1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  33 #include "gc_implementation/shared/liveRange.hpp"
  34 #include "memory/genOopClosures.inline.hpp"
  35 #include "memory/iterator.hpp"
  36 #include "memory/space.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/atomic.inline.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 
  41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  42 
  43 int    HeapRegion::LogOfHRGrainBytes = 0;
  44 int    HeapRegion::LogOfHRGrainWords = 0;
  45 size_t HeapRegion::GrainBytes        = 0;
  46 size_t HeapRegion::GrainWords        = 0;
  47 size_t HeapRegion::CardsPerRegion    = 0;
  48 
  49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  50                                  HeapRegion* hr, ExtendedOopClosure* cl,
  51                                  CardTableModRefBS::PrecisionStyle precision,
  52                                  FilterKind fk) :
  53   DirtyCardToOopClosure(hr, cl, precision, NULL),
  54   _hr(hr), _fk(fk), _g1(g1) { }
  55 
  56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  57                                                    OopClosure* oc) :
  58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  59 
  60 template<class ClosureType>
  61 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  62                                HeapRegion* hr,
  63                                HeapWord* cur, HeapWord* top) {
  64   oop cur_oop = oop(cur);
  65   size_t oop_size = hr->block_size(cur);
  66   HeapWord* next_obj = cur + oop_size;
  67   while (next_obj < top) {
  68     // Keep filtering the remembered set.
  69     if (!g1h->is_obj_dead(cur_oop, hr)) {
  70       // Bottom lies entirely below top, so we can call the
  71       // non-memRegion version of oop_iterate below.
  72       cur_oop->oop_iterate(cl);
  73     }
  74     cur = next_obj;
  75     cur_oop = oop(cur);
  76     oop_size = hr->block_size(cur);
  77     next_obj = cur + oop_size;
  78   }
  79   return cur;
  80 }
  81 
  82 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  83                                       HeapWord* bottom,
  84                                       HeapWord* top) {
  85   G1CollectedHeap* g1h = _g1;
  86   size_t oop_size;
  87   ExtendedOopClosure* cl2 = NULL;
  88 
  89   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
  90   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
  91 
  92   switch (_fk) {
  93   case NoFilterKind:          cl2 = _cl; break;
  94   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  95   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  96   default:                    ShouldNotReachHere();
  97   }
  98 
  99   // Start filtering what we add to the remembered set. If the object is
 100   // not considered dead, either because it is marked (in the mark bitmap)
 101   // or it was allocated after marking finished, then we add it. Otherwise
 102   // we can safely ignore the object.
 103   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 104     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 105   } else {
 106     oop_size = _hr->block_size(bottom);
 107   }
 108 
 109   bottom += oop_size;
 110 
 111   if (bottom < top) {
 112     // We replicate the loop below for several kinds of possible filters.
 113     switch (_fk) {
 114     case NoFilterKind:
 115       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
 116       break;
 117 
 118     case IntoCSFilterKind: {
 119       FilterIntoCSClosure filt(this, g1h, _cl);
 120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 121       break;
 122     }
 123 
 124     case OutOfRegionFilterKind: {
 125       FilterOutOfRegionClosure filt(_hr, _cl);
 126       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 127       break;
 128     }
 129 
 130     default:
 131       ShouldNotReachHere();
 132     }
 133 
 134     // Last object. Need to do dead-obj filtering here too.
 135     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 136       oop(bottom)->oop_iterate(cl2, mr);
 137     }
 138   }
 139 }
 140 
 141 // Minimum region size; we won't go lower than that.
 142 // We might want to decrease this in the future, to deal with small
 143 // heaps a bit more efficiently.
 144 #define MIN_REGION_SIZE  (      1024 * 1024 )
 145 
 146 // Maximum region size; we don't go higher than that. There's a good
 147 // reason for having an upper bound. We don't want regions to get too
 148 // large, otherwise cleanup's effectiveness would decrease as there
 149 // will be fewer opportunities to find totally empty regions after
 150 // marking.
 151 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 152 
 153 // The automatic region size calculation will try to have around this
 154 // many regions in the heap (based on the min heap size).
 155 #define TARGET_REGION_NUMBER          2048
 156 
 157 size_t HeapRegion::max_region_size() {
 158   return (size_t)MAX_REGION_SIZE;
 159 }
 160 
 161 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 162   uintx region_size = G1HeapRegionSize;
 163   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 164     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 165     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
 166                        (uintx) MIN_REGION_SIZE);
 167   }
 168 
 169   int region_size_log = log2_long((jlong) region_size);
 170   // Recalculate the region size to make sure it's a power of
 171   // 2. This means that region_size is the largest power of 2 that's
 172   // <= what we've calculated so far.
