251                                           during_im,
 252                                           during_marking);
 253   }
 254 }
 255 
 256 inline bool G1CollectedHeap::evacuation_should_fail() {
 257   if (!G1EvacuationFailureALot || !_evacuation_failure_alot_for_current_gc) {
 258     return false;
 259   }
 260   // G1EvacuationFailureALot is in effect for current GC
 261   // Access to _evacuation_failure_alot_count is not atomic;
 262   // the value does not have to be exact.
 263   if (++_evacuation_failure_alot_count < G1EvacuationFailureALotCount) {
 264     return false;
 265   }
 266   _evacuation_failure_alot_count = 0;
 267   return true;
 268 }
 269 
 270 inline void G1CollectedHeap::reset_evacuation_should_fail() {
 271   if (G1EvacuationFailureALot) {
 272     _evacuation_failure_alot_gc_number = total_collections();
 273     _evacuation_failure_alot_count = 0;
 274     _evacuation_failure_alot_for_current_gc = false;
 275   }
 276 }
 277 #endif  // #ifndef PRODUCT
 278 
 279 inline bool G1CollectedHeap::is_in_young(const oop obj) {
 280   if (obj == NULL) {
 281     return false;
 282   }
 283   return heap_region_containing(obj)->is_young();
 284 }
 285 
 286 // We don't need barriers for initializing stores to objects
 287 // in the young gen: for the SATB pre-barrier, there is no
 288 // pre-value that needs to be remembered; for the remembered-set
 289 // update logging post-barrier, we don't maintain remembered set
 290 // information for young gen objects.
 291 inline bool G1CollectedHeap::can_elide_initializing_store_barrier(oop new_obj) {
 292   return is_in_young(new_obj);
 293 }
 294 
 295 inline bool G1CollectedHeap::is_obj_dead(const oop obj) const {
 296   if (obj == NULL) {
 297     return false;
 298   }
 299   return is_obj_dead(obj, heap_region_containing(obj));
 300 }
 301 
 302 inline bool G1CollectedHeap::is_obj_ill(const oop obj) const {
 303   if (obj == NULL) {
 304     return false;
 305   }
 306   return is_obj_ill(obj, heap_region_containing(obj));
 307 }
 308 
 309 inline void G1CollectedHeap::set_humongous_is_live(oop obj) {
 310   uint region = addr_to_region((HeapWord*)obj);
 311   // We not only set the "live" flag in the humongous_is_live table, but also
 312   // reset the entry in the _in_cset_fast_test table so that subsequent references
 313   // to the same humongous object do not go into the slow path again.
 314   // This is racy, as multiple threads may at the same time enter here, but this
 315   // is benign.
 316   // During collection we only ever set the "live" flag, and only ever clear the
 317   // entry in the in_cset_fast_table.
 318   // We only ever evaluate the contents of these tables (in the VM thread) after
 319   // having synchronized the worker threads with the VM thread, or in the same
 320   // thread (i.e. within the VM thread).
 321   if (!_humongous_is_live.is_live(region)) {
 322     _humongous_is_live.set_live(region);
 323     _in_cset_fast_test.clear_humongous(region);
 324   }
 325 }
 326 
 327 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_INLINE_HPP