1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  33 #include "gc_implementation/shared/liveRange.hpp"
  34 #include "memory/genOopClosures.inline.hpp"
  35 #include "memory/iterator.hpp"
  36 #include "memory/space.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/orderAccess.inline.hpp"
  39 
  40 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  41 
  42 int    HeapRegion::LogOfHRGrainBytes = 0;
  43 int    HeapRegion::LogOfHRGrainWords = 0;
  44 size_t HeapRegion::GrainBytes        = 0;
  45 size_t HeapRegion::GrainWords        = 0;
  46 size_t HeapRegion::CardsPerRegion    = 0;
  47 
  48 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  49                                  HeapRegion* hr, ExtendedOopClosure* cl,
  50                                  CardTableModRefBS::PrecisionStyle precision,
  51                                  FilterKind fk) :
  52   DirtyCardToOopClosure(hr, cl, precision, NULL),
  53   _hr(hr), _fk(fk), _g1(g1) { }
  54 
  55 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  56                                                    OopClosure* oc) :
  57   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  58 
  59 template<class ClosureType>
  60 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  61                                HeapRegion* hr,
  62                                HeapWord* cur, HeapWord* top) {
  63   oop cur_oop = oop(cur);
  64   size_t oop_size = hr->block_size(cur);
  65   HeapWord* next_obj = cur + oop_size;
  66   while (next_obj < top) {
  67     // Keep filtering the remembered set.
  68     if (!g1h->is_obj_dead(cur_oop, hr)) {
  69       // Bottom lies entirely below top, so we can call the
  70       // non-memRegion version of oop_iterate below.
  71       cur_oop->oop_iterate(cl);
  72     }
  73     cur = next_obj;
  74     cur_oop = oop(cur);
  75     oop_size = hr->block_size(cur);
  76     next_obj = cur + oop_size;
  77   }
  78   return cur;
  79 }
  80 
  81 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  82                                       HeapWord* bottom,
  83                                       HeapWord* top) {
  84   G1CollectedHeap* g1h = _g1;
  85   size_t oop_size;
  86   ExtendedOopClosure* cl2 = NULL;
  87 
  88   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
  89   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
  90 
  91   switch (_fk) {
  92   case NoFilterKind:          cl2 = _cl; break;
  93   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  94   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  95   default:                    ShouldNotReachHere();
  96   }
  97 
  98   // Start filtering what we add to the remembered set. If the object is
  99   // not considered dead, either because it is marked (in the mark bitmap)
 100   // or it was allocated after marking finished, then we add it. Otherwise
 101   // we can safely ignore the object.
 102   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 103     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 104   } else {
 105     oop_size = _hr->block_size(bottom);
 106   }
 107 
 108   bottom += oop_size;
 109 
 110   if (bottom < top) {
 111     // We replicate the loop below for several kinds of possible filters.
 112     switch (_fk) {
 113     case NoFilterKind:
 114       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
 115       break;
 116 
 117     case IntoCSFilterKind: {
 118       FilterIntoCSClosure filt(this, g1h, _cl);
 119       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 120       break;
 121     }
 122 
 123     case OutOfRegionFilterKind: {
 124       FilterOutOfRegionClosure filt(_hr, _cl);
 125       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 126       break;
 127     }
 128 
 129     default:
 130       ShouldNotReachHere();
 131     }
 132 
 133     // Last object. Need to do dead-obj filtering here too.
 134     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 135       oop(bottom)->oop_iterate(cl2, mr);
 136     }
 137   }
 138 }
 139 
 140 // Minimum region size; we won't go lower than that.
 141 // We might want to decrease this in the future, to deal with small
 142 // heaps a bit more efficiently.
 143 #define MIN_REGION_SIZE  (      1024 * 1024 )
 144 
 145 // Maximum region size; we don't go higher than that. There's a good
 146 // reason for having an upper bound. We don't want regions to get too
 147 // large, otherwise cleanup's effectiveness would decrease as there
 148 // will be fewer opportunities to find totally empty regions after
 149 // marking.
 150 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 151 
 152 // The automatic region size calculation will try to have around this
 153 // many regions in the heap (based on the min heap size).
 154 #define TARGET_REGION_NUMBER          2048
 155 
 156 size_t HeapRegion::max_region_size() {
 157   return (size_t)MAX_REGION_SIZE;
 158 }
 159 
 160 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 161   uintx region_size = G1HeapRegionSize;
 162   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 163     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 164     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
 165                        (uintx) MIN_REGION_SIZE);
 166   }
 167 
 168   int region_size_log = log2_long((jlong) region_size);
 169   // Recalculate the region size to make sure it's a power of
 170   // 2. This means that region_size is the largest power of 2 that's
 171   // <= what we've calculated so far.