 173   region_size = ((uintx)1 << region_size_log);
 174 
 175   // Now make sure that we don't go over or under our limits.
 176   if (region_size < MIN_REGION_SIZE) {
 177     region_size = MIN_REGION_SIZE;
 178   } else if (region_size > MAX_REGION_SIZE) {
 179     region_size = MAX_REGION_SIZE;
 180   }
 181 
 182   // And recalculate the log.
 183   region_size_log = log2_long((jlong) region_size);
 184 
 185   // Now, set up the globals.
 186   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 187   LogOfHRGrainBytes = region_size_log;
 188 
 189   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 190   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 191 
 192   guarantee(GrainBytes == 0, "we should only set it once");
 193   // The cast to int is safe, given that we've bounded region_size by
 194   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 195   GrainBytes = (size_t)region_size;
 196 
 197   guarantee(GrainWords == 0, "we should only set it once");
 198   GrainWords = GrainBytes >> LogHeapWordSize;
 199   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 200 
 201   guarantee(CardsPerRegion == 0, "we should only set it once");
 202   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 203 }
 204 
 205 void HeapRegion::reset_after_compaction() {
 206   G1OffsetTableContigSpace::reset_after_compaction();
 207   // After a compaction the mark bitmap is invalid, so we must
 208   // treat all objects as being inside the unmarked area.
 209   zero_marked_bytes();
 210   init_top_at_mark_start();
 211 }
 212 
 213 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 214   assert(_humongous_type == NotHumongous,
 215          "we should have already filtered out humongous regions");
 216   assert(_humongous_start_region == NULL,
 217          "we should have already filtered out humongous regions");
 218   assert(_end == _orig_end,
 219          "we should have already filtered out humongous regions");
 220 
 221   _in_collection_set = false;
 222 
 223   set_young_index_in_cset(-1);
 224   uninstall_surv_rate_group();
 225   set_young_type(NotYoung);
 226   reset_pre_dummy_top();
 227 
 228   if (!par) {
 229     // If this is parallel, this will be done later.
 230     HeapRegionRemSet* hrrs = rem_set();
 231     if (locked) {
 232       hrrs->clear_locked();
 233     } else {
 234       hrrs->clear();
 235     }
 236     _claimed = InitialClaimValue;
 237   }
 238   zero_marked_bytes();
 239 
 240   _offsets.resize(HeapRegion::GrainWords);
 241   init_top_at_mark_start();
 242   if (clear_space) clear(SpaceDecorator::Mangle);
 243 }
 244 
 245 void HeapRegion::par_clear() {
 246   assert(used() == 0, "the region should have been already cleared");
 247   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 248   HeapRegionRemSet* hrrs = rem_set();
 249   hrrs->clear();
 250   CardTableModRefBS* ct_bs =
 251                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 252   ct_bs->clear(MemRegion(bottom(), end()));
 253 }
 254 
 255 void HeapRegion::calc_gc_efficiency() {
 256   // GC efficiency is the ratio of how much space would be
 257   // reclaimed over how long we predict it would take to reclaim it.
 258   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 259   G1CollectorPolicy* g1p = g1h->g1_policy();
 260 
 261   // Retrieve a prediction of the elapsed time for this region for
 262   // a mixed gc because the region will only be evacuated during a
 263   // mixed gc.
