1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  29 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  33 #include "gc_implementation/g1/g1Log.hpp"
  34 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  35 #include "gc_implementation/g1/g1RemSet.hpp"
  36 #include "gc_implementation/g1/heapRegion.inline.hpp"
  37 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  38 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  39 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  40 #include "gc_implementation/shared/vmGCOperations.hpp"
  41 #include "gc_implementation/shared/gcTimer.hpp"
  42 #include "gc_implementation/shared/gcTrace.hpp"
  43 #include "gc_implementation/shared/gcTraceTime.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/genOopClosures.inline.hpp"
  46 #include "memory/referencePolicy.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/atomic.inline.hpp"
  52 #include "runtime/prefetch.inline.hpp"
  53 #include "services/memTracker.hpp"
  54 
  55 // Concurrent marking bit map wrapper
  56 
  57 CMBitMapRO::CMBitMapRO(int shifter) :
  58   _bm(),
  59   _shifter(shifter) {
  60   _bmStartWord = 0;
  61   _bmWordSize = 0;
  62 }
  63 
  64 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  65                                                const HeapWord* limit) const {
  66   // First we must round addr *up* to a possible object boundary.
  67   addr = (HeapWord*)align_size_up((intptr_t)addr,
  68                                   HeapWordSize << _shifter);
  69   size_t addrOffset = heapWordToOffset(addr);
  70   if (limit == NULL) {
  71     limit = _bmStartWord + _bmWordSize;
  72   }
  73   size_t limitOffset = heapWordToOffset(limit);
  74   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  75   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  76   assert(nextAddr >= addr, "get_next_one postcondition");
  77   assert(nextAddr == limit || isMarked(nextAddr),
  78          "get_next_one postcondition");
  79   return nextAddr;
  80 }
  81 
  82 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  83                                                  const HeapWord* limit) const {
  84   size_t addrOffset = heapWordToOffset(addr);
  85   if (limit == NULL) {
  86     limit = _bmStartWord + _bmWordSize;
  87   }
  88   size_t limitOffset = heapWordToOffset(limit);
  89   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  90   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  91   assert(nextAddr >= addr, "get_next_one postcondition");
  92   assert(nextAddr == limit || !isMarked(nextAddr),
  93          "get_next_one postcondition");
  94   return nextAddr;
  95 }
  96 
  97 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  98   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  99   return (int) (diff >> _shifter);
 100 }
 101 
 102 #ifndef PRODUCT
 103 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 104   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 105   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 106          "size inconsistency");
 107   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 108          _bmWordSize  == heap_rs.word_size();
 109 }
 110 #endif
 111 
 112 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 113   _bm.print_on_error(st, prefix);
 114 }
 115 
 116 size_t CMBitMap::compute_size(size_t heap_size) {
 117   return heap_size / mark_distance();
 118 }
 119 
 120 size_t CMBitMap::mark_distance() {
 121   return MinObjAlignmentInBytes * BitsPerByte;
 122 }
 123 
 124 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 125   _bmStartWord = heap.start();
 126   _bmWordSize = heap.word_size();
 127 
 128   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 129   _bm.set_size(_bmWordSize >> _shifter);
 130 
 131   storage->set_mapping_changed_listener(&_listener);
 132 }
 133 
 134 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions) {
 135   // We need to clear the bitmap on commit, removing any existing information.
 136   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 137   _bm->clearRange(mr);
 138 }
 139 
 140 // Closure used for clearing the given mark bitmap.
 141 class ClearBitmapHRClosure : public HeapRegionClosure {
 142  private:
 143   ConcurrentMark* _cm;
 144   CMBitMap* _bitmap;
 145   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 146  public:
 147   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 148     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 149   }
 150 
 151   virtual bool doHeapRegion(HeapRegion* r) {
 152     size_t const chunk_size_in_words = M / HeapWordSize;
 153 
 154     HeapWord* cur = r->bottom();
 155     HeapWord* const end = r->end();
 156 
 157     while (cur < end) {
 158       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 159       _bitmap->clearRange(mr);
 160 
 161       cur += chunk_size_in_words;
 162 
 163       // Abort iteration if after yielding the marking has been aborted.
 164       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 165         return true;
 166       }
 167       // Repeat the asserts from before the start of the closure. We will do them
 168       // as asserts here to minimize their overhead on the product. However, we
 169       // will have them as guarantees at the beginning / end of the bitmap
 170       // clearing to get some checking in the product.
 171       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 172       assert(!_may_yield || !G1CollectedHeap::heap()->mark_in_progress(), "invariant");
 173     }
 174 
 175     return false;
 176   }
 177 };
 178 
 179 void CMBitMap::clearAll() {
 180   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 181   G1CollectedHeap::heap()->heap_region_iterate(&cl);
 182   guarantee(cl.complete(), "Must have completed iteration.");
 183   return;
 184 }
 185 
 186 void CMBitMap::markRange(MemRegion mr) {
 187   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 188   assert(!mr.is_empty(), "unexpected empty region");
 189   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 190           ((HeapWord *) mr.end())),
 191          "markRange memory region end is not card aligned");
 192   // convert address range into offset range
 193   _bm.at_put_range(heapWordToOffset(mr.start()),
 194                    heapWordToOffset(mr.end()), true);
 195 }
 196 
 197 void CMBitMap::clearRange(MemRegion mr) {
 198   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 199   assert(!mr.is_empty(), "unexpected empty region");
 200   // convert address range into offset range
 201   _bm.at_put_range(heapWordToOffset(mr.start()),
 202                    heapWordToOffset(mr.end()), false);
 203 }
 204 
 205 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 206                                             HeapWord* end_addr) {
 207   HeapWord* start = getNextMarkedWordAddress(addr);
 208   start = MIN2(start, end_addr);
 209   HeapWord* end   = getNextUnmarkedWordAddress(start);
 210   end = MIN2(end, end_addr);
 211   assert(start <= end, "Consistency check");
 212   MemRegion mr(start, end);
 213   if (!mr.is_empty()) {
 214     clearRange(mr);
 215   }
 216   return mr;
 217 }
 218 
 219 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 220   _base(NULL), _cm(cm)
 221 #ifdef ASSERT
 222   , _drain_in_progress(false)
 223   , _drain_in_progress_yields(false)
 224 #endif
 225 {}
 226 
 227 bool CMMarkStack::allocate(size_t capacity) {
 228   // allocate a stack of the requisite depth
 229   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 230   if (!rs.is_reserved()) {
 231     warning("ConcurrentMark MarkStack allocation failure");
 232     return false;
 233   }
 234   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 235   if (!_virtual_space.initialize(rs, rs.size())) {
 236     warning("ConcurrentMark MarkStack backing store failure");
 237     // Release the virtual memory reserved for the marking stack
 238     rs.release();
 239     return false;
 240   }
 241   assert(_virtual_space.committed_size() == rs.size(),
 242          "Didn't reserve backing store for all of ConcurrentMark stack?");
 243   _base = (oop*) _virtual_space.low();
 244   setEmpty();
 245   _capacity = (jint) capacity;
 246   _saved_index = -1;
 247   _should_expand = false;
 248   NOT_PRODUCT(_max_depth = 0);
 249   return true;
 250 }
 251 
 252 void CMMarkStack::expand() {
 253   // Called, during remark, if we've overflown the marking stack during marking.
 254   assert(isEmpty(), "stack should been emptied while handling overflow");
 255   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 256   // Clear expansion flag
 257   _should_expand = false;
 258   if (_capacity == (jint) MarkStackSizeMax) {
 259     if (PrintGCDetails && Verbose) {
 260       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 261     }
 262     return;
 263   }
 264   // Double capacity if possible
 265   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 266   // Do not give up existing stack until we have managed to
 267   // get the double capacity that we desired.
 268   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 269                                                            sizeof(oop)));
 270   if (rs.is_reserved()) {
 271     // Release the backing store associated with old stack
 272     _virtual_space.release();
 273     // Reinitialize virtual space for new stack
 274     if (!_virtual_space.initialize(rs, rs.size())) {
 275       fatal("Not enough swap for expanded marking stack capacity");
 276     }
 277     _base = (oop*)(_virtual_space.low());
 278     _index = 0;
 279     _capacity = new_capacity;
 280   } else {
 281     if (PrintGCDetails && Verbose) {
 282       // Failed to double capacity, continue;
 283       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 284                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 285                           _capacity / K, new_capacity / K);
 286     }
 287   }
 288 }
 289 
 290 void CMMarkStack::set_should_expand() {
 291   // If we're resetting the marking state because of an
 292   // marking stack overflow, record that we should, if
 293   // possible, expand the stack.
 294   _should_expand = _cm->has_overflown();
 295 }
 296 
 297 CMMarkStack::~CMMarkStack() {
 298   if (_base != NULL) {
 299     _base = NULL;
 300     _virtual_space.release();
 301   }
 302 }
 303 
 304 void CMMarkStack::par_push(oop ptr) {
 305   while (true) {
 306     if (isFull()) {
 307       _overflow = true;
 308       return;
 309     }
 310     // Otherwise...
 311     jint index = _index;
 312     jint next_index = index+1;
 313     jint res = Atomic::cmpxchg(next_index, &_index, index);
 314     if (res == index) {
 315       _base[index] = ptr;
 316       // Note that we don't maintain this atomically.  We could, but it
 317       // doesn't seem necessary.
 318       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 319       return;
 320     }
 321     // Otherwise, we need to try again.
 322   }
 323 }
 324 
 325 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 326   while (true) {
 327     if (isFull()) {
 328       _overflow = true;
 329       return;
 330     }
 331     // Otherwise...
 332     jint index = _index;
 333     jint next_index = index + n;
 334     if (next_index > _capacity) {
 335       _overflow = true;
 336       return;
 337     }
 338     jint res = Atomic::cmpxchg(next_index, &_index, index);
 339     if (res == index) {
 340       for (int i = 0; i < n; i++) {
 341         int  ind = index + i;
 342         assert(ind < _capacity, "By overflow test above.");
 343         _base[ind] = ptr_arr[i];
 344       }
 345       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 346       return;
 347     }
 348     // Otherwise, we need to try again.
 349   }
 350 }
 351 
 352 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 353   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 354   jint start = _index;
 355   jint next_index = start + n;
 356   if (next_index > _capacity) {
 357     _overflow = true;
 358     return;
 359   }
 360   // Otherwise.
 361   _index = next_index;
 362   for (int i = 0; i < n; i++) {
 363     int ind = start + i;
 364     assert(ind < _capacity, "By overflow test above.");
 365     _base[ind] = ptr_arr[i];
 366   }
 367   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 368 }
 369 
 370 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 371   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 372   jint index = _index;
 373   if (index == 0) {
 374     *n = 0;
 375     return false;
 376   } else {
 377     int k = MIN2(max, index);
 378     jint  new_ind = index - k;
 379     for (int j = 0; j < k; j++) {
 380       ptr_arr[j] = _base[new_ind + j];
 381     }
 382     _index = new_ind;
 383     *n = k;
 384     return true;
 385   }
 386 }
 387 
 388 template<class OopClosureClass>
 389 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 390   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 391          || SafepointSynchronize::is_at_safepoint(),
 392          "Drain recursion must be yield-safe.");
 393   bool res = true;
 394   debug_only(_drain_in_progress = true);
 395   debug_only(_drain_in_progress_yields = yield_after);
 396   while (!isEmpty()) {
 397     oop newOop = pop();
 398     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 399     assert(newOop->is_oop(), "Expected an oop");
 400     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 401            "only grey objects on this stack");
 402     newOop->oop_iterate(cl);
 403     if (yield_after && _cm->do_yield_check()) {
 404       res = false;
 405       break;
 406     }
 407   }
 408   debug_only(_drain_in_progress = false);
 409   return res;
 410 }
 411 
 412 void CMMarkStack::note_start_of_gc() {
 413   assert(_saved_index == -1,
 414          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 415   _saved_index = _index;
 416 }
 417 
 418 void CMMarkStack::note_end_of_gc() {
 419   // This is intentionally a guarantee, instead of an assert. If we
 420   // accidentally add something to the mark stack during GC, it
 421   // will be a correctness issue so it's better if we crash. we'll
 422   // only check this once per GC anyway, so it won't be a performance
 423   // issue in any way.
 424   guarantee(_saved_index == _index,
 425             err_msg("saved index: %d index: %d", _saved_index, _index));
 426   _saved_index = -1;
 427 }
 428 
 429 void CMMarkStack::oops_do(OopClosure* f) {
 430   assert(_saved_index == _index,
 431          err_msg("saved index: %d index: %d", _saved_index, _index));
 432   for (int i = 0; i < _index; i += 1) {
 433     f->do_oop(&_base[i]);
 434   }
 435 }
 436 
 437 CMRootRegions::CMRootRegions() :
 438   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 439   _should_abort(false),  _next_survivor(NULL) { }
 440 
 441 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 442   _young_list = g1h->young_list();
 443   _cm = cm;
 444 }
 445 
 446 void CMRootRegions::prepare_for_scan() {
 447   assert(!scan_in_progress(), "pre-condition");
 448 
 449   // Currently, only survivors can be root regions.
 450   assert(_next_survivor == NULL, "pre-condition");
 451   _next_survivor = _young_list->first_survivor_region();
 452   _scan_in_progress = (_next_survivor != NULL);
 453   _should_abort = false;
 454 }
 455 
 456 HeapRegion* CMRootRegions::claim_next() {
 457   if (_should_abort) {
 458     // If someone has set the should_abort flag, we return NULL to
 459     // force the caller to bail out of their loop.
 460     return NULL;
 461   }
 462 
 463   // Currently, only survivors can be root regions.
 464   HeapRegion* res = _next_survivor;
 465   if (res != NULL) {
 466     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 467     // Read it again in case it changed while we were waiting for the lock.
 468     res = _next_survivor;
 469     if (res != NULL) {
 470       if (res == _young_list->last_survivor_region()) {
 471         // We just claimed the last survivor so store NULL to indicate
 472         // that we're done.
 473         _next_survivor = NULL;
 474       } else {
 475         _next_survivor = res->get_next_young_region();
 476       }
 477     } else {
 478       // Someone else claimed the last survivor while we were trying
 479       // to take the lock so nothing else to do.
 480     }
 481   }
 482   assert(res == NULL || res->is_survivor(), "post-condition");
 483 
 484   return res;
 485 }
 486 
 487 void CMRootRegions::scan_finished() {
 488   assert(scan_in_progress(), "pre-condition");
 489 
 490   // Currently, only survivors can be root regions.
 491   if (!_should_abort) {
 492     assert(_next_survivor == NULL, "we should have claimed all survivors");
 493   }
 494   _next_survivor = NULL;
 495 
 496   {
 497     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 498     _scan_in_progress = false;
 499     RootRegionScan_lock->notify_all();
 500   }
 501 }
 502 
 503 bool CMRootRegions::wait_until_scan_finished() {
 504   if (!scan_in_progress()) return false;
 505 
 506   {
 507     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 508     while (scan_in_progress()) {
 509       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 510     }
 511   }
 512   return true;
 513 }
 514 
 515 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 516 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 517 #endif // _MSC_VER
 518 
 519 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 520   return MAX2((n_par_threads + 2) / 4, 1U);
 521 }
 522 
 523 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 524   _g1h(g1h),
 525   _markBitMap1(),
 526   _markBitMap2(),
 527   _parallel_marking_threads(0),
 528   _max_parallel_marking_threads(0),
 529   _sleep_factor(0.0),
 530   _marking_task_overhead(1.0),
 531   _cleanup_sleep_factor(0.0),
 532   _cleanup_task_overhead(1.0),
 533   _cleanup_list("Cleanup List"),
 534   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 535   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 536             CardTableModRefBS::card_shift,
 537             false /* in_resource_area*/),
 538 
 539   _prevMarkBitMap(&_markBitMap1),
 540   _nextMarkBitMap(&_markBitMap2),
 541 
 542   _markStack(this),
 543   // _finger set in set_non_marking_state
 544 
 545   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 546   // _active_tasks set in set_non_marking_state
 547   // _tasks set inside the constructor
 548   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 549   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 550 
 551   _has_overflown(false),
 552   _concurrent(false),
 553   _has_aborted(false),
 554   _aborted_gc_id(GCId::undefined()),
 555   _restart_for_overflow(false),
 556   _concurrent_marking_in_progress(false),
 557 
 558   // _verbose_level set below
 559 
 560   _init_times(),
 561   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 562   _cleanup_times(),
 563   _total_counting_time(0.0),
 564   _total_rs_scrub_time(0.0),
 565 
 566   _parallel_workers(NULL),
 567 
 568   _count_card_bitmaps(NULL),
 569   _count_marked_bytes(NULL),
 570   _completed_initialization(false) {
 571   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 572   if (verbose_level < no_verbose) {
 573     verbose_level = no_verbose;
 574   }
 575   if (verbose_level > high_verbose) {
 576     verbose_level = high_verbose;
 577   }
 578   _verbose_level = verbose_level;
 579 
 580   if (verbose_low()) {
 581     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 582                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 583   }
 584 
 585   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 586   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 587 
 588   // Create & start a ConcurrentMark thread.
 589   _cmThread = new ConcurrentMarkThread(this);
 590   assert(cmThread() != NULL, "CM Thread should have been created");
 591   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 592   if (_cmThread->osthread() == NULL) {
 593       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 594   }
 595 
 596   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 597   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 598   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 599 
 600   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 601   satb_qs.set_buffer_size(G1SATBBufferSize);
 602 
 603   _root_regions.init(_g1h, this);
 604 
 605   if (ConcGCThreads > ParallelGCThreads) {
 606     warning("Can't have more ConcGCThreads (" UINTX_FORMAT ") "
 607             "than ParallelGCThreads (" UINTX_FORMAT ").",
 608             ConcGCThreads, ParallelGCThreads);
 609     return;
 610   }
 611   if (ParallelGCThreads == 0) {
 612     // if we are not running with any parallel GC threads we will not
 613     // spawn any marking threads either
 614     _parallel_marking_threads =       0;
 615     _max_parallel_marking_threads =   0;
 616     _sleep_factor             =     0.0;
 617     _marking_task_overhead    =     1.0;
 618   } else {
 619     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 620       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 621       // if both are set
 622       _sleep_factor             = 0.0;
 623       _marking_task_overhead    = 1.0;
 624     } else if (G1MarkingOverheadPercent > 0) {
 625       // We will calculate the number of parallel marking threads based
 626       // on a target overhead with respect to the soft real-time goal
 627       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 628       double overall_cm_overhead =
 629         (double) MaxGCPauseMillis * marking_overhead /
 630         (double) GCPauseIntervalMillis;
 631       double cpu_ratio = 1.0 / (double) os::processor_count();
 632       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 633       double marking_task_overhead =
 634         overall_cm_overhead / marking_thread_num *
 635                                                 (double) os::processor_count();
 636       double sleep_factor =
 637                          (1.0 - marking_task_overhead) / marking_task_overhead;
 638 
 639       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 640       _sleep_factor             = sleep_factor;
 641       _marking_task_overhead    = marking_task_overhead;
 642     } else {
 643       // Calculate the number of parallel marking threads by scaling
 644       // the number of parallel GC threads.
 645       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 646       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 647       _sleep_factor             = 0.0;
 648       _marking_task_overhead    = 1.0;
 649     }
 650 
 651     assert(ConcGCThreads > 0, "Should have been set");
 652     _parallel_marking_threads = (uint) ConcGCThreads;
 653     _max_parallel_marking_threads = _parallel_marking_threads;
 654 
 655     if (parallel_marking_threads() > 1) {
 656       _cleanup_task_overhead = 1.0;
 657     } else {
 658       _cleanup_task_overhead = marking_task_overhead();
 659     }
 660     _cleanup_sleep_factor =
 661                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 662 
 663 #if 0
 664     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 665     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 666     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 667     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 668     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 669 #endif
 670 
 671     guarantee(parallel_marking_threads() > 0, "peace of mind");
 672     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 673          _max_parallel_marking_threads, false, true);
 674     if (_parallel_workers == NULL) {
 675       vm_exit_during_initialization("Failed necessary allocation.");
 676     } else {
 677       _parallel_workers->initialize_workers();
 678     }
 679   }
 680 
 681   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 682     uintx mark_stack_size =
 683       MIN2(MarkStackSizeMax,
 684           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 685     // Verify that the calculated value for MarkStackSize is in range.