 172   region_size = ((uintx)1 << region_size_log);
 173 
 174   // Now make sure that we don't go over or under our limits.
 175   if (region_size < MIN_REGION_SIZE) {
 176     region_size = MIN_REGION_SIZE;
 177   } else if (region_size > MAX_REGION_SIZE) {
 178     region_size = MAX_REGION_SIZE;
 179   }
 180 
 181   // And recalculate the log.
 182   region_size_log = log2_long((jlong) region_size);
 183 
 184   // Now, set up the globals.
 185   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 186   LogOfHRGrainBytes = region_size_log;
 187 
 188   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 189   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 190 
 191   guarantee(GrainBytes == 0, "we should only set it once");
 192   // The cast to int is safe, given that we've bounded region_size by
 193   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 194   GrainBytes = (size_t)region_size;
 195 
 196   guarantee(GrainWords == 0, "we should only set it once");
 197   GrainWords = GrainBytes >> LogHeapWordSize;
 198   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 199 
 200   guarantee(CardsPerRegion == 0, "we should only set it once");
 201   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 202 }
 203 
 204 void HeapRegion::reset_after_compaction() {
 205   G1OffsetTableContigSpace::reset_after_compaction();
 206   // After a compaction the mark bitmap is invalid, so we must
 207   // treat all objects as being inside the unmarked area.
 208   zero_marked_bytes();
 209   init_top_at_mark_start();
 210 }
 211 
 212 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 213   assert(_humongous_type == NotHumongous,
 214          "we should have already filtered out humongous regions");
 215   assert(_humongous_start_region == NULL,
 216          "we should have already filtered out humongous regions");
 217   assert(_end == _orig_end,
 218          "we should have already filtered out humongous regions");
 219 
 220   _in_collection_set = false;
 221 
 222   set_young_index_in_cset(-1);
 223   uninstall_surv_rate_group();
 224   set_young_type(NotYoung);
 225   reset_pre_dummy_top();
 226 
 227   if (!par) {
 228     // If this is parallel, this will be done later.
 229     HeapRegionRemSet* hrrs = rem_set();
 230     if (locked) {
 231       hrrs->clear_locked();
 232     } else {
 233       hrrs->clear();
 234     }
 235     _claimed = InitialClaimValue;
 236   }
 237   zero_marked_bytes();
 238 
 239   _offsets.resize(HeapRegion::GrainWords);
 240   init_top_at_mark_start();
 241   if (clear_space) clear(SpaceDecorator::Mangle);
 242 }
 243 
 244 void HeapRegion::par_clear() {
 245   assert(used() == 0, "the region should have been already cleared");
 246   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 247   HeapRegionRemSet* hrrs = rem_set();
 248   hrrs->clear();
 249   CardTableModRefBS* ct_bs =
 250                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 251   ct_bs->clear(MemRegion(bottom(), end()));
 252 }
 253 
 254 void HeapRegion::calc_gc_efficiency() {
 255   // GC efficiency is the ratio of how much space would be
 256   // reclaimed over how long we predict it would take to reclaim it.
 257   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 258   G1CollectorPolicy* g1p = g1h->g1_policy();
 259 
 260   // Retrieve a prediction of the elapsed time for this region for
 261   // a mixed gc because the region will only be evacuated during a
 262   // mixed gc.
 263   double region_elapsed_time_ms =
 264     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 265   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 266 }
 267 
 268 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 269   assert(!isHumongous(), "sanity / pre-condition");
 270   assert(end() == _orig_end,
 271          "Should be normal before the humongous object allocation");
 272   assert(top() == bottom(), "should be empty");
 273   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 274 
 275   _humongous_type = StartsHumongous;
 276   _humongous_start_region = this;
 277 
 278   set_end(new_end);
 279   _offsets.set_for_starts_humongous(new_top);
 280 }
 281 
 282 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 283   assert(!isHumongous(), "sanity / pre-condition");
 284   assert(end() == _orig_end,
 285          "Should be normal before the humongous object allocation");
 286   assert(top() == bottom(), "should be empty");
 287   assert(first_hr->startsHumongous(), "pre-condition");
 288 
 289   _humongous_type = ContinuesHumongous;
 290   _humongous_start_region = first_hr;
 291 }
 292 
 293 void HeapRegion::set_notHumongous() {
 294   assert(isHumongous(), "pre-condition");
 295 
 296   if (startsHumongous()) {
 297     assert(top() <= end(), "pre-condition");
 298     set_end(_orig_end);
 299     if (top() > end()) {
 300       // at least one "continues humongous" region after it
 301       set_top(end());
 302     }
 303   } else {
 304     // continues humongous
 305     assert(end() == _orig_end, "sanity");
 306   }
 307 
 308   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 309   _humongous_type = NotHumongous;
 310   _humongous_start_region = NULL;
 311 }
 312 
 313 bool HeapRegion::claimHeapRegion(jint claimValue) {
 314   jint current = _claimed;
 315   if (current != claimValue) {
 316     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 317     if (res == current) {
 318       return true;
 319     }
 320   }
 321   return false;
 322 }
 323 
 324 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 325   HeapWord* low = addr;
 326   HeapWord* high = end();
 327   while (low < high) {
 328     size_t diff = pointer_delta(high, low);
 329     // Must add one below to bias toward the high amount.  Otherwise, if
 330   // "high" were at the desired value, and "low" were one less, we
 331     // would not converge on "high".  This is not symmetric, because
 332     // we set "high" to a block start, which might be the right one,
 333     // which we don't do for "low".