 264   double region_elapsed_time_ms =
 265     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 266   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 267 }
 268 
 269 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 270   assert(!isHumongous(), "sanity / pre-condition");
 271   assert(end() == _orig_end,
 272          "Should be normal before the humongous object allocation");
 273   assert(top() == bottom(), "should be empty");
 274   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 275 
 276   _humongous_type = StartsHumongous;
 277   _humongous_start_region = this;
 278 
 279   set_end(new_end);
 280   _offsets.set_for_starts_humongous(new_top);
 281 }
 282 
 283 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 284   assert(!isHumongous(), "sanity / pre-condition");
 285   assert(end() == _orig_end,
 286          "Should be normal before the humongous object allocation");
 287   assert(top() == bottom(), "should be empty");
 288   assert(first_hr->startsHumongous(), "pre-condition");
 289 
 290   _humongous_type = ContinuesHumongous;
 291   _humongous_start_region = first_hr;
 292 }
 293 
 294 void HeapRegion::set_notHumongous() {
 295   assert(isHumongous(), "pre-condition");
 296 
 297   if (startsHumongous()) {
 298     assert(top() <= end(), "pre-condition");
 299     set_end(_orig_end);
 300     if (top() > end()) {
 301       // at least one "continues humongous" region after it
 302       set_top(end());
 303     }
 304   } else {
 305     // continues humongous
 306     assert(end() == _orig_end, "sanity");
 307   }
 308 
 309   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 310   _humongous_type = NotHumongous;
 311   _humongous_start_region = NULL;
 312 }
 313 
 314 bool HeapRegion::claimHeapRegion(jint claimValue) {
 315   jint current = _claimed;
 316   if (current != claimValue) {
 317     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 318     if (res == current) {
 319       return true;
 320     }
 321   }
 322   return false;
 323 }
 324 
 325 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 326   HeapWord* low = addr;
 327   HeapWord* high = end();
 328   while (low < high) {
 329     size_t diff = pointer_delta(high, low);
 330     // Must add one below to bias toward the high amount.  Otherwise, if
 331   // "high" were at the desired value, and "low" were one less, we
 332     // would not converge on "high".  This is not symmetric, because
 333     // we set "high" to a block start, which might be the right one,
 334     // which we don't do for "low".
 335     HeapWord* middle = low + (diff+1)/2;
 336     if (middle == high) return high;
 337     HeapWord* mid_bs = block_start_careful(middle);
 338     if (mid_bs < addr) {
 339       low = middle;
 340     } else {
 341       high = mid_bs;
 342     }
 343   }
 344   assert(low == high && low >= addr, "Didn't work.");
 345   return low;
 346 }
 347 
 348 HeapRegion::HeapRegion(uint hrm_index,
 349                        G1BlockOffsetSharedArray* sharedOffsetArray,
 350                        MemRegion mr) :
 351     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 352     _hrm_index(hrm_index),
 353     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 354     _in_collection_set(false),
 355     _next_in_special_set(NULL), _orig_end(NULL),
 356     _claimed(InitialClaimValue), _evacuation_failed(false),
 357     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 358     _young_type(NotYoung), _next_young_region(NULL),
 359     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 360 #ifdef ASSERT
 361     _containing_set(NULL),
 362 #endif // ASSERT
 363      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 364     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 365     _predicted_bytes_to_copy(0)
 366 {
 367   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 368   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 369 
 370   initialize(mr);
 371 }
 372 
 373 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 374   assert(_rem_set->is_empty(), "Remembered set must be empty");
 375 
 376   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 377 
 378   _orig_end = mr.end();
 379   hr_clear(false /*par*/, false /*clear_space*/);
 380   set_top(bottom());
 381   record_top_and_timestamp();
 382 }
 383 
 384 CompactibleSpace* HeapRegion::next_compaction_space() const {
 385   return G1CollectedHeap::heap()->next_compaction_region(this);
 386 }
 387 
 388 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 389                                                     bool during_conc_mark) {
 390   // We always recreate the prev marking info and we'll explicitly
 391   // mark all objects we find to be self-forwarded on the prev
 392   // bitmap. So all objects need to be below PTAMS.
 393   _prev_marked_bytes = 0;
 394 
 395   if (during_initial_mark) {
 396     // During initial-mark, we'll also explicitly mark all objects
 397     // we find to be self-forwarded on the next bitmap. So all
 398     // objects need to be below NTAMS.
 399     _next_top_at_mark_start = top();
 400     _next_marked_bytes = 0;
 401   } else if (during_conc_mark) {
 402     // During concurrent mark, all objects in the CSet (including
 403     // the ones we find to be self-forwarded) are implicitly live.
 404     // So all objects need to be above NTAMS.
 405     _next_top_at_mark_start = bottom();
 406     _next_marked_bytes = 0;
 407   }
 408 }
 409 
 410 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 411                                                   bool during_conc_mark,
 412                                                   size_t marked_bytes) {
 413   assert(0 <= marked_bytes && marked_bytes <= used(),
 414          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 415                  marked_bytes, used()));
 416   _prev_top_at_mark_start = top();
 417   _prev_marked_bytes = marked_bytes;
 418 }
 419 
 420 HeapWord*
 421 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 422                                                  ObjectClosure* cl) {
 423   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 424   // We used to use "block_start_careful" here.  But we're actually happy
 425   // to update the BOT while we do this...
 426   HeapWord* cur = block_start(mr.start());
 427   mr = mr.intersection(used_region());
 428   if (mr.is_empty()) return NULL;
 429   // Otherwise, find the obj that extends onto mr.start().