 686     // It would be nice to use the private utility routine from Arguments.
 687     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 688       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 689               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 690               mark_stack_size, (uintx) 1, MarkStackSizeMax);
 691       return;
 692     }
 693     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 694   } else {
 695     // Verify MarkStackSize is in range.
 696     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 697       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 698         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 699           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 700                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 701                   MarkStackSize, (uintx) 1, MarkStackSizeMax);
 702           return;
 703         }
 704       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 705         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 706           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 707                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 708                   MarkStackSize, MarkStackSizeMax);
 709           return;
 710         }
 711       }
 712     }
 713   }
 714 
 715   if (!_markStack.allocate(MarkStackSize)) {
 716     warning("Failed to allocate CM marking stack");
 717     return;
 718   }
 719 
 720   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 721   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 722 
 723   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 724   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 725 
 726   BitMap::idx_t card_bm_size = _card_bm.size();
 727 
 728   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 729   _active_tasks = _max_worker_id;
 730 
 731   size_t max_regions = (size_t) _g1h->max_regions();
 732   for (uint i = 0; i < _max_worker_id; ++i) {
 733     CMTaskQueue* task_queue = new CMTaskQueue();
 734     task_queue->initialize();
 735     _task_queues->register_queue(i, task_queue);
 736 
 737     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 738     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 739 
 740     _tasks[i] = new CMTask(i, this,
 741                            _count_marked_bytes[i],
 742                            &_count_card_bitmaps[i],
 743                            task_queue, _task_queues);
 744 
 745     _accum_task_vtime[i] = 0.0;
 746   }
 747 
 748   // Calculate the card number for the bottom of the heap. Used
 749   // in biasing indexes into the accounting card bitmaps.
 750   _heap_bottom_card_num =
 751     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 752                                 CardTableModRefBS::card_shift);
 753 
 754   // Clear all the liveness counting data
 755   clear_all_count_data();
 756 
 757   // so that the call below can read a sensible value
 758   _heap_start = g1h->reserved_region().start();
 759   set_non_marking_state();
 760   _completed_initialization = true;
 761 }
 762 
 763 void ConcurrentMark::reset() {
 764   // Starting values for these two. This should be called in a STW
 765   // phase.
 766   MemRegion reserved = _g1h->g1_reserved();
 767   _heap_start = reserved.start();
 768   _heap_end   = reserved.end();
 769 
 770   // Separated the asserts so that we know which one fires.
 771   assert(_heap_start != NULL, "heap bounds should look ok");
 772   assert(_heap_end != NULL, "heap bounds should look ok");
 773   assert(_heap_start < _heap_end, "heap bounds should look ok");
 774 
 775   // Reset all the marking data structures and any necessary flags
 776   reset_marking_state();
 777 
 778   if (verbose_low()) {
 779     gclog_or_tty->print_cr("[global] resetting");
 780   }
 781 
 782   // We do reset all of them, since different phases will use
 783   // different number of active threads. So, it's easiest to have all
 784   // of them ready.
 785   for (uint i = 0; i < _max_worker_id; ++i) {
 786     _tasks[i]->reset(_nextMarkBitMap);
 787   }
 788 
 789   // we need this to make sure that the flag is on during the evac
 790   // pause with initial mark piggy-backed
 791   set_concurrent_marking_in_progress();
 792 }
 793 
 794 
 795 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 796   _markStack.set_should_expand();
 797   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 798   if (clear_overflow) {
 799     clear_has_overflown();
 800   } else {
 801     assert(has_overflown(), "pre-condition");
 802   }
 803   _finger = _heap_start;
 804 
 805   for (uint i = 0; i < _max_worker_id; ++i) {
 806     CMTaskQueue* queue = _task_queues->queue(i);
 807     queue->set_empty();
 808   }
 809 }
 810 
 811 void ConcurrentMark::set_concurrency(uint active_tasks) {
 812   assert(active_tasks <= _max_worker_id, "we should not have more");
 813 
 814   _active_tasks = active_tasks;
 815   // Need to update the three data structures below according to the
 816   // number of active threads for this phase.
 817   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 818   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 819   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 820 }
 821 
 822 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 823   set_concurrency(active_tasks);
 824 
 825   _concurrent = concurrent;
 826   // We propagate this to all tasks, not just the active ones.
 827   for (uint i = 0; i < _max_worker_id; ++i)
 828     _tasks[i]->set_concurrent(concurrent);
 829 
 830   if (concurrent) {
 831     set_concurrent_marking_in_progress();
 832   } else {
 833     // We currently assume that the concurrent flag has been set to
 834     // false before we start remark. At this point we should also be
 835     // in a STW phase.
 836     assert(!concurrent_marking_in_progress(), "invariant");
 837     assert(out_of_regions(),
 838            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 839                    p2i(_finger), p2i(_heap_end)));
 840   }
 841 }
 842 
 843 void ConcurrentMark::set_non_marking_state() {
 844   // We set the global marking state to some default values when we're
 845   // not doing marking.
 846   reset_marking_state();
 847   _active_tasks = 0;
 848   clear_concurrent_marking_in_progress();
 849 }
 850 
 851 ConcurrentMark::~ConcurrentMark() {
 852   // The ConcurrentMark instance is never freed.
 853   ShouldNotReachHere();
 854 }
 855 
 856 void ConcurrentMark::clearNextBitmap() {
 857   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 858 
 859   // Make sure that the concurrent mark thread looks to still be in
 860   // the current cycle.
 861   guarantee(cmThread()->during_cycle(), "invariant");
 862 
 863   // We are finishing up the current cycle by clearing the next
 864   // marking bitmap and getting it ready for the next cycle. During
 865   // this time no other cycle can start. So, let's make sure that this
 866   // is the case.
 867   guarantee(!g1h->mark_in_progress(), "invariant");
 868 
 869   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 870   g1h->heap_region_iterate(&cl);
 871 
 872   // Clear the liveness counting data. If the marking has been aborted, the abort()
 873   // call already did that.
 874   if (cl.complete()) {
 875     clear_all_count_data();
 876   }
 877 
 878   // Repeat the asserts from above.
 879   guarantee(cmThread()->during_cycle(), "invariant");
 880   guarantee(!g1h->mark_in_progress(), "invariant");
 881 }
 882 
 883 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 884   CMBitMap* _bitmap;
 885   bool _error;
 886  public:
 887   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 888   }
 889 
 890   virtual bool doHeapRegion(HeapRegion* r) {
 891     // This closure can be called concurrently to the mutator, so we must make sure
 892     // that the result of the getNextMarkedWordAddress() call is compared to the
 893     // value passed to it as limit to detect any found bits.
 894     // We can use the region's orig_end() for the limit and the comparison value
 895     // as it always contains the "real" end of the region that never changes and
 896     // has no side effects.
 897     // Due to the latter, there can also be no problem with the compiler generating
 898     // reloads of the orig_end() call.
 899     HeapWord* end = r->orig_end();
 900     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 901   }
 902 };
 903 
 904 bool ConcurrentMark::nextMarkBitmapIsClear() {
 905   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 906   _g1h->heap_region_iterate(&cl);
 907   return cl.complete();
 908 }
 909 
 910 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 911 public:
 912   bool doHeapRegion(HeapRegion* r) {
 913     if (!r->is_continues_humongous()) {
 914       r->note_start_of_marking();
 915     }
 916     return false;
 917   }
 918 };
 919 
 920 void ConcurrentMark::checkpointRootsInitialPre() {
 921   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 922   G1CollectorPolicy* g1p = g1h->g1_policy();
 923 
 924   _has_aborted = false;
 925 
 926 #ifndef PRODUCT
 927   if (G1PrintReachableAtInitialMark) {
 928     print_reachable("at-cycle-start",
 929                     VerifyOption_G1UsePrevMarking, true /* all */);
 930   }
 931 #endif
 932 
 933   // Initialize marking structures. This has to be done in a STW phase.
 934   reset();
 935 
 936   // For each region note start of marking.
 937   NoteStartOfMarkHRClosure startcl;
 938   g1h->heap_region_iterate(&startcl);
 939 }
 940 
 941 
 942 void ConcurrentMark::checkpointRootsInitialPost() {
 943   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 944 
 945   // If we force an overflow during remark, the remark operation will
 946   // actually abort and we'll restart concurrent marking. If we always
 947   // force an overflow during remark we'll never actually complete the
 948   // marking phase. So, we initialize this here, at the start of the
 949   // cycle, so that at the remaining overflow number will decrease at
 950   // every remark and we'll eventually not need to cause one.
 951   force_overflow_stw()->init();
 952 
 953   // Start Concurrent Marking weak-reference discovery.
 954   ReferenceProcessor* rp = g1h->ref_processor_cm();
 955   // enable ("weak") refs discovery
 956   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 957   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 958 
 959   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 960   // This is the start of  the marking cycle, we're expected all
 961   // threads to have SATB queues with active set to false.
 962   satb_mq_set.set_active_all_threads(true, /* new active value */
 963                                      false /* expected_active */);
 964 
 965   _root_regions.prepare_for_scan();
 966 
 967   // update_g1_committed() will be called at the end of an evac pause
 968   // when marking is on. So, it's also called at the end of the
 969   // initial-mark pause to update the heap end, if the heap expands
 970   // during it. No need to call it here.
 971 }
 972 
 973 /*
 974  * Notice that in the next two methods, we actually leave the STS
 975  * during the barrier sync and join it immediately afterwards. If we
 976  * do not do this, the following deadlock can occur: one thread could
 977  * be in the barrier sync code, waiting for the other thread to also
 978  * sync up, whereas another one could be trying to yield, while also
 979  * waiting for the other threads to sync up too.
 980  *
 981  * Note, however, that this code is also used during remark and in
 982  * this case we should not attempt to leave / enter the STS, otherwise
 983  * we'll either hit an assert (debug / fastdebug) or deadlock
 984  * (product). So we should only leave / enter the STS if we are
 985  * operating concurrently.
 986  *
 987  * Because the thread that does the sync barrier has left the STS, it
 988  * is possible to be suspended for a Full GC or an evacuation pause
 989  * could occur. This is actually safe, since the entering the sync
 990  * barrier is one of the last things do_marking_step() does, and it
 991  * doesn't manipulate any data structures afterwards.
 992  */
 993 
 994 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 995   if (verbose_low()) {
 996     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 997   }
 998 
 999   if (concurrent()) {
1000     SuspendibleThreadSet::leave();
1001   }
1002 
1003   bool barrier_aborted = !_first_overflow_barrier_sync.enter();
1004 
1005   if (concurrent()) {
1006     SuspendibleThreadSet::join();
1007   }
1008   // at this point everyone should have synced up and not be doing any
1009   // more work
1010 
1011   if (verbose_low()) {
1012     if (barrier_aborted) {
1013       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
1014     } else {
1015       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
1016     }
1017   }
1018 
1019   if (barrier_aborted) {
1020     // If the barrier aborted we ignore the overflow condition and
1021     // just abort the whole marking phase as quickly as possible.
1022     return;
1023   }
1024 
1025   // If we're executing the concurrent phase of marking, reset the marking
1026   // state; otherwise the marking state is reset after reference processing,
1027   // during the remark pause.
1028   // If we reset here as a result of an overflow during the remark we will
1029   // see assertion failures from any subsequent set_concurrency_and_phase()
1030   // calls.
1031   if (concurrent()) {
1032     // let the task associated with with worker 0 do this
1033     if (worker_id == 0) {
1034       // task 0 is responsible for clearing the global data structures
1035       // We should be here because of an overflow. During STW we should
1036       // not clear the overflow flag since we rely on it being true when
1037       // we exit this method to abort the pause and restart concurrent
1038       // marking.
1039       reset_marking_state(true /* clear_overflow */);
1040       force_overflow()->update();
1041 
1042       if (G1Log::fine()) {
1043         gclog_or_tty->gclog_stamp(concurrent_gc_id());
1044         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1045       }
1046     }
1047   }
1048 
1049   // after this, each task should reset its own data structures then
1050   // then go into the second barrier
1051 }
1052 
1053 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1054   if (verbose_low()) {
1055     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1056   }
1057 
1058   if (concurrent()) {
1059     SuspendibleThreadSet::leave();
1060   }
1061 
1062   bool barrier_aborted = !_second_overflow_barrier_sync.enter();
1063 
1064   if (concurrent()) {
1065     SuspendibleThreadSet::join();
1066   }
1067   // at this point everything should be re-initialized and ready to go
1068 
1069   if (verbose_low()) {
1070     if (barrier_aborted) {
1071       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1072     } else {
1073       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1074     }
1075   }
1076 }
1077 
1078 #ifndef PRODUCT
1079 void ForceOverflowSettings::init() {
1080   _num_remaining = G1ConcMarkForceOverflow;
1081   _force = false;
1082   update();
1083 }
1084 
1085 void ForceOverflowSettings::update() {
1086   if (_num_remaining > 0) {
1087     _num_remaining -= 1;
1088     _force = true;
1089   } else {
1090     _force = false;
1091   }
1092 }
1093 
1094 bool ForceOverflowSettings::should_force() {
1095   if (_force) {
1096     _force = false;
1097     return true;
1098   } else {
1099     return false;
1100   }
1101 }
1102 #endif // !PRODUCT
1103 
1104 class CMConcurrentMarkingTask: public AbstractGangTask {
1105 private:
1106   ConcurrentMark*       _cm;
1107   ConcurrentMarkThread* _cmt;
1108 
1109 public:
1110   void work(uint worker_id) {
1111     assert(Thread::current()->is_ConcurrentGC_thread(),
1112            "this should only be done by a conc GC thread");
1113     ResourceMark rm;
1114 
1115     double start_vtime = os::elapsedVTime();
1116 
1117     SuspendibleThreadSet::join();
1118 
1119     assert(worker_id < _cm->active_tasks(), "invariant");
1120     CMTask* the_task = _cm->task(worker_id);
1121     the_task->record_start_time();
1122     if (!_cm->has_aborted()) {
1123       do {
1124         double start_vtime_sec = os::elapsedVTime();
1125         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1126 
1127         the_task->do_marking_step(mark_step_duration_ms,
1128                                   true  /* do_termination */,
1129                                   false /* is_serial*/);
1130 
1131         double end_vtime_sec = os::elapsedVTime();
1132         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1133         _cm->clear_has_overflown();
1134 
1135         _cm->do_yield_check(worker_id);
1136 
1137         jlong sleep_time_ms;
1138         if (!_cm->has_aborted() && the_task->has_aborted()) {
1139           sleep_time_ms =
1140             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1141           SuspendibleThreadSet::leave();
1142           os::sleep(Thread::current(), sleep_time_ms, false);
1143           SuspendibleThreadSet::join();
1144         }
1145       } while (!_cm->has_aborted() && the_task->has_aborted());
1146     }
1147     the_task->record_end_time();
1148     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1149 
1150     SuspendibleThreadSet::leave();
1151 
1152     double end_vtime = os::elapsedVTime();
1153     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1154   }
1155 
1156   CMConcurrentMarkingTask(ConcurrentMark* cm,
1157                           ConcurrentMarkThread* cmt) :
1158       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1159 
1160   ~CMConcurrentMarkingTask() { }
1161 };
1162 
1163 // Calculates the number of active workers for a concurrent
1164 // phase.
1165 uint ConcurrentMark::calc_parallel_marking_threads() {
1166   if (G1CollectedHeap::use_parallel_gc_threads()) {
1167     uint n_conc_workers = 0;
1168     if (!UseDynamicNumberOfGCThreads ||
1169         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1170          !ForceDynamicNumberOfGCThreads)) {
1171       n_conc_workers = max_parallel_marking_threads();
1172     } else {
1173       n_conc_workers =
1174         AdaptiveSizePolicy::calc_default_active_workers(
1175                                      max_parallel_marking_threads(),
1176                                      1, /* Minimum workers */
1177                                      parallel_marking_threads(),
1178                                      Threads::number_of_non_daemon_threads());
1179       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1180       // that scaling has already gone into "_max_parallel_marking_threads".
1181     }
1182     assert(n_conc_workers > 0, "Always need at least 1");
1183     return n_conc_workers;
1184   }
1185   // If we are not running with any parallel GC threads we will not
1186   // have spawned any marking threads either. Hence the number of
1187   // concurrent workers should be 0.
1188   return 0;
1189 }
1190 
1191 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1192   // Currently, only survivors can be root regions.
1193   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1194   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1195 
1196   const uintx interval = PrefetchScanIntervalInBytes;
1197   HeapWord* curr = hr->bottom();
1198   const HeapWord* end = hr->top();
1199   while (curr < end) {
1200     Prefetch::read(curr, interval);
1201     oop obj = oop(curr);
1202     int size = obj->oop_iterate(&cl);
1203     assert(size == obj->size(), "sanity");
1204     curr += size;
1205   }
1206 }
1207 
1208 class CMRootRegionScanTask : public AbstractGangTask {
1209 private:
1210   ConcurrentMark* _cm;
1211 
1212 public:
1213   CMRootRegionScanTask(ConcurrentMark* cm) :
1214     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1215 
1216   void work(uint worker_id) {
1217     assert(Thread::current()->is_ConcurrentGC_thread(),
1218            "this should only be done by a conc GC thread");
1219 
1220     CMRootRegions* root_regions = _cm->root_regions();
1221     HeapRegion* hr = root_regions->claim_next();
1222     while (hr != NULL) {
1223       _cm->scanRootRegion(hr, worker_id);
1224       hr = root_regions->claim_next();
1225     }
1226   }
1227 };
1228 
1229 void ConcurrentMark::scanRootRegions() {
1230   // Start of concurrent marking.
1231   ClassLoaderDataGraph::clear_claimed_marks();
1232 
1233   // scan_in_progress() will have been set to true only if there was
1234   // at least one root region to scan. So, if it's false, we
1235   // should not attempt to do any further work.
1236   if (root_regions()->scan_in_progress()) {
1237     _parallel_marking_threads = calc_parallel_marking_threads();
1238     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1239            "Maximum number of marking threads exceeded");
1240     uint active_workers = MAX2(1U, parallel_marking_threads());
1241 
1242     CMRootRegionScanTask task(this);
1243     if (use_parallel_marking_threads()) {
1244       _parallel_workers->set_active_workers((int) active_workers);
1245       _parallel_workers->run_task(&task);
1246     } else {
1247       task.work(0);
1248     }
1249 
1250     // It's possible that has_aborted() is true here without actually
1251     // aborting the survivor scan earlier. This is OK as it's
1252     // mainly used for sanity checking.
1253     root_regions()->scan_finished();
1254   }
1255 }
1256 
1257 void ConcurrentMark::markFromRoots() {
1258   // we might be tempted to assert that:
1259   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1260   //        "inconsistent argument?");
1261   // However that wouldn't be right, because it's possible that
1262   // a safepoint is indeed in progress as a younger generation
1263   // stop-the-world GC happens even as we mark in this generation.
1264 
1265   _restart_for_overflow = false;
1266   force_overflow_conc()->init();
1267 
1268   // _g1h has _n_par_threads
1269   _parallel_marking_threads = calc_parallel_marking_threads();
1270   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1271     "Maximum number of marking threads exceeded");
1272 
1273   uint active_workers = MAX2(1U, parallel_marking_threads());
1274 
1275   // Parallel task terminator is set in "set_concurrency_and_phase()"
1276   set_concurrency_and_phase(active_workers, true /* concurrent */);
1277 
1278   CMConcurrentMarkingTask markingTask(this, cmThread());
1279   if (use_parallel_marking_threads()) {
1280     _parallel_workers->set_active_workers((int)active_workers);
1281     // Don't set _n_par_threads because it affects MT in process_roots()
1282     // and the decisions on that MT processing is made elsewhere.
