1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/g1AllocationContext.hpp"
  29 #include "gc_implementation/g1/g1Allocator.hpp"
  30 #include "gc_implementation/g1/concurrentMark.hpp"
  31 #include "gc_implementation/g1/evacuationInfo.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.hpp"
  33 #include "gc_implementation/g1/g1BiasedArray.hpp"
  34 #include "gc_implementation/g1/g1HRPrinter.hpp"
  35 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  37 #include "gc_implementation/g1/g1YCTypes.hpp"
  38 #include "gc_implementation/g1/heapRegionManager.hpp"
  39 #include "gc_implementation/g1/heapRegionSet.hpp"
  40 #include "gc_implementation/shared/hSpaceCounters.hpp"
  41 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  42 #include "memory/barrierSet.hpp"
  43 #include "memory/memRegion.hpp"
  44 #include "memory/sharedHeap.hpp"
  45 #include "utilities/stack.hpp"
  46 
  47 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  48 // It uses the "Garbage First" heap organization and algorithm, which
  49 // may combine concurrent marking with parallel, incremental compaction of
  50 // heap subsets that will yield large amounts of garbage.
  51 
  52 // Forward declarations
  53 class HeapRegion;
  54 class HRRSCleanupTask;
  55 class GenerationSpec;
  56 class OopsInHeapRegionClosure;
  57 class G1KlassScanClosure;
  58 class G1ScanHeapEvacClosure;
  59 class ObjectClosure;
  60 class SpaceClosure;
  61 class CompactibleSpaceClosure;
  62 class Space;
  63 class G1CollectorPolicy;
  64 class GenRemSet;
  65 class G1RemSet;
  66 class HeapRegionRemSetIterator;
  67 class ConcurrentMark;
  68 class ConcurrentMarkThread;
  69 class ConcurrentG1Refine;
  70 class ConcurrentGCTimer;
  71 class GenerationCounters;
  72 class STWGCTimer;
  73 class G1NewTracer;
  74 class G1OldTracer;
  75 class EvacuationFailedInfo;
  76 class nmethod;
  77 class Ticks;
  78 
  79 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  80 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  81 
  82 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  83 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  84 
  85 class YoungList : public CHeapObj<mtGC> {
  86 private:
  87   G1CollectedHeap* _g1h;
  88 
  89   HeapRegion* _head;
  90 
  91   HeapRegion* _survivor_head;
  92   HeapRegion* _survivor_tail;
  93 
  94   HeapRegion* _curr;
  95 
  96   uint        _length;
  97   uint        _survivor_length;
  98 
  99   size_t      _last_sampled_rs_lengths;
 100   size_t      _sampled_rs_lengths;
 101 
 102   void         empty_list(HeapRegion* list);
 103 
 104 public:
 105   YoungList(G1CollectedHeap* g1h);
 106 
 107   void         push_region(HeapRegion* hr);
 108   void         add_survivor_region(HeapRegion* hr);
 109 
 110   void         empty_list();
 111   bool         is_empty() { return _length == 0; }
 112   uint         length() { return _length; }
 113   uint         survivor_length() { return _survivor_length; }
 114 
 115   // Currently we do not keep track of the used byte sum for the
 116   // young list and the survivors and it'd be quite a lot of work to
 117   // do so. When we'll eventually replace the young list with
 118   // instances of HeapRegionLinkedList we'll get that for free. So,
 119   // we'll report the more accurate information then.
 120   size_t       eden_used_bytes() {
 121     assert(length() >= survivor_length(), "invariant");
 122     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 123   }
 124   size_t       survivor_used_bytes() {
 125     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 126   }
 127 
 128   void rs_length_sampling_init();
 129   bool rs_length_sampling_more();
 130   void rs_length_sampling_next();
 131 
 132   void reset_sampled_info() {
 133     _last_sampled_rs_lengths =   0;
 134   }
 135   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 136 
 137   // for development purposes
 138   void reset_auxilary_lists();
 139   void clear() { _head = NULL; _length = 0; }
 140 
 141   void clear_survivors() {
 142     _survivor_head    = NULL;
 143     _survivor_tail    = NULL;
 144     _survivor_length  = 0;
 145   }
 146 
 147   HeapRegion* first_region() { return _head; }
 148   HeapRegion* first_survivor_region() { return _survivor_head; }
 149   HeapRegion* last_survivor_region() { return _survivor_tail; }
 150 
 151   // debugging
 152   bool          check_list_well_formed();
 153   bool          check_list_empty(bool check_sample = true);
 154   void          print();
 155 };
 156 
 157 // The G1 STW is alive closure.
 158 // An instance is embedded into the G1CH and used as the
 159 // (optional) _is_alive_non_header closure in the STW
 160 // reference processor. It is also extensively used during
 161 // reference processing during STW evacuation pauses.
 162 class G1STWIsAliveClosure: public BoolObjectClosure {
 163   G1CollectedHeap* _g1;
 164 public:
 165   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 166   bool do_object_b(oop p);
 167 };
 168 
 169 class RefineCardTableEntryClosure;
 170 
 171 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 172  private:
 173   void reset_from_card_cache(uint start_idx, size_t num_regions);
 174  public:
 175   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 176 };
 177 
 178 class G1CollectedHeap : public SharedHeap {
 179   friend class VM_CollectForMetadataAllocation;
 180   friend class VM_G1CollectForAllocation;
 181   friend class VM_G1CollectFull;
 182   friend class VM_G1IncCollectionPause;
 183   friend class VMStructs;
 184   friend class MutatorAllocRegion;
 185   friend class SurvivorGCAllocRegion;
 186   friend class OldGCAllocRegion;
 187   friend class G1Allocator;
 188   friend class G1DefaultAllocator;
 189   friend class G1ResManAllocator;
 190 
 191   // Closures used in implementation.
 192   template <G1Barrier barrier, G1Mark do_mark_object>
 193   friend class G1ParCopyClosure;
 194   friend class G1IsAliveClosure;
 195   friend class G1EvacuateFollowersClosure;
 196   friend class G1ParScanThreadState;
 197   friend class G1ParScanClosureSuper;
 198   friend class G1ParEvacuateFollowersClosure;
 199   friend class G1ParTask;
 200   friend class G1ParGCAllocator;
 201   friend class G1DefaultParGCAllocator;
 202   friend class G1FreeGarbageRegionClosure;
 203   friend class RefineCardTableEntryClosure;
 204   friend class G1PrepareCompactClosure;
 205   friend class RegionSorter;
 206   friend class RegionResetter;
 207   friend class CountRCClosure;
 208   friend class EvacPopObjClosure;
 209   friend class G1ParCleanupCTTask;
 210 
 211   friend class G1FreeHumongousRegionClosure;
 212   // Other related classes.
 213   friend class G1MarkSweep;
 214   friend class HeapRegionClaimer;
 215 
 216 private:
 217   // The one and only G1CollectedHeap, so static functions can find it.
 218   static G1CollectedHeap* _g1h;
 219 
 220   static size_t _humongous_object_threshold_in_words;
 221 
 222   // The secondary free list which contains regions that have been
 223   // freed up during the cleanup process. This will be appended to
 224   // the master free list when appropriate.
 225   FreeRegionList _secondary_free_list;
 226 
 227   // It keeps track of the old regions.
 228   HeapRegionSet _old_set;
 229 
 230   // It keeps track of the humongous regions.
 231   HeapRegionSet _humongous_set;
 232 
 233   void clear_humongous_is_live_table();
 234   void eagerly_reclaim_humongous_regions();
 235 
 236   // The number of regions we could create by expansion.
 237   uint _expansion_regions;
 238 
 239   // The block offset table for the G1 heap.
 240   G1BlockOffsetSharedArray* _bot_shared;
 241 
 242   // Tears down the region sets / lists so that they are empty and the
 243   // regions on the heap do not belong to a region set / list. The
 244   // only exception is the humongous set which we leave unaltered. If
 245   // free_list_only is true, it will only tear down the master free
 246   // list. It is called before a Full GC (free_list_only == false) or
 247   // before heap shrinking (free_list_only == true).