 334     HeapWord* middle = low + (diff+1)/2;
 335     if (middle == high) return high;
 336     HeapWord* mid_bs = block_start_careful(middle);
 337     if (mid_bs < addr) {
 338       low = middle;
 339     } else {
 340       high = mid_bs;
 341     }
 342   }
 343   assert(low == high && low >= addr, "Didn't work.");
 344   return low;
 345 }
 346 
 347 HeapRegion::HeapRegion(uint hrs_index,
 348                        G1BlockOffsetSharedArray* sharedOffsetArray,
 349                        MemRegion mr) :
 350     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 351     _hrs_index(hrs_index),
 352     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 353     _in_collection_set(false),
 354     _next_in_special_set(NULL), _orig_end(NULL),
 355     _claimed(InitialClaimValue), _evacuation_failed(false),
 356     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 357     _young_type(NotYoung), _next_young_region(NULL),
 358     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 359 #ifdef ASSERT
 360     _containing_set(NULL),
 361 #endif // ASSERT
 362      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 363     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 364     _predicted_bytes_to_copy(0)
 365 {
 366   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 367   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 368 
 369   initialize(mr);
 370 }
 371 
 372 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 373   assert(_rem_set->is_empty(), "Remembered set must be empty");
 374 
 375   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 376 
 377   _orig_end = mr.end();
 378   hr_clear(false /*par*/, false /*clear_space*/);
 379   set_top(bottom());
 380   record_top_and_timestamp();
 381 }
 382 
 383 CompactibleSpace* HeapRegion::next_compaction_space() const {
 384   return G1CollectedHeap::heap()->next_compaction_region(this);
 385 }
 386 
 387 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 388                                                     bool during_conc_mark) {
 389   // We always recreate the prev marking info and we'll explicitly
 390   // mark all objects we find to be self-forwarded on the prev
 391   // bitmap. So all objects need to be below PTAMS.
 392   _prev_marked_bytes = 0;
 393 
 394   if (during_initial_mark) {
 395     // During initial-mark, we'll also explicitly mark all objects
 396     // we find to be self-forwarded on the next bitmap. So all
 397     // objects need to be below NTAMS.
 398     _next_top_at_mark_start = top();
 399     _next_marked_bytes = 0;
 400   } else if (during_conc_mark) {
 401     // During concurrent mark, all objects in the CSet (including
 402     // the ones we find to be self-forwarded) are implicitly live.
 403     // So all objects need to be above NTAMS.
 404     _next_top_at_mark_start = bottom();
 405     _next_marked_bytes = 0;
 406   }
 407 }
 408 
 409 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 410                                                   bool during_conc_mark,
 411                                                   size_t marked_bytes) {
 412   assert(0 <= marked_bytes && marked_bytes <= used(),
 413          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 414                  marked_bytes, used()));
 415   _prev_top_at_mark_start = top();
 416   _prev_marked_bytes = marked_bytes;
 417 }
 418 
 419 HeapWord*
 420 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 421                                                  ObjectClosure* cl) {
 422   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 423   // We used to use "block_start_careful" here.  But we're actually happy
 424   // to update the BOT while we do this...
 425   HeapWord* cur = block_start(mr.start());
 426   mr = mr.intersection(used_region());
 427   if (mr.is_empty()) return NULL;
 428   // Otherwise, find the obj that extends onto mr.start().