1283     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1284     _parallel_workers->run_task(&markingTask);
1285   } else {
1286     markingTask.work(0);
1287   }
1288   print_stats();
1289 }
1290 
1291 // Helper class to get rid of some boilerplate code.
1292 class G1CMTraceTime : public GCTraceTime {
1293   static bool doit_and_prepend(bool doit) {
1294     if (doit) {
1295       gclog_or_tty->put(' ');
1296     }
1297     return doit;
1298   }
1299 
1300  public:
1301   G1CMTraceTime(const char* title, bool doit)
1302     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1303         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1304   }
1305 };
1306 
1307 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1308   // world is stopped at this checkpoint
1309   assert(SafepointSynchronize::is_at_safepoint(),
1310          "world should be stopped");
1311 
1312   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1313 
1314   // If a full collection has happened, we shouldn't do this.
1315   if (has_aborted()) {
1316     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1317     return;
1318   }
1319 
1320   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1321 
1322   if (VerifyDuringGC) {
1323     HandleMark hm;  // handle scope
1324     Universe::heap()->prepare_for_verify();
1325     Universe::verify(VerifyOption_G1UsePrevMarking,
1326                      " VerifyDuringGC:(before)");
1327   }
1328   g1h->check_bitmaps("Remark Start");
1329 
1330   G1CollectorPolicy* g1p = g1h->g1_policy();
1331   g1p->record_concurrent_mark_remark_start();
1332 
1333   double start = os::elapsedTime();
1334 
1335   checkpointRootsFinalWork();
1336 
1337   double mark_work_end = os::elapsedTime();
1338 
1339   weakRefsWork(clear_all_soft_refs);
1340 
1341   if (has_overflown()) {
1342     // Oops.  We overflowed.  Restart concurrent marking.
1343     _restart_for_overflow = true;
1344     if (G1TraceMarkStackOverflow) {
1345       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1346     }
1347 
1348     // Verify the heap w.r.t. the previous marking bitmap.
1349     if (VerifyDuringGC) {
1350       HandleMark hm;  // handle scope
1351       Universe::heap()->prepare_for_verify();
1352       Universe::verify(VerifyOption_G1UsePrevMarking,
1353                        " VerifyDuringGC:(overflow)");
1354     }
1355 
1356     // Clear the marking state because we will be restarting
1357     // marking due to overflowing the global mark stack.
1358     reset_marking_state();
1359   } else {
1360     {
1361       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1362 
1363       // Aggregate the per-task counting data that we have accumulated
1364       // while marking.
1365       aggregate_count_data();
1366     }
1367 
1368     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1369     // We're done with marking.
1370     // This is the end of  the marking cycle, we're expected all
1371     // threads to have SATB queues with active set to true.
1372     satb_mq_set.set_active_all_threads(false, /* new active value */
1373                                        true /* expected_active */);
1374 
1375     if (VerifyDuringGC) {
1376       HandleMark hm;  // handle scope
1377       Universe::heap()->prepare_for_verify();
1378       Universe::verify(VerifyOption_G1UseNextMarking,
1379                        " VerifyDuringGC:(after)");
1380     }
1381     g1h->check_bitmaps("Remark End");
1382     assert(!restart_for_overflow(), "sanity");
1383     // Completely reset the marking state since marking completed
1384     set_non_marking_state();
1385   }
1386 
1387   // Expand the marking stack, if we have to and if we can.
1388   if (_markStack.should_expand()) {
1389     _markStack.expand();
1390   }
1391 
1392   // Statistics
1393   double now = os::elapsedTime();
1394   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1395   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1396   _remark_times.add((now - start) * 1000.0);
1397 
1398   g1p->record_concurrent_mark_remark_end();
1399 
1400   G1CMIsAliveClosure is_alive(g1h);
1401   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1402 }
1403 
1404 // Base class of the closures that finalize and verify the
1405 // liveness counting data.
1406 class CMCountDataClosureBase: public HeapRegionClosure {
1407 protected:
1408   G1CollectedHeap* _g1h;
1409   ConcurrentMark* _cm;
1410   CardTableModRefBS* _ct_bs;
1411 
1412   BitMap* _region_bm;
1413   BitMap* _card_bm;
1414 
1415   // Takes a region that's not empty (i.e., it has at least one
1416   // live object in it and sets its corresponding bit on the region
1417   // bitmap to 1. If the region is "starts humongous" it will also set
1418   // to 1 the bits on the region bitmap that correspond to its
1419   // associated "continues humongous" regions.
1420   void set_bit_for_region(HeapRegion* hr) {
1421     assert(!hr->is_continues_humongous(), "should have filtered those out");
1422 
1423     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1424     if (!hr->is_starts_humongous()) {
1425       // Normal (non-humongous) case: just set the bit.
1426       _region_bm->par_at_put(index, true);
1427     } else {
1428       // Starts humongous case: calculate how many regions are part of
1429       // this humongous region and then set the bit range.
1430       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1431       _region_bm->par_at_put_range(index, end_index, true);
1432     }
1433   }
1434 
1435 public:
1436   CMCountDataClosureBase(G1CollectedHeap* g1h,
1437                          BitMap* region_bm, BitMap* card_bm):
1438     _g1h(g1h), _cm(g1h->concurrent_mark()),
1439     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1440     _region_bm(region_bm), _card_bm(card_bm) { }
1441 };
1442 
1443 // Closure that calculates the # live objects per region. Used
1444 // for verification purposes during the cleanup pause.
1445 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1446   CMBitMapRO* _bm;
1447   size_t _region_marked_bytes;
1448 
1449 public:
1450   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1451                          BitMap* region_bm, BitMap* card_bm) :
1452     CMCountDataClosureBase(g1h, region_bm, card_bm),
1453     _bm(bm), _region_marked_bytes(0) { }
1454 
1455   bool doHeapRegion(HeapRegion* hr) {
1456 
1457     if (hr->is_continues_humongous()) {
1458       // We will ignore these here and process them when their
1459       // associated "starts humongous" region is processed (see
1460       // set_bit_for_heap_region()). Note that we cannot rely on their
1461       // associated "starts humongous" region to have their bit set to
1462       // 1 since, due to the region chunking in the parallel region
1463       // iteration, a "continues humongous" region might be visited
1464       // before its associated "starts humongous".
1465       return false;
1466     }
1467 
1468     HeapWord* ntams = hr->next_top_at_mark_start();
1469     HeapWord* start = hr->bottom();
1470 
1471     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1472            err_msg("Preconditions not met - "
1473                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1474                    p2i(start), p2i(ntams), p2i(hr->end())));
1475 
1476     // Find the first marked object at or after "start".
1477     start = _bm->getNextMarkedWordAddress(start, ntams);
1478 
1479     size_t marked_bytes = 0;
1480 
1481     while (start < ntams) {
1482       oop obj = oop(start);
1483       int obj_sz = obj->size();
1484       HeapWord* obj_end = start + obj_sz;
1485 
1486       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1487       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1488 
1489       // Note: if we're looking at the last region in heap - obj_end
1490       // could be actually just beyond the end of the heap; end_idx
1491       // will then correspond to a (non-existent) card that is also
1492       // just beyond the heap.
1493       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1494         // end of object is not card aligned - increment to cover
1495         // all the cards spanned by the object
1496         end_idx += 1;
1497       }
1498 
1499       // Set the bits in the card BM for the cards spanned by this object.
1500       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1501 
1502       // Add the size of this object to the number of marked bytes.
1503       marked_bytes += (size_t)obj_sz * HeapWordSize;
1504 
1505       // Find the next marked object after this one.
1506       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1507     }
1508 
1509     // Mark the allocated-since-marking portion...
1510     HeapWord* top = hr->top();
1511     if (ntams < top) {
1512       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1513       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1514 
1515       // Note: if we're looking at the last region in heap - top
1516       // could be actually just beyond the end of the heap; end_idx
1517       // will then correspond to a (non-existent) card that is also
1518       // just beyond the heap.
1519       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1520         // end of object is not card aligned - increment to cover
1521         // all the cards spanned by the object
1522         end_idx += 1;
1523       }
1524       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1525 
1526       // This definitely means the region has live objects.
1527       set_bit_for_region(hr);
1528     }
1529 
1530     // Update the live region bitmap.
1531     if (marked_bytes > 0) {
1532       set_bit_for_region(hr);
1533     }
1534 
1535     // Set the marked bytes for the current region so that
1536     // it can be queried by a calling verification routine
1537     _region_marked_bytes = marked_bytes;
1538 
1539     return false;
1540   }
1541 
1542   size_t region_marked_bytes() const { return _region_marked_bytes; }
1543 };
1544 
1545 // Heap region closure used for verifying the counting data
1546 // that was accumulated concurrently and aggregated during
1547 // the remark pause. This closure is applied to the heap
1548 // regions during the STW cleanup pause.
1549 
1550 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1551   G1CollectedHeap* _g1h;
1552   ConcurrentMark* _cm;
1553   CalcLiveObjectsClosure _calc_cl;
1554   BitMap* _region_bm;   // Region BM to be verified
1555   BitMap* _card_bm;     // Card BM to be verified
1556   bool _verbose;        // verbose output?
1557 
1558   BitMap* _exp_region_bm; // Expected Region BM values
1559   BitMap* _exp_card_bm;   // Expected card BM values
1560 
1561   int _failures;
1562 
1563 public:
1564   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1565                                 BitMap* region_bm,
1566                                 BitMap* card_bm,
1567                                 BitMap* exp_region_bm,
1568                                 BitMap* exp_card_bm,
1569                                 bool verbose) :
1570     _g1h(g1h), _cm(g1h->concurrent_mark()),
1571     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1572     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1573     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1574     _failures(0) { }
1575 
1576   int failures() const { return _failures; }
1577 
1578   bool doHeapRegion(HeapRegion* hr) {
1579     if (hr->is_continues_humongous()) {
1580       // We will ignore these here and process them when their
1581       // associated "starts humongous" region is processed (see
1582       // set_bit_for_heap_region()). Note that we cannot rely on their
1583       // associated "starts humongous" region to have their bit set to
1584       // 1 since, due to the region chunking in the parallel region
1585       // iteration, a "continues humongous" region might be visited
1586       // before its associated "starts humongous".
1587       return false;
1588     }
1589 
1590     int failures = 0;
1591 
1592     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1593     // this region and set the corresponding bits in the expected region
1594     // and card bitmaps.
1595     bool res = _calc_cl.doHeapRegion(hr);
1596     assert(res == false, "should be continuing");
1597 
1598     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1599                     Mutex::_no_safepoint_check_flag);
1600 
1601     // Verify the marked bytes for this region.
1602     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1603     size_t act_marked_bytes = hr->next_marked_bytes();
1604 
1605     // We're not OK if expected marked bytes > actual marked bytes. It means
1606     // we have missed accounting some objects during the actual marking.
1607     if (exp_marked_bytes > act_marked_bytes) {
1608       if (_verbose) {
1609         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1610                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1611                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1612       }
1613       failures += 1;
1614     }
1615 
1616     // Verify the bit, for this region, in the actual and expected
1617     // (which was just calculated) region bit maps.
1618     // We're not OK if the bit in the calculated expected region
1619     // bitmap is set and the bit in the actual region bitmap is not.
1620     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1621 
1622     bool expected = _exp_region_bm->at(index);
1623     bool actual = _region_bm->at(index);
1624     if (expected && !actual) {
1625       if (_verbose) {
1626         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1627                                "expected: %s, actual: %s",
1628                                hr->hrm_index(),
1629                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1630       }
1631       failures += 1;
1632     }
1633 
1634     // Verify that the card bit maps for the cards spanned by the current
1635     // region match. We have an error if we have a set bit in the expected
1636     // bit map and the corresponding bit in the actual bitmap is not set.
1637 
1638     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1639     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1640 
1641     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1642       expected = _exp_card_bm->at(i);
1643       actual = _card_bm->at(i);
1644 
1645       if (expected && !actual) {
1646         if (_verbose) {
1647           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1648                                  "expected: %s, actual: %s",
1649                                  hr->hrm_index(), i,
1650                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1651         }
1652         failures += 1;
1653       }
1654     }
1655 
1656     if (failures > 0 && _verbose)  {
1657       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1658                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1659                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1660                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1661     }
1662 
1663     _failures += failures;
1664 
1665     // We could stop iteration over the heap when we
1666     // find the first violating region by returning true.
1667     return false;
1668   }
1669 };
1670 
1671 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1672 protected:
1673   G1CollectedHeap* _g1h;
1674   ConcurrentMark* _cm;
1675   BitMap* _actual_region_bm;
1676   BitMap* _actual_card_bm;
1677 
1678   uint    _n_workers;
1679 
1680   BitMap* _expected_region_bm;
1681   BitMap* _expected_card_bm;
1682 
1683   int  _failures;
1684   bool _verbose;
1685 
1686 public:
1687   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1688                             BitMap* region_bm, BitMap* card_bm,
1689                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1690     : AbstractGangTask("G1 verify final counting"),
1691       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1692       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1693       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1694       _failures(0), _verbose(false),
1695       _n_workers(0) {
1696     assert(VerifyDuringGC, "don't call this otherwise");
1697 
1698     // Use the value already set as the number of active threads
1699     // in the call to run_task().
1700     if (G1CollectedHeap::use_parallel_gc_threads()) {
1701       assert( _g1h->workers()->active_workers() > 0,
1702         "Should have been previously set");
1703       _n_workers = _g1h->workers()->active_workers();
1704     } else {
1705       _n_workers = 1;
1706     }
1707 
1708     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1709     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1710 
1711     _verbose = _cm->verbose_medium();
1712   }
1713 
1714   void work(uint worker_id) {
1715     assert(worker_id < _n_workers, "invariant");
1716 
1717     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1718                                             _actual_region_bm, _actual_card_bm,
1719                                             _expected_region_bm,
1720                                             _expected_card_bm,
1721                                             _verbose);
1722 
1723     if (G1CollectedHeap::use_parallel_gc_threads()) {
1724       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1725                                             worker_id,
1726                                             _n_workers,
1727                                             HeapRegion::VerifyCountClaimValue);
1728     } else {
1729       _g1h->heap_region_iterate(&verify_cl);
1730     }
1731 
1732     Atomic::add(verify_cl.failures(), &_failures);
1733   }
1734 
1735   int failures() const { return _failures; }
1736 };
1737 
1738 // Closure that finalizes the liveness counting data.
1739 // Used during the cleanup pause.
1740 // Sets the bits corresponding to the interval [NTAMS, top]
1741 // (which contains the implicitly live objects) in the
1742 // card liveness bitmap. Also sets the bit for each region,
1743 // containing live data, in the region liveness bitmap.
1744 
1745 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1746  public:
1747   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1748                               BitMap* region_bm,
1749                               BitMap* card_bm) :
1750     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1751 
1752   bool doHeapRegion(HeapRegion* hr) {
1753 
1754     if (hr->is_continues_humongous()) {
1755       // We will ignore these here and process them when their
1756       // associated "starts humongous" region is processed (see
1757       // set_bit_for_heap_region()). Note that we cannot rely on their
1758       // associated "starts humongous" region to have their bit set to
1759       // 1 since, due to the region chunking in the parallel region
1760       // iteration, a "continues humongous" region might be visited
1761       // before its associated "starts humongous".
1762       return false;
1763     }
1764 
1765     HeapWord* ntams = hr->next_top_at_mark_start();
1766     HeapWord* top   = hr->top();
1767 
1768     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1769 
1770     // Mark the allocated-since-marking portion...
1771     if (ntams < top) {
1772       // This definitely means the region has live objects.
1773       set_bit_for_region(hr);
1774 
1775       // Now set the bits in the card bitmap for [ntams, top)
1776       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1777       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1778 
1779       // Note: if we're looking at the last region in heap - top
1780       // could be actually just beyond the end of the heap; end_idx
1781       // will then correspond to a (non-existent) card that is also
1782       // just beyond the heap.
1783       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1784         // end of object is not card aligned - increment to cover
1785         // all the cards spanned by the object
1786         end_idx += 1;
1787       }
1788 
1789       assert(end_idx <= _card_bm->size(),
1790              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1791                      end_idx, _card_bm->size()));
1792       assert(start_idx < _card_bm->size(),
1793              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1794                      start_idx, _card_bm->size()));
1795 
1796       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1797     }
1798 
1799     // Set the bit for the region if it contains live data
1800     if (hr->next_marked_bytes() > 0) {
1801       set_bit_for_region(hr);
1802     }
1803 
1804     return false;
1805   }
1806 };
1807 
1808 class G1ParFinalCountTask: public AbstractGangTask {
1809 protected:
1810   G1CollectedHeap* _g1h;
1811   ConcurrentMark* _cm;
1812   BitMap* _actual_region_bm;
1813   BitMap* _actual_card_bm;
1814 
1815   uint    _n_workers;
1816 
1817 public:
1818   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1819     : AbstractGangTask("G1 final counting"),
1820       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1821       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1822       _n_workers(0) {
1823     // Use the value already set as the number of active threads
1824     // in the call to run_task().
1825     if (G1CollectedHeap::use_parallel_gc_threads()) {
1826       assert( _g1h->workers()->active_workers() > 0,
1827         "Should have been previously set");
1828       _n_workers = _g1h->workers()->active_workers();
1829     } else {
1830       _n_workers = 1;
1831     }
1832   }
1833 
1834   void work(uint worker_id) {
1835     assert(worker_id < _n_workers, "invariant");
1836 
1837     FinalCountDataUpdateClosure final_update_cl(_g1h,
1838                                                 _actual_region_bm,
1839                                                 _actual_card_bm);
1840 
1841     if (G1CollectedHeap::use_parallel_gc_threads()) {
1842       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1843                                             worker_id,
1844                                             _n_workers,
1845                                             HeapRegion::FinalCountClaimValue);
1846     } else {
1847       _g1h->heap_region_iterate(&final_update_cl);
1848     }
1849   }
1850 };
1851 
1852 class G1ParNoteEndTask;
1853 
1854 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1855   G1CollectedHeap* _g1;
1856   size_t _max_live_bytes;
1857   uint _regions_claimed;
1858   size_t _freed_bytes;
1859   FreeRegionList* _local_cleanup_list;
1860   HeapRegionSetCount _old_regions_removed;
1861   HeapRegionSetCount _humongous_regions_removed;
1862   HRRSCleanupTask* _hrrs_cleanup_task;
1863   double _claimed_region_time;
1864   double _max_region_time;
1865 
1866 public:
1867   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1868                              FreeRegionList* local_cleanup_list,
1869                              HRRSCleanupTask* hrrs_cleanup_task) :
1870     _g1(g1),
1871     _max_live_bytes(0), _regions_claimed(0),
1872     _freed_bytes(0),
1873     _claimed_region_time(0.0), _max_region_time(0.0),
1874     _local_cleanup_list(local_cleanup_list),
1875     _old_regions_removed(),
1876     _humongous_regions_removed(),
1877     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1878 
1879   size_t freed_bytes() { return _freed_bytes; }
1880   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1881   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1882 
1883   bool doHeapRegion(HeapRegion *hr) {
1884     if (hr->is_continues_humongous()) {
1885       return false;
1886     }
1887     // We use a claim value of zero here because all regions
1888     // were claimed with value 1 in the FinalCount task.