 248   void tear_down_region_sets(bool free_list_only);
 249 
 250   // Rebuilds the region sets / lists so that they are repopulated to
 251   // reflect the contents of the heap. The only exception is the
 252   // humongous set which was not torn down in the first place. If
 253   // free_list_only is true, it will only rebuild the master free
 254   // list. It is called after a Full GC (free_list_only == false) or
 255   // after heap shrinking (free_list_only == true).
 256   void rebuild_region_sets(bool free_list_only);
 257 
 258   // Callback for region mapping changed events.
 259   G1RegionMappingChangedListener _listener;
 260 
 261   // The sequence of all heap regions in the heap.
 262   HeapRegionManager _hrm;
 263 
 264   // Class that handles the different kinds of allocations.
 265   G1Allocator* _allocator;
 266 
 267   // Statistics for each allocation context
 268   AllocationContextStats _allocation_context_stats;
 269 
 270   // PLAB sizing policy for survivors.
 271   PLABStats _survivor_plab_stats;
 272 
 273   // PLAB sizing policy for tenured objects.
 274   PLABStats _old_plab_stats;
 275 
 276   // It specifies whether we should attempt to expand the heap after a
 277   // region allocation failure. If heap expansion fails we set this to
 278   // false so that we don't re-attempt the heap expansion (it's likely
 279   // that subsequent expansion attempts will also fail if one fails).
 280   // Currently, it is only consulted during GC and it's reset at the
 281   // start of each GC.
 282   bool _expand_heap_after_alloc_failure;
 283 
 284   // It resets the mutator alloc region before new allocations can take place.
 285   void init_mutator_alloc_region();
 286 
 287   // It releases the mutator alloc region.
 288   void release_mutator_alloc_region();
 289 
 290   // It initializes the GC alloc regions at the start of a GC.
 291   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 292 
 293   // It releases the GC alloc regions at the end of a GC.
 294   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
 295 
 296   // It does any cleanup that needs to be done on the GC alloc regions
 297   // before a Full GC.
 298   void abandon_gc_alloc_regions();
 299 
 300   // Helper for monitoring and management support.
 301   G1MonitoringSupport* _g1mm;
 302 
 303   // Records whether the region at the given index is kept live by roots or
 304   // references from the young generation.
 305   class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
 306    protected:
 307     bool default_value() const { return false; }
 308    public:
 309     void clear() { G1BiasedMappedArray<bool>::clear(); }
 310     void set_live(uint region) {
 311       set_by_index(region, true);
 312     }
 313     bool is_live(uint region) {
 314       return get_by_index(region);
 315     }
 316   };
 317 
 318   HumongousIsLiveBiasedMappedArray _humongous_is_live;
 319   // Stores whether during humongous object registration we found candidate regions.
 320   // If not, we can skip a few steps.
 321   bool _has_humongous_reclaim_candidates;
 322 
 323   volatile unsigned _gc_time_stamp;
 324 
 325   size_t* _surviving_young_words;
 326 
 327   G1HRPrinter _hr_printer;
 328 
 329   void setup_surviving_young_words();
 330   void update_surviving_young_words(size_t* surv_young_words);
 331   void cleanup_surviving_young_words();
 332 
 333   // It decides whether an explicit GC should start a concurrent cycle
 334   // instead of doing a STW GC. Currently, a concurrent cycle is
 335   // explicitly started if:
 336   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 337   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 338   // (c) cause == _g1_humongous_allocation
 339   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 340 
 341   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 342   // concurrent cycles) we have started.
 343   volatile unsigned int _old_marking_cycles_started;
 344 
 345   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 346   // concurrent cycles) we have completed.
 347   volatile unsigned int _old_marking_cycles_completed;
 348 
 349   bool _concurrent_cycle_started;
 350   bool _heap_summary_sent;
 351 
 352   // This is a non-product method that is helpful for testing. It is
 353   // called at the end of a GC and artificially expands the heap by
 354   // allocating a number of dead regions. This way we can induce very
 355   // frequent marking cycles and stress the cleanup / concurrent
 356   // cleanup code more (as all the regions that will be allocated by
 357   // this method will be found dead by the marking cycle).
 358   void allocate_dummy_regions() PRODUCT_RETURN;
 359 
 360   // Clear RSets after a compaction. It also resets the GC time stamps.
 361   void clear_rsets_post_compaction();
 362 
 363   // If the HR printer is active, dump the state of the regions in the
 364   // heap after a compaction.
 365   void print_hrm_post_compaction();
 366 
 367   double verify(bool guard, const char* msg);
 368   void verify_before_gc();
 369   void verify_after_gc();
 370 
 371   void log_gc_header();
 372   void log_gc_footer(double pause_time_sec);
 373 
 374   // These are macros so that, if the assert fires, we get the correct
 375   // line number, file, etc.
 376 
 377 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 378   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 379           (_extra_message_),                                                  \
 380           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 381           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 382           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 383 
 384 #define assert_heap_locked()                                                  \
 385   do {                                                                        \
 386     assert(Heap_lock->owned_by_self(),                                        \
 387            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 388   } while (0)
 389 
 390 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 391   do {                                                                        \
 392     assert(Heap_lock->owned_by_self() ||                                      \
 393            (SafepointSynchronize::is_at_safepoint() &&                        \
 394              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 395            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 396                                         "should be at a safepoint"));         \
 397   } while (0)
 398 
 399 #define assert_heap_locked_and_not_at_safepoint()                             \
 400   do {                                                                        \
 401     assert(Heap_lock->owned_by_self() &&                                      \
 402                                     !SafepointSynchronize::is_at_safepoint(), \
 403           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 404                                        "should not be at a safepoint"));      \
 405   } while (0)
 406 
 407 #define assert_heap_not_locked()                                              \
 408   do {                                                                        \
 409     assert(!Heap_lock->owned_by_self(),                                       \
 410         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 411   } while (0)
 412 
 413 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 414   do {                                                                        \
 415     assert(!Heap_lock->owned_by_self() &&                                     \
 416                                     !SafepointSynchronize::is_at_safepoint(), \
 417       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 418                                    "should not be at a safepoint"));          \
 419   } while (0)
 420 
 421 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 422   do {                                                                        \
 423     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 424               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 425            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 426   } while (0)
 427 
 428 #define assert_not_at_safepoint()                                             \
 429   do {                                                                        \
 430     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 431            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 432   } while (0)
 433 
 434 protected:
 435 
 436   // The young region list.
 437   YoungList*  _young_list;
 438 
 439   // The current policy object for the collector.
 440   G1CollectorPolicy* _g1_policy;
 441 
 442   // This is the second level of trying to allocate a new region. If
 443   // new_region() didn't find a region on the free_list, this call will
 444   // check whether there's anything available on the
 445   // secondary_free_list and/or wait for more regions to appear on
 446   // that list, if _free_regions_coming is set.
 447   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 448 
 449   // Try to allocate a single non-humongous HeapRegion sufficient for
 450   // an allocation of the given word_size. If do_expand is true,
 451   // attempt to expand the heap if necessary to satisfy the allocation
 452   // request. If the region is to be used as an old region or for a
 453   // humongous object, set is_old to true. If not, to false.
 454   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 455 
 456   // Initialize a contiguous set of free regions of length num_regions
 457   // and starting at index first so that they appear as a single
 458   // humongous region.
 459   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 460                                                       uint num_regions,
 461                                                       size_t word_size,
 462                                                       AllocationContext_t context);
 463 
 464   // Attempt to allocate a humongous object of the given size. Return
 465   // NULL if unsuccessful.
 466   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 467 
 468   // The following two methods, allocate_new_tlab() and
 469   // mem_allocate(), are the two main entry points from the runtime
 470   // into the G1's allocation routines. They have the following
 471   // assumptions:
 472   //
 473   // * They should both be called outside safepoints.
 474   //
 475   // * They should both be called without holding the Heap_lock.
 476   //
 477   // * All allocation requests for new TLABs should go to
 478   //   allocate_new_tlab().
 479   //
 480   // * All non-TLAB allocation requests should go to mem_allocate().
 481   //
 482   // * If either call cannot satisfy the allocation request using the
 483   //   current allocating region, they will try to get a new one. If
 484   //   this fails, they will attempt to do an evacuation pause and
 485   //   retry the allocation.