 430 
 431   assert(cur <= mr.start()
 432          && (oop(cur)->klass_or_null() == NULL ||
 433              cur + oop(cur)->size() > mr.start()),
 434          "postcondition of block_start");
 435   oop obj;
 436   while (cur < mr.end()) {
 437     obj = oop(cur);
 438     if (obj->klass_or_null() == NULL) {
 439       // Ran into an unparseable point.
 440       return cur;
 441     } else if (!g1h->is_obj_dead(obj)) {
 442       cl->do_object(obj);
 443     }
 444     cur += block_size(cur);
 445   }
 446   return NULL;
 447 }
 448 
 449 HeapWord*
 450 HeapRegion::
 451 oops_on_card_seq_iterate_careful(MemRegion mr,
 452                                  FilterOutOfRegionClosure* cl,
 453                                  bool filter_young,
 454                                  jbyte* card_ptr) {
 455   // Currently, we should only have to clean the card if filter_young
 456   // is true and vice versa.
 457   if (filter_young) {
 458     assert(card_ptr != NULL, "pre-condition");
 459   } else {
 460     assert(card_ptr == NULL, "pre-condition");
 461   }
 462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 463 
 464   // If we're within a stop-world GC, then we might look at a card in a
 465   // GC alloc region that extends onto a GC LAB, which may not be
 466   // parseable.  Stop such at the "saved_mark" of the region.
 467   if (g1h->is_gc_active()) {
 468     mr = mr.intersection(used_region_at_save_marks());
 469   } else {
 470     mr = mr.intersection(used_region());
 471   }
 472   if (mr.is_empty()) return NULL;
 473   // Otherwise, find the obj that extends onto mr.start().
 474 
 475   // The intersection of the incoming mr (for the card) and the
 476   // allocated part of the region is non-empty. This implies that
 477   // we have actually allocated into this region. The code in
 478   // G1CollectedHeap.cpp that allocates a new region sets the
 479   // is_young tag on the region before allocating. Thus we
 480   // safely know if this region is young.
 481   if (is_young() && filter_young) {
 482     return NULL;
 483   }
 484 
 485   assert(!is_young(), "check value of filter_young");
 486 
 487   // We can only clean the card here, after we make the decision that
 488   // the card is not young. And we only clean the card if we have been
 489   // asked to (i.e., card_ptr != NULL).
 490   if (card_ptr != NULL) {
 491     *card_ptr = CardTableModRefBS::clean_card_val();
 492     // We must complete this write before we do any of the reads below.
 493     OrderAccess::storeload();
 494   }
 495 
 496   // Cache the boundaries of the memory region in some const locals
 497   HeapWord* const start = mr.start();
 498   HeapWord* const end = mr.end();
 499 
 500   // We used to use "block_start_careful" here.  But we're actually happy
 501   // to update the BOT while we do this...
 502   HeapWord* cur = block_start(start);
 503   assert(cur <= start, "Postcondition");
 504 
 505   oop obj;
 506 
 507   HeapWord* next = cur;
 508   while (next <= start) {
 509     cur = next;
 510     obj = oop(cur);
 511     if (obj->klass_or_null() == NULL) {
 512       // Ran into an unparseable point.
 513       return cur;
 514     }
 515     // Otherwise...
 516     next = cur + block_size(cur);
 517   }
 518 
 519   // If we finish the above loop...We have a parseable object that
 520   // begins on or before the start of the memory region, and ends
 521   // inside or spans the entire region.
 522 
 523   assert(obj == oop(cur), "sanity");
 524   assert(cur <= start, "Loop postcondition");
 525   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 526   assert((cur + block_size(cur)) > start, "Loop postcondition");
 527 
 528   if (!g1h->is_obj_dead(obj)) {
 529     obj->oop_iterate(cl, mr);
 530   }
 531 
 532   while (cur < end) {
 533     obj = oop(cur);
 534     if (obj->klass_or_null() == NULL) {
 535       // Ran into an unparseable point.
 536       return cur;
 537     };
 538 
 539     // Otherwise:
 540     next = cur + block_size(cur);
 541 
 542     if (!g1h->is_obj_dead(obj)) {
 543       if (next < end || !obj->is_objArray()) {
 544         // This object either does not span the MemRegion
 545         // boundary, or if it does it's not an array.
 546         // Apply closure to whole object.
 547         obj->oop_iterate(cl);
 548       } else {
 549         // This obj is an array that spans the boundary.
 550         // Stop at the boundary.