1889     _g1->reset_gc_time_stamps(hr);
1890     double start = os::elapsedTime();
1891     _regions_claimed++;
1892     hr->note_end_of_marking();
1893     _max_live_bytes += hr->max_live_bytes();
1894 
1895     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1896       _freed_bytes += hr->used();
1897       hr->set_containing_set(NULL);
1898       if (hr->is_humongous()) {
1899         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1900         _humongous_regions_removed.increment(1u, hr->capacity());
1901         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1902       } else {
1903         _old_regions_removed.increment(1u, hr->capacity());
1904         _g1->free_region(hr, _local_cleanup_list, true);
1905       }
1906     } else {
1907       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1908     }
1909 
1910     double region_time = (os::elapsedTime() - start);
1911     _claimed_region_time += region_time;
1912     if (region_time > _max_region_time) {
1913       _max_region_time = region_time;
1914     }
1915     return false;
1916   }
1917 
1918   size_t max_live_bytes() { return _max_live_bytes; }
1919   uint regions_claimed() { return _regions_claimed; }
1920   double claimed_region_time_sec() { return _claimed_region_time; }
1921   double max_region_time_sec() { return _max_region_time; }
1922 };
1923 
1924 class G1ParNoteEndTask: public AbstractGangTask {
1925   friend class G1NoteEndOfConcMarkClosure;
1926 
1927 protected:
1928   G1CollectedHeap* _g1h;
1929   size_t _max_live_bytes;
1930   size_t _freed_bytes;
1931   FreeRegionList* _cleanup_list;
1932 
1933 public:
1934   G1ParNoteEndTask(G1CollectedHeap* g1h,
1935                    FreeRegionList* cleanup_list) :
1936     AbstractGangTask("G1 note end"), _g1h(g1h),
1937     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1938 
1939   void work(uint worker_id) {
1940     double start = os::elapsedTime();
1941     FreeRegionList local_cleanup_list("Local Cleanup List");
1942     HRRSCleanupTask hrrs_cleanup_task;
1943     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1944                                            &hrrs_cleanup_task);
1945     if (G1CollectedHeap::use_parallel_gc_threads()) {
1946       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1947                                             _g1h->workers()->active_workers(),
1948                                             HeapRegion::NoteEndClaimValue);
1949     } else {
1950       _g1h->heap_region_iterate(&g1_note_end);
1951     }
1952     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1953 
1954     // Now update the lists
1955     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1956     {
1957       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1958       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1959       _max_live_bytes += g1_note_end.max_live_bytes();
1960       _freed_bytes += g1_note_end.freed_bytes();
1961 
1962       // If we iterate over the global cleanup list at the end of
1963       // cleanup to do this printing we will not guarantee to only
1964       // generate output for the newly-reclaimed regions (the list
1965       // might not be empty at the beginning of cleanup; we might
1966       // still be working on its previous contents). So we do the
1967       // printing here, before we append the new regions to the global
1968       // cleanup list.
1969 
1970       G1HRPrinter* hr_printer = _g1h->hr_printer();
1971       if (hr_printer->is_active()) {
1972         FreeRegionListIterator iter(&local_cleanup_list);
1973         while (iter.more_available()) {
1974           HeapRegion* hr = iter.get_next();
1975           hr_printer->cleanup(hr);
1976         }
1977       }
1978 
1979       _cleanup_list->add_ordered(&local_cleanup_list);
1980       assert(local_cleanup_list.is_empty(), "post-condition");
1981 
1982       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1983     }
1984   }
1985   size_t max_live_bytes() { return _max_live_bytes; }
1986   size_t freed_bytes() { return _freed_bytes; }
1987 };
1988 
1989 class G1ParScrubRemSetTask: public AbstractGangTask {
1990 protected:
1991   G1RemSet* _g1rs;
1992   BitMap* _region_bm;
1993   BitMap* _card_bm;
1994 public:
1995   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1996                        BitMap* region_bm, BitMap* card_bm) :
1997     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1998     _region_bm(region_bm), _card_bm(card_bm) { }
1999 
2000   void work(uint worker_id) {
2001     if (G1CollectedHeap::use_parallel_gc_threads()) {
2002       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
2003                        HeapRegion::ScrubRemSetClaimValue);
2004     } else {
2005       _g1rs->scrub(_region_bm, _card_bm);
2006     }
2007   }
2008 
2009 };
2010 
2011 void ConcurrentMark::cleanup() {
2012   // world is stopped at this checkpoint
2013   assert(SafepointSynchronize::is_at_safepoint(),
2014          "world should be stopped");
2015   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2016 
2017   // If a full collection has happened, we shouldn't do this.
2018   if (has_aborted()) {
2019     g1h->set_marking_complete(); // So bitmap clearing isn't confused
2020     return;
2021   }
2022 
2023   g1h->verify_region_sets_optional();
2024 
2025   if (VerifyDuringGC) {
2026     HandleMark hm;  // handle scope
2027     Universe::heap()->prepare_for_verify();
2028     Universe::verify(VerifyOption_G1UsePrevMarking,
2029                      " VerifyDuringGC:(before)");
2030   }
2031   g1h->check_bitmaps("Cleanup Start");
2032 
2033   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
2034   g1p->record_concurrent_mark_cleanup_start();
2035 
2036   double start = os::elapsedTime();
2037 
2038   HeapRegionRemSet::reset_for_cleanup_tasks();
2039 
2040   uint n_workers;
2041 
2042   // Do counting once more with the world stopped for good measure.
2043   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
2044 
2045   if (G1CollectedHeap::use_parallel_gc_threads()) {
2046    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2047            "sanity check");
2048 
2049     g1h->set_par_threads();
2050     n_workers = g1h->n_par_threads();
2051     assert(g1h->n_par_threads() == n_workers,
2052            "Should not have been reset");
2053     g1h->workers()->run_task(&g1_par_count_task);
2054     // Done with the parallel phase so reset to 0.
2055     g1h->set_par_threads(0);
2056 
2057     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2058            "sanity check");
2059   } else {
2060     n_workers = 1;
2061     g1_par_count_task.work(0);
2062   }
2063 
2064   if (VerifyDuringGC) {
2065     // Verify that the counting data accumulated during marking matches
2066     // that calculated by walking the marking bitmap.
2067 
2068     // Bitmaps to hold expected values
2069     BitMap expected_region_bm(_region_bm.size(), true);
2070     BitMap expected_card_bm(_card_bm.size(), true);
2071 
2072     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2073                                                  &_region_bm,
2074                                                  &_card_bm,
2075                                                  &expected_region_bm,
2076                                                  &expected_card_bm);
2077 
2078     if (G1CollectedHeap::use_parallel_gc_threads()) {
2079       g1h->set_par_threads((int)n_workers);
2080       g1h->workers()->run_task(&g1_par_verify_task);
2081       // Done with the parallel phase so reset to 0.
2082       g1h->set_par_threads(0);
2083 
2084       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2085              "sanity check");
2086     } else {
2087       g1_par_verify_task.work(0);
2088     }
2089 
2090     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2091   }
2092 
2093   size_t start_used_bytes = g1h->used();
2094   g1h->set_marking_complete();
2095 
2096   double count_end = os::elapsedTime();
2097   double this_final_counting_time = (count_end - start);
2098   _total_counting_time += this_final_counting_time;
2099 
2100   if (G1PrintRegionLivenessInfo) {
2101     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2102     _g1h->heap_region_iterate(&cl);
2103   }
2104 
2105   // Install newly created mark bitMap as "prev".
2106   swapMarkBitMaps();
2107 
2108   g1h->reset_gc_time_stamp();
2109 
2110   // Note end of marking in all heap regions.
2111   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2112   if (G1CollectedHeap::use_parallel_gc_threads()) {
2113     g1h->set_par_threads((int)n_workers);
2114     g1h->workers()->run_task(&g1_par_note_end_task);
2115     g1h->set_par_threads(0);
2116 
2117     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2118            "sanity check");
2119   } else {
2120     g1_par_note_end_task.work(0);
2121   }
2122   g1h->check_gc_time_stamps();
2123 
2124   if (!cleanup_list_is_empty()) {
2125     // The cleanup list is not empty, so we'll have to process it
2126     // concurrently. Notify anyone else that might be wanting free
2127     // regions that there will be more free regions coming soon.
2128     g1h->set_free_regions_coming();
2129   }
2130 
2131   // call below, since it affects the metric by which we sort the heap
2132   // regions.
2133   if (G1ScrubRemSets) {
2134     double rs_scrub_start = os::elapsedTime();
2135     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2136     if (G1CollectedHeap::use_parallel_gc_threads()) {
2137       g1h->set_par_threads((int)n_workers);
2138       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2139       g1h->set_par_threads(0);
2140 
2141       assert(g1h->check_heap_region_claim_values(
2142                                             HeapRegion::ScrubRemSetClaimValue),
2143              "sanity check");
2144     } else {
2145       g1_par_scrub_rs_task.work(0);
2146     }
2147 
2148     double rs_scrub_end = os::elapsedTime();
2149     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2150     _total_rs_scrub_time += this_rs_scrub_time;
2151   }
2152 
2153   // this will also free any regions totally full of garbage objects,
2154   // and sort the regions.
2155   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2156 
2157   // Statistics.
2158   double end = os::elapsedTime();
2159   _cleanup_times.add((end - start) * 1000.0);
2160 
2161   if (G1Log::fine()) {
2162     g1h->print_size_transition(gclog_or_tty,
2163                                start_used_bytes,
2164                                g1h->used(),
2165                                g1h->capacity());
2166   }
2167 
2168   // Clean up will have freed any regions completely full of garbage.
2169   // Update the soft reference policy with the new heap occupancy.
2170   Universe::update_heap_info_at_gc();
2171 
2172   if (VerifyDuringGC) {
2173     HandleMark hm;  // handle scope
2174     Universe::heap()->prepare_for_verify();
2175     Universe::verify(VerifyOption_G1UsePrevMarking,
2176                      " VerifyDuringGC:(after)");
2177   }
2178 
2179   g1h->check_bitmaps("Cleanup End");
2180 
2181   g1h->verify_region_sets_optional();
2182 
2183   // We need to make this be a "collection" so any collection pause that
2184   // races with it goes around and waits for completeCleanup to finish.
2185   g1h->increment_total_collections();
2186 
2187   // Clean out dead classes and update Metaspace sizes.
2188   if (ClassUnloadingWithConcurrentMark) {
2189     ClassLoaderDataGraph::purge();
2190   }
2191   MetaspaceGC::compute_new_size();
2192 
2193   // We reclaimed old regions so we should calculate the sizes to make
2194   // sure we update the old gen/space data.
2195   g1h->g1mm()->update_sizes();
2196 
2197   g1h->trace_heap_after_concurrent_cycle();
2198 }
2199 
2200 void ConcurrentMark::completeCleanup() {
2201   if (has_aborted()) return;
2202 
2203   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2204 
2205   _cleanup_list.verify_optional();
2206   FreeRegionList tmp_free_list("Tmp Free List");
2207 
2208   if (G1ConcRegionFreeingVerbose) {
2209     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2210                            "cleanup list has %u entries",
2211                            _cleanup_list.length());
2212   }
2213 
2214   // No one else should be accessing the _cleanup_list at this point,
2215   // so it is not necessary to take any locks
2216   while (!_cleanup_list.is_empty()) {
2217     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2218     assert(hr != NULL, "Got NULL from a non-empty list");
2219     hr->par_clear();
2220     tmp_free_list.add_ordered(hr);
2221 
2222     // Instead of adding one region at a time to the secondary_free_list,
2223     // we accumulate them in the local list and move them a few at a
2224     // time. This also cuts down on the number of notify_all() calls
2225     // we do during this process. We'll also append the local list when
2226     // _cleanup_list is empty (which means we just removed the last
2227     // region from the _cleanup_list).
2228     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2229         _cleanup_list.is_empty()) {
2230       if (G1ConcRegionFreeingVerbose) {
2231         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2232                                "appending %u entries to the secondary_free_list, "
2233                                "cleanup list still has %u entries",
2234                                tmp_free_list.length(),
2235                                _cleanup_list.length());
2236       }
2237 
2238       {
2239         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2240         g1h->secondary_free_list_add(&tmp_free_list);
2241         SecondaryFreeList_lock->notify_all();
2242       }
2243 
2244       if (G1StressConcRegionFreeing) {
2245         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2246           os::sleep(Thread::current(), (jlong) 1, false);
2247         }
2248       }
2249     }
2250   }
2251   assert(tmp_free_list.is_empty(), "post-condition");
2252 }
2253 
2254 // Supporting Object and Oop closures for reference discovery
2255 // and processing in during marking
2256 
2257 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2258   HeapWord* addr = (HeapWord*)obj;
2259   return addr != NULL &&
2260          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2261 }
2262 
2263 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2264 // Uses the CMTask associated with a worker thread (for serial reference
2265 // processing the CMTask for worker 0 is used) to preserve (mark) and
2266 // trace referent objects.
2267 //
2268 // Using the CMTask and embedded local queues avoids having the worker
2269 // threads operating on the global mark stack. This reduces the risk
2270 // of overflowing the stack - which we would rather avoid at this late
2271 // state. Also using the tasks' local queues removes the potential
2272 // of the workers interfering with each other that could occur if
2273 // operating on the global stack.
2274 
2275 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2276   ConcurrentMark* _cm;
2277   CMTask*         _task;
2278   int             _ref_counter_limit;
2279   int             _ref_counter;
2280   bool            _is_serial;
2281  public:
2282   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2283     _cm(cm), _task(task), _is_serial(is_serial),
2284     _ref_counter_limit(G1RefProcDrainInterval) {
2285     assert(_ref_counter_limit > 0, "sanity");
2286     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2287     _ref_counter = _ref_counter_limit;
2288   }
2289 
2290   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2291   virtual void do_oop(      oop* p) { do_oop_work(p); }
2292 
2293   template <class T> void do_oop_work(T* p) {
2294     if (!_cm->has_overflown()) {
2295       oop obj = oopDesc::load_decode_heap_oop(p);
2296       if (_cm->verbose_high()) {
2297         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2298                                "*"PTR_FORMAT" = "PTR_FORMAT,
2299                                _task->worker_id(), p2i(p), p2i((void*) obj));
2300       }
2301 
2302       _task->deal_with_reference(obj);
2303       _ref_counter--;
2304 
2305       if (_ref_counter == 0) {
2306         // We have dealt with _ref_counter_limit references, pushing them
2307         // and objects reachable from them on to the local stack (and
2308         // possibly the global stack). Call CMTask::do_marking_step() to
2309         // process these entries.
2310         //
2311         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2312         // there's nothing more to do (i.e. we're done with the entries that
2313         // were pushed as a result of the CMTask::deal_with_reference() calls
2314         // above) or we overflow.
2315         //
2316         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2317         // flag while there may still be some work to do. (See the comment at
2318         // the beginning of CMTask::do_marking_step() for those conditions -
2319         // one of which is reaching the specified time target.) It is only
2320         // when CMTask::do_marking_step() returns without setting the
2321         // has_aborted() flag that the marking step has completed.
2322         do {
2323           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2324           _task->do_marking_step(mark_step_duration_ms,
2325                                  false      /* do_termination */,
2326                                  _is_serial);
2327         } while (_task->has_aborted() && !_cm->has_overflown());
2328         _ref_counter = _ref_counter_limit;
2329       }
2330     } else {
2331       if (_cm->verbose_high()) {
2332          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2333       }
2334     }
2335   }
2336 };
2337 
2338 // 'Drain' oop closure used by both serial and parallel reference processing.
2339 // Uses the CMTask associated with a given worker thread (for serial
2340 // reference processing the CMtask for worker 0 is used). Calls the
2341 // do_marking_step routine, with an unbelievably large timeout value,
2342 // to drain the marking data structures of the remaining entries
2343 // added by the 'keep alive' oop closure above.
2344 
2345 class G1CMDrainMarkingStackClosure: public VoidClosure {
2346   ConcurrentMark* _cm;
2347   CMTask*         _task;
2348   bool            _is_serial;
2349  public:
2350   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2351     _cm(cm), _task(task), _is_serial(is_serial) {
2352     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2353   }
2354 
2355   void do_void() {
2356     do {
2357       if (_cm->verbose_high()) {
2358         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2359                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2360       }
2361 
2362       // We call CMTask::do_marking_step() to completely drain the local
2363       // and global marking stacks of entries pushed by the 'keep alive'
2364       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2365       //
2366       // CMTask::do_marking_step() is called in a loop, which we'll exit
2367       // if there's nothing more to do (i.e. we've completely drained the
2368       // entries that were pushed as a a result of applying the 'keep alive'
2369       // closure to the entries on the discovered ref lists) or we overflow
2370       // the global marking stack.
2371       //
2372       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2373       // flag while there may still be some work to do. (See the comment at
2374       // the beginning of CMTask::do_marking_step() for those conditions -
2375       // one of which is reaching the specified time target.) It is only
2376       // when CMTask::do_marking_step() returns without setting the
2377       // has_aborted() flag that the marking step has completed.
2378 
2379       _task->do_marking_step(1000000000.0 /* something very large */,
2380                              true         /* do_termination */,
2381                              _is_serial);
2382     } while (_task->has_aborted() && !_cm->has_overflown());
2383   }
2384 };
2385 
2386 // Implementation of AbstractRefProcTaskExecutor for parallel
2387 // reference processing at the end of G1 concurrent marking
2388 
2389 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2390 private:
2391   G1CollectedHeap* _g1h;
2392   ConcurrentMark*  _cm;
2393   WorkGang*        _workers;
2394   int              _active_workers;
2395 
2396 public:
2397   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2398                         ConcurrentMark* cm,
2399                         WorkGang* workers,
2400                         int n_workers) :
2401     _g1h(g1h), _cm(cm),
2402     _workers(workers), _active_workers(n_workers) { }
2403 
2404   // Executes the given task using concurrent marking worker threads.
2405   virtual void execute(ProcessTask& task);
2406   virtual void execute(EnqueueTask& task);
2407 };
2408 
2409 class G1CMRefProcTaskProxy: public AbstractGangTask {
2410   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2411   ProcessTask&     _proc_task;
2412   G1CollectedHeap* _g1h;
2413   ConcurrentMark*  _cm;
2414 
2415 public:
2416   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2417                      G1CollectedHeap* g1h,
2418                      ConcurrentMark* cm) :
2419     AbstractGangTask("Process reference objects in parallel"),
2420     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2421     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2422     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2423   }
2424 
2425   virtual void work(uint worker_id) {
2426     ResourceMark rm;
2427     HandleMark hm;
2428     CMTask* task = _cm->task(worker_id);
2429     G1CMIsAliveClosure g1_is_alive(_g1h);
2430     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2431     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2432 
2433     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2434   }
2435 };
2436 
2437 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2438   assert(_workers != NULL, "Need parallel worker threads.");
2439   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2440 
2441   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2442 
2443   // We need to reset the concurrency level before each
2444   // proxy task execution, so that the termination protocol
2445   // and overflow handling in CMTask::do_marking_step() knows
2446   // how many workers to wait for.
2447   _cm->set_concurrency(_active_workers);
2448   _g1h->set_par_threads(_active_workers);
2449   _workers->run_task(&proc_task_proxy);
2450   _g1h->set_par_threads(0);
2451 }
2452 
2453 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2454   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2455   EnqueueTask& _enq_task;
2456 
2457 public:
2458   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2459     AbstractGangTask("Enqueue reference objects in parallel"),
2460     _enq_task(enq_task) { }
2461 
2462   virtual void work(uint worker_id) {
2463     _enq_task.work(worker_id);
2464   }
2465 };
2466 
2467 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2468   assert(_workers != NULL, "Need parallel worker threads.");
2469   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2470 
2471   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2472 
2473   // Not strictly necessary but...
2474   //
2475   // We need to reset the concurrency level before each
2476   // proxy task execution, so that the termination protocol
2477   // and overflow handling in CMTask::do_marking_step() knows
2478   // how many workers to wait for.
2479   _cm->set_concurrency(_active_workers);
2480   _g1h->set_par_threads(_active_workers);
2481   _workers->run_task(&enq_task_proxy);
2482   _g1h->set_par_threads(0);
2483 }
2484 
2485 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2486   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2487 }
2488 
2489 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2490   if (has_overflown()) {
2491     // Skip processing the discovered references if we have
2492     // overflown the global marking stack. Reference objects
2493     // only get discovered once so it is OK to not
2494     // de-populate the discovered reference lists. We could have,
2495     // but the only benefit would be that, when marking restarts,
2496     // less reference objects are discovered.