 486   //
 487   // * If all allocation attempts fail, even after trying to schedule
 488   //   an evacuation pause, allocate_new_tlab() will return NULL,
 489   //   whereas mem_allocate() will attempt a heap expansion and/or
 490   //   schedule a Full GC.
 491   //
 492   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 493   //   should never be called with word_size being humongous. All
 494   //   humongous allocation requests should go to mem_allocate() which
 495   //   will satisfy them with a special path.
 496 
 497   virtual HeapWord* allocate_new_tlab(size_t word_size);
 498 
 499   virtual HeapWord* mem_allocate(size_t word_size,
 500                                  bool*  gc_overhead_limit_was_exceeded);
 501 
 502   // The following three methods take a gc_count_before_ret
 503   // parameter which is used to return the GC count if the method
 504   // returns NULL. Given that we are required to read the GC count
 505   // while holding the Heap_lock, and these paths will take the
 506   // Heap_lock at some point, it's easier to get them to read the GC
 507   // count while holding the Heap_lock before they return NULL instead
 508   // of the caller (namely: mem_allocate()) having to also take the
 509   // Heap_lock just to read the GC count.
 510 
 511   // First-level mutator allocation attempt: try to allocate out of
 512   // the mutator alloc region without taking the Heap_lock. This
 513   // should only be used for non-humongous allocations.
 514   inline HeapWord* attempt_allocation(size_t word_size,
 515                                       unsigned int* gc_count_before_ret,
 516                                       int* gclocker_retry_count_ret);
 517 
 518   // Second-level mutator allocation attempt: take the Heap_lock and
 519   // retry the allocation attempt, potentially scheduling a GC
 520   // pause. This should only be used for non-humongous allocations.
 521   HeapWord* attempt_allocation_slow(size_t word_size,
 522                                     AllocationContext_t context,
 523                                     unsigned int* gc_count_before_ret,
 524                                     int* gclocker_retry_count_ret);
 525 
 526   // Takes the Heap_lock and attempts a humongous allocation. It can
 527   // potentially schedule a GC pause.
 528   HeapWord* attempt_allocation_humongous(size_t word_size,
 529                                          unsigned int* gc_count_before_ret,
 530                                          int* gclocker_retry_count_ret);
 531 
 532   // Allocation attempt that should be called during safepoints (e.g.,
 533   // at the end of a successful GC). expect_null_mutator_alloc_region
 534   // specifies whether the mutator alloc region is expected to be NULL
 535   // or not.
 536   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 537                                             AllocationContext_t context,
 538                                             bool expect_null_mutator_alloc_region);
 539 
 540   // It dirties the cards that cover the block so that so that the post
 541   // write barrier never queues anything when updating objects on this
 542   // block. It is assumed (and in fact we assert) that the block
 543   // belongs to a young region.
 544   inline void dirty_young_block(HeapWord* start, size_t word_size);
 545 
 546   // Allocate blocks during garbage collection. Will ensure an
 547   // allocation region, either by picking one or expanding the
 548   // heap, and then allocate a block of the given size. The block
 549   // may not be a humongous - it must fit into a single heap region.
 550   HeapWord* par_allocate_during_gc(in_cset_state_t dest,
 551                                    size_t word_size,
 552                                    AllocationContext_t context) {
 553     switch (dest) {
 554       case InCSetState::Young:
 555         return survivor_attempt_allocation(word_size, context);
 556       case InCSetState::Old:
 557         return old_attempt_allocation(word_size, context);
 558       default:
 559         assert(false, err_msg("Unknown dest: %d", dest));
 560         break;
 561     }
 562     // keep some compilers happy
 563     return NULL;
 564   }
 565 
 566   // Ensure that no further allocations can happen in "r", bearing in mind
 567   // that parallel threads might be attempting allocations.
 568   void par_allocate_remaining_space(HeapRegion* r);
 569 
 570   // Allocation attempt during GC for a survivor object / PLAB.
 571   inline HeapWord* survivor_attempt_allocation(size_t word_size,
 572                                                AllocationContext_t context);
 573 
 574   // Allocation attempt during GC for an old object / PLAB.
 575   inline HeapWord* old_attempt_allocation(size_t word_size,
 576                                           AllocationContext_t context);
 577 
 578   // These methods are the "callbacks" from the G1AllocRegion class.
 579 
 580   // For mutator alloc regions.
 581   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 582   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 583                                    size_t allocated_bytes);
 584 
 585   // For GC alloc regions.
 586   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 587                                   in_cset_state_t dest);
 588   void retire_gc_alloc_region(HeapRegion* alloc_region,
 589                               size_t allocated_bytes, in_cset_state_t dest);
 590 
 591   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 592   //   inspection request and should collect the entire heap
 593   // - if clear_all_soft_refs is true, all soft references should be
 594   //   cleared during the GC
 595   // - if explicit_gc is false, word_size describes the allocation that
 596   //   the GC should attempt (at least) to satisfy
 597   // - it returns false if it is unable to do the collection due to the
 598   //   GC locker being active, true otherwise
 599   bool do_collection(bool explicit_gc,
 600                      bool clear_all_soft_refs,
 601                      size_t word_size);
 602 
 603   // Callback from VM_G1CollectFull operation.
 604   // Perform a full collection.
 605   virtual void do_full_collection(bool clear_all_soft_refs);
 606 
 607   // Resize the heap if necessary after a full collection.  If this is
 608   // after a collect-for allocation, "word_size" is the allocation size,
 609   // and will be considered part of the used portion of the heap.
 610   void resize_if_necessary_after_full_collection(size_t word_size);
 611 
 612   // Callback from VM_G1CollectForAllocation operation.
 613   // This function does everything necessary/possible to satisfy a
 614   // failed allocation request (including collection, expansion, etc.)
 615   HeapWord* satisfy_failed_allocation(size_t word_size,
 616                                       AllocationContext_t context,
 617                                       bool* succeeded);
 618 
 619   // Attempting to expand the heap sufficiently
 620   // to support an allocation of the given "word_size".  If
 621   // successful, perform the allocation and return the address of the
 622   // allocated block, or else "NULL".
 623   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 624 
 625   // Process any reference objects discovered during
 626   // an incremental evacuation pause.
 627   void process_discovered_references(uint no_of_gc_workers);
 628 
 629   // Enqueue any remaining discovered references
 630   // after processing.
 631   void enqueue_discovered_references(uint no_of_gc_workers);
 632 
 633 public:
 634 
 635   G1Allocator* allocator() {
 636     return _allocator;
 637   }
 638 
 639   G1MonitoringSupport* g1mm() {
 640     assert(_g1mm != NULL, "should have been initialized");
 641     return _g1mm;
 642   }
 643 
 644   // Expand the garbage-first heap by at least the given size (in bytes!).
 645   // Returns true if the heap was expanded by the requested amount;
 646   // false otherwise.
 647   // (Rounds up to a HeapRegion boundary.)
 648   bool expand(size_t expand_bytes);
 649 
 650   // Returns the PLAB statistics for a given destination.
 651   PLABStats* alloc_buffer_stats(in_cset_state_t dest) {
 652     switch (dest) {
 653       case InCSetState::Young:
 654         return &_survivor_plab_stats;
 655       case InCSetState::Old:
 656         return &_old_plab_stats;
 657       default:
 658         assert(false, err_msg("unknown dest: %d", dest));
 659         break;
 660     }
 661     // keep some compilers happy
 662     return NULL;
 663   }
 664 
 665   // Determines PLAB size for a given destination.
 666   size_t desired_plab_sz(in_cset_state_t dest) {
 667     size_t gclab_word_size = 0;
 668     switch (dest) {
 669       case InCSetState::Young:
 670         gclab_word_size = _survivor_plab_stats.desired_plab_sz();
 671         break;
 672       case InCSetState::Old:
 673         gclab_word_size = _old_plab_stats.desired_plab_sz();
 674         break;
 675       default:
 676         assert(false, err_msg("Unknown dest: %d", dest));
 677         break;
 678     }
 679 
 680     // Prevent humongous PLAB sizes for two reasons:
 681     // * PLABs are allocated using a similar paths as oops, but should
 682     //   never be in a humongous region
 683     // * Allowing humongous PLABs needlessly churns the region free lists
 684     return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
 685   }
 686 
 687   inline AllocationContextStats& allocation_context_stats();
 688 
 689   // Do anything common to GC's.