 551         obj->oop_iterate(cl, mr);
 552       }
 553     }
 554     cur = next;
 555   }
 556   return NULL;
 557 }
 558 
 559 // Code roots support
 560 
 561 void HeapRegion::add_strong_code_root(nmethod* nm) {
 562   HeapRegionRemSet* hrrs = rem_set();
 563   hrrs->add_strong_code_root(nm);
 564 }
 565 
 566 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 567   HeapRegionRemSet* hrrs = rem_set();
 568   hrrs->remove_strong_code_root(nm);
 569 }
 570 
 571 void HeapRegion::migrate_strong_code_roots() {
 572   assert(in_collection_set(), "only collection set regions");
 573   assert(!isHumongous(),
 574           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
 575                   HR_FORMAT_PARAMS(this)));
 576 
 577   HeapRegionRemSet* hrrs = rem_set();
 578   hrrs->migrate_strong_code_roots();
 579 }
 580 
 581 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 582   HeapRegionRemSet* hrrs = rem_set();
 583   hrrs->strong_code_roots_do(blk);
 584 }
 585 
 586 class VerifyStrongCodeRootOopClosure: public OopClosure {
 587   const HeapRegion* _hr;
 588   nmethod* _nm;
 589   bool _failures;
 590   bool _has_oops_in_region;
 591 
 592   template <class T> void do_oop_work(T* p) {
 593     T heap_oop = oopDesc::load_heap_oop(p);
 594     if (!oopDesc::is_null(heap_oop)) {
 595       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 596 
 597       // Note: not all the oops embedded in the nmethod are in the
 598       // current region. We only look at those which are.
 599       if (_hr->is_in(obj)) {
 600         // Object is in the region. Check that its less than top
 601         if (_hr->top() <= (HeapWord*)obj) {
 602           // Object is above top
 603           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 604                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 605                                  "top "PTR_FORMAT,
 606                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 607           _failures = true;
 608           return;
 609         }
 610         // Nmethod has at least one oop in the current region
 611         _has_oops_in_region = true;
 612       }
 613     }
 614   }
 615 
 616 public:
 617   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 618     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 619 
 620   void do_oop(narrowOop* p) { do_oop_work(p); }
 621   void do_oop(oop* p)       { do_oop_work(p); }
 622 
 623   bool failures()           { return _failures; }
 624   bool has_oops_in_region() { return _has_oops_in_region; }
 625 };
 626 
 627 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 628   const HeapRegion* _hr;
 629   bool _failures;
 630 public:
 631   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 632     _hr(hr), _failures(false) {}
 633 
 634   void do_code_blob(CodeBlob* cb) {
 635     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 636     if (nm != NULL) {
 637       // Verify that the nemthod is live
 638       if (!nm->is_alive()) {
 639         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 640                                PTR_FORMAT" in its strong code roots",
 641                                _hr->bottom(), _hr->end(), nm);
 642         _failures = true;
 643       } else {
 644         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 645         nm->oops_do(&oop_cl);
 646         if (!oop_cl.has_oops_in_region()) {
 647           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 648                                  PTR_FORMAT" in its strong code roots "
 649                                  "with no pointers into region",
 650                                  _hr->bottom(), _hr->end(), nm);
 651           _failures = true;
 652         } else if (oop_cl.failures()) {
 653           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 654                                  "failures for nmethod "PTR_FORMAT,
 655                                  _hr->bottom(), _hr->end(), nm);
 656           _failures = true;
 657         }
 658       }
 659     }
 660   }
 661 
 662   bool failures()       { return _failures; }
 663 };
 664 
 665 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 666   if (!G1VerifyHeapRegionCodeRoots) {
 667     // We're not verifying code roots.
 668     return;
 669   }
 670   if (vo == VerifyOption_G1UseMarkWord) {
 671     // Marking verification during a full GC is performed after class
 672     // unloading, code cache unloading, etc so the strong code roots
 673     // attached to each heap region are in an inconsistent state. They won't
 674     // be consistent until the strong code roots are rebuilt after the
 675     // actual GC. Skip verifying the strong code roots in this particular
 676     // time.