2497     return;
2498   }
2499 
2500   ResourceMark rm;
2501   HandleMark   hm;
2502 
2503   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2504 
2505   // Is alive closure.
2506   G1CMIsAliveClosure g1_is_alive(g1h);
2507 
2508   // Inner scope to exclude the cleaning of the string and symbol
2509   // tables from the displayed time.
2510   {
2511     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2512 
2513     ReferenceProcessor* rp = g1h->ref_processor_cm();
2514 
2515     // See the comment in G1CollectedHeap::ref_processing_init()
2516     // about how reference processing currently works in G1.
2517 
2518     // Set the soft reference policy
2519     rp->setup_policy(clear_all_soft_refs);
2520     assert(_markStack.isEmpty(), "mark stack should be empty");
2521 
2522     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2523     // in serial reference processing. Note these closures are also
2524     // used for serially processing (by the the current thread) the
2525     // JNI references during parallel reference processing.
2526     //
2527     // These closures do not need to synchronize with the worker
2528     // threads involved in parallel reference processing as these
2529     // instances are executed serially by the current thread (e.g.
2530     // reference processing is not multi-threaded and is thus
2531     // performed by the current thread instead of a gang worker).
2532     //
2533     // The gang tasks involved in parallel reference processing create
2534     // their own instances of these closures, which do their own
2535     // synchronization among themselves.
2536     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2537     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2538 
2539     // We need at least one active thread. If reference processing
2540     // is not multi-threaded we use the current (VMThread) thread,
2541     // otherwise we use the work gang from the G1CollectedHeap and
2542     // we utilize all the worker threads we can.
2543     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2544     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2545     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2546 
2547     // Parallel processing task executor.
2548     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2549                                               g1h->workers(), active_workers);
2550     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2551 
2552     // Set the concurrency level. The phase was already set prior to
2553     // executing the remark task.
2554     set_concurrency(active_workers);
2555 
2556     // Set the degree of MT processing here.  If the discovery was done MT,
2557     // the number of threads involved during discovery could differ from
2558     // the number of active workers.  This is OK as long as the discovered
2559     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2560     rp->set_active_mt_degree(active_workers);
2561 
2562     // Process the weak references.
2563     const ReferenceProcessorStats& stats =
2564         rp->process_discovered_references(&g1_is_alive,
2565                                           &g1_keep_alive,
2566                                           &g1_drain_mark_stack,
2567                                           executor,
2568                                           g1h->gc_timer_cm(),
2569                                           concurrent_gc_id());
2570     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2571 
2572     // The do_oop work routines of the keep_alive and drain_marking_stack
2573     // oop closures will set the has_overflown flag if we overflow the
2574     // global marking stack.
2575 
2576     assert(_markStack.overflow() || _markStack.isEmpty(),
2577             "mark stack should be empty (unless it overflowed)");
2578 
2579     if (_markStack.overflow()) {
2580       // This should have been done already when we tried to push an
2581       // entry on to the global mark stack. But let's do it again.
2582       set_has_overflown();
2583     }
2584 
2585     assert(rp->num_q() == active_workers, "why not");
2586 
2587     rp->enqueue_discovered_references(executor);
2588 
2589     rp->verify_no_references_recorded();
2590     assert(!rp->discovery_enabled(), "Post condition");
2591   }
2592 
2593   if (has_overflown()) {
2594     // We can not trust g1_is_alive if the marking stack overflowed
2595     return;
2596   }
2597 
2598   assert(_markStack.isEmpty(), "Marking should have completed");
2599 
2600   // Unload Klasses, String, Symbols, Code Cache, etc.
2601   {
2602     G1CMTraceTime trace("Unloading", G1Log::finer());
2603 
2604     if (ClassUnloadingWithConcurrentMark) {
2605       bool purged_classes;
2606 
2607       {
2608         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2609         purged_classes = SystemDictionary::do_unloading(&g1_is_alive);
2610       }
2611 
2612       {
2613         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2614         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2615       }
2616     }
2617 
2618     if (G1StringDedup::is_enabled()) {
2619       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2620       G1StringDedup::unlink(&g1_is_alive);
2621     }
2622   }
2623 }
2624 
2625 void ConcurrentMark::swapMarkBitMaps() {
2626   CMBitMapRO* temp = _prevMarkBitMap;
2627   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2628   _nextMarkBitMap  = (CMBitMap*)  temp;
2629 }
2630 
2631 class CMObjectClosure;
2632 
2633 // Closure for iterating over objects, currently only used for
2634 // processing SATB buffers.
2635 class CMObjectClosure : public ObjectClosure {
2636 private:
2637   CMTask* _task;
2638 
2639 public:
2640   void do_object(oop obj) {
2641     _task->deal_with_reference(obj);
2642   }
2643 
2644   CMObjectClosure(CMTask* task) : _task(task) { }
2645 };
2646 
2647 class G1RemarkThreadsClosure : public ThreadClosure {
2648   CMObjectClosure _cm_obj;
2649   G1CMOopClosure _cm_cl;
2650   MarkingCodeBlobClosure _code_cl;
2651   int _thread_parity;
2652   bool _is_par;
2653 
2654  public:
2655   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task, bool is_par) :
2656     _cm_obj(task), _cm_cl(g1h, g1h->concurrent_mark(), task), _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2657     _thread_parity(SharedHeap::heap()->strong_roots_parity()), _is_par(is_par) {}
2658 
2659   void do_thread(Thread* thread) {
2660     if (thread->is_Java_thread()) {
2661       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2662         JavaThread* jt = (JavaThread*)thread;
2663 
2664         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2665         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2666         // * Alive if on the stack of an executing method
2667         // * Weakly reachable otherwise
2668         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2669         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2670         jt->nmethods_do(&_code_cl);
2671 
2672         jt->satb_mark_queue().apply_closure_and_empty(&_cm_obj);
2673       }
2674     } else if (thread->is_VM_thread()) {
2675       if (thread->claim_oops_do(_is_par, _thread_parity)) {
2676         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_obj);
2677       }
2678     }
2679   }
2680 };
2681 
2682 class CMRemarkTask: public AbstractGangTask {
2683 private:
2684   ConcurrentMark* _cm;
2685   bool            _is_serial;
2686 public:
2687   void work(uint worker_id) {
2688     // Since all available tasks are actually started, we should
2689     // only proceed if we're supposed to be active.
2690     if (worker_id < _cm->active_tasks()) {
2691       CMTask* task = _cm->task(worker_id);
2692       task->record_start_time();
2693       {
2694         ResourceMark rm;
2695         HandleMark hm;
2696 
2697         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task, !_is_serial);
2698         Threads::threads_do(&threads_f);
2699       }
2700 
2701       do {
2702         task->do_marking_step(1000000000.0 /* something very large */,
2703                               true         /* do_termination       */,
2704                               _is_serial);
2705       } while (task->has_aborted() && !_cm->has_overflown());
2706       // If we overflow, then we do not want to restart. We instead
2707       // want to abort remark and do concurrent marking again.
2708       task->record_end_time();
2709     }
2710   }
2711 
2712   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2713     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2714     _cm->terminator()->reset_for_reuse(active_workers);
2715   }
2716 };
2717 
2718 void ConcurrentMark::checkpointRootsFinalWork() {
2719   ResourceMark rm;
2720   HandleMark   hm;
2721   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2722 
2723   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2724 
2725   g1h->ensure_parsability(false);
2726 
2727   if (G1CollectedHeap::use_parallel_gc_threads()) {
2728     G1CollectedHeap::StrongRootsScope srs(g1h);
2729     // this is remark, so we'll use up all active threads
2730     uint active_workers = g1h->workers()->active_workers();
2731     if (active_workers == 0) {
2732       assert(active_workers > 0, "Should have been set earlier");
2733       active_workers = (uint) ParallelGCThreads;
2734       g1h->workers()->set_active_workers(active_workers);
2735     }
2736     set_concurrency_and_phase(active_workers, false /* concurrent */);
2737     // Leave _parallel_marking_threads at it's
2738     // value originally calculated in the ConcurrentMark
2739     // constructor and pass values of the active workers
2740     // through the gang in the task.
2741 
2742     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2743     // We will start all available threads, even if we decide that the
2744     // active_workers will be fewer. The extra ones will just bail out
2745     // immediately.
2746     g1h->set_par_threads(active_workers);
2747     g1h->workers()->run_task(&remarkTask);
2748     g1h->set_par_threads(0);
2749   } else {
2750     G1CollectedHeap::StrongRootsScope srs(g1h);
2751     uint active_workers = 1;
2752     set_concurrency_and_phase(active_workers, false /* concurrent */);
2753 
2754     // Note - if there's no work gang then the VMThread will be
2755     // the thread to execute the remark - serially. We have
2756     // to pass true for the is_serial parameter so that
2757     // CMTask::do_marking_step() doesn't enter the sync
2758     // barriers in the event of an overflow. Doing so will
2759     // cause an assert that the current thread is not a
2760     // concurrent GC thread.
2761     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2762     remarkTask.work(0);
2763   }
2764   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2765   guarantee(has_overflown() ||
2766             satb_mq_set.completed_buffers_num() == 0,
2767             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2768                     BOOL_TO_STR(has_overflown()),
2769                     satb_mq_set.completed_buffers_num()));
2770 
2771   print_stats();
2772 }
2773 
2774 #ifndef PRODUCT
2775 
2776 class PrintReachableOopClosure: public OopClosure {
2777 private:
2778   G1CollectedHeap* _g1h;
2779   outputStream*    _out;
2780   VerifyOption     _vo;
2781   bool             _all;
2782 
2783 public:
2784   PrintReachableOopClosure(outputStream* out,
2785                            VerifyOption  vo,
2786                            bool          all) :
2787     _g1h(G1CollectedHeap::heap()),
2788     _out(out), _vo(vo), _all(all) { }
2789 
2790   void do_oop(narrowOop* p) { do_oop_work(p); }
2791   void do_oop(      oop* p) { do_oop_work(p); }
2792 
2793   template <class T> void do_oop_work(T* p) {
2794     oop         obj = oopDesc::load_decode_heap_oop(p);
2795     const char* str = NULL;
2796     const char* str2 = "";
2797 
2798     if (obj == NULL) {
2799       str = "";
2800     } else if (!_g1h->is_in_g1_reserved(obj)) {
2801       str = " O";
2802     } else {
2803       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2804       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2805       bool marked = _g1h->is_marked(obj, _vo);
2806 
2807       if (over_tams) {
2808         str = " >";
2809         if (marked) {
2810           str2 = " AND MARKED";
2811         }
2812       } else if (marked) {
2813         str = " M";
2814       } else {
2815         str = " NOT";
2816       }
2817     }
2818 
2819     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2820                    p2i(p), p2i((void*) obj), str, str2);
2821   }
2822 };
2823 
2824 class PrintReachableObjectClosure : public ObjectClosure {
2825 private:
2826   G1CollectedHeap* _g1h;
2827   outputStream*    _out;
2828   VerifyOption     _vo;
2829   bool             _all;
2830   HeapRegion*      _hr;
2831 
2832 public:
2833   PrintReachableObjectClosure(outputStream* out,
2834                               VerifyOption  vo,
2835                               bool          all,
2836                               HeapRegion*   hr) :
2837     _g1h(G1CollectedHeap::heap()),
2838     _out(out), _vo(vo), _all(all), _hr(hr) { }
2839 
2840   void do_object(oop o) {
2841     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2842     bool marked = _g1h->is_marked(o, _vo);
2843     bool print_it = _all || over_tams || marked;
2844 
2845     if (print_it) {
2846       _out->print_cr(" "PTR_FORMAT"%s",
2847                      p2i((void *)o), (over_tams) ? " >" : (marked) ? " M" : "");
2848       PrintReachableOopClosure oopCl(_out, _vo, _all);
2849       o->oop_iterate_no_header(&oopCl);
2850     }
2851   }
2852 };
2853 
2854 class PrintReachableRegionClosure : public HeapRegionClosure {
2855 private:
2856   G1CollectedHeap* _g1h;
2857   outputStream*    _out;
2858   VerifyOption     _vo;
2859   bool             _all;
2860 
2861 public:
2862   bool doHeapRegion(HeapRegion* hr) {
2863     HeapWord* b = hr->bottom();
2864     HeapWord* e = hr->end();
2865     HeapWord* t = hr->top();
2866     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2867     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2868                    "TAMS: " PTR_FORMAT, p2i(b), p2i(e), p2i(t), p2i(p));
2869     _out->cr();
2870 
2871     HeapWord* from = b;
2872     HeapWord* to   = t;
2873 
2874     if (to > from) {
2875       _out->print_cr("Objects in [" PTR_FORMAT ", " PTR_FORMAT "]", p2i(from), p2i(to));
2876       _out->cr();
2877       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2878       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2879       _out->cr();
2880     }
2881 
2882     return false;
2883   }
2884 
2885   PrintReachableRegionClosure(outputStream* out,
2886                               VerifyOption  vo,
2887                               bool          all) :
2888     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2889 };
2890 
2891 void ConcurrentMark::print_reachable(const char* str,
2892                                      VerifyOption vo,
2893                                      bool all) {
2894   gclog_or_tty->cr();
2895   gclog_or_tty->print_cr("== Doing heap dump... ");
2896 
2897   if (G1PrintReachableBaseFile == NULL) {
2898     gclog_or_tty->print_cr("  #### error: no base file defined");
2899     return;
2900   }
2901 
2902   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2903       (JVM_MAXPATHLEN - 1)) {
2904     gclog_or_tty->print_cr("  #### error: file name too long");
2905     return;
2906   }
2907 
2908   char file_name[JVM_MAXPATHLEN];
2909   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2910   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2911 
2912   fileStream fout(file_name);
2913   if (!fout.is_open()) {
2914     gclog_or_tty->print_cr("  #### error: could not open file");
2915     return;
2916   }
2917 
2918   outputStream* out = &fout;
2919   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2920   out->cr();
2921 
2922   out->print_cr("--- ITERATING OVER REGIONS");
2923   out->cr();
2924   PrintReachableRegionClosure rcl(out, vo, all);
2925   _g1h->heap_region_iterate(&rcl);
2926   out->cr();
2927 
2928   gclog_or_tty->print_cr("  done");
2929   gclog_or_tty->flush();
2930 }
2931 
2932 #endif // PRODUCT
2933 
2934 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2935   // Note we are overriding the read-only view of the prev map here, via
2936   // the cast.
2937   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2938 }
2939 
2940 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2941   _nextMarkBitMap->clearRange(mr);
2942 }
2943 
2944 HeapRegion*
2945 ConcurrentMark::claim_region(uint worker_id) {
2946   // "checkpoint" the finger
2947   HeapWord* finger = _finger;
2948 
2949   // _heap_end will not change underneath our feet; it only changes at
2950   // yield points.
2951   while (finger < _heap_end) {
2952     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2953 
2954     // Note on how this code handles humongous regions. In the
2955     // normal case the finger will reach the start of a "starts
2956     // humongous" (SH) region. Its end will either be the end of the
2957     // last "continues humongous" (CH) region in the sequence, or the
2958     // standard end of the SH region (if the SH is the only region in
2959     // the sequence). That way claim_region() will skip over the CH
2960     // regions. However, there is a subtle race between a CM thread
2961     // executing this method and a mutator thread doing a humongous
2962     // object allocation. The two are not mutually exclusive as the CM
2963     // thread does not need to hold the Heap_lock when it gets
2964     // here. So there is a chance that claim_region() will come across
2965     // a free region that's in the progress of becoming a SH or a CH
2966     // region. In the former case, it will either
2967     //   a) Miss the update to the region's end, in which case it will
2968     //      visit every subsequent CH region, will find their bitmaps
2969     //      empty, and do nothing, or
2970     //   b) Will observe the update of the region's end (in which case
2971     //      it will skip the subsequent CH regions).
2972     // If it comes across a region that suddenly becomes CH, the
2973     // scenario will be similar to b). So, the race between
2974     // claim_region() and a humongous object allocation might force us
2975     // to do a bit of unnecessary work (due to some unnecessary bitmap
2976     // iterations) but it should not introduce and correctness issues.
2977     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2978 
2979     // Above heap_region_containing_raw may return NULL as we always scan claim
2980     // until the end of the heap. In this case, just jump to the next region.
2981     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2982 
2983     // Is the gap between reading the finger and doing the CAS too long?
2984     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2985     if (res == finger && curr_region != NULL) {
2986       // we succeeded
2987       HeapWord*   bottom        = curr_region->bottom();
2988       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2989 
2990       if (verbose_low()) {
2991         gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2992                                "["PTR_FORMAT", "PTR_FORMAT"), "
2993                                "limit = "PTR_FORMAT,
2994                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2995       }
2996 
2997       // notice that _finger == end cannot be guaranteed here since,
2998       // someone else might have moved the finger even further
2999       assert(_finger >= end, "the finger should have moved forward");
3000 
3001       if (verbose_low()) {
3002         gclog_or_tty->print_cr("[%u] we were successful with region = "
3003                                PTR_FORMAT, worker_id, p2i(curr_region));
3004       }
3005 
3006       if (limit > bottom) {
3007         if (verbose_low()) {
3008           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
3009                                  "returning it ", worker_id, p2i(curr_region));
3010         }
3011         return curr_region;
3012       } else {
3013         assert(limit == bottom,
3014                "the region limit should be at bottom");
3015         if (verbose_low()) {
3016           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
3017                                  "returning NULL", worker_id, p2i(curr_region));
3018         }
3019         // we return NULL and the caller should try calling
3020         // claim_region() again.
3021         return NULL;
3022       }
3023     } else {
3024       assert(_finger > finger, "the finger should have moved forward");
3025       if (verbose_low()) {
3026         if (curr_region == NULL) {
3027           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
3028                                  "global finger = "PTR_FORMAT", "
3029                                  "our finger = "PTR_FORMAT,
3030                                  worker_id, p2i(_finger), p2i(finger));
3031         } else {
3032           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
3033                                  "global finger = "PTR_FORMAT", "
3034                                  "our finger = "PTR_FORMAT,
3035                                  worker_id, p2i(_finger), p2i(finger));
3036         }
3037       }
3038 
3039       // read it again
3040       finger = _finger;
3041     }
3042   }
3043 
3044   return NULL;
3045 }
3046 
3047 #ifndef PRODUCT
3048 enum VerifyNoCSetOopsPhase {
3049   VerifyNoCSetOopsStack,
3050   VerifyNoCSetOopsQueues,
3051   VerifyNoCSetOopsSATBCompleted,
3052   VerifyNoCSetOopsSATBThread
3053 };
3054 
3055 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
3056 private:
3057   G1CollectedHeap* _g1h;
3058   VerifyNoCSetOopsPhase _phase;
3059   int _info;
3060 
3061   const char* phase_str() {
3062     switch (_phase) {
3063     case VerifyNoCSetOopsStack:         return "Stack";
3064     case VerifyNoCSetOopsQueues:        return "Queue";
3065     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
3066     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
3067     default:                            ShouldNotReachHere();
3068     }
3069     return NULL;
3070   }
3071 
3072   void do_object_work(oop obj) {
3073     guarantee(!_g1h->obj_in_cs(obj),
3074               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
3075                       p2i((void*) obj), phase_str(), _info));
3076   }
3077 
3078 public:
3079   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
3080 
3081   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
3082     _phase = phase;
3083     _info = info;
3084   }
3085 
3086   virtual void do_oop(oop* p) {
3087     oop obj = oopDesc::load_decode_heap_oop(p);
3088     do_object_work(obj);
3089   }
3090 
3091   virtual void do_oop(narrowOop* p) {
3092     // We should not come across narrow oops while scanning marking
3093     // stacks and SATB buffers.