 690   virtual void gc_prologue(bool full);
 691   virtual void gc_epilogue(bool full);
 692 
 693   inline void set_humongous_is_live(oop obj);
 694 
 695   bool humongous_is_live(uint region) {
 696     return _humongous_is_live.is_live(region);
 697   }
 698 
 699   // Returns whether the given region (which must be a humongous (start) region)
 700   // is to be considered conservatively live regardless of any other conditions.
 701   bool humongous_region_is_always_live(uint index);
 702   // Register the given region to be part of the collection set.
 703   inline void register_humongous_region_with_in_cset_fast_test(uint index);
 704   // Register regions with humongous objects (actually on the start region) in
 705   // the in_cset_fast_test table.
 706   void register_humongous_regions_with_in_cset_fast_test();
 707   // We register a region with the fast "in collection set" test. We
 708   // simply set to true the array slot corresponding to this region.
 709   void register_young_region_with_in_cset_fast_test(HeapRegion* r) {
 710     _in_cset_fast_test.set_in_young(r->hrm_index());
 711   }
 712   void register_old_region_with_in_cset_fast_test(HeapRegion* r) {
 713     _in_cset_fast_test.set_in_old(r->hrm_index());
 714   }
 715 
 716   // This is a fast test on whether a reference points into the
 717   // collection set or not. Assume that the reference
 718   // points into the heap.
 719   inline bool in_cset_fast_test(oop obj);
 720 
 721   void clear_cset_fast_test() {
 722     _in_cset_fast_test.clear();
 723   }
 724 
 725   // This is called at the start of either a concurrent cycle or a Full
 726   // GC to update the number of old marking cycles started.
 727   void increment_old_marking_cycles_started();
 728 
 729   // This is called at the end of either a concurrent cycle or a Full
 730   // GC to update the number of old marking cycles completed. Those two
 731   // can happen in a nested fashion, i.e., we start a concurrent
 732   // cycle, a Full GC happens half-way through it which ends first,
 733   // and then the cycle notices that a Full GC happened and ends
 734   // too. The concurrent parameter is a boolean to help us do a bit
 735   // tighter consistency checking in the method. If concurrent is
 736   // false, the caller is the inner caller in the nesting (i.e., the
 737   // Full GC). If concurrent is true, the caller is the outer caller
 738   // in this nesting (i.e., the concurrent cycle). Further nesting is
 739   // not currently supported. The end of this call also notifies
 740   // the FullGCCount_lock in case a Java thread is waiting for a full
 741   // GC to happen (e.g., it called System.gc() with
 742   // +ExplicitGCInvokesConcurrent).
 743   void increment_old_marking_cycles_completed(bool concurrent);
 744 
 745   unsigned int old_marking_cycles_completed() {
 746     return _old_marking_cycles_completed;
 747   }
 748 
 749   void register_concurrent_cycle_start(const Ticks& start_time);
 750   void register_concurrent_cycle_end();
 751   void trace_heap_after_concurrent_cycle();
 752 
 753   G1YCType yc_type();
 754 
 755   G1HRPrinter* hr_printer() { return &_hr_printer; }
 756 
 757   // Frees a non-humongous region by initializing its contents and
 758   // adding it to the free list that's passed as a parameter (this is
 759   // usually a local list which will be appended to the master free
 760   // list later). The used bytes of freed regions are accumulated in
 761   // pre_used. If par is true, the region's RSet will not be freed
 762   // up. The assumption is that this will be done later.
 763   // The locked parameter indicates if the caller has already taken
 764   // care of proper synchronization. This may allow some optimizations.
 765   void free_region(HeapRegion* hr,
 766                    FreeRegionList* free_list,
 767                    bool par,
 768                    bool locked = false);
 769 
 770   // Frees a humongous region by collapsing it into individual regions
 771   // and calling free_region() for each of them. The freed regions
 772   // will be added to the free list that's passed as a parameter (this
 773   // is usually a local list which will be appended to the master free
 774   // list later). The used bytes of freed regions are accumulated in
 775   // pre_used. If par is true, the region's RSet will not be freed
 776   // up. The assumption is that this will be done later.
 777   void free_humongous_region(HeapRegion* hr,
 778                              FreeRegionList* free_list,
 779                              bool par);
 780 protected:
 781 
 782   // Shrink the garbage-first heap by at most the given size (in bytes!).
 783   // (Rounds down to a HeapRegion boundary.)
 784   virtual void shrink(size_t expand_bytes);
 785   void shrink_helper(size_t expand_bytes);
 786 
 787   #if TASKQUEUE_STATS
 788   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 789   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 790   void reset_taskqueue_stats();
 791   #endif // TASKQUEUE_STATS
 792 
 793   // Schedule the VM operation that will do an evacuation pause to
 794   // satisfy an allocation request of word_size. *succeeded will
 795   // return whether the VM operation was successful (it did do an
 796   // evacuation pause) or not (another thread beat us to it or the GC
 797   // locker was active). Given that we should not be holding the
 798   // Heap_lock when we enter this method, we will pass the
 799   // gc_count_before (i.e., total_collections()) as a parameter since
 800   // it has to be read while holding the Heap_lock. Currently, both
 801   // methods that call do_collection_pause() release the Heap_lock
 802   // before the call, so it's easy to read gc_count_before just before.
 803   HeapWord* do_collection_pause(size_t         word_size,
 804                                 unsigned int   gc_count_before,
 805                                 bool*          succeeded,
 806                                 GCCause::Cause gc_cause);
 807 
 808   // The guts of the incremental collection pause, executed by the vm
 809   // thread. It returns false if it is unable to do the collection due
 810   // to the GC locker being active, true otherwise
 811   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 812 
 813   // Actually do the work of evacuating the collection set.
 814   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 815 
 816   // The g1 remembered set of the heap.
 817   G1RemSet* _g1_rem_set;
 818 
 819   // A set of cards that cover the objects for which the Rsets should be updated
 820   // concurrently after the collection.
 821   DirtyCardQueueSet _dirty_card_queue_set;
 822 
 823   // The closure used to refine a single card.
 824   RefineCardTableEntryClosure* _refine_cte_cl;
 825 
 826   // A DirtyCardQueueSet that is used to hold cards that contain
 827   // references into the current collection set. This is used to
 828   // update the remembered sets of the regions in the collection
 829   // set in the event of an evacuation failure.
 830   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 831 
 832   // After a collection pause, make the regions in the CS into free
 833   // regions.
 834   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 835 
 836   // Abandon the current collection set without recording policy
 837   // statistics or updating free lists.
 838   void abandon_collection_set(HeapRegion* cs_head);
 839 
 840   // Applies "scan_non_heap_roots" to roots outside the heap,
 841   // "scan_rs" to roots inside the heap (having done "set_region" to
 842   // indicate the region in which the root resides),
 843   // and does "scan_metadata" If "scan_rs" is
 844   // NULL, then this step is skipped.  The "worker_i"
 845   // param is for use with parallel roots processing, and should be
 846   // the "i" of the calling parallel worker thread's work(i) function.
 847   // In the sequential case this param will be ignored.
 848   void g1_process_roots(OopClosure* scan_non_heap_roots,
 849                         OopClosure* scan_non_heap_weak_roots,
 850                         OopsInHeapRegionClosure* scan_rs,
 851                         CLDClosure* scan_strong_clds,
 852                         CLDClosure* scan_weak_clds,
 853                         CodeBlobClosure* scan_strong_code,
 854                         uint worker_i);
 855 
 856   // The concurrent marker (and the thread it runs in.)
 857   ConcurrentMark* _cm;
 858   ConcurrentMarkThread* _cmThread;
 859   bool _mark_in_progress;
 860 
 861   // The concurrent refiner.
 862   ConcurrentG1Refine* _cg1r;
 863 
 864   // The parallel task queues
 865   RefToScanQueueSet *_task_queues;
 866 
 867   // True iff a evacuation has failed in the current collection.