 677     assert(VerifyDuringGC, "only way to get here");
 678     return;
 679   }
 680 
 681   HeapRegionRemSet* hrrs = rem_set();
 682   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 683 
 684   // if this region is empty then there should be no entries
 685   // on its strong code root list
 686   if (is_empty()) {
 687     if (strong_code_roots_length > 0) {
 688       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 689                              "but has "SIZE_FORMAT" code root entries",
 690                              bottom(), end(), strong_code_roots_length);
 691       *failures = true;
 692     }
 693     return;
 694   }
 695 
 696   if (continuesHumongous()) {
 697     if (strong_code_roots_length > 0) {
 698       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 699                              "region but has "SIZE_FORMAT" code root entries",
 700                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 701       *failures = true;
 702     }
 703     return;
 704   }
 705 
 706   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 707   strong_code_roots_do(&cb_cl);
 708 
 709   if (cb_cl.failures()) {
 710     *failures = true;
 711   }
 712 }
 713 
 714 void HeapRegion::print() const { print_on(gclog_or_tty); }
 715 void HeapRegion::print_on(outputStream* st) const {
 716   if (isHumongous()) {
 717     if (startsHumongous())
 718       st->print(" HS");
 719     else
 720       st->print(" HC");
 721   } else {
 722     st->print("   ");
 723   }
 724   if (in_collection_set())
 725     st->print(" CS");
 726   else
 727     st->print("   ");
 728   if (is_young())
 729     st->print(is_survivor() ? " SU" : " Y ");
 730   else
 731     st->print("   ");
 732   if (is_empty())
 733     st->print(" F");
 734   else
 735     st->print("  ");
 736   st->print(" TS %5d", _gc_time_stamp);
 737   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 738             prev_top_at_mark_start(), next_top_at_mark_start());
 739   G1OffsetTableContigSpace::print_on(st);
 740 }
 741 
 742 class VerifyLiveClosure: public OopClosure {
 743 private:
 744   G1CollectedHeap* _g1h;
 745   CardTableModRefBS* _bs;
 746   oop _containing_obj;
 747   bool _failures;
 748   int _n_failures;
 749   VerifyOption _vo;
 750 public:
 751   // _vo == UsePrevMarking -> use "prev" marking information,
 752   // _vo == UseNextMarking -> use "next" marking information,
 753   // _vo == UseMarkWord    -> use mark word from object header.
 754   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 755     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 756     _failures(false), _n_failures(0), _vo(vo)
 757   {
 758     BarrierSet* bs = _g1h->barrier_set();
 759     if (bs->is_a(BarrierSet::CardTableModRef))
 760       _bs = (CardTableModRefBS*)bs;
 761   }
 762 
 763   void set_containing_obj(oop obj) {
 764     _containing_obj = obj;
 765   }
 766 
 767   bool failures() { return _failures; }
 768   int n_failures() { return _n_failures; }
 769 
 770   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 771   virtual void do_oop(      oop* p) { do_oop_work(p); }
 772 
 773   void print_object(outputStream* out, oop obj) {
 774 #ifdef PRODUCT
 775     Klass* k = obj->klass();
 776     const char* class_name = InstanceKlass::cast(k)->external_name();
 777     out->print_cr("class name %s", class_name);
 778 #else // PRODUCT
 779     obj->print_on(out);
 780 #endif // PRODUCT
 781   }
 782 
 783   template <class T>
 784   void do_oop_work(T* p) {
 785     assert(_containing_obj != NULL, "Precondition");
 786     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 787            "Precondition");
 788     T heap_oop = oopDesc::load_heap_oop(p);
 789     if (!oopDesc::is_null(heap_oop)) {
 790       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 791       bool failed = false;
 792       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 793         MutexLockerEx x(ParGCRareEvent_lock,
 794                         Mutex::_no_safepoint_check_flag);
 795 
 796         if (!_failures) {
 797           gclog_or_tty->cr();
 798           gclog_or_tty->print_cr("----------");
 799         }
 800         if (!_g1h->is_in_closed_subset(obj)) {
 801           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 802           gclog_or_tty->print_cr("Field "PTR_FORMAT
 803                                  " of live obj "PTR_FORMAT" in region "
 804                                  "["PTR_FORMAT", "PTR_FORMAT")",
 805                                  p, (void*) _containing_obj,
 806                                  from->bottom(), from->end());
 807           print_object(gclog_or_tty, _containing_obj);
 808           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 809                                  (void*) obj);
 810         } else {
 811           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 812           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 813           gclog_or_tty->print_cr("Field "PTR_FORMAT
 814                                  " of live obj "PTR_FORMAT" in region "
 815                                  "["PTR_FORMAT", "PTR_FORMAT")",
 816                                  p, (void*) _containing_obj,
 817                                  from->bottom(), from->end());
 818           print_object(gclog_or_tty, _containing_obj);
 819           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 820                                  "["PTR_FORMAT", "PTR_FORMAT")",
 821                                  (void*) obj, to->bottom(), to->end());
 822           print_object(gclog_or_tty, obj);
 823         }
 824         gclog_or_tty->print_cr("----------");
 825         gclog_or_tty->flush();
 826         _failures = true;
 827         failed = true;
 828         _n_failures++;
 829       }
 830 
 831       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 832         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 833         HeapRegion* to   = _g1h->heap_region_containing(obj);
 834         if (from != NULL && to != NULL &&
 835             from != to &&
 836             !to->isHumongous()) {
 837           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 838           jbyte cv_field = *_bs->byte_for_const(p);
 839           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 840 
 841           bool is_bad = !(from->is_young()
 842                           || to->rem_set()->contains_reference(p)
 843                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 844                               (_containing_obj->is_objArray() ?