 429 
 430   assert(cur <= mr.start()
 431          && (oop(cur)->klass_or_null() == NULL ||
 432              cur + oop(cur)->size() > mr.start()),
 433          "postcondition of block_start");
 434   oop obj;
 435   while (cur < mr.end()) {
 436     obj = oop(cur);
 437     if (obj->klass_or_null() == NULL) {
 438       // Ran into an unparseable point.
 439       return cur;
 440     } else if (!g1h->is_obj_dead(obj)) {
 441       cl->do_object(obj);
 442     }
 443     if (cl->abort()) return cur;
 444     // The check above must occur before the operation below, since an
 445     // abort might invalidate the "size" operation.
 446     cur += block_size(cur);
 447   }
 448   return NULL;
 449 }
 450 
 451 HeapWord*
 452 HeapRegion::
 453 oops_on_card_seq_iterate_careful(MemRegion mr,
 454                                  FilterOutOfRegionClosure* cl,
 455                                  bool filter_young,
 456                                  jbyte* card_ptr) {
 457   // Currently, we should only have to clean the card if filter_young
 458   // is true and vice versa.
 459   if (filter_young) {
 460     assert(card_ptr != NULL, "pre-condition");
 461   } else {
 462     assert(card_ptr == NULL, "pre-condition");
 463   }
 464   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 465 
 466   // If we're within a stop-world GC, then we might look at a card in a
 467   // GC alloc region that extends onto a GC LAB, which may not be
 468   // parseable.  Stop such at the "saved_mark" of the region.
 469   if (g1h->is_gc_active()) {
 470     mr = mr.intersection(used_region_at_save_marks());
 471   } else {
 472     mr = mr.intersection(used_region());
 473   }
 474   if (mr.is_empty()) return NULL;
 475   // Otherwise, find the obj that extends onto mr.start().
 476 
 477   // The intersection of the incoming mr (for the card) and the
 478   // allocated part of the region is non-empty. This implies that
 479   // we have actually allocated into this region. The code in
 480   // G1CollectedHeap.cpp that allocates a new region sets the
 481   // is_young tag on the region before allocating. Thus we
 482   // safely know if this region is young.
 483   if (is_young() && filter_young) {
 484     return NULL;
 485   }
 486 
 487   assert(!is_young(), "check value of filter_young");
 488 
 489   // We can only clean the card here, after we make the decision that
 490   // the card is not young. And we only clean the card if we have been
 491   // asked to (i.e., card_ptr != NULL).
 492   if (card_ptr != NULL) {
 493     *card_ptr = CardTableModRefBS::clean_card_val();
 494     // We must complete this write before we do any of the reads below.
 495     OrderAccess::storeload();
 496   }
 497 
 498   // Cache the boundaries of the memory region in some const locals
 499   HeapWord* const start = mr.start();
 500   HeapWord* const end = mr.end();
 501 
 502   // We used to use "block_start_careful" here.  But we're actually happy
 503   // to update the BOT while we do this...
 504   HeapWord* cur = block_start(start);
 505   assert(cur <= start, "Postcondition");
 506 
 507   oop obj;
 508 
 509   HeapWord* next = cur;
 510   while (next <= start) {
 511     cur = next;
 512     obj = oop(cur);
 513     if (obj->klass_or_null() == NULL) {
 514       // Ran into an unparseable point.
 515       return cur;
 516     }
 517     // Otherwise...
 518     next = cur + block_size(cur);
 519   }
 520 
 521   // If we finish the above loop...We have a parseable object that
 522   // begins on or before the start of the memory region, and ends
 523   // inside or spans the entire region.
 524 
 525   assert(obj == oop(cur), "sanity");
 526   assert(cur <= start, "Loop postcondition");
 527   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 528   assert((cur + block_size(cur)) > start, "Loop postcondition");
 529 
 530   if (!g1h->is_obj_dead(obj)) {
 531     obj->oop_iterate(cl, mr);
 532   }
 533 
 534   while (cur < end) {
 535     obj = oop(cur);
 536     if (obj->klass_or_null() == NULL) {
 537       // Ran into an unparseable point.
 538       return cur;
 539     };
 540 
 541     // Otherwise:
 542     next = cur + block_size(cur);
 543 
 544     if (!g1h->is_obj_dead(obj)) {
 545       if (next < end || !obj->is_objArray()) {
 546         // This object either does not span the MemRegion
 547         // boundary, or if it does it's not an array.
 548         // Apply closure to whole object.
 549         obj->oop_iterate(cl);
 550       } else {
 551         // This obj is an array that spans the boundary.
 552         // Stop at the boundary.