 868   bool _evacuation_failed;
 869 
 870   EvacuationFailedInfo* _evacuation_failed_info_array;
 871 
 872   // Failed evacuations cause some logical from-space objects to have
 873   // forwarding pointers to themselves.  Reset them.
 874   void remove_self_forwarding_pointers();
 875 
 876   // Together, these store an object with a preserved mark, and its mark value.
 877   Stack<oop, mtGC>     _objs_with_preserved_marks;
 878   Stack<markOop, mtGC> _preserved_marks_of_objs;
 879 
 880   // Preserve the mark of "obj", if necessary, in preparation for its mark
 881   // word being overwritten with a self-forwarding-pointer.
 882   void preserve_mark_if_necessary(oop obj, markOop m);
 883 
 884   // The stack of evac-failure objects left to be scanned.
 885   GrowableArray<oop>*    _evac_failure_scan_stack;
 886   // The closure to apply to evac-failure objects.
 887 
 888   OopsInHeapRegionClosure* _evac_failure_closure;
 889   // Set the field above.
 890   void
 891   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 892     _evac_failure_closure = evac_failure_closure;
 893   }
 894 
 895   // Push "obj" on the scan stack.
 896   void push_on_evac_failure_scan_stack(oop obj);
 897   // Process scan stack entries until the stack is empty.
 898   void drain_evac_failure_scan_stack();
 899   // True iff an invocation of "drain_scan_stack" is in progress; to
 900   // prevent unnecessary recursion.
 901   bool _drain_in_progress;
 902 
 903   // Do any necessary initialization for evacuation-failure handling.
 904   // "cl" is the closure that will be used to process evac-failure
 905   // objects.
 906   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 907   // Do any necessary cleanup for evacuation-failure handling data
 908   // structures.
 909   void finalize_for_evac_failure();
 910 
 911   // An attempt to evacuate "obj" has failed; take necessary steps.
 912   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 913   void handle_evacuation_failure_common(oop obj, markOop m);
 914 
 915 #ifndef PRODUCT
 916   // Support for forcing evacuation failures. Analogous to
 917   // PromotionFailureALot for the other collectors.
 918 
 919   // Records whether G1EvacuationFailureALot should be in effect
 920   // for the current GC
 921   bool _evacuation_failure_alot_for_current_gc;
 922 
 923   // Used to record the GC number for interval checking when
 924   // determining whether G1EvaucationFailureALot is in effect
 925   // for the current GC.
 926   size_t _evacuation_failure_alot_gc_number;
 927 
 928   // Count of the number of evacuations between failures.
 929   volatile size_t _evacuation_failure_alot_count;
 930 
 931   // Set whether G1EvacuationFailureALot should be in effect
 932   // for the current GC (based upon the type of GC and which
 933   // command line flags are set);
 934   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 935                                                   bool during_initial_mark,
 936                                                   bool during_marking);
 937 
 938   inline void set_evacuation_failure_alot_for_current_gc();
 939 
 940   // Return true if it's time to cause an evacuation failure.
 941   inline bool evacuation_should_fail();
 942 
 943   // Reset the G1EvacuationFailureALot counters.  Should be called at
 944   // the end of an evacuation pause in which an evacuation failure occurred.
 945   inline void reset_evacuation_should_fail();
 946 #endif // !PRODUCT
 947 
 948   // ("Weak") Reference processing support.
 949   //
 950   // G1 has 2 instances of the reference processor class. One
 951   // (_ref_processor_cm) handles reference object discovery
 952   // and subsequent processing during concurrent marking cycles.
 953   //
 954   // The other (_ref_processor_stw) handles reference object
 955   // discovery and processing during full GCs and incremental
 956   // evacuation pauses.
 957   //
 958   // During an incremental pause, reference discovery will be
 959   // temporarily disabled for _ref_processor_cm and will be
 960   // enabled for _ref_processor_stw. At the end of the evacuation
 961   // pause references discovered by _ref_processor_stw will be
 962   // processed and discovery will be disabled. The previous
 963   // setting for reference object discovery for _ref_processor_cm
 964   // will be re-instated.
 965   //
 966   // At the start of marking:
 967   //  * Discovery by the CM ref processor is verified to be inactive
 968   //    and it's discovered lists are empty.
 969   //  * Discovery by the CM ref processor is then enabled.
 970   //
 971   // At the end of marking:
 972   //  * Any references on the CM ref processor's discovered
 973   //    lists are processed (possibly MT).
 974   //
 975   // At the start of full GC we:
 976   //  * Disable discovery by the CM ref processor and
 977   //    empty CM ref processor's discovered lists
 978   //    (without processing any entries).
 979   //  * Verify that the STW ref processor is inactive and it's
 980   //    discovered lists are empty.
 981   //  * Temporarily set STW ref processor discovery as single threaded.
 982   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 983   //    field.
 984   //  * Finally enable discovery by the STW ref processor.
 985   //
 986   // The STW ref processor is used to record any discovered
 987   // references during the full GC.
 988   //
 989   // At the end of a full GC we:
 990   //  * Enqueue any reference objects discovered by the STW ref processor
 991   //    that have non-live referents. This has the side-effect of
 992   //    making the STW ref processor inactive by disabling discovery.
 993   //  * Verify that the CM ref processor is still inactive
 994   //    and no references have been placed on it's discovered
 995   //    lists (also checked as a precondition during initial marking).
 996 
 997   // The (stw) reference processor...
 998   ReferenceProcessor* _ref_processor_stw;
 999 
1000   STWGCTimer* _gc_timer_stw;
1001   ConcurrentGCTimer* _gc_timer_cm;
1002 
1003   G1OldTracer* _gc_tracer_cm;
1004   G1NewTracer* _gc_tracer_stw;
1005 
1006   // During reference object discovery, the _is_alive_non_header
1007   // closure (if non-null) is applied to the referent object to
1008   // determine whether the referent is live. If so then the
1009   // reference object does not need to be 'discovered' and can
1010   // be treated as a regular oop. This has the benefit of reducing
1011   // the number of 'discovered' reference objects that need to
1012   // be processed.
1013   //
1014   // Instance of the is_alive closure for embedding into the
1015   // STW reference processor as the _is_alive_non_header field.
1016   // Supplying a value for the _is_alive_non_header field is
1017   // optional but doing so prevents unnecessary additions to
1018   // the discovered lists during reference discovery.
1019   G1STWIsAliveClosure _is_alive_closure_stw;
1020 
1021   // The (concurrent marking) reference processor...
1022   ReferenceProcessor* _ref_processor_cm;
1023 
1024   // Instance of the concurrent mark is_alive closure for embedding
1025   // into the Concurrent Marking reference processor as the
1026   // _is_alive_non_header field. Supplying a value for the
1027   // _is_alive_non_header field is optional but doing so prevents
1028   // unnecessary additions to the discovered lists during reference
1029   // discovery.
1030   G1CMIsAliveClosure _is_alive_closure_cm;
1031 
1032   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1033   HeapRegion** _worker_cset_start_region;
1034 
1035   // Time stamp to validate the regions recorded in the cache
1036   // used by G1CollectedHeap::start_cset_region_for_worker().
1037   // The heap region entry for a given worker is valid iff
1038   // the associated time stamp value matches the current value
1039   // of G1CollectedHeap::_gc_time_stamp.
1040   unsigned int* _worker_cset_start_region_time_stamp;
1041 
1042   enum G1H_process_roots_tasks {
1043     G1H_PS_filter_satb_buffers,
1044     G1H_PS_refProcessor_oops_do,
1045     // Leave this one last.
1046     G1H_PS_NumElements
1047   };
1048 
1049   SubTasksDone* _process_strong_tasks;
1050 
1051   volatile bool _free_regions_coming;
1052 
1053 public:
1054 
1055   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1056 
1057   void set_refine_cte_cl_concurrency(bool concurrent);
1058 
1059   RefToScanQueue *task_queue(int i) const;
1060 
1061   // A set of cards where updates happened during the GC
1062   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1063 
1064   // A DirtyCardQueueSet that is used to hold cards that contain
1065   // references into the current collection set. This is used to
1066   // update the remembered sets of the regions in the collection
1067   // set in the event of an evacuation failure.