 845                                   cv_field == dirty
 846                                : cv_obj == dirty || cv_field == dirty));
 847           if (is_bad) {
 848             MutexLockerEx x(ParGCRareEvent_lock,
 849                             Mutex::_no_safepoint_check_flag);
 850 
 851             if (!_failures) {
 852               gclog_or_tty->cr();
 853               gclog_or_tty->print_cr("----------");
 854             }
 855             gclog_or_tty->print_cr("Missing rem set entry:");
 856             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 857                                    "of obj "PTR_FORMAT", "
 858                                    "in region "HR_FORMAT,
 859                                    p, (void*) _containing_obj,
 860                                    HR_FORMAT_PARAMS(from));
 861             _containing_obj->print_on(gclog_or_tty);
 862             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 863                                    "in region "HR_FORMAT,
 864                                    (void*) obj,
 865                                    HR_FORMAT_PARAMS(to));
 866             obj->print_on(gclog_or_tty);
 867             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 868                           cv_obj, cv_field);
 869             gclog_or_tty->print_cr("----------");
 870             gclog_or_tty->flush();
 871             _failures = true;
 872             if (!failed) _n_failures++;
 873           }
 874         }
 875       }
 876     }
 877   }
 878 };
 879 
 880 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 881 // We would need a mechanism to make that code skip dead objects.
 882 
 883 void HeapRegion::verify(VerifyOption vo,
 884                         bool* failures) const {
 885   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 886   *failures = false;
 887   HeapWord* p = bottom();
 888   HeapWord* prev_p = NULL;
 889   VerifyLiveClosure vl_cl(g1, vo);
 890   bool is_humongous = isHumongous();
 891   bool do_bot_verify = !is_young();
 892   size_t object_num = 0;
 893   while (p < top()) {
 894     oop obj = oop(p);
 895     size_t obj_size = block_size(p);
 896     object_num += 1;
 897 
 898     if (is_humongous != g1->isHumongous(obj_size) &&
 899         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 900       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 901                              SIZE_FORMAT" words) in a %shumongous region",
 902                              p, g1->isHumongous(obj_size) ? "" : "non-",
 903                              obj_size, is_humongous ? "" : "non-");
 904        *failures = true;
 905        return;
 906     }
 907 
 908     // If it returns false, verify_for_object() will output the
 909     // appropriate message.
 910     if (do_bot_verify &&
 911         !g1->is_obj_dead(obj, this) &&
 912         !_offsets.verify_for_object(p, obj_size)) {
 913       *failures = true;
 914       return;
 915     }
 916 
 917     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 918       if (obj->is_oop()) {
 919         Klass* klass = obj->klass();
 920         bool is_metaspace_object = Metaspace::contains(klass) ||
 921                                    (vo == VerifyOption_G1UsePrevMarking &&
 922                                    ClassLoaderDataGraph::unload_list_contains(klass));
 923         if (!is_metaspace_object) {
 924           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 925                                  "not metadata", klass, (void *)obj);
 926           *failures = true;
 927           return;
 928         } else if (!klass->is_klass()) {
 929           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 930                                  "not a klass", klass, (void *)obj);
 931           *failures = true;
 932           return;
 933         } else {
 934           vl_cl.set_containing_obj(obj);
 935           obj->oop_iterate_no_header(&vl_cl);
 936           if (vl_cl.failures()) {
 937             *failures = true;
 938           }
 939           if (G1MaxVerifyFailures >= 0 &&
 940               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 941             return;
 942           }
 943         }
 944       } else {
 945         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 946         *failures = true;
 947         return;
 948       }
 949     }
 950     prev_p = p;
 951     p += obj_size;
 952   }
 953 
 954   if (p != top()) {
 955     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 956                            "does not match top "PTR_FORMAT, p, top());
 957     *failures = true;
 958     return;
 959   }
 960 
 961   HeapWord* the_end = end();
 962   assert(p == top(), "it should still hold");
 963   // Do some extra BOT consistency checking for addresses in the
 964   // range [top, end). BOT look-ups in this range should yield
 965   // top. No point in doing that if top == end (there's nothing there).
 966   if (p < the_end) {
 967     // Look up top
 968     HeapWord* addr_1 = p;
 969     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 970     if (b_start_1 != p) {
 971       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 972                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 973                              addr_1, b_start_1, p);
 974       *failures = true;
 975       return;
 976     }
 977 
 978     // Look up top + 1
 979     HeapWord* addr_2 = p + 1;
 980     if (addr_2 < the_end) {
 981       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 982       if (b_start_2 != p) {
 983         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 984                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 985                                addr_2, b_start_2, p);
 986         *failures = true;
 987         return;
 988       }
 989     }
 990 
 991     // Look up an address between top and end
 992     size_t diff = pointer_delta(the_end, p) / 2;
 993     HeapWord* addr_3 = p + diff;
 994     if (addr_3 < the_end) {
 995       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 996       if (b_start_3 != p) {
 997         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 998                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 999                                addr_3, b_start_3, p);
1000         *failures = true;
1001         return;
1002       }
1003     }
1004 
1005     // Look up end - 1
1006     HeapWord* addr_4 = the_end - 1;
1007     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1008     if (b_start_4 != p) {
1009       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1010                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1011                              addr_4, b_start_4, p);
1012       *failures = true;
1013       return;
1014     }
1015   }
1016 
1017   if (is_humongous && object_num > 1) {
1018     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1019                            "but has "SIZE_FORMAT", objects",
1020                            bottom(), end(), object_num);
1021     *failures = true;
1022     return;
1023   }
1024 
1025   verify_strong_code_roots(vo, failures);
1026 }
1027 
1028 void HeapRegion::verify() const {
1029   bool dummy = false;
1030   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1031 }
1032 
1033 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1034 // away eventually.
1035 
1036 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1037   set_top(bottom());
1038   set_saved_mark_word(bottom());
1039   CompactibleSpace::clear(mangle_space);
1040   reset_bot();
1041 }
1042 
1043 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1044   Space::set_bottom(new_bottom);
1045   _offsets.set_bottom(new_bottom);
1046 }
1047 
1048 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1049   Space::set_end(new_end);
1050   _offsets.resize(new_end - bottom());
1051 }
1052 
1053 void G1OffsetTableContigSpace::print() const {
1054   print_short();
1055   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1056                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1057                 bottom(), top(), _offsets.threshold(), end());
1058 }
1059 
1060 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1061   return _offsets.initialize_threshold();
1062 }
1063 
1064 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1065                                                     HeapWord* end) {
1066   _offsets.alloc_block(start, end);
1067   return _offsets.threshold();
1068 }
1069 
1070 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1071   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1072   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1073   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1074     return top();
1075   else
1076     return Space::saved_mark_word();
1077 }
1078 
1079 void G1OffsetTableContigSpace::record_top_and_timestamp() {
1080   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1081   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1082 
1083   if (_gc_time_stamp < curr_gc_time_stamp) {
1084     // The order of these is important, as another thread might be
1085     // about to start scanning this region. If it does so after
1086     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1087     // will be false, and it will pick up top() as the high water mark
1088     // of region. If it does so after _gc_time_stamp = ..., then it
1089     // will pick up the right saved_mark_word() as the high water mark
1090     // of the region. Either way, the behavior will be correct.
1091     Space::set_saved_mark_word(top());
1092     OrderAccess::storestore();
1093     _gc_time_stamp = curr_gc_time_stamp;
1094     // No need to do another barrier to flush the writes above. If
1095     // this is called in parallel with other threads trying to
1096     // allocate into the region, the caller should call this while
1097     // holding a lock and when the lock is released the writes will be
1098     // flushed.
1099   }
1100 }
1101 
1102 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1103   object_iterate(blk);
1104 }
1105 
1106 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1107   HeapWord* p = bottom();
1108   while (p < top()) {
1109     if (block_is_obj(p)) {
1110       blk->do_object(oop(p));
1111     }
1112     p += block_size(p);
1113   }
1114 }
1115 
1116 #define block_is_always_obj(q) true
1117 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1118   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1119 }
1120 #undef block_is_always_obj
1121 
1122 G1OffsetTableContigSpace::
1123 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1124                          MemRegion mr) :
1125   _offsets(sharedOffsetArray, mr),
1126   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1127   _gc_time_stamp(0)
1128 {
1129   _offsets.set_space(this);
1130 }
1131 
1132 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1133   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1134   _top = bottom();
1135   reset_bot();
1136 }
1137