 553         obj->oop_iterate(cl, mr);
 554       }
 555     }
 556     cur = next;
 557   }
 558   return NULL;
 559 }
 560 
 561 // Code roots support
 562 
 563 void HeapRegion::add_strong_code_root(nmethod* nm) {
 564   HeapRegionRemSet* hrrs = rem_set();
 565   hrrs->add_strong_code_root(nm);
 566 }
 567 
 568 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 569   HeapRegionRemSet* hrrs = rem_set();
 570   hrrs->remove_strong_code_root(nm);
 571 }
 572 
 573 void HeapRegion::migrate_strong_code_roots() {
 574   assert(in_collection_set(), "only collection set regions");
 575   assert(!isHumongous(),
 576           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
 577                   HR_FORMAT_PARAMS(this)));
 578 
 579   HeapRegionRemSet* hrrs = rem_set();
 580   hrrs->migrate_strong_code_roots();
 581 }
 582 
 583 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 584   HeapRegionRemSet* hrrs = rem_set();
 585   hrrs->strong_code_roots_do(blk);
 586 }
 587 
 588 class VerifyStrongCodeRootOopClosure: public OopClosure {
 589   const HeapRegion* _hr;
 590   nmethod* _nm;
 591   bool _failures;
 592   bool _has_oops_in_region;
 593 
 594   template <class T> void do_oop_work(T* p) {
 595     T heap_oop = oopDesc::load_heap_oop(p);
 596     if (!oopDesc::is_null(heap_oop)) {
 597       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 598 
 599       // Note: not all the oops embedded in the nmethod are in the
 600       // current region. We only look at those which are.
 601       if (_hr->is_in(obj)) {
 602         // Object is in the region. Check that its less than top
 603         if (_hr->top() <= (HeapWord*)obj) {
 604           // Object is above top
 605           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 606                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 607                                  "top "PTR_FORMAT,
 608                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 609           _failures = true;
 610           return;
 611         }
 612         // Nmethod has at least one oop in the current region
 613         _has_oops_in_region = true;
 614       }
 615     }
 616   }
 617 
 618 public:
 619   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 620     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 621 
 622   void do_oop(narrowOop* p) { do_oop_work(p); }
 623   void do_oop(oop* p)       { do_oop_work(p); }
 624 
 625   bool failures()           { return _failures; }
 626   bool has_oops_in_region() { return _has_oops_in_region; }
 627 };
 628 
 629 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 630   const HeapRegion* _hr;
 631   bool _failures;
 632 public:
 633   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 634     _hr(hr), _failures(false) {}
 635 
 636   void do_code_blob(CodeBlob* cb) {
 637     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 638     if (nm != NULL) {
 639       // Verify that the nemthod is live
 640       if (!nm->is_alive()) {
 641         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 642                                PTR_FORMAT" in its strong code roots",
 643                                _hr->bottom(), _hr->end(), nm);
 644         _failures = true;
 645       } else {
 646         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 647         nm->oops_do(&oop_cl);
 648         if (!oop_cl.has_oops_in_region()) {
 649           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 650                                  PTR_FORMAT" in its strong code roots "
 651                                  "with no pointers into region",
 652                                  _hr->bottom(), _hr->end(), nm);
 653           _failures = true;
 654         } else if (oop_cl.failures()) {
 655           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 656                                  "failures for nmethod "PTR_FORMAT,
 657                                  _hr->bottom(), _hr->end(), nm);
 658           _failures = true;
 659         }
 660       }
 661     }
 662   }
 663 
 664   bool failures()       { return _failures; }
 665 };
 666 
 667 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 668   if (!G1VerifyHeapRegionCodeRoots) {
 669     // We're not verifying code roots.
 670     return;
 671   }
 672   if (vo == VerifyOption_G1UseMarkWord) {
 673     // Marking verification during a full GC is performed after class
 674     // unloading, code cache unloading, etc so the strong code roots
 675     // attached to each heap region are in an inconsistent state. They won't
 676     // be consistent until the strong code roots are rebuilt after the
 677     // actual GC. Skip verifying the strong code roots in this particular
 678     // time.
 679     assert(VerifyDuringGC, "only way to get here");
 680     return;
 681   }
 682 
 683   HeapRegionRemSet* hrrs = rem_set();
 684   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 685 
 686   // if this region is empty then there should be no entries
 687   // on its strong code root list
 688   if (is_empty()) {
 689     if (strong_code_roots_length > 0) {
 690       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 691                              "but has "SIZE_FORMAT" code root entries",
 692                              bottom(), end(), strong_code_roots_length);
 693       *failures = true;
 694     }
 695     return;
 696   }
 697 
 698   if (continuesHumongous()) {
 699     if (strong_code_roots_length > 0) {
 700       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 701                              "region but has "SIZE_FORMAT" code root entries",
 702                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 703       *failures = true;
 704     }
 705     return;
 706   }
 707 
 708   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 709   strong_code_roots_do(&cb_cl);
 710 
 711   if (cb_cl.failures()) {
 712     *failures = true;
 713   }
 714 }
 715 
 716 void HeapRegion::print() const { print_on(gclog_or_tty); }
 717 void HeapRegion::print_on(outputStream* st) const {
 718   if (isHumongous()) {
 719     if (startsHumongous())
 720       st->print(" HS");
 721     else
 722       st->print(" HC");
 723   } else {
 724     st->print("   ");
 725   }
 726   if (in_collection_set())
 727     st->print(" CS");
 728   else
 729     st->print("   ");
 730   if (is_young())
 731     st->print(is_survivor() ? " SU" : " Y ");
 732   else
 733     st->print("   ");
 734   if (is_empty())
 735     st->print(" F");
 736   else
 737     st->print("  ");
 738   st->print(" TS %5d", _gc_time_stamp);
 739   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 740             prev_top_at_mark_start(), next_top_at_mark_start());
 741   G1OffsetTableContigSpace::print_on(st);
 742 }
 743 
 744 class VerifyLiveClosure: public OopClosure {
 745 private:
 746   G1CollectedHeap* _g1h;
 747   CardTableModRefBS* _bs;
 748   oop _containing_obj;
 749   bool _failures;
 750   int _n_failures;
 751   VerifyOption _vo;
 752 public:
 753   // _vo == UsePrevMarking -> use "prev" marking information,
 754   // _vo == UseNextMarking -> use "next" marking information,
 755   // _vo == UseMarkWord    -> use mark word from object header.
 756   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 757     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 758     _failures(false), _n_failures(0), _vo(vo)
 759   {
 760     BarrierSet* bs = _g1h->barrier_set();
 761     if (bs->is_a(BarrierSet::CardTableModRef))
 762       _bs = (CardTableModRefBS*)bs;
 763   }
 764 
 765   void set_containing_obj(oop obj) {
 766     _containing_obj = obj;
 767   }
 768 
 769   bool failures() { return _failures; }
 770   int n_failures() { return _n_failures; }
 771 
 772   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 773   virtual void do_oop(      oop* p) { do_oop_work(p); }
 774 
 775   void print_object(outputStream* out, oop obj) {
 776 #ifdef PRODUCT
 777     Klass* k = obj->klass();
 778     const char* class_name = InstanceKlass::cast(k)->external_name();
 779     out->print_cr("class name %s", class_name);
 780 #else // PRODUCT
 781     obj->print_on(out);
 782 #endif // PRODUCT
 783   }
 784 
 785   template <class T>
 786   void do_oop_work(T* p) {
 787     assert(_containing_obj != NULL, "Precondition");
 788     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 789            "Precondition");
 790     T heap_oop = oopDesc::load_heap_oop(p);
 791     if (!oopDesc::is_null(heap_oop)) {
 792       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 793       bool failed = false;
 794       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 795         MutexLockerEx x(ParGCRareEvent_lock,
 796                         Mutex::_no_safepoint_check_flag);
 797 
 798         if (!_failures) {
 799           gclog_or_tty->cr();
 800           gclog_or_tty->print_cr("----------");
 801         }
 802         if (!_g1h->is_in_closed_subset(obj)) {
 803           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 804           gclog_or_tty->print_cr("Field "PTR_FORMAT
 805                                  " of live obj "PTR_FORMAT" in region "
 806                                  "["PTR_FORMAT", "PTR_FORMAT")",
 807                                  p, (void*) _containing_obj,
 808                                  from->bottom(), from->end());
 809           print_object(gclog_or_tty, _containing_obj);
 810           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 811                                  (void*) obj);
 812         } else {
 813           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 814           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 815           gclog_or_tty->print_cr("Field "PTR_FORMAT
 816                                  " of live obj "PTR_FORMAT" in region "
 817                                  "["PTR_FORMAT", "PTR_FORMAT")",
 818                                  p, (void*) _containing_obj,
 819                                  from->bottom(), from->end());
 820           print_object(gclog_or_tty, _containing_obj);
 821           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 822                                  "["PTR_FORMAT", "PTR_FORMAT")",
 823                                  (void*) obj, to->bottom(), to->end());
 824           print_object(gclog_or_tty, obj);
 825         }
 826         gclog_or_tty->print_cr("----------");
 827         gclog_or_tty->flush();
 828         _failures = true;
 829         failed = true;
 830         _n_failures++;
 831       }
 832 
 833       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 834         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 835         HeapRegion* to   = _g1h->heap_region_containing(obj);
 836         if (from != NULL && to != NULL &&
 837             from != to &&
 838             !to->isHumongous()) {
 839           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 840           jbyte cv_field = *_bs->byte_for_const(p);
 841           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 842 
 843           bool is_bad = !(from->is_young()
 844                           || to->rem_set()->contains_reference(p)
 845                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 846                               (_containing_obj->is_objArray() ?