1068   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1069         { return _into_cset_dirty_card_queue_set; }
1070 
1071   // Create a G1CollectedHeap with the specified policy.
1072   // Must call the initialize method afterwards.
1073   // May not return if something goes wrong.
1074   G1CollectedHeap(G1CollectorPolicy* policy);
1075 
1076   // Initialize the G1CollectedHeap to have the initial and
1077   // maximum sizes and remembered and barrier sets
1078   // specified by the policy object.
1079   jint initialize();
1080 
1081   virtual void stop();
1082 
1083   // Return the (conservative) maximum heap alignment for any G1 heap
1084   static size_t conservative_max_heap_alignment();
1085 
1086   // Initialize weak reference processing.
1087   virtual void ref_processing_init();
1088 
1089   void set_par_threads(uint t) {
1090     SharedHeap::set_par_threads(t);
1091     // Done in SharedHeap but oddly there are
1092     // two _process_strong_tasks's in a G1CollectedHeap
1093     // so do it here too.
1094     _process_strong_tasks->set_n_threads(t);
1095   }
1096 
1097   // Set _n_par_threads according to a policy TBD.
1098   void set_par_threads();
1099 
1100   void set_n_termination(int t) {
1101     _process_strong_tasks->set_n_threads(t);
1102   }
1103 
1104   virtual CollectedHeap::Name kind() const {
1105     return CollectedHeap::G1CollectedHeap;
1106   }
1107 
1108   // The current policy object for the collector.
1109   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1110 
1111   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1112 
1113   // Adaptive size policy.  No such thing for g1.
1114   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1115 
1116   // The rem set and barrier set.
1117   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1118 
1119   unsigned get_gc_time_stamp() {
1120     return _gc_time_stamp;
1121   }
1122 
1123   inline void reset_gc_time_stamp();
1124 
1125   void check_gc_time_stamps() PRODUCT_RETURN;
1126 
1127   inline void increment_gc_time_stamp();
1128 
1129   // Reset the given region's GC timestamp. If it's starts humongous,
1130   // also reset the GC timestamp of its corresponding
1131   // continues humongous regions too.
1132   void reset_gc_time_stamps(HeapRegion* hr);
1133 
1134   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1135                                   DirtyCardQueue* into_cset_dcq,
1136                                   bool concurrent, uint worker_i);
1137 
1138   // The shared block offset table array.
1139   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1140 
1141   // Reference Processing accessors
1142 
1143   // The STW reference processor....
1144   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1145 
1146   // The Concurrent Marking reference processor...
1147   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1148 
1149   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1150   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1151 
1152   virtual size_t capacity() const;
1153   virtual size_t used() const;
1154   // This should be called when we're not holding the heap lock. The
1155   // result might be a bit inaccurate.
1156   size_t used_unlocked() const;
1157   size_t recalculate_used() const;
1158 
1159   // These virtual functions do the actual allocation.
1160   // Some heaps may offer a contiguous region for shared non-blocking
1161   // allocation, via inlined code (by exporting the address of the top and
1162   // end fields defining the extent of the contiguous allocation region.)
1163   // But G1CollectedHeap doesn't yet support this.
1164 
1165   virtual bool is_maximal_no_gc() const {
1166     return _hrm.available() == 0;
1167   }
1168 
1169   // The current number of regions in the heap.
1170   uint num_regions() const { return _hrm.length(); }
1171 
1172   // The max number of regions in the heap.
1173   uint max_regions() const { return _hrm.max_length(); }
1174 
1175   // The number of regions that are completely free.
1176   uint num_free_regions() const { return _hrm.num_free_regions(); }
1177 
1178   // The number of regions that are not completely free.
1179   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1180 
1181   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1182   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1183   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1184   void verify_dirty_young_regions() PRODUCT_RETURN;
1185 
1186 #ifndef PRODUCT
1187   // Make sure that the given bitmap has no marked objects in the
1188   // range [from,limit). If it does, print an error message and return
1189   // false. Otherwise, just return true. bitmap_name should be "prev"
1190   // or "next".
1191   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1192                                 HeapWord* from, HeapWord* limit);
1193 
1194   // Verify that the prev / next bitmap range [tams,end) for the given
1195   // region has no marks. Return true if all is well, false if errors
1196   // are detected.
1197   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1198 #endif // PRODUCT
1199 
1200   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1201   // the given region do not have any spurious marks. If errors are
1202   // detected, print appropriate error messages and crash.
1203   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1204 
1205   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1206   // have any spurious marks. If errors are detected, print
1207   // appropriate error messages and crash.
1208   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1209 
1210   // Do sanity check on the contents of the in-cset fast test table.
1211   bool check_cset_fast_test();
1212 
1213   // verify_region_sets() performs verification over the region
1214   // lists. It will be compiled in the product code to be used when
1215   // necessary (i.e., during heap verification).
1216   void verify_region_sets();
1217 
1218   // verify_region_sets_optional() is planted in the code for
1219   // list verification in non-product builds (and it can be enabled in
1220   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1221 #if HEAP_REGION_SET_FORCE_VERIFY
1222   void verify_region_sets_optional() {
1223     verify_region_sets();
1224   }
1225 #else // HEAP_REGION_SET_FORCE_VERIFY
1226   void verify_region_sets_optional() { }
1227 #endif // HEAP_REGION_SET_FORCE_VERIFY
1228 
1229 #ifdef ASSERT
1230   bool is_on_master_free_list(HeapRegion* hr) {
1231     return _hrm.is_free(hr);
1232   }
1233 #endif // ASSERT
1234 
1235   // Wrapper for the region list operations that can be called from
1236   // methods outside this class.
1237 
1238   void secondary_free_list_add(FreeRegionList* list) {
1239     _secondary_free_list.add_ordered(list);
1240   }
1241 
1242   void append_secondary_free_list() {
1243     _hrm.insert_list_into_free_list(&_secondary_free_list);
1244   }
1245 
1246   void append_secondary_free_list_if_not_empty_with_lock() {
1247     // If the secondary free list looks empty there's no reason to
1248     // take the lock and then try to append it.
1249     if (!_secondary_free_list.is_empty()) {
1250       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1251       append_secondary_free_list();
1252     }
1253   }
1254 
1255   inline void old_set_remove(HeapRegion* hr);
1256 
1257   size_t non_young_capacity_bytes() {
1258     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1259   }
1260 
1261   void set_free_regions_coming();
1262   void reset_free_regions_coming();
1263   bool free_regions_coming() { return _free_regions_coming; }
1264   void wait_while_free_regions_coming();
1265 
1266   // Determine whether the given region is one that we are using as an
1267   // old GC alloc region.
1268   bool is_old_gc_alloc_region(HeapRegion* hr) {
1269     return _allocator->is_retained_old_region(hr);
1270   }
1271 
1272   // Perform a collection of the heap; intended for use in implementing
1273   // "System.gc".  This probably implies as full a collection as the
1274   // "CollectedHeap" supports.
1275   virtual void collect(GCCause::Cause cause);
1276 
1277   // The same as above but assume that the caller holds the Heap_lock.
1278   void collect_locked(GCCause::Cause cause);
1279 
1280   virtual bool copy_allocation_context_stats(const jint* contexts,
1281                                              jlong* totals,
1282                                              jbyte* accuracy,
1283                                              jint len);
1284 
1285   // True iff an evacuation has failed in the most-recent collection.
1286   bool evacuation_failed() { return _evacuation_failed; }
1287 
1288   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1289   void prepend_to_freelist(FreeRegionList* list);
1290   void decrement_summary_bytes(size_t bytes);
1291 
1292   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1293   virtual bool is_in(const void* p) const;
1294 #ifdef ASSERT
1295   // Returns whether p is in one of the available areas of the heap. Slow but
1296   // extensive version.
1297   bool is_in_exact(const void* p) const;
1298 #endif
1299 
1300   // Return "TRUE" iff the given object address is within the collection
1301   // set. Slow implementation.