3094     ShouldNotReachHere();
3095   }
3096 
3097   virtual void do_object(oop obj) {
3098     do_object_work(obj);
3099   }
3100 };
3101 
3102 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
3103                                          bool verify_enqueued_buffers,
3104                                          bool verify_thread_buffers,
3105                                          bool verify_fingers) {
3106   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
3107   if (!G1CollectedHeap::heap()->mark_in_progress()) {
3108     return;
3109   }
3110 
3111   VerifyNoCSetOopsClosure cl;
3112 
3113   if (verify_stacks) {
3114     // Verify entries on the global mark stack
3115     cl.set_phase(VerifyNoCSetOopsStack);
3116     _markStack.oops_do(&cl);
3117 
3118     // Verify entries on the task queues
3119     for (uint i = 0; i < _max_worker_id; i += 1) {
3120       cl.set_phase(VerifyNoCSetOopsQueues, i);
3121       CMTaskQueue* queue = _task_queues->queue(i);
3122       queue->oops_do(&cl);
3123     }
3124   }
3125 
3126   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
3127 
3128   // Verify entries on the enqueued SATB buffers
3129   if (verify_enqueued_buffers) {
3130     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
3131     satb_qs.iterate_completed_buffers_read_only(&cl);
3132   }
3133 
3134   // Verify entries on the per-thread SATB buffers
3135   if (verify_thread_buffers) {
3136     cl.set_phase(VerifyNoCSetOopsSATBThread);
3137     satb_qs.iterate_thread_buffers_read_only(&cl);
3138   }
3139 
3140   if (verify_fingers) {
3141     // Verify the global finger
3142     HeapWord* global_finger = finger();
3143     if (global_finger != NULL && global_finger < _heap_end) {
3144       // The global finger always points to a heap region boundary. We
3145       // use heap_region_containing_raw() to get the containing region
3146       // given that the global finger could be pointing to a free region
3147       // which subsequently becomes continues humongous. If that
3148       // happens, heap_region_containing() will return the bottom of the
3149       // corresponding starts humongous region and the check below will
3150       // not hold any more.
3151       // Since we always iterate over all regions, we might get a NULL HeapRegion
3152       // here.
3153       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3154       guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
3155                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3156                         p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
3157     }
3158 
3159     // Verify the task fingers
3160     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3161     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3162       CMTask* task = _tasks[i];
3163       HeapWord* task_finger = task->finger();
3164       if (task_finger != NULL && task_finger < _heap_end) {
3165         // See above note on the global finger verification.
3166         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3167         guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
3168                   !task_hr->in_collection_set(),
3169                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3170                           p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
3171       }
3172     }
3173   }
3174 }
3175 #endif // PRODUCT
3176 
3177 // Aggregate the counting data that was constructed concurrently
3178 // with marking.
3179 class AggregateCountDataHRClosure: public HeapRegionClosure {
3180   G1CollectedHeap* _g1h;
3181   ConcurrentMark* _cm;
3182   CardTableModRefBS* _ct_bs;
3183   BitMap* _cm_card_bm;
3184   uint _max_worker_id;
3185 
3186  public:
3187   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3188                               BitMap* cm_card_bm,
3189                               uint max_worker_id) :
3190     _g1h(g1h), _cm(g1h->concurrent_mark()),
3191     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3192     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3193 
3194   bool doHeapRegion(HeapRegion* hr) {
3195     if (hr->is_continues_humongous()) {
3196       // We will ignore these here and process them when their
3197       // associated "starts humongous" region is processed.
3198       // Note that we cannot rely on their associated
3199       // "starts humongous" region to have their bit set to 1
3200       // since, due to the region chunking in the parallel region
3201       // iteration, a "continues humongous" region might be visited
3202       // before its associated "starts humongous".
3203       return false;
3204     }
3205 
3206     HeapWord* start = hr->bottom();
3207     HeapWord* limit = hr->next_top_at_mark_start();
3208     HeapWord* end = hr->end();
3209 
3210     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3211            err_msg("Preconditions not met - "
3212                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3213                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3214                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
3215 
3216     assert(hr->next_marked_bytes() == 0, "Precondition");
3217 
3218     if (start == limit) {
3219       // NTAMS of this region has not been set so nothing to do.
3220       return false;
3221     }
3222 
3223     // 'start' should be in the heap.
3224     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3225     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3226     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3227 
3228     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3229     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3230     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3231 
3232     // If ntams is not card aligned then we bump card bitmap index
3233     // for limit so that we get the all the cards spanned by
3234     // the object ending at ntams.
3235     // Note: if this is the last region in the heap then ntams
3236     // could be actually just beyond the end of the the heap;
3237     // limit_idx will then  correspond to a (non-existent) card
3238     // that is also outside the heap.
3239     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3240       limit_idx += 1;
3241     }
3242 
3243     assert(limit_idx <= end_idx, "or else use atomics");
3244 
3245     // Aggregate the "stripe" in the count data associated with hr.
3246     uint hrm_index = hr->hrm_index();
3247     size_t marked_bytes = 0;
3248 
3249     for (uint i = 0; i < _max_worker_id; i += 1) {
3250       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3251       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3252 
3253       // Fetch the marked_bytes in this region for task i and
3254       // add it to the running total for this region.
3255       marked_bytes += marked_bytes_array[hrm_index];
3256 
3257       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3258       // into the global card bitmap.
3259       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3260 
3261       while (scan_idx < limit_idx) {
3262         assert(task_card_bm->at(scan_idx) == true, "should be");
3263         _cm_card_bm->set_bit(scan_idx);
3264         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3265 
3266         // BitMap::get_next_one_offset() can handle the case when
3267         // its left_offset parameter is greater than its right_offset
3268         // parameter. It does, however, have an early exit if
3269         // left_offset == right_offset. So let's limit the value
3270         // passed in for left offset here.
3271         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3272         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3273       }
3274     }
3275 
3276     // Update the marked bytes for this region.
3277     hr->add_to_marked_bytes(marked_bytes);
3278 
3279     // Next heap region
3280     return false;
3281   }
3282 };
3283 
3284 class G1AggregateCountDataTask: public AbstractGangTask {
3285 protected:
3286   G1CollectedHeap* _g1h;
3287   ConcurrentMark* _cm;
3288   BitMap* _cm_card_bm;
3289   uint _max_worker_id;
3290   int _active_workers;
3291 
3292 public:
3293   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3294                            ConcurrentMark* cm,
3295                            BitMap* cm_card_bm,
3296                            uint max_worker_id,
3297                            int n_workers) :
3298     AbstractGangTask("Count Aggregation"),
3299     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3300     _max_worker_id(max_worker_id),
3301     _active_workers(n_workers) { }
3302 
3303   void work(uint worker_id) {
3304     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3305 
3306     if (G1CollectedHeap::use_parallel_gc_threads()) {
3307       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3308                                             _active_workers,
3309                                             HeapRegion::AggregateCountClaimValue);
3310     } else {
3311       _g1h->heap_region_iterate(&cl);
3312     }
3313   }
3314 };
3315 
3316 
3317 void ConcurrentMark::aggregate_count_data() {
3318   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3319                         _g1h->workers()->active_workers() :
3320                         1);
3321 
3322   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3323                                            _max_worker_id, n_workers);
3324 
3325   if (G1CollectedHeap::use_parallel_gc_threads()) {
3326     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3327            "sanity check");
3328     _g1h->set_par_threads(n_workers);
3329     _g1h->workers()->run_task(&g1_par_agg_task);
3330     _g1h->set_par_threads(0);
3331 
3332     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3333            "sanity check");
3334     _g1h->reset_heap_region_claim_values();
3335   } else {
3336     g1_par_agg_task.work(0);
3337   }
3338   _g1h->allocation_context_stats().update_at_remark();
3339 }
3340 
3341 // Clear the per-worker arrays used to store the per-region counting data
3342 void ConcurrentMark::clear_all_count_data() {
3343   // Clear the global card bitmap - it will be filled during
3344   // liveness count aggregation (during remark) and the
3345   // final counting task.
3346   _card_bm.clear();
3347 
3348   // Clear the global region bitmap - it will be filled as part
3349   // of the final counting task.
3350   _region_bm.clear();
3351 
3352   uint max_regions = _g1h->max_regions();
3353   assert(_max_worker_id > 0, "uninitialized");
3354 
3355   for (uint i = 0; i < _max_worker_id; i += 1) {
3356     BitMap* task_card_bm = count_card_bitmap_for(i);
3357     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3358 
3359     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3360     assert(marked_bytes_array != NULL, "uninitialized");
3361 
3362     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3363     task_card_bm->clear();
3364   }
3365 }
3366 
3367 void ConcurrentMark::print_stats() {
3368   if (verbose_stats()) {
3369     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3370     for (size_t i = 0; i < _active_tasks; ++i) {
3371       _tasks[i]->print_stats();
3372       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3373     }
3374   }
3375 }
3376 
3377 // abandon current marking iteration due to a Full GC
3378 void ConcurrentMark::abort() {
3379   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
3380   // concurrent bitmap clearing.
3381   _nextMarkBitMap->clearAll();
3382 
3383   // Note we cannot clear the previous marking bitmap here
3384   // since VerifyDuringGC verifies the objects marked during
3385   // a full GC against the previous bitmap.
3386 
3387   // Clear the liveness counting data
3388   clear_all_count_data();
3389   // Empty mark stack
3390   reset_marking_state();
3391   for (uint i = 0; i < _max_worker_id; ++i) {
3392     _tasks[i]->clear_region_fields();
3393   }
3394   _first_overflow_barrier_sync.abort();
3395   _second_overflow_barrier_sync.abort();
3396   const GCId& gc_id = _g1h->gc_tracer_cm()->gc_id();
3397   if (!gc_id.is_undefined()) {
3398     // We can do multiple full GCs before ConcurrentMarkThread::run() gets a chance
3399     // to detect that it was aborted. Only keep track of the first GC id that we aborted.
3400     _aborted_gc_id = gc_id;
3401    }
3402   _has_aborted = true;
3403 
3404   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3405   satb_mq_set.abandon_partial_marking();
3406   // This can be called either during or outside marking, we'll read
3407   // the expected_active value from the SATB queue set.
3408   satb_mq_set.set_active_all_threads(
3409                                  false, /* new active value */
3410                                  satb_mq_set.is_active() /* expected_active */);
3411 
3412   _g1h->trace_heap_after_concurrent_cycle();
3413   _g1h->register_concurrent_cycle_end();
3414 }
3415 
3416 const GCId& ConcurrentMark::concurrent_gc_id() {
3417   if (has_aborted()) {
3418     return _aborted_gc_id;
3419   }
3420   return _g1h->gc_tracer_cm()->gc_id();
3421 }
3422 
3423 static void print_ms_time_info(const char* prefix, const char* name,
3424                                NumberSeq& ns) {
3425   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3426                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3427   if (ns.num() > 0) {
3428     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3429                            prefix, ns.sd(), ns.maximum());
3430   }
3431 }
3432 
3433 void ConcurrentMark::print_summary_info() {
3434   gclog_or_tty->print_cr(" Concurrent marking:");
3435   print_ms_time_info("  ", "init marks", _init_times);
3436   print_ms_time_info("  ", "remarks", _remark_times);
3437   {
3438     print_ms_time_info("     ", "final marks", _remark_mark_times);
3439     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3440 
3441   }
3442   print_ms_time_info("  ", "cleanups", _cleanup_times);
3443   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3444                          _total_counting_time,
3445                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3446                           (double)_cleanup_times.num()
3447                          : 0.0));
3448   if (G1ScrubRemSets) {
3449     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3450                            _total_rs_scrub_time,
3451                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3452                             (double)_cleanup_times.num()
3453                            : 0.0));
3454   }
3455   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3456                          (_init_times.sum() + _remark_times.sum() +
3457                           _cleanup_times.sum())/1000.0);
3458   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3459                 "(%8.2f s marking).",
3460                 cmThread()->vtime_accum(),
3461                 cmThread()->vtime_mark_accum());
3462 }
3463 
3464 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3465   if (use_parallel_marking_threads()) {
3466     _parallel_workers->print_worker_threads_on(st);
3467   }
3468 }
3469 
3470 void ConcurrentMark::print_on_error(outputStream* st) const {
3471   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3472       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3473   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3474   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3475 }
3476 
3477 // We take a break if someone is trying to stop the world.
3478 bool ConcurrentMark::do_yield_check(uint worker_id) {
3479   if (SuspendibleThreadSet::should_yield()) {
3480     if (worker_id == 0) {
3481       _g1h->g1_policy()->record_concurrent_pause();
3482     }
3483     SuspendibleThreadSet::yield();
3484     return true;
3485   } else {
3486     return false;
3487   }
3488 }
3489 
3490 #ifndef PRODUCT
3491 // for debugging purposes
3492 void ConcurrentMark::print_finger() {
3493   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3494                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3495   for (uint i = 0; i < _max_worker_id; ++i) {
3496     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3497   }
3498   gclog_or_tty->cr();
3499 }
3500 #endif
3501 
3502 void CMTask::scan_object(oop obj) {
3503   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3504 
3505   if (_cm->verbose_high()) {
3506     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3507                            _worker_id, p2i((void*) obj));
3508   }
3509 
3510   size_t obj_size = obj->size();
3511   _words_scanned += obj_size;
3512 
3513   obj->oop_iterate(_cm_oop_closure);
3514   statsOnly( ++_objs_scanned );
3515   check_limits();
3516 }
3517 
3518 // Closure for iteration over bitmaps
3519 class CMBitMapClosure : public BitMapClosure {
3520 private:
3521   // the bitmap that is being iterated over
3522   CMBitMap*                   _nextMarkBitMap;
3523   ConcurrentMark*             _cm;
3524   CMTask*                     _task;
3525 
3526 public:
3527   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3528     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3529 
3530   bool do_bit(size_t offset) {
3531     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3532     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3533     assert( addr < _cm->finger(), "invariant");
3534 
3535     statsOnly( _task->increase_objs_found_on_bitmap() );
3536     assert(addr >= _task->finger(), "invariant");
3537 
3538     // We move that task's local finger along.
3539     _task->move_finger_to(addr);
3540 
3541     _task->scan_object(oop(addr));
3542     // we only partially drain the local queue and global stack
3543     _task->drain_local_queue(true);
3544     _task->drain_global_stack(true);
3545 
3546     // if the has_aborted flag has been raised, we need to bail out of
3547     // the iteration
3548     return !_task->has_aborted();
3549   }
3550 };
3551 
3552 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3553                                ConcurrentMark* cm,
3554                                CMTask* task)
3555   : _g1h(g1h), _cm(cm), _task(task) {
3556   assert(_ref_processor == NULL, "should be initialized to NULL");
3557 
3558   if (G1UseConcMarkReferenceProcessing) {
3559     _ref_processor = g1h->ref_processor_cm();
3560     assert(_ref_processor != NULL, "should not be NULL");
3561   }
3562 }
3563 
3564 void CMTask::setup_for_region(HeapRegion* hr) {
3565   assert(hr != NULL,
3566         "claim_region() should have filtered out NULL regions");
3567   assert(!hr->is_continues_humongous(),
3568         "claim_region() should have filtered out continues humongous regions");
3569 
3570   if (_cm->verbose_low()) {
3571     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3572                            _worker_id, p2i(hr));
3573   }
3574 
3575   _curr_region  = hr;
3576   _finger       = hr->bottom();
3577   update_region_limit();
3578 }
3579 
3580 void CMTask::update_region_limit() {
3581   HeapRegion* hr            = _curr_region;
3582   HeapWord* bottom          = hr->bottom();
3583   HeapWord* limit           = hr->next_top_at_mark_start();
3584 
3585   if (limit == bottom) {
3586     if (_cm->verbose_low()) {
3587       gclog_or_tty->print_cr("[%u] found an empty region "
3588                              "["PTR_FORMAT", "PTR_FORMAT")",
3589                              _worker_id, p2i(bottom), p2i(limit));
3590     }
3591     // The region was collected underneath our feet.
3592     // We set the finger to bottom to ensure that the bitmap
3593     // iteration that will follow this will not do anything.
3594     // (this is not a condition that holds when we set the region up,
3595     // as the region is not supposed to be empty in the first place)
3596     _finger = bottom;
3597   } else if (limit >= _region_limit) {
3598     assert(limit >= _finger, "peace of mind");
3599   } else {
3600     assert(limit < _region_limit, "only way to get here");
3601     // This can happen under some pretty unusual circumstances.  An
3602     // evacuation pause empties the region underneath our feet (NTAMS
3603     // at bottom). We then do some allocation in the region (NTAMS
3604     // stays at bottom), followed by the region being used as a GC
3605     // alloc region (NTAMS will move to top() and the objects
3606     // originally below it will be grayed). All objects now marked in
3607     // the region are explicitly grayed, if below the global finger,
3608     // and we do not need in fact to scan anything else. So, we simply
3609     // set _finger to be limit to ensure that the bitmap iteration
3610     // doesn't do anything.
3611     _finger = limit;
3612   }
3613 
3614   _region_limit = limit;
3615 }
3616 
3617 void CMTask::giveup_current_region() {
3618   assert(_curr_region != NULL, "invariant");
3619   if (_cm->verbose_low()) {
3620     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3621                            _worker_id, p2i(_curr_region));
3622   }
3623   clear_region_fields();
3624 }
3625 
3626 void CMTask::clear_region_fields() {
3627   // Values for these three fields that indicate that we're not
3628   // holding on to a region.
3629   _curr_region   = NULL;
3630   _finger        = NULL;
3631   _region_limit  = NULL;
3632 }
3633 
3634 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3635   if (cm_oop_closure == NULL) {
3636     assert(_cm_oop_closure != NULL, "invariant");
3637   } else {
3638     assert(_cm_oop_closure == NULL, "invariant");
3639   }
3640   _cm_oop_closure = cm_oop_closure;
3641 }
3642 
3643 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3644   guarantee(nextMarkBitMap != NULL, "invariant");
3645 
3646   if (_cm->verbose_low()) {
3647     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3648   }
3649 
3650   _nextMarkBitMap                = nextMarkBitMap;
3651   clear_region_fields();
3652 
3653   _calls                         = 0;
3654   _elapsed_time_ms               = 0.0;
3655   _termination_time_ms           = 0.0;
3656   _termination_start_time_ms     = 0.0;
3657 
3658 #if _MARKING_STATS_
3659   _local_pushes                  = 0;
3660   _local_pops                    = 0;
3661   _local_max_size                = 0;
3662   _objs_scanned                  = 0;
3663   _global_pushes                 = 0;
3664   _global_pops                   = 0;
3665   _global_max_size               = 0;
3666   _global_transfers_to           = 0;
3667   _global_transfers_from         = 0;
3668   _regions_claimed               = 0;
3669   _objs_found_on_bitmap          = 0;
3670   _satb_buffers_processed        = 0;
3671   _steal_attempts                = 0;
3672   _steals                        = 0;
3673   _aborted                       = 0;
3674   _aborted_overflow              = 0;
3675   _aborted_cm_aborted            = 0;
3676   _aborted_yield                 = 0;
3677   _aborted_timed_out             = 0;
3678   _aborted_satb                  = 0;
3679   _aborted_termination           = 0;
3680 #endif // _MARKING_STATS_
3681 }
3682 
3683 bool CMTask::should_exit_termination() {
3684   regular_clock_call();
3685   // This is called when we are in the termination protocol. We should
3686   // quit if, for some reason, this task wants to abort or the global
3687   // stack is not empty (this means that we can get work from it).
3688   return !_cm->mark_stack_empty() || has_aborted();
3689 }
3690 
3691 void CMTask::reached_limit() {
3692   assert(_words_scanned >= _words_scanned_limit ||
3693          _refs_reached >= _refs_reached_limit ,
3694          "shouldn't have been called otherwise");
3695   regular_clock_call();
3696 }
3697 
3698 void CMTask::regular_clock_call() {
3699   if (has_aborted()) return;
3700 
3701   // First, we need to recalculate the words scanned and refs reached
3702   // limits for the next clock call.