 847                                   cv_field == dirty
 848                                : cv_obj == dirty || cv_field == dirty));
 849           if (is_bad) {
 850             MutexLockerEx x(ParGCRareEvent_lock,
 851                             Mutex::_no_safepoint_check_flag);
 852 
 853             if (!_failures) {
 854               gclog_or_tty->cr();
 855               gclog_or_tty->print_cr("----------");
 856             }
 857             gclog_or_tty->print_cr("Missing rem set entry:");
 858             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 859                                    "of obj "PTR_FORMAT", "
 860                                    "in region "HR_FORMAT,
 861                                    p, (void*) _containing_obj,
 862                                    HR_FORMAT_PARAMS(from));
 863             _containing_obj->print_on(gclog_or_tty);
 864             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 865                                    "in region "HR_FORMAT,
 866                                    (void*) obj,
 867                                    HR_FORMAT_PARAMS(to));
 868             obj->print_on(gclog_or_tty);
 869             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 870                           cv_obj, cv_field);
 871             gclog_or_tty->print_cr("----------");
 872             gclog_or_tty->flush();
 873             _failures = true;
 874             if (!failed) _n_failures++;
 875           }
 876         }
 877       }
 878     }
 879   }
 880 };
 881 
 882 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 883 // We would need a mechanism to make that code skip dead objects.
 884 
 885 void HeapRegion::verify(VerifyOption vo,
 886                         bool* failures) const {
 887   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 888   *failures = false;
 889   HeapWord* p = bottom();
 890   HeapWord* prev_p = NULL;
 891   VerifyLiveClosure vl_cl(g1, vo);
 892   bool is_humongous = isHumongous();
 893   bool do_bot_verify = !is_young();
 894   size_t object_num = 0;
 895   while (p < top()) {
 896     oop obj = oop(p);
 897     size_t obj_size = block_size(p);
 898     object_num += 1;
 899 
 900     if (is_humongous != g1->isHumongous(obj_size) &&
 901         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 902       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 903                              SIZE_FORMAT" words) in a %shumongous region",
 904                              p, g1->isHumongous(obj_size) ? "" : "non-",
 905                              obj_size, is_humongous ? "" : "non-");
 906        *failures = true;
 907        return;
 908     }
 909 
 910     // If it returns false, verify_for_object() will output the
 911     // appropriate message.
 912     if (do_bot_verify &&
 913         !g1->is_obj_dead(obj, this) &&
 914         !_offsets.verify_for_object(p, obj_size)) {
 915       *failures = true;
 916       return;
 917     }
 918 
 919     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 920       if (obj->is_oop()) {
 921         Klass* klass = obj->klass();
 922         bool is_metaspace_object = Metaspace::contains(klass) ||
 923                                    (vo == VerifyOption_G1UsePrevMarking &&
 924                                    ClassLoaderDataGraph::unload_list_contains(klass));
 925         if (!is_metaspace_object) {
 926           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 927                                  "not metadata", klass, (void *)obj);
 928           *failures = true;
 929           return;
 930         } else if (!klass->is_klass()) {
 931           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 932                                  "not a klass", klass, (void *)obj);
 933           *failures = true;
 934           return;
 935         } else {
 936           vl_cl.set_containing_obj(obj);
 937           obj->oop_iterate_no_header(&vl_cl);
 938           if (vl_cl.failures()) {
 939             *failures = true;
 940           }
 941           if (G1MaxVerifyFailures >= 0 &&
 942               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 943             return;
 944           }
 945         }
 946       } else {
 947         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 948         *failures = true;
 949         return;
 950       }
 951     }
 952     prev_p = p;
 953     p += obj_size;
 954   }
 955 
 956   if (p != top()) {
 957     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 958                            "does not match top "PTR_FORMAT, p, top());
 959     *failures = true;
 960     return;
 961   }
 962 
 963   HeapWord* the_end = end();
 964   assert(p == top(), "it should still hold");
 965   // Do some extra BOT consistency checking for addresses in the
 966   // range [top, end). BOT look-ups in this range should yield
 967   // top. No point in doing that if top == end (there's nothing there).
 968   if (p < the_end) {
 969     // Look up top
 970     HeapWord* addr_1 = p;
 971     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 972     if (b_start_1 != p) {
 973       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 974                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 975                              addr_1, b_start_1, p);
 976       *failures = true;
 977       return;
 978     }
 979 
 980     // Look up top + 1
 981     HeapWord* addr_2 = p + 1;
 982     if (addr_2 < the_end) {
 983       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 984       if (b_start_2 != p) {
 985         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 986                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 987                                addr_2, b_start_2, p);
 988         *failures = true;
 989         return;
 990       }
 991     }
 992 
 993     // Look up an address between top and end
 994     size_t diff = pointer_delta(the_end, p) / 2;
 995     HeapWord* addr_3 = p + diff;
 996     if (addr_3 < the_end) {
 997       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 998       if (b_start_3 != p) {
 999         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
1000                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1001                                addr_3, b_start_3, p);
1002         *failures = true;
1003         return;
1004       }
1005     }
1006 
1007     // Loook up end - 1
1008     HeapWord* addr_4 = the_end - 1;
1009     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1010     if (b_start_4 != p) {
1011       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1012                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1013                              addr_4, b_start_4, p);
1014       *failures = true;
1015       return;
1016     }
1017   }
1018 
1019   if (is_humongous && object_num > 1) {
1020     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1021                            "but has "SIZE_FORMAT", objects",
1022                            bottom(), end(), object_num);
1023     *failures = true;
1024     return;
1025   }
1026 
1027   verify_strong_code_roots(vo, failures);
1028 }
1029 
1030 void HeapRegion::verify() const {
1031   bool dummy = false;
1032   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1033 }
1034 
1035 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1036 // away eventually.
1037 
1038 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1039   set_top(bottom());
1040   set_saved_mark_word(bottom());
1041   CompactibleSpace::clear(mangle_space);
1042   reset_bot();
1043 }
1044 
1045 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1046   Space::set_bottom(new_bottom);
1047   _offsets.set_bottom(new_bottom);
1048 }
1049 
1050 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1051   Space::set_end(new_end);
1052   _offsets.resize(new_end - bottom());
1053 }
1054 
1055 void G1OffsetTableContigSpace::print() const {
1056   print_short();
1057   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1058                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1059                 bottom(), top(), _offsets.threshold(), end());
1060 }
1061 
1062 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1063   return _offsets.initialize_threshold();
1064 }
1065 
1066 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1067                                                     HeapWord* end) {
1068   _offsets.alloc_block(start, end);
1069   return _offsets.threshold();
1070 }
1071 
1072 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1073   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1074   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1075   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1076     return top();
1077   else
1078     return Space::saved_mark_word();
1079 }
1080 
1081 void G1OffsetTableContigSpace::record_top_and_timestamp() {
1082   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1083   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1084 
1085   if (_gc_time_stamp < curr_gc_time_stamp) {
1086     // The order of these is important, as another thread might be
1087     // about to start scanning this region. If it does so after
1088     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1089     // will be false, and it will pick up top() as the high water mark
1090     // of region. If it does so after _gc_time_stamp = ..., then it
1091     // will pick up the right saved_mark_word() as the high water mark
1092     // of the region. Either way, the behaviour will be correct.
1093     Space::set_saved_mark_word(top());
1094     OrderAccess::storestore();
1095     _gc_time_stamp = curr_gc_time_stamp;
1096     // No need to do another barrier to flush the writes above. If
1097     // this is called in parallel with other threads trying to
1098     // allocate into the region, the caller should call this while
1099     // holding a lock and when the lock is released the writes will be
1100     // flushed.
1101   }
1102 }
1103 
1104 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1105   object_iterate(blk);
1106 }
1107 
1108 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1109   HeapWord* p = bottom();
1110   while (p < top()) {
1111     if (block_is_obj(p)) {
1112       blk->do_object(oop(p));
1113     }
1114     p += block_size(p);
1115   }
1116 }
1117 
1118 #define block_is_always_obj(q) true
1119 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1120   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1121 }
1122 #undef block_is_always_obj
1123 
1124 G1OffsetTableContigSpace::
1125 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1126                          MemRegion mr) :
1127   _offsets(sharedOffsetArray, mr),
1128   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1129   _gc_time_stamp(0)
1130 {
1131   _offsets.set_space(this);
1132 }
1133 
1134 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1135   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1136   _top = bottom();
1137   reset_bot();
1138 }
1139