1302   inline bool obj_in_cs(oop obj);
1303 
1304   inline bool is_in_cset(oop obj);
1305 
1306   inline bool is_in_cset_or_humongous(const oop obj);
1307 
1308  private:
1309   // Instances of this class are used for quick tests on whether a reference points
1310   // into the collection set and into which generation or is a humongous object
1311   //
1312   // Each of the array's elements indicates whether the corresponding region is in
1313   // the collection set and if so in which generation, or a humongous region.
1314   //
1315   // We use this to speed up reference processing during young collection and
1316   // quickly reclaim humongous objects. For the latter, by making a humongous region
1317   // succeed this test, we sort-of add it to the collection set. During the reference
1318   // iteration closures, when we see a humongous region, we then simply mark it as
1319   // referenced, i.e. live.
1320   class G1InCSetStateFastTestBiasedMappedArray : public G1BiasedMappedArray<in_cset_state_t> {
1321    protected:
1322     in_cset_state_t default_value() const { return InCSetState::NotInCSet; }
1323    public:
1324     void set_humongous(uintptr_t index) {
1325       assert(get_by_index(index) == default_value(), "should be default");
1326       set_by_index(index, InCSetState::humongous());
1327     }
1328 
1329     void clear_humongous(uintptr_t index) {
1330       set_by_index(index, InCSetState::NotInCSet);
1331     }
1332 
1333     void set_in_young(uintptr_t index) {
1334       assert(get_by_index(index) == default_value(), "should be default");
1335       set_by_index(index, InCSetState::Young);
1336     }
1337 
1338     void set_in_old(uintptr_t index) {
1339       assert(get_by_index(index) == default_value(), "should be default");
1340       set_by_index(index, InCSetState::Old);
1341     }
1342 
1343     bool is_in_cset_or_humongous(HeapWord* addr) const { return InCSetState::is_in_cset_or_humongous(at(addr)); }
1344     bool is_in_cset(HeapWord* addr) const { return InCSetState::is_in_cset(at(addr)); }
1345     in_cset_state_t at(HeapWord* addr) const { return (in_cset_state_t) get_by_address(addr); }
1346     void clear() { G1BiasedMappedArray<in_cset_state_t>::clear(); }
1347   };
1348 
1349   // This array is used for a quick test on whether a reference points into
1350   // the collection set or not. Each of the array's elements denotes whether the
1351   // corresponding region is in the collection set or not.
1352   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1353 
1354  public:
1355 
1356   inline in_cset_state_t in_cset_state(const oop obj);
1357 
1358   // Return "TRUE" iff the given object address is in the reserved
1359   // region of g1.
1360   bool is_in_g1_reserved(const void* p) const {
1361     return _hrm.reserved().contains(p);
1362   }
1363 
1364   // Returns a MemRegion that corresponds to the space that has been
1365   // reserved for the heap
1366   MemRegion g1_reserved() const {
1367     return _hrm.reserved();
1368   }
1369 
1370   virtual bool is_in_closed_subset(const void* p) const;
1371 
1372   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1373     return (G1SATBCardTableLoggingModRefBS*) barrier_set();
1374   }
1375 
1376   // This resets the card table to all zeros.  It is used after
1377   // a collection pause which used the card table to claim cards.
1378   void cleanUpCardTable();
1379 
1380   // Iteration functions.
1381 
1382   // Iterate over all the ref-containing fields of all objects, calling
1383   // "cl.do_oop" on each.
1384   virtual void oop_iterate(ExtendedOopClosure* cl);
1385 
1386   // Iterate over all objects, calling "cl.do_object" on each.
1387   virtual void object_iterate(ObjectClosure* cl);
1388 
1389   virtual void safe_object_iterate(ObjectClosure* cl) {
1390     object_iterate(cl);
1391   }
1392 
1393   // Iterate over all spaces in use in the heap, in ascending address order.
1394   virtual void space_iterate(SpaceClosure* cl);
1395 
1396   // Iterate over heap regions, in address order, terminating the
1397   // iteration early if the "doHeapRegion" method returns "true".
1398   void heap_region_iterate(HeapRegionClosure* blk) const;
1399 
1400   // Return the region with the given index. It assumes the index is valid.
1401   inline HeapRegion* region_at(uint index) const;
1402 
1403   // Calculate the region index of the given address. Given address must be
1404   // within the heap.
1405   inline uint addr_to_region(HeapWord* addr) const;
1406 
1407   inline HeapWord* bottom_addr_for_region(uint index) const;
1408 
1409   // Iterate over the heap regions in parallel. Assumes that this will be called
1410   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1411   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1412   // to each of the regions, by attempting to claim the region using the
1413   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1414   // region. The concurrent argument should be set to true if iteration is
1415   // performed concurrently, during which no assumptions are made for consistent
1416   // attributes of the heap regions (as they might be modified while iterating).
1417   void heap_region_par_iterate(HeapRegionClosure* cl,
1418                                uint worker_id,
1419                                HeapRegionClaimer* hrclaimer,
1420                                bool concurrent = false) const;
1421 
1422   // Clear the cached cset start regions and (more importantly)
1423   // the time stamps. Called when we reset the GC time stamp.
1424   void clear_cset_start_regions();
1425 
1426   // Given the id of a worker, obtain or calculate a suitable
1427   // starting region for iterating over the current collection set.
1428   HeapRegion* start_cset_region_for_worker(uint worker_i);
1429 
1430   // Iterate over the regions (if any) in the current collection set.
1431   void collection_set_iterate(HeapRegionClosure* blk);
1432 
1433   // As above but starting from region r
1434   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1435 
1436   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1437 
1438   // A CollectedHeap will contain some number of spaces.  This finds the
1439   // space containing a given address, or else returns NULL.
1440   virtual Space* space_containing(const void* addr) const;
1441 
1442   // Returns the HeapRegion that contains addr. addr must not be NULL.
1443   template <class T>
1444   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1445 
1446   // Returns the HeapRegion that contains addr. addr must not be NULL.
1447   // If addr is within a humongous continues region, it returns its humongous start region.
1448   template <class T>
1449   inline HeapRegion* heap_region_containing(const T addr) const;
1450 
1451   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1452   // each address in the (reserved) heap is a member of exactly
1453   // one block.  The defining characteristic of a block is that it is
1454   // possible to find its size, and thus to progress forward to the next
1455   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1456   // represent Java objects, or they might be free blocks in a
1457   // free-list-based heap (or subheap), as long as the two kinds are
1458   // distinguishable and the size of each is determinable.
1459 
1460   // Returns the address of the start of the "block" that contains the
1461   // address "addr".  We say "blocks" instead of "object" since some heaps
1462   // may not pack objects densely; a chunk may either be an object or a
1463   // non-object.
1464   virtual HeapWord* block_start(const void* addr) const;
1465 
1466   // Requires "addr" to be the start of a chunk, and returns its size.
1467   // "addr + size" is required to be the start of a new chunk, or the end
1468   // of the active area of the heap.
1469   virtual size_t block_size(const HeapWord* addr) const;
1470 
1471   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1472   // the block is an object.
1473   virtual bool block_is_obj(const HeapWord* addr) const;
1474 
1475   // Does this heap support heap inspection? (+PrintClassHistogram)
1476   virtual bool supports_heap_inspection() const { return true; }
1477 
1478   // Section on thread-local allocation buffers (TLABs)
1479   // See CollectedHeap for semantics.
1480 
1481   bool supports_tlab_allocation() const;
1482   size_t tlab_capacity(Thread* ignored) const;
1483   size_t tlab_used(Thread* ignored) const;
1484   size_t max_tlab_size() const;
1485   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1486 
1487   // Can a compiler initialize a new object without store barriers?
1488   // This permission only extends from the creation of a new object
1489   // via a TLAB up to the first subsequent safepoint. If such permission
1490   // is granted for this heap type, the compiler promises to call
1491   // defer_store_barrier() below on any slow path allocation of
1492   // a new object for which such initializing store barriers will
1493   // have been elided. G1, like CMS, allows this, but should be
1494   // ready to provide a compensating write barrier as necessary
1495   // if that storage came out of a non-young region. The efficiency
1496   // of this implementation depends crucially on being able to
1497   // answer very efficiently in constant time whether a piece of
1498   // storage in the heap comes from a young region or not.
1499   // See ReduceInitialCardMarks.