3703   recalculate_limits();
3704 
3705   // During the regular clock call we do the following
3706 
3707   // (1) If an overflow has been flagged, then we abort.
3708   if (_cm->has_overflown()) {
3709     set_has_aborted();
3710     return;
3711   }
3712 
3713   // If we are not concurrent (i.e. we're doing remark) we don't need
3714   // to check anything else. The other steps are only needed during
3715   // the concurrent marking phase.
3716   if (!concurrent()) return;
3717 
3718   // (2) If marking has been aborted for Full GC, then we also abort.
3719   if (_cm->has_aborted()) {
3720     set_has_aborted();
3721     statsOnly( ++_aborted_cm_aborted );
3722     return;
3723   }
3724 
3725   double curr_time_ms = os::elapsedVTime() * 1000.0;
3726 
3727   // (3) If marking stats are enabled, then we update the step history.
3728 #if _MARKING_STATS_
3729   if (_words_scanned >= _words_scanned_limit) {
3730     ++_clock_due_to_scanning;
3731   }
3732   if (_refs_reached >= _refs_reached_limit) {
3733     ++_clock_due_to_marking;
3734   }
3735 
3736   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3737   _interval_start_time_ms = curr_time_ms;
3738   _all_clock_intervals_ms.add(last_interval_ms);
3739 
3740   if (_cm->verbose_medium()) {
3741       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3742                         "scanned = "SIZE_FORMAT"%s, refs reached = "SIZE_FORMAT"%s",
3743                         _worker_id, last_interval_ms,
3744                         _words_scanned,
3745                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3746                         _refs_reached,
3747                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3748   }
3749 #endif // _MARKING_STATS_
3750 
3751   // (4) We check whether we should yield. If we have to, then we abort.
3752   if (SuspendibleThreadSet::should_yield()) {
3753     // We should yield. To do this we abort the task. The caller is
3754     // responsible for yielding.
3755     set_has_aborted();
3756     statsOnly( ++_aborted_yield );
3757     return;
3758   }
3759 
3760   // (5) We check whether we've reached our time quota. If we have,
3761   // then we abort.
3762   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3763   if (elapsed_time_ms > _time_target_ms) {
3764     set_has_aborted();
3765     _has_timed_out = true;
3766     statsOnly( ++_aborted_timed_out );
3767     return;
3768   }
3769 
3770   // (6) Finally, we check whether there are enough completed STAB
3771   // buffers available for processing. If there are, we abort.
3772   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3773   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3774     if (_cm->verbose_low()) {
3775       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3776                              _worker_id);
3777     }
3778     // we do need to process SATB buffers, we'll abort and restart
3779     // the marking task to do so
3780     set_has_aborted();
3781     statsOnly( ++_aborted_satb );
3782     return;
3783   }
3784 }
3785 
3786 void CMTask::recalculate_limits() {
3787   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3788   _words_scanned_limit      = _real_words_scanned_limit;
3789 
3790   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3791   _refs_reached_limit       = _real_refs_reached_limit;
3792 }
3793 
3794 void CMTask::decrease_limits() {
3795   // This is called when we believe that we're going to do an infrequent
3796   // operation which will increase the per byte scanned cost (i.e. move
3797   // entries to/from the global stack). It basically tries to decrease the
3798   // scanning limit so that the clock is called earlier.
3799 
3800   if (_cm->verbose_medium()) {
3801     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3802   }
3803 
3804   _words_scanned_limit = _real_words_scanned_limit -
3805     3 * words_scanned_period / 4;
3806   _refs_reached_limit  = _real_refs_reached_limit -
3807     3 * refs_reached_period / 4;
3808 }
3809 
3810 void CMTask::move_entries_to_global_stack() {
3811   // local array where we'll store the entries that will be popped
3812   // from the local queue
3813   oop buffer[global_stack_transfer_size];
3814 
3815   int n = 0;
3816   oop obj;
3817   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3818     buffer[n] = obj;
3819     ++n;
3820   }
3821 
3822   if (n > 0) {
3823     // we popped at least one entry from the local queue
3824 
3825     statsOnly( ++_global_transfers_to; _local_pops += n );
3826 
3827     if (!_cm->mark_stack_push(buffer, n)) {
3828       if (_cm->verbose_low()) {
3829         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3830                                _worker_id);
3831       }
3832       set_has_aborted();
3833     } else {
3834       // the transfer was successful
3835 
3836       if (_cm->verbose_medium()) {
3837         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3838                                _worker_id, n);
3839       }
3840       statsOnly( int tmp_size = _cm->mark_stack_size();
3841                  if (tmp_size > _global_max_size) {
3842                    _global_max_size = tmp_size;
3843                  }
3844                  _global_pushes += n );
3845     }
3846   }
3847 
3848   // this operation was quite expensive, so decrease the limits
3849   decrease_limits();
3850 }
3851 
3852 void CMTask::get_entries_from_global_stack() {
3853   // local array where we'll store the entries that will be popped
3854   // from the global stack.
3855   oop buffer[global_stack_transfer_size];
3856   int n;
3857   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3858   assert(n <= global_stack_transfer_size,
3859          "we should not pop more than the given limit");
3860   if (n > 0) {
3861     // yes, we did actually pop at least one entry
3862 
3863     statsOnly( ++_global_transfers_from; _global_pops += n );
3864     if (_cm->verbose_medium()) {
3865       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3866                              _worker_id, n);
3867     }
3868     for (int i = 0; i < n; ++i) {
3869       bool success = _task_queue->push(buffer[i]);
3870       // We only call this when the local queue is empty or under a
3871       // given target limit. So, we do not expect this push to fail.
3872       assert(success, "invariant");
3873     }
3874 
3875     statsOnly( int tmp_size = _task_queue->size();
3876                if (tmp_size > _local_max_size) {
3877                  _local_max_size = tmp_size;
3878                }
3879                _local_pushes += n );
3880   }
3881 
3882   // this operation was quite expensive, so decrease the limits
3883   decrease_limits();
3884 }
3885 
3886 void CMTask::drain_local_queue(bool partially) {
3887   if (has_aborted()) return;
3888 
3889   // Decide what the target size is, depending whether we're going to
3890   // drain it partially (so that other tasks can steal if they run out
3891   // of things to do) or totally (at the very end).
3892   size_t target_size;
3893   if (partially) {
3894     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3895   } else {
3896     target_size = 0;
3897   }
3898 
3899   if (_task_queue->size() > target_size) {
3900     if (_cm->verbose_high()) {
3901       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3902                              _worker_id, target_size);
3903     }
3904 
3905     oop obj;
3906     bool ret = _task_queue->pop_local(obj);
3907     while (ret) {
3908       statsOnly( ++_local_pops );
3909 
3910       if (_cm->verbose_high()) {
3911         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3912                                p2i((void*) obj));
3913       }
3914 
3915       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3916       assert(!_g1h->is_on_master_free_list(
3917                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3918 
3919       scan_object(obj);
3920 
3921       if (_task_queue->size() <= target_size || has_aborted()) {
3922         ret = false;
3923       } else {
3924         ret = _task_queue->pop_local(obj);
3925       }
3926     }
3927 
3928     if (_cm->verbose_high()) {
3929       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3930                              _worker_id, _task_queue->size());
3931     }
3932   }
3933 }
3934 
3935 void CMTask::drain_global_stack(bool partially) {
3936   if (has_aborted()) return;
3937 
3938   // We have a policy to drain the local queue before we attempt to
3939   // drain the global stack.
3940   assert(partially || _task_queue->size() == 0, "invariant");
3941 
3942   // Decide what the target size is, depending whether we're going to
3943   // drain it partially (so that other tasks can steal if they run out
3944   // of things to do) or totally (at the very end).  Notice that,
3945   // because we move entries from the global stack in chunks or
3946   // because another task might be doing the same, we might in fact
3947   // drop below the target. But, this is not a problem.
3948   size_t target_size;
3949   if (partially) {
3950     target_size = _cm->partial_mark_stack_size_target();
3951   } else {
3952     target_size = 0;
3953   }
3954 
3955   if (_cm->mark_stack_size() > target_size) {
3956     if (_cm->verbose_low()) {
3957       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3958                              _worker_id, target_size);
3959     }
3960 
3961     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3962       get_entries_from_global_stack();
3963       drain_local_queue(partially);
3964     }
3965 
3966     if (_cm->verbose_low()) {
3967       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3968                              _worker_id, _cm->mark_stack_size());
3969     }
3970   }
3971 }
3972 
3973 // SATB Queue has several assumptions on whether to call the par or
3974 // non-par versions of the methods. this is why some of the code is
3975 // replicated. We should really get rid of the single-threaded version
3976 // of the code to simplify things.
3977 void CMTask::drain_satb_buffers() {
3978   if (has_aborted()) return;
3979 
3980   // We set this so that the regular clock knows that we're in the
3981   // middle of draining buffers and doesn't set the abort flag when it
3982   // notices that SATB buffers are available for draining. It'd be
3983   // very counter productive if it did that. :-)
3984   _draining_satb_buffers = true;
3985 
3986   CMObjectClosure oc(this);
3987   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3988   if (G1CollectedHeap::use_parallel_gc_threads()) {
3989     satb_mq_set.set_par_closure(_worker_id, &oc);
3990   } else {
3991     satb_mq_set.set_closure(&oc);
3992   }
3993 
3994   // This keeps claiming and applying the closure to completed buffers
3995   // until we run out of buffers or we need to abort.
3996   if (G1CollectedHeap::use_parallel_gc_threads()) {
3997     while (!has_aborted() &&
3998            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3999       if (_cm->verbose_medium()) {
4000         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4001       }
4002       statsOnly( ++_satb_buffers_processed );
4003       regular_clock_call();
4004     }
4005   } else {
4006     while (!has_aborted() &&
4007            satb_mq_set.apply_closure_to_completed_buffer()) {
4008       if (_cm->verbose_medium()) {
4009         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
4010       }
4011       statsOnly( ++_satb_buffers_processed );
4012       regular_clock_call();
4013     }
4014   }
4015 
4016   _draining_satb_buffers = false;
4017 
4018   assert(has_aborted() ||
4019          concurrent() ||
4020          satb_mq_set.completed_buffers_num() == 0, "invariant");
4021 
4022   if (G1CollectedHeap::use_parallel_gc_threads()) {
4023     satb_mq_set.set_par_closure(_worker_id, NULL);
4024   } else {
4025     satb_mq_set.set_closure(NULL);
4026   }
4027 
4028   // again, this was a potentially expensive operation, decrease the
4029   // limits to get the regular clock call early
4030   decrease_limits();
4031 }
4032 
4033 void CMTask::print_stats() {
4034   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
4035                          _worker_id, _calls);
4036   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
4037                          _elapsed_time_ms, _termination_time_ms);
4038   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4039                          _step_times_ms.num(), _step_times_ms.avg(),
4040                          _step_times_ms.sd());
4041   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
4042                          _step_times_ms.maximum(), _step_times_ms.sum());
4043 
4044 #if _MARKING_STATS_
4045   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
4046                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
4047                          _all_clock_intervals_ms.sd());
4048   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
4049                          _all_clock_intervals_ms.maximum(),
4050                          _all_clock_intervals_ms.sum());
4051   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
4052                          _clock_due_to_scanning, _clock_due_to_marking);
4053   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
4054                          _objs_scanned, _objs_found_on_bitmap);
4055   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
4056                          _local_pushes, _local_pops, _local_max_size);
4057   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
4058                          _global_pushes, _global_pops, _global_max_size);
4059   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
4060                          _global_transfers_to,_global_transfers_from);
4061   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
4062   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
4063   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
4064                          _steal_attempts, _steals);
4065   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
4066   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
4067                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
4068   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
4069                          _aborted_timed_out, _aborted_satb, _aborted_termination);
4070 #endif // _MARKING_STATS_
4071 }
4072 
4073 /*****************************************************************************
4074 
4075     The do_marking_step(time_target_ms, ...) method is the building
4076     block of the parallel marking framework. It can be called in parallel
4077     with other invocations of do_marking_step() on different tasks
4078     (but only one per task, obviously) and concurrently with the
4079     mutator threads, or during remark, hence it eliminates the need
4080     for two versions of the code. When called during remark, it will
4081     pick up from where the task left off during the concurrent marking
4082     phase. Interestingly, tasks are also claimable during evacuation
4083     pauses too, since do_marking_step() ensures that it aborts before
4084     it needs to yield.
4085 
4086     The data structures that it uses to do marking work are the
4087     following:
4088 
4089       (1) Marking Bitmap. If there are gray objects that appear only
4090       on the bitmap (this happens either when dealing with an overflow
4091       or when the initial marking phase has simply marked the roots
4092       and didn't push them on the stack), then tasks claim heap
4093       regions whose bitmap they then scan to find gray objects. A
4094       global finger indicates where the end of the last claimed region
4095       is. A local finger indicates how far into the region a task has
4096       scanned. The two fingers are used to determine how to gray an
4097       object (i.e. whether simply marking it is OK, as it will be
4098       visited by a task in the future, or whether it needs to be also
4099       pushed on a stack).
4100 
4101       (2) Local Queue. The local queue of the task which is accessed
4102       reasonably efficiently by the task. Other tasks can steal from
4103       it when they run out of work. Throughout the marking phase, a
4104       task attempts to keep its local queue short but not totally
4105       empty, so that entries are available for stealing by other
4106       tasks. Only when there is no more work, a task will totally
4107       drain its local queue.
4108 
4109       (3) Global Mark Stack. This handles local queue overflow. During
4110       marking only sets of entries are moved between it and the local
4111       queues, as access to it requires a mutex and more fine-grain
4112       interaction with it which might cause contention. If it
4113       overflows, then the marking phase should restart and iterate
4114       over the bitmap to identify gray objects. Throughout the marking
4115       phase, tasks attempt to keep the global mark stack at a small
4116       length but not totally empty, so that entries are available for
4117       popping by other tasks. Only when there is no more work, tasks
4118       will totally drain the global mark stack.
4119 
4120       (4) SATB Buffer Queue. This is where completed SATB buffers are
4121       made available. Buffers are regularly removed from this queue
4122       and scanned for roots, so that the queue doesn't get too
4123       long. During remark, all completed buffers are processed, as
4124       well as the filled in parts of any uncompleted buffers.
4125 
4126     The do_marking_step() method tries to abort when the time target
4127     has been reached. There are a few other cases when the
4128     do_marking_step() method also aborts:
4129 
4130       (1) When the marking phase has been aborted (after a Full GC).
4131 
4132       (2) When a global overflow (on the global stack) has been
4133       triggered. Before the task aborts, it will actually sync up with
4134       the other tasks to ensure that all the marking data structures
4135       (local queues, stacks, fingers etc.)  are re-initialized so that
4136       when do_marking_step() completes, the marking phase can
4137       immediately restart.
4138 
4139       (3) When enough completed SATB buffers are available. The
4140       do_marking_step() method only tries to drain SATB buffers right
4141       at the beginning. So, if enough buffers are available, the
4142       marking step aborts and the SATB buffers are processed at
4143       the beginning of the next invocation.
4144 
4145       (4) To yield. when we have to yield then we abort and yield
4146       right at the end of do_marking_step(). This saves us from a lot
4147       of hassle as, by yielding we might allow a Full GC. If this
4148       happens then objects will be compacted underneath our feet, the
4149       heap might shrink, etc. We save checking for this by just
4150       aborting and doing the yield right at the end.
4151 
4152     From the above it follows that the do_marking_step() method should
4153     be called in a loop (or, otherwise, regularly) until it completes.
4154 
4155     If a marking step completes without its has_aborted() flag being
4156     true, it means it has completed the current marking phase (and
4157     also all other marking tasks have done so and have all synced up).
4158 
4159     A method called regular_clock_call() is invoked "regularly" (in
4160     sub ms intervals) throughout marking. It is this clock method that
4161     checks all the abort conditions which were mentioned above and
4162     decides when the task should abort. A work-based scheme is used to
4163     trigger this clock method: when the number of object words the
4164     marking phase has scanned or the number of references the marking
4165     phase has visited reach a given limit. Additional invocations to
4166     the method clock have been planted in a few other strategic places
4167     too. The initial reason for the clock method was to avoid calling
4168     vtime too regularly, as it is quite expensive. So, once it was in
4169     place, it was natural to piggy-back all the other conditions on it
4170     too and not constantly check them throughout the code.
4171 
4172     If do_termination is true then do_marking_step will enter its
4173     termination protocol.
4174 
4175     The value of is_serial must be true when do_marking_step is being
4176     called serially (i.e. by the VMThread) and do_marking_step should
4177     skip any synchronization in the termination and overflow code.
4178     Examples include the serial remark code and the serial reference
4179     processing closures.
4180 
4181     The value of is_serial must be false when do_marking_step is
4182     being called by any of the worker threads in a work gang.
4183     Examples include the concurrent marking code (CMMarkingTask),
4184     the MT remark code, and the MT reference processing closures.
4185 
4186  *****************************************************************************/
4187 
4188 void CMTask::do_marking_step(double time_target_ms,
4189                              bool do_termination,
4190                              bool is_serial) {
4191   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4192   assert(concurrent() == _cm->concurrent(), "they should be the same");
4193 
4194   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4195   assert(_task_queues != NULL, "invariant");
4196   assert(_task_queue != NULL, "invariant");
4197   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4198 
4199   assert(!_claimed,
4200          "only one thread should claim this task at any one time");
4201 
4202   // OK, this doesn't safeguard again all possible scenarios, as it is
4203   // possible for two threads to set the _claimed flag at the same
4204   // time. But it is only for debugging purposes anyway and it will
4205   // catch most problems.
4206   _claimed = true;
4207 
4208   _start_time_ms = os::elapsedVTime() * 1000.0;
4209   statsOnly( _interval_start_time_ms = _start_time_ms );
4210 
4211   // If do_stealing is true then do_marking_step will attempt to
4212   // steal work from the other CMTasks. It only makes sense to
4213   // enable stealing when the termination protocol is enabled
4214   // and do_marking_step() is not being called serially.
4215   bool do_stealing = do_termination && !is_serial;
4216 
4217   double diff_prediction_ms =
4218     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4219   _time_target_ms = time_target_ms - diff_prediction_ms;
4220 
4221   // set up the variables that are used in the work-based scheme to
4222   // call the regular clock method
4223   _words_scanned = 0;
4224   _refs_reached  = 0;
4225   recalculate_limits();
4226 
4227   // clear all flags
4228   clear_has_aborted();
4229   _has_timed_out = false;
4230   _draining_satb_buffers = false;
4231 
4232   ++_calls;
4233 
4234   if (_cm->verbose_low()) {
4235     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4236                            "target = %1.2lfms >>>>>>>>>>",
4237                            _worker_id, _calls, _time_target_ms);
4238   }
4239 
4240   // Set up the bitmap and oop closures. Anything that uses them is
4241   // eventually called from this method, so it is OK to allocate these
4242   // statically.
4243   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4244   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4245   set_cm_oop_closure(&cm_oop_closure);
4246 
4247   if (_cm->has_overflown()) {
4248     // This can happen if the mark stack overflows during a GC pause
4249     // and this task, after a yield point, restarts. We have to abort
4250     // as we need to get into the overflow protocol which happens
4251     // right at the end of this task.
4252     set_has_aborted();
4253   }
4254 
4255   // First drain any available SATB buffers. After this, we will not
4256   // look at SATB buffers before the next invocation of this method.
4257   // If enough completed SATB buffers are queued up, the regular clock
4258   // will abort this task so that it restarts.
4259   drain_satb_buffers();
4260   // ...then partially drain the local queue and the global stack
4261   drain_local_queue(true);
4262   drain_global_stack(true);
4263 
4264   do {
4265     if (!has_aborted() && _curr_region != NULL) {
4266       // This means that we're already holding on to a region.
4267       assert(_finger != NULL, "if region is not NULL, then the finger "
4268              "should not be NULL either");
4269 
4270       // We might have restarted this task after an evacuation pause
4271       // which might have evacuated the region we're holding on to
4272       // underneath our feet. Let's read its limit again to make sure
4273       // that we do not iterate over a region of the heap that
4274       // contains garbage (update_region_limit() will also move
4275       // _finger to the start of the region if it is found empty).
4276       update_region_limit();
4277       // We will start from _finger not from the start of the region,
4278       // as we might be restarting this task after aborting half-way
4279       // through scanning this region. In this case, _finger points to
4280       // the address where we last found a marked object. If this is a
4281       // fresh region, _finger points to start().
4282       MemRegion mr = MemRegion(_finger, _region_limit);
4283 
4284       if (_cm->verbose_low()) {
4285         gclog_or_tty->print_cr("[%u] we're scanning part "
4286                                "["PTR_FORMAT", "PTR_FORMAT") "
4287                                "of region "HR_FORMAT,
4288                                _worker_id, p2i(_finger), p2i(_region_limit),
4289                                HR_FORMAT_PARAMS(_curr_region));
4290       }
4291 
4292       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
4293              "humongous regions should go around loop once only");
4294 
4295       // Some special cases:
4296       // If the memory region is empty, we can just give up the region.
4297       // If the current region is humongous then we only need to check
4298       // the bitmap for the bit associated with the start of the object,
4299       // scan the object if it's live, and give up the region.
4300       // Otherwise, let's iterate over the bitmap of the part of the region
4301       // that is left.
4302       // If the iteration is successful, give up the region.
4303       if (mr.is_empty()) {
4304         giveup_current_region();
4305         regular_clock_call();
4306       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
4307         if (_nextMarkBitMap->isMarked(mr.start())) {
4308           // The object is marked - apply the closure
4309           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4310           bitmap_closure.do_bit(offset);
4311         }
4312         // Even if this task aborted while scanning the humongous object
4313         // we can (and should) give up the current region.
4314         giveup_current_region();
4315         regular_clock_call();
4316       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4317         giveup_current_region();
4318         regular_clock_call();
4319       } else {
4320         assert(has_aborted(), "currently the only way to do so");
4321         // The only way to abort the bitmap iteration is to return
4322         // false from the do_bit() method. However, inside the
4323         // do_bit() method we move the _finger to point to the
4324         // object currently being looked at. So, if we bail out, we
4325         // have definitely set _finger to something non-null.
4326         assert(_finger != NULL, "invariant");
4327 
4328         // Region iteration was actually aborted. So now _finger
4329         // points to the address of the object we last scanned. If we
4330         // leave it there, when we restart this task, we will rescan
4331         // the object. It is easy to avoid this. We move the finger by
4332         // enough to point to the next possible object header (the
4333         // bitmap knows by how much we need to move it as it knows its
4334         // granularity).
4335         assert(_finger < _region_limit, "invariant");
4336         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4337         // Check if bitmap iteration was aborted while scanning the last object
4338         if (new_finger >= _region_limit) {
4339           giveup_current_region();
4340         } else {
4341           move_finger_to(new_finger);
4342         }
4343       }
4344     }
4345     // At this point we have either completed iterating over the
4346     // region we were holding on to, or we have aborted.
4347 
4348     // We then partially drain the local queue and the global stack.
4349     // (Do we really need this?)
4350     drain_local_queue(true);
4351     drain_global_stack(true);
4352 
4353     // Read the note on the claim_region() method on why it might
4354     // return NULL with potentially more regions available for
4355     // claiming and why we have to check out_of_regions() to determine
4356     // whether we're done or not.
4357     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4358       // We are going to try to claim a new region. We should have
4359       // given up on the previous one.
4360       // Separated the asserts so that we know which one fires.
4361       assert(_curr_region  == NULL, "invariant");
4362       assert(_finger       == NULL, "invariant");
4363       assert(_region_limit == NULL, "invariant");
4364       if (_cm->verbose_low()) {
4365         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4366       }
4367       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4368       if (claimed_region != NULL) {
4369         // Yes, we managed to claim one
4370         statsOnly( ++_regions_claimed );
4371 
4372         if (_cm->verbose_low()) {
4373           gclog_or_tty->print_cr("[%u] we successfully claimed "
4374                                  "region "PTR_FORMAT,
4375                                  _worker_id, p2i(claimed_region));
4376         }
4377 
4378         setup_for_region(claimed_region);
4379         assert(_curr_region == claimed_region, "invariant");
4380       }
4381       // It is important to call the regular clock here. It might take
4382       // a while to claim a region if, for example, we hit a large
4383       // block of empty regions. So we need to call the regular clock
4384       // method once round the loop to make sure it's called
4385       // frequently enough.
4386       regular_clock_call();
4387     }
4388 
4389     if (!has_aborted() && _curr_region == NULL) {
4390       assert(_cm->out_of_regions(),
4391              "at this point we should be out of regions");
4392     }
4393   } while ( _curr_region != NULL && !has_aborted());
4394 
4395   if (!has_aborted()) {
4396     // We cannot check whether the global stack is empty, since other
4397     // tasks might be pushing objects to it concurrently.
4398     assert(_cm->out_of_regions(),
4399            "at this point we should be out of regions");
4400 
4401     if (_cm->verbose_low()) {
4402       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4403     }
4404 
4405     // Try to reduce the number of available SATB buffers so that
4406     // remark has less work to do.
4407     drain_satb_buffers();
4408   }
4409 
4410   // Since we've done everything else, we can now totally drain the
4411   // local queue and global stack.
4412   drain_local_queue(false);
4413   drain_global_stack(false);
4414 
4415   // Attempt at work stealing from other task's queues.
4416   if (do_stealing && !has_aborted()) {
4417     // We have not aborted. This means that we have finished all that
4418     // we could. Let's try to do some stealing...
4419 
4420     // We cannot check whether the global stack is empty, since other
4421     // tasks might be pushing objects to it concurrently.
4422     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4423            "only way to reach here");
4424 
4425     if (_cm->verbose_low()) {
4426       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4427     }
4428 
4429     while (!has_aborted()) {
4430       oop obj;
4431       statsOnly( ++_steal_attempts );
4432 
4433       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4434         if (_cm->verbose_medium()) {
4435           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4436                                  _worker_id, p2i((void*) obj));
4437         }
4438 
4439         statsOnly( ++_steals );
4440 
4441         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4442                "any stolen object should be marked");
4443         scan_object(obj);
4444 
4445         // And since we're towards the end, let's totally drain the
4446         // local queue and global stack.
4447         drain_local_queue(false);
4448         drain_global_stack(false);
4449       } else {
4450         break;
4451       }
4452     }
4453   }
4454 
4455   // If we are about to wrap up and go into termination, check if we
4456   // should raise the overflow flag.
4457   if (do_termination && !has_aborted()) {
4458     if (_cm->force_overflow()->should_force()) {
4459       _cm->set_has_overflown();
4460       regular_clock_call();
4461     }
4462   }
4463 
4464   // We still haven't aborted. Now, let's try to get into the
4465   // termination protocol.
4466   if (do_termination && !has_aborted()) {
4467     // We cannot check whether the global stack is empty, since other
4468     // tasks might be concurrently pushing objects on it.
4469     // Separated the asserts so that we know which one fires.
4470     assert(_cm->out_of_regions(), "only way to reach here");
4471     assert(_task_queue->size() == 0, "only way to reach here");
4472 
4473     if (_cm->verbose_low()) {
4474       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4475     }
4476 
4477     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4478 
4479     // The CMTask class also extends the TerminatorTerminator class,
4480     // hence its should_exit_termination() method will also decide
4481     // whether to exit the termination protocol or not.
4482     bool finished = (is_serial ||
4483                      _cm->terminator()->offer_termination(this));
4484     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4485     _termination_time_ms +=
4486       termination_end_time_ms - _termination_start_time_ms;
4487 
4488     if (finished) {
4489       // We're all done.
4490 
4491       if (_worker_id == 0) {
4492         // let's allow task 0 to do this
4493         if (concurrent()) {
4494           assert(_cm->concurrent_marking_in_progress(), "invariant");
4495           // we need to set this to false before the next
4496           // safepoint. This way we ensure that the marking phase
4497           // doesn't observe any more heap expansions.
4498           _cm->clear_concurrent_marking_in_progress();
4499         }
4500       }
4501 
4502       // We can now guarantee that the global stack is empty, since
4503       // all other tasks have finished. We separated the guarantees so
4504       // that, if a condition is false, we can immediately find out
4505       // which one.
4506       guarantee(_cm->out_of_regions(), "only way to reach here");
4507       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4508       guarantee(_task_queue->size() == 0, "only way to reach here");
4509       guarantee(!_cm->has_overflown(), "only way to reach here");
4510       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4511 
4512       if (_cm->verbose_low()) {
4513         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4514       }
4515     } else {
4516       // Apparently there's more work to do. Let's abort this task. It
4517       // will restart it and we can hopefully find more things to do.
4518 
4519       if (_cm->verbose_low()) {
4520         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4521                                _worker_id);
4522       }
4523 
4524       set_has_aborted();
4525       statsOnly( ++_aborted_termination );
4526     }
4527   }
4528 
4529   // Mainly for debugging purposes to make sure that a pointer to the
4530   // closure which was statically allocated in this frame doesn't
4531   // escape it by accident.
4532   set_cm_oop_closure(NULL);
4533   double end_time_ms = os::elapsedVTime() * 1000.0;
4534   double elapsed_time_ms = end_time_ms - _start_time_ms;
4535   // Update the step history.
4536   _step_times_ms.add(elapsed_time_ms);
4537 
4538   if (has_aborted()) {
4539     // The task was aborted for some reason.
4540 
4541     statsOnly( ++_aborted );
4542 
4543     if (_has_timed_out) {
4544       double diff_ms = elapsed_time_ms - _time_target_ms;
4545       // Keep statistics of how well we did with respect to hitting
4546       // our target only if we actually timed out (if we aborted for
4547       // other reasons, then the results might get skewed).
4548       _marking_step_diffs_ms.add(diff_ms);
4549     }
4550 
4551     if (_cm->has_overflown()) {
4552       // This is the interesting one. We aborted because a global
4553       // overflow was raised. This means we have to restart the
4554       // marking phase and start iterating over regions. However, in
4555       // order to do this we have to make sure that all tasks stop
4556       // what they are doing and re-initialize in a safe manner. We
4557       // will achieve this with the use of two barrier sync points.
4558 
4559       if (_cm->verbose_low()) {
4560         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4561       }
4562 
4563       if (!is_serial) {
4564         // We only need to enter the sync barrier if being called
4565         // from a parallel context
4566         _cm->enter_first_sync_barrier(_worker_id);
4567 
4568         // When we exit this sync barrier we know that all tasks have
4569         // stopped doing marking work. So, it's now safe to
4570         // re-initialize our data structures. At the end of this method,
4571         // task 0 will clear the global data structures.
4572       }
4573 
4574       statsOnly( ++_aborted_overflow );
4575 
4576       // We clear the local state of this task...
4577       clear_region_fields();
4578 
4579       if (!is_serial) {
4580         // ...and enter the second barrier.
4581         _cm->enter_second_sync_barrier(_worker_id);
4582       }
4583       // At this point, if we're during the concurrent phase of
4584       // marking, everything has been re-initialized and we're
4585       // ready to restart.
4586     }
4587 
4588     if (_cm->verbose_low()) {
4589       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4590                              "elapsed = %1.2lfms <<<<<<<<<<",
4591                              _worker_id, _time_target_ms, elapsed_time_ms);
4592       if (_cm->has_aborted()) {
4593         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4594                                _worker_id);
4595       }
4596     }
4597   } else {
4598     if (_cm->verbose_low()) {
4599       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4600                              "elapsed = %1.2lfms <<<<<<<<<<",
4601                              _worker_id, _time_target_ms, elapsed_time_ms);
4602     }
4603   }
4604 
4605   _claimed = false;
4606 }
4607 
4608 CMTask::CMTask(uint worker_id,
4609                ConcurrentMark* cm,
4610                size_t* marked_bytes,
4611                BitMap* card_bm,
4612                CMTaskQueue* task_queue,
4613                CMTaskQueueSet* task_queues)
4614   : _g1h(G1CollectedHeap::heap()),
4615     _worker_id(worker_id), _cm(cm),
4616     _claimed(false),
4617     _nextMarkBitMap(NULL), _hash_seed(17),
4618     _task_queue(task_queue),
4619     _task_queues(task_queues),
4620     _cm_oop_closure(NULL),
4621     _marked_bytes_array(marked_bytes),
4622     _card_bm(card_bm) {
4623   guarantee(task_queue != NULL, "invariant");
4624   guarantee(task_queues != NULL, "invariant");
4625 
4626   statsOnly( _clock_due_to_scanning = 0;
4627              _clock_due_to_marking  = 0 );
4628 
4629   _marking_step_diffs_ms.add(0.5);
4630 }
4631 
4632 // These are formatting macros that are used below to ensure
4633 // consistent formatting. The *_H_* versions are used to format the
4634 // header for a particular value and they should be kept consistent
4635 // with the corresponding macro. Also note that most of the macros add
4636 // the necessary white space (as a prefix) which makes them a bit
4637 // easier to compose.
4638 
4639 // All the output lines are prefixed with this string to be able to
4640 // identify them easily in a large log file.
4641 #define G1PPRL_LINE_PREFIX            "###"
4642 
4643 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4644 #ifdef _LP64
4645 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4646 #else // _LP64
4647 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4648 #endif // _LP64
4649 
4650 // For per-region info
4651 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4652 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4653 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4654 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4655 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4656 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4657 
4658 // For summary info
4659 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4660 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4661 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4662 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4663 
4664 G1PrintRegionLivenessInfoClosure::
4665 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4666   : _out(out),
4667     _total_used_bytes(0), _total_capacity_bytes(0),
4668     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4669     _hum_used_bytes(0), _hum_capacity_bytes(0),
4670     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4671     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4672   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4673   MemRegion g1_reserved = g1h->g1_reserved();
4674   double now = os::elapsedTime();
4675 
4676   // Print the header of the output.
4677   _out->cr();
4678   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4679   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4680                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4681                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4682                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4683                  HeapRegion::GrainBytes);
4684   _out->print_cr(G1PPRL_LINE_PREFIX);
4685   _out->print_cr(G1PPRL_LINE_PREFIX
4686                 G1PPRL_TYPE_H_FORMAT
4687                 G1PPRL_ADDR_BASE_H_FORMAT
4688                 G1PPRL_BYTE_H_FORMAT
4689                 G1PPRL_BYTE_H_FORMAT
4690                 G1PPRL_BYTE_H_FORMAT
4691                 G1PPRL_DOUBLE_H_FORMAT
4692                 G1PPRL_BYTE_H_FORMAT
4693                 G1PPRL_BYTE_H_FORMAT,
4694                 "type", "address-range",
4695                 "used", "prev-live", "next-live", "gc-eff",
4696                 "remset", "code-roots");
4697   _out->print_cr(G1PPRL_LINE_PREFIX
4698                 G1PPRL_TYPE_H_FORMAT
4699                 G1PPRL_ADDR_BASE_H_FORMAT
4700                 G1PPRL_BYTE_H_FORMAT
4701                 G1PPRL_BYTE_H_FORMAT
4702                 G1PPRL_BYTE_H_FORMAT
4703                 G1PPRL_DOUBLE_H_FORMAT
4704                 G1PPRL_BYTE_H_FORMAT
4705                 G1PPRL_BYTE_H_FORMAT,
4706                 "", "",
4707                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4708                 "(bytes)", "(bytes)");
4709 }
4710 
4711 // It takes as a parameter a reference to one of the _hum_* fields, it
4712 // deduces the corresponding value for a region in a humongous region
4713 // series (either the region size, or what's left if the _hum_* field
4714 // is < the region size), and updates the _hum_* field accordingly.
4715 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4716   size_t bytes = 0;
4717   // The > 0 check is to deal with the prev and next live bytes which
4718   // could be 0.
4719   if (*hum_bytes > 0) {
4720     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4721     *hum_bytes -= bytes;
4722   }
4723   return bytes;
4724 }
4725 
4726 // It deduces the values for a region in a humongous region series
4727 // from the _hum_* fields and updates those accordingly. It assumes
4728 // that that _hum_* fields have already been set up from the "starts
4729 // humongous" region and we visit the regions in address order.
4730 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4731                                                      size_t* capacity_bytes,
4732                                                      size_t* prev_live_bytes,
4733                                                      size_t* next_live_bytes) {
4734   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4735   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4736   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4737   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4738   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4739 }
4740 
4741 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4742   const char* type       = r->get_type_str();
4743   HeapWord* bottom       = r->bottom();
4744   HeapWord* end          = r->end();
4745   size_t capacity_bytes  = r->capacity();
4746   size_t used_bytes      = r->used();
4747   size_t prev_live_bytes = r->live_bytes();
4748   size_t next_live_bytes = r->next_live_bytes();
4749   double gc_eff          = r->gc_efficiency();
4750   size_t remset_bytes    = r->rem_set()->mem_size();
4751   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4752 
4753   if (r->is_starts_humongous()) {
4754     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4755            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4756            "they should have been zeroed after the last time we used them");
4757     // Set up the _hum_* fields.
4758     _hum_capacity_bytes  = capacity_bytes;
4759     _hum_used_bytes      = used_bytes;
4760     _hum_prev_live_bytes = prev_live_bytes;
4761     _hum_next_live_bytes = next_live_bytes;
4762     get_hum_bytes(&used_bytes, &capacity_bytes,
4763                   &prev_live_bytes, &next_live_bytes);
4764     end = bottom + HeapRegion::GrainWords;
4765   } else if (r->is_continues_humongous()) {
4766     get_hum_bytes(&used_bytes, &capacity_bytes,
4767                   &prev_live_bytes, &next_live_bytes);
4768     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4769   }
4770 
4771   _total_used_bytes      += used_bytes;
4772   _total_capacity_bytes  += capacity_bytes;
4773   _total_prev_live_bytes += prev_live_bytes;
4774   _total_next_live_bytes += next_live_bytes;
4775   _total_remset_bytes    += remset_bytes;
4776   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4777 
4778   // Print a line for this particular region.
4779   _out->print_cr(G1PPRL_LINE_PREFIX
4780                  G1PPRL_TYPE_FORMAT
4781                  G1PPRL_ADDR_BASE_FORMAT
4782                  G1PPRL_BYTE_FORMAT
4783                  G1PPRL_BYTE_FORMAT
4784                  G1PPRL_BYTE_FORMAT
4785                  G1PPRL_DOUBLE_FORMAT
4786                  G1PPRL_BYTE_FORMAT
4787                  G1PPRL_BYTE_FORMAT,
4788                  type, p2i(bottom), p2i(end),
4789                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4790                  remset_bytes, strong_code_roots_bytes);
4791 
4792   return false;
4793 }
4794 
4795 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4796   // add static memory usages to remembered set sizes
4797   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4798   // Print the footer of the output.
4799   _out->print_cr(G1PPRL_LINE_PREFIX);
4800   _out->print_cr(G1PPRL_LINE_PREFIX
4801                  " SUMMARY"
4802                  G1PPRL_SUM_MB_FORMAT("capacity")
4803                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4804                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4805                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4806                  G1PPRL_SUM_MB_FORMAT("remset")
4807                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4808                  bytes_to_mb(_total_capacity_bytes),
4809                  bytes_to_mb(_total_used_bytes),
4810                  perc(_total_used_bytes, _total_capacity_bytes),
4811                  bytes_to_mb(_total_prev_live_bytes),
4812                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4813                  bytes_to_mb(_total_next_live_bytes),
4814                  perc(_total_next_live_bytes, _total_capacity_bytes),
4815                  bytes_to_mb(_total_remset_bytes),
4816                  bytes_to_mb(_total_strong_code_roots_bytes));
4817   _out->cr();
4818 }