1 /*
   2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP
  27 
  28 #include "gc_implementation/g1/dirtyCardQueue.hpp"
  29 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  30 #include "gc_implementation/g1/g1CollectedHeap.hpp"
  31 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  32 #include "gc_implementation/g1/g1OopClosures.hpp"
  33 #include "gc_implementation/g1/g1RemSet.hpp"
  34 #include "gc_implementation/shared/ageTable.hpp"
  35 #include "memory/allocation.hpp"
  36 #include "oops/oop.hpp"
  37 
  38 class HeapRegion;
  39 class outputStream;
  40 
  41 class G1ParScanThreadState : public StackObj {
  42  private:
  43   G1CollectedHeap* _g1h;
  44   RefToScanQueue*  _refs;
  45   DirtyCardQueue   _dcq;
  46   G1SATBCardTableModRefBS* _ct_bs;
  47   G1RemSet* _g1_rem;
  48 
  49   G1ParGCAllocator* _g1_par_allocator;
  50 
  51   ageTable          _age_table;
  52   InCSetState       _dest[InCSetState::Num];
  53   // Local tenuring threshold.
  54   uint              _tenuring_threshold;
  55   G1ParScanClosure  _scanner;
  56 
  57   size_t            _alloc_buffer_waste;
  58   size_t            _undo_waste;
  59 
  60   OopsInHeapRegionClosure*      _evac_failure_cl;
  61 
  62   int  _hash_seed;
  63   uint _queue_num;
  64 
  65   size_t _term_attempts;
  66 
  67   double _start;
  68   double _start_strong_roots;
  69   double _strong_roots_time;
  70   double _start_term;
  71   double _term_time;
  72 
  73   // Map from young-age-index (0 == not young, 1 is youngest) to
  74   // surviving words. base is what we get back from the malloc call
  75   size_t* _surviving_young_words_base;
  76   // this points into the array, as we use the first few entries for padding
  77   size_t* _surviving_young_words;
  78 
  79 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
  80 
  81   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
  82   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
  83 
  84   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
  85   G1SATBCardTableModRefBS* ctbs()                { return _ct_bs; }
  86 
  87   InCSetState dest(InCSetState original) const {
  88     assert(original.is_valid(),
  89            err_msg("Original state invalid: %d", original.value()));
  90     assert(_dest[original.value()].is_valid_gen(),
  91            err_msg("Dest state is invalid: %d", _dest[original.value()].value()));
  92     return _dest[original.value()];
  93   }
  94 
  95  public:
  96   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp);
  97   ~G1ParScanThreadState();
  98 
  99   ageTable*         age_table()       { return &_age_table;       }
 100 
 101 #ifdef ASSERT
 102   bool queue_is_empty() const { return _refs->is_empty(); }
 103 
 104   bool verify_ref(narrowOop* ref) const;
 105   bool verify_ref(oop* ref) const;
 106   bool verify_task(StarTask ref) const;
 107 #endif // ASSERT
 108 
 109   template <class T> void push_on_queue(T* ref) {
 110     assert(verify_ref(ref), "sanity");
 111     _refs->push(ref);
 112   }
 113 
 114   template <class T> void update_rs(HeapRegion* from, T* p, uint tid) {
 115     // If the new value of the field points to the same region or
 116     // is the to-space, we don't need to include it in the Rset updates.
 117     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
 118       size_t card_index = ctbs()->index_for(p);
 119       // If the card hasn't been added to the buffer, do it.
 120       if (ctbs()->mark_card_deferred(card_index)) {
 121         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
 122       }
 123     }
 124   }
 125 
 126   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
 127     _evac_failure_cl = evac_failure_cl;
 128   }
 129 
 130   OopsInHeapRegionClosure* evac_failure_closure() { return _evac_failure_cl; }
 131 
 132   int* hash_seed() { return &_hash_seed; }
 133   uint queue_num() { return _queue_num; }
 134 
 135   size_t term_attempts() const  { return _term_attempts; }
 136   void note_term_attempt() { _term_attempts++; }
 137 
 138   void start_strong_roots() {
 139     _start_strong_roots = os::elapsedTime();
 140   }
 141   void end_strong_roots() {
 142     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
 143   }
 144   double strong_roots_time() const { return _strong_roots_time; }
 145 
 146   void start_term_time() {
 147     note_term_attempt();
 148     _start_term = os::elapsedTime();
 149   }
 150   void end_term_time() {
 151     _term_time += (os::elapsedTime() - _start_term);
 152   }
 153   double term_time() const { return _term_time; }
 154 
 155   double elapsed_time() const {
 156     return os::elapsedTime() - _start;
 157   }
 158 
 159   static void print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 160   void print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
 161 
 162   size_t* surviving_young_words() {
 163     // We add on to hide entry 0 which accumulates surviving words for
 164     // age -1 regions (i.e. non-young ones)
 165     return _surviving_young_words;
 166   }
 167 
 168  private:
 169   #define G1_PARTIAL_ARRAY_MASK 0x2
 170 
 171   inline bool has_partial_array_mask(oop* ref) const {
 172     return ((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) == G1_PARTIAL_ARRAY_MASK;
 173   }
 174 
 175   // We never encode partial array oops as narrowOop*, so return false immediately.
 176   // This allows the compiler to create optimized code when popping references from
 177   // the work queue.
 178   inline bool has_partial_array_mask(narrowOop* ref) const {
 179     assert(((uintptr_t)ref & G1_PARTIAL_ARRAY_MASK) != G1_PARTIAL_ARRAY_MASK, "Partial array oop reference encoded as narrowOop*");
 180     return false;
 181   }
 182 
 183   // Only implement set_partial_array_mask() for regular oops, not for narrowOops.
 184   // We always encode partial arrays as regular oop, to allow the
 185   // specialization for has_partial_array_mask() for narrowOops above.
 186   // This means that unintentional use of this method with narrowOops are caught
 187   // by the compiler.
 188   inline oop* set_partial_array_mask(oop obj) const {
 189     assert(((uintptr_t)(void *)obj & G1_PARTIAL_ARRAY_MASK) == 0, "Information loss!");
 190     return (oop*) ((uintptr_t)(void *)obj | G1_PARTIAL_ARRAY_MASK);
 191   }
 192 
 193   inline oop clear_partial_array_mask(oop* ref) const {
 194     return cast_to_oop((intptr_t)ref & ~G1_PARTIAL_ARRAY_MASK);
 195   }
 196 
 197   inline void do_oop_partial_array(oop* p);
 198 
 199   // This method is applied to the fields of the objects that have just been copied.
 200   template <class T> inline void do_oop_evac(T* p, HeapRegion* from);
 201 
 202   template <class T> inline void deal_with_reference(T* ref_to_scan);
 203 
 204   inline void dispatch_reference(StarTask ref);
 205 
 206   // Tries to allocate word_sz in the PLAB of the next "generation" after trying to
 207   // allocate into dest. State is the original (source) cset state for the object
 208   // that is allocated for.
 209   // Returns a non-NULL pointer if successful, and updates dest if required.
 210   HeapWord* allocate_in_next_plab(InCSetState const state,
 211                                   InCSetState* dest,
 212                                   size_t word_sz,
 213                                   AllocationContext_t const context);
 214 
 215   inline InCSetState next_state(InCSetState const state, markOop const m, uint& age);
 216  public:
 217 
 218   oop copy_to_survivor_space(InCSetState const state, oop const obj, markOop const old_mark);
 219 
 220   void trim_queue();
 221 
 222   inline void steal_and_trim_queue(RefToScanQueueSet *task_queues);
 223 };
 224 
 225 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1PARSCANTHREADSTATE_HPP