1500   virtual bool can_elide_tlab_store_barriers() const {
1501     return true;
1502   }
1503 
1504   virtual bool card_mark_must_follow_store() const {
1505     return true;
1506   }
1507 
1508   inline bool is_in_young(const oop obj);
1509 
1510 #ifdef ASSERT
1511   virtual bool is_in_partial_collection(const void* p);
1512 #endif
1513 
1514   virtual bool is_scavengable(const void* addr);
1515 
1516   // We don't need barriers for initializing stores to objects
1517   // in the young gen: for the SATB pre-barrier, there is no
1518   // pre-value that needs to be remembered; for the remembered-set
1519   // update logging post-barrier, we don't maintain remembered set
1520   // information for young gen objects.
1521   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1522 
1523   // Returns "true" iff the given word_size is "very large".
1524   static bool is_humongous(size_t word_size) {
1525     // Note this has to be strictly greater-than as the TLABs
1526     // are capped at the humongous threshold and we want to
1527     // ensure that we don't try to allocate a TLAB as
1528     // humongous and that we don't allocate a humongous
1529     // object in a TLAB.
1530     return word_size > _humongous_object_threshold_in_words;
1531   }
1532 
1533   // Update mod union table with the set of dirty cards.
1534   void updateModUnion();
1535 
1536   // Set the mod union bits corresponding to the given memRegion.  Note
1537   // that this is always a safe operation, since it doesn't clear any
1538   // bits.
1539   void markModUnionRange(MemRegion mr);
1540 
1541   // Records the fact that a marking phase is no longer in progress.
1542   void set_marking_complete() {
1543     _mark_in_progress = false;
1544   }
1545   void set_marking_started() {
1546     _mark_in_progress = true;
1547   }
1548   bool mark_in_progress() {
1549     return _mark_in_progress;
1550   }
1551 
1552   // Print the maximum heap capacity.
1553   virtual size_t max_capacity() const;
1554 
1555   virtual jlong millis_since_last_gc();
1556 
1557 
1558   // Convenience function to be used in situations where the heap type can be
1559   // asserted to be this type.
1560   static G1CollectedHeap* heap();
1561 
1562   void set_region_short_lived_locked(HeapRegion* hr);
1563   // add appropriate methods for any other surv rate groups
1564 
1565   YoungList* young_list() const { return _young_list; }
1566 
1567   // debugging
1568   bool check_young_list_well_formed() {
1569     return _young_list->check_list_well_formed();
1570   }
1571 
1572   bool check_young_list_empty(bool check_heap,
1573                               bool check_sample = true);
1574 
1575   // *** Stuff related to concurrent marking.  It's not clear to me that so
1576   // many of these need to be public.
1577 
1578   // The functions below are helper functions that a subclass of
1579   // "CollectedHeap" can use in the implementation of its virtual
1580   // functions.
1581   // This performs a concurrent marking of the live objects in a
1582   // bitmap off to the side.
1583   void doConcurrentMark();
1584 
1585   bool isMarkedPrev(oop obj) const;
1586   bool isMarkedNext(oop obj) const;
1587 
1588   // Determine if an object is dead, given the object and also
1589   // the region to which the object belongs. An object is dead
1590   // iff a) it was not allocated since the last mark and b) it
1591   // is not marked.
1592   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1593     return
1594       !hr->obj_allocated_since_prev_marking(obj) &&
1595       !isMarkedPrev(obj);
1596   }
1597 
1598   // This function returns true when an object has been
1599   // around since the previous marking and hasn't yet
1600   // been marked during this marking.
1601   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1602     return
1603       !hr->obj_allocated_since_next_marking(obj) &&
1604       !isMarkedNext(obj);
1605   }
1606 
1607   // Determine if an object is dead, given only the object itself.
1608   // This will find the region to which the object belongs and
1609   // then call the region version of the same function.
1610 
1611   // Added if it is NULL it isn't dead.
1612 
1613   inline bool is_obj_dead(const oop obj) const;
1614 
1615   inline bool is_obj_ill(const oop obj) const;
1616 
1617   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1618   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1619   bool is_marked(oop obj, VerifyOption vo);
1620   const char* top_at_mark_start_str(VerifyOption vo);
1621 
1622   ConcurrentMark* concurrent_mark() const { return _cm; }
1623 
1624   // Refinement
1625 
1626   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1627 
1628   // The dirty cards region list is used to record a subset of regions
1629   // whose cards need clearing. The list if populated during the
1630   // remembered set scanning and drained during the card table
1631   // cleanup. Although the methods are reentrant, population/draining
1632   // phases must not overlap. For synchronization purposes the last
1633   // element on the list points to itself.
1634   HeapRegion* _dirty_cards_region_list;
1635   void push_dirty_cards_region(HeapRegion* hr);
1636   HeapRegion* pop_dirty_cards_region();
1637 
1638   // Optimized nmethod scanning support routines
1639 
1640   // Register the given nmethod with the G1 heap.
1641   virtual void register_nmethod(nmethod* nm);
1642 
1643   // Unregister the given nmethod from the G1 heap.
1644   virtual void unregister_nmethod(nmethod* nm);
1645 
1646   // Free up superfluous code root memory.
1647   void purge_code_root_memory();
1648 
1649   // Rebuild the strong code root lists for each region
1650   // after a full GC.
1651   void rebuild_strong_code_roots();
1652 
1653   // Delete entries for dead interned string and clean up unreferenced symbols
1654   // in symbol table, possibly in parallel.
1655   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1656 
1657   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1658   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1659 
1660   // Redirty logged cards in the refinement queue.
1661   void redirty_logged_cards();
1662   // Verification
1663 
1664   // The following is just to alert the verification code
1665   // that a full collection has occurred and that the
1666   // remembered sets are no longer up to date.
1667   bool _full_collection;
1668   void set_full_collection() { _full_collection = true;}
1669   void clear_full_collection() {_full_collection = false;}
1670   bool full_collection() {return _full_collection;}
1671 
1672   // Perform any cleanup actions necessary before allowing a verification.
1673   virtual void prepare_for_verify();
1674 
1675   // Perform verification.
1676 
1677   // vo == UsePrevMarking  -> use "prev" marking information,
1678   // vo == UseNextMarking -> use "next" marking information
1679   // vo == UseMarkWord    -> use the mark word in the object header
1680   //
1681   // NOTE: Only the "prev" marking information is guaranteed to be
1682   // consistent most of the time, so most calls to this should use
1683   // vo == UsePrevMarking.
1684   // Currently, there is only one case where this is called with
1685   // vo == UseNextMarking, which is to verify the "next" marking
1686   // information at the end of remark.
1687   // Currently there is only one place where this is called with
1688   // vo == UseMarkWord, which is to verify the marking during a
1689   // full GC.
1690   void verify(bool silent, VerifyOption vo);
1691 
1692   // Override; it uses the "prev" marking information
1693   virtual void verify(bool silent);
1694 
1695   // The methods below are here for convenience and dispatch the
1696   // appropriate method depending on value of the given VerifyOption
1697   // parameter. The values for that parameter, and their meanings,
1698   // are the same as those above.
1699 
1700   bool is_obj_dead_cond(const oop obj,
1701                         const HeapRegion* hr,
1702                         const VerifyOption vo) const;
1703 
1704   bool is_obj_dead_cond(const oop obj,
1705                         const VerifyOption vo) const;
1706 
1707   // Printing
1708 
1709   virtual void print_on(outputStream* st) const;
1710   virtual void print_extended_on(outputStream* st) const;
1711   virtual void print_on_error(outputStream* st) const;
1712 
1713   virtual void print_gc_threads_on(outputStream* st) const;
1714   virtual void gc_threads_do(ThreadClosure* tc) const;
1715 
1716   // Override
1717   void print_tracing_info() const;
1718 
1719   // The following two methods are helpful for debugging RSet issues.
1720   void print_cset_rsets() PRODUCT_RETURN;
1721   void print_all_rsets() PRODUCT_RETURN;
1722 
1723 public:
1724   size_t pending_card_num();
1725   size_t cards_scanned();
1726 
1727 protected:
1728   size_t _max_heap_capacity;
1729 };
1730 
1731 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP