1   /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/g1AllocationContext.hpp"
  29 #include "gc_implementation/g1/g1Allocator.hpp"
  30 #include "gc_implementation/g1/concurrentMark.hpp"
  31 #include "gc_implementation/g1/evacuationInfo.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.hpp"
  33 #include "gc_implementation/g1/g1BiasedArray.hpp"
  34 #include "gc_implementation/g1/g1HRPrinter.hpp"
  35 #include "gc_implementation/g1/g1InCSetState.hpp"
  36 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/g1YCTypes.hpp"
  39 #include "gc_implementation/g1/heapRegionManager.hpp"
  40 #include "gc_implementation/g1/heapRegionSet.hpp"
  41 #include "gc_implementation/shared/hSpaceCounters.hpp"
  42 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/memRegion.hpp"
  45 #include "memory/sharedHeap.hpp"
  46 #include "utilities/stack.hpp"
  47 
  48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  49 // It uses the "Garbage First" heap organization and algorithm, which
  50 // may combine concurrent marking with parallel, incremental compaction of
  51 // heap subsets that will yield large amounts of garbage.
  52 
  53 // Forward declarations
  54 class HeapRegion;
  55 class HRRSCleanupTask;
  56 class GenerationSpec;
  57 class OopsInHeapRegionClosure;
  58 class G1KlassScanClosure;
  59 class G1ScanHeapEvacClosure;
  60 class ObjectClosure;
  61 class SpaceClosure;
  62 class CompactibleSpaceClosure;
  63 class Space;
  64 class G1CollectorPolicy;
  65 class GenRemSet;
  66 class G1RemSet;
  67 class HeapRegionRemSetIterator;
  68 class ConcurrentMark;
  69 class ConcurrentMarkThread;
  70 class ConcurrentG1Refine;
  71 class ConcurrentGCTimer;
  72 class GenerationCounters;
  73 class STWGCTimer;
  74 class G1NewTracer;
  75 class G1OldTracer;
  76 class EvacuationFailedInfo;
  77 class nmethod;
  78 class Ticks;
  79 
  80 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  81 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  82 
  83 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  84 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  85 
  86 class YoungList : public CHeapObj<mtGC> {
  87 private:
  88   G1CollectedHeap* _g1h;
  89 
  90   HeapRegion* _head;
  91 
  92   HeapRegion* _survivor_head;
  93   HeapRegion* _survivor_tail;
  94 
  95   HeapRegion* _curr;
  96 
  97   uint        _length;
  98   uint        _survivor_length;
  99 
 100   size_t      _last_sampled_rs_lengths;
 101   size_t      _sampled_rs_lengths;
 102 
 103   void         empty_list(HeapRegion* list);
 104 
 105 public:
 106   YoungList(G1CollectedHeap* g1h);
 107 
 108   void         push_region(HeapRegion* hr);
 109   void         add_survivor_region(HeapRegion* hr);
 110 
 111   void         empty_list();
 112   bool         is_empty() { return _length == 0; }
 113   uint         length() { return _length; }
 114   uint         survivor_length() { return _survivor_length; }
 115 
 116   // Currently we do not keep track of the used byte sum for the
 117   // young list and the survivors and it'd be quite a lot of work to
 118   // do so. When we'll eventually replace the young list with
 119   // instances of HeapRegionLinkedList we'll get that for free. So,
 120   // we'll report the more accurate information then.
 121   size_t       eden_used_bytes() {
 122     assert(length() >= survivor_length(), "invariant");
 123     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 124   }
 125   size_t       survivor_used_bytes() {
 126     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 127   }
 128 
 129   void rs_length_sampling_init();
 130   bool rs_length_sampling_more();
 131   void rs_length_sampling_next();
 132 
 133   void reset_sampled_info() {
 134     _last_sampled_rs_lengths =   0;
 135   }
 136   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 137 
 138   // for development purposes
 139   void reset_auxilary_lists();
 140   void clear() { _head = NULL; _length = 0; }
 141 
 142   void clear_survivors() {
 143     _survivor_head    = NULL;
 144     _survivor_tail    = NULL;
 145     _survivor_length  = 0;
 146   }
 147 
 148   HeapRegion* first_region() { return _head; }
 149   HeapRegion* first_survivor_region() { return _survivor_head; }
 150   HeapRegion* last_survivor_region() { return _survivor_tail; }
 151 
 152   // debugging
 153   bool          check_list_well_formed();
 154   bool          check_list_empty(bool check_sample = true);
 155   void          print();
 156 };
 157 
 158 // The G1 STW is alive closure.
 159 // An instance is embedded into the G1CH and used as the
 160 // (optional) _is_alive_non_header closure in the STW
 161 // reference processor. It is also extensively used during
 162 // reference processing during STW evacuation pauses.
 163 class G1STWIsAliveClosure: public BoolObjectClosure {
 164   G1CollectedHeap* _g1;
 165 public:
 166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 167   bool do_object_b(oop p);
 168 };
 169 
 170 class RefineCardTableEntryClosure;
 171 
 172 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 173  private:
 174   void reset_from_card_cache(uint start_idx, size_t num_regions);
 175  public:
 176   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 177 };
 178 
 179 class G1CollectedHeap : public SharedHeap {
 180   friend class VM_CollectForMetadataAllocation;
 181   friend class VM_G1CollectForAllocation;
 182   friend class VM_G1CollectFull;
 183   friend class VM_G1IncCollectionPause;
 184   friend class VMStructs;
 185   friend class MutatorAllocRegion;
 186   friend class SurvivorGCAllocRegion;
 187   friend class OldGCAllocRegion;
 188   friend class G1Allocator;
 189   friend class G1DefaultAllocator;
 190   friend class G1ResManAllocator;
 191 
 192   // Closures used in implementation.
 193   template <G1Barrier barrier, G1Mark do_mark_object>
 194   friend class G1ParCopyClosure;
 195   friend class G1IsAliveClosure;
 196   friend class G1EvacuateFollowersClosure;
 197   friend class G1ParScanThreadState;
 198   friend class G1ParScanClosureSuper;
 199   friend class G1ParEvacuateFollowersClosure;
 200   friend class G1ParTask;
 201   friend class G1ParGCAllocator;
 202   friend class G1DefaultParGCAllocator;
 203   friend class G1FreeGarbageRegionClosure;
 204   friend class RefineCardTableEntryClosure;
 205   friend class G1PrepareCompactClosure;
 206   friend class RegionSorter;
 207   friend class RegionResetter;
 208   friend class CountRCClosure;
 209   friend class EvacPopObjClosure;
 210   friend class G1ParCleanupCTTask;
 211 
 212   friend class G1FreeHumongousRegionClosure;
 213   // Other related classes.
 214   friend class G1MarkSweep;
 215 
 216 private:
 217   // The one and only G1CollectedHeap, so static functions can find it.
 218   static G1CollectedHeap* _g1h;
 219 
 220   static size_t _humongous_object_threshold_in_words;
 221 
 222   // The secondary free list which contains regions that have been
 223   // freed up during the cleanup process. This will be appended to
 224   // the master free list when appropriate.
 225   FreeRegionList _secondary_free_list;
 226 
 227   // It keeps track of the old regions.
 228   HeapRegionSet _old_set;
 229 
 230   // It keeps track of the humongous regions.
 231   HeapRegionSet _humongous_set;
 232 
 233   void clear_humongous_is_live_table();
 234   void eagerly_reclaim_humongous_regions();
 235 
 236   // The number of regions we could create by expansion.
 237   uint _expansion_regions;
 238 
 239   // The block offset table for the G1 heap.
 240   G1BlockOffsetSharedArray* _bot_shared;
 241 
 242   // Tears down the region sets / lists so that they are empty and the
 243   // regions on the heap do not belong to a region set / list. The
 244   // only exception is the humongous set which we leave unaltered. If
 245   // free_list_only is true, it will only tear down the master free
 246   // list. It is called before a Full GC (free_list_only == false) or
 247   // before heap shrinking (free_list_only == true).
 248   void tear_down_region_sets(bool free_list_only);
 249 
 250   // Rebuilds the region sets / lists so that they are repopulated to
 251   // reflect the contents of the heap. The only exception is the
 252   // humongous set which was not torn down in the first place. If
 253   // free_list_only is true, it will only rebuild the master free
 254   // list. It is called after a Full GC (free_list_only == false) or
 255   // after heap shrinking (free_list_only == true).
 256   void rebuild_region_sets(bool free_list_only);
 257 
 258   // Callback for region mapping changed events.
 259   G1RegionMappingChangedListener _listener;
 260 
 261   // The sequence of all heap regions in the heap.
 262   HeapRegionManager _hrm;
 263 
 264   // Class that handles the different kinds of allocations.
 265   G1Allocator* _allocator;
 266 
 267   // Statistics for each allocation context
 268   AllocationContextStats _allocation_context_stats;
 269 
 270   // PLAB sizing policy for survivors.
 271   PLABStats _survivor_plab_stats;
 272 
 273   // PLAB sizing policy for tenured objects.
 274   PLABStats _old_plab_stats;
 275 
 276   // It specifies whether we should attempt to expand the heap after a
 277   // region allocation failure. If heap expansion fails we set this to
 278   // false so that we don't re-attempt the heap expansion (it's likely
 279   // that subsequent expansion attempts will also fail if one fails).
 280   // Currently, it is only consulted during GC and it's reset at the
 281   // start of each GC.
 282   bool _expand_heap_after_alloc_failure;
 283 
 284   // It resets the mutator alloc region before new allocations can take place.
 285   void init_mutator_alloc_region();
 286 
 287   // It releases the mutator alloc region.
 288   void release_mutator_alloc_region();
 289 
 290   // It initializes the GC alloc regions at the start of a GC.
 291   void init_gc_alloc_regions(EvacuationInfo& evacuation_info);
 292 
 293   // It releases the GC alloc regions at the end of a GC.
 294   void release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info);
 295 
 296   // It does any cleanup that needs to be done on the GC alloc regions
 297   // before a Full GC.
 298   void abandon_gc_alloc_regions();
 299 
 300   // Helper for monitoring and management support.
 301   G1MonitoringSupport* _g1mm;
 302 
 303   // Records whether the region at the given index is kept live by roots or
 304   // references from the young generation.
 305   class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
 306    protected:
 307     bool default_value() const { return false; }
 308    public:
 309     void clear() { G1BiasedMappedArray<bool>::clear(); }
 310     void set_live(uint region) {
 311       set_by_index(region, true);
 312     }
 313     bool is_live(uint region) {
 314       return get_by_index(region);
 315     }
 316   };
 317 
 318   HumongousIsLiveBiasedMappedArray _humongous_is_live;
 319   // Stores whether during humongous object registration we found candidate regions.
 320   // If not, we can skip a few steps.
 321   bool _has_humongous_reclaim_candidates;
 322 
 323   volatile unsigned _gc_time_stamp;
 324 
 325   size_t* _surviving_young_words;
 326 
 327   G1HRPrinter _hr_printer;
 328 
 329   void setup_surviving_young_words();
 330   void update_surviving_young_words(size_t* surv_young_words);
 331   void cleanup_surviving_young_words();
 332 
 333   // It decides whether an explicit GC should start a concurrent cycle
 334   // instead of doing a STW GC. Currently, a concurrent cycle is
 335   // explicitly started if:
 336   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 337   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 338   // (c) cause == _g1_humongous_allocation
 339   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 340 
 341   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 342   // concurrent cycles) we have started.
 343   volatile unsigned int _old_marking_cycles_started;
 344 
 345   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 346   // concurrent cycles) we have completed.
 347   volatile unsigned int _old_marking_cycles_completed;
 348 
 349   bool _concurrent_cycle_started;
 350 
 351   // This is a non-product method that is helpful for testing. It is
 352   // called at the end of a GC and artificially expands the heap by
 353   // allocating a number of dead regions. This way we can induce very
 354   // frequent marking cycles and stress the cleanup / concurrent
 355   // cleanup code more (as all the regions that will be allocated by
 356   // this method will be found dead by the marking cycle).
 357   void allocate_dummy_regions() PRODUCT_RETURN;
 358 
 359   // Clear RSets after a compaction. It also resets the GC time stamps.
 360   void clear_rsets_post_compaction();
 361 
 362   // If the HR printer is active, dump the state of the regions in the
 363   // heap after a compaction.
 364   void print_hrm_post_compaction();
 365 
 366   double verify(bool guard, const char* msg);
 367   void verify_before_gc();
 368   void verify_after_gc();
 369 
 370   void log_gc_header();
 371   void log_gc_footer(double pause_time_sec);
 372 
 373   // These are macros so that, if the assert fires, we get the correct
 374   // line number, file, etc.
 375 
 376 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 377   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 378           (_extra_message_),                                                  \
 379           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 380           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 381           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 382 
 383 #define assert_heap_locked()                                                  \
 384   do {                                                                        \
 385     assert(Heap_lock->owned_by_self(),                                        \
 386            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 387   } while (0)
 388 
 389 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 390   do {                                                                        \
 391     assert(Heap_lock->owned_by_self() ||                                      \
 392            (SafepointSynchronize::is_at_safepoint() &&                        \
 393              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 394            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 395                                         "should be at a safepoint"));         \
 396   } while (0)
 397 
 398 #define assert_heap_locked_and_not_at_safepoint()                             \
 399   do {                                                                        \
 400     assert(Heap_lock->owned_by_self() &&                                      \
 401                                     !SafepointSynchronize::is_at_safepoint(), \
 402           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 403                                        "should not be at a safepoint"));      \
 404   } while (0)
 405 
 406 #define assert_heap_not_locked()                                              \
 407   do {                                                                        \
 408     assert(!Heap_lock->owned_by_self(),                                       \
 409         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 410   } while (0)
 411 
 412 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 413   do {                                                                        \
 414     assert(!Heap_lock->owned_by_self() &&                                     \
 415                                     !SafepointSynchronize::is_at_safepoint(), \
 416       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 417                                    "should not be at a safepoint"));          \
 418   } while (0)
 419 
 420 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 421   do {                                                                        \
 422     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 423               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 424            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 425   } while (0)
 426 
 427 #define assert_not_at_safepoint()                                             \
 428   do {                                                                        \
 429     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 430            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 431   } while (0)
 432 
 433 protected:
 434 
 435   // The young region list.
 436   YoungList*  _young_list;
 437 
 438   // The current policy object for the collector.
 439   G1CollectorPolicy* _g1_policy;
 440 
 441   // This is the second level of trying to allocate a new region. If
 442   // new_region() didn't find a region on the free_list, this call will
 443   // check whether there's anything available on the
 444   // secondary_free_list and/or wait for more regions to appear on
 445   // that list, if _free_regions_coming is set.
 446   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 447 
 448   // Try to allocate a single non-humongous HeapRegion sufficient for
 449   // an allocation of the given word_size. If do_expand is true,
 450   // attempt to expand the heap if necessary to satisfy the allocation
 451   // request. If the region is to be used as an old region or for a
 452   // humongous object, set is_old to true. If not, to false.
 453   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 454 
 455   // Initialize a contiguous set of free regions of length num_regions
 456   // and starting at index first so that they appear as a single
 457   // humongous region.
 458   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 459                                                       uint num_regions,
 460                                                       size_t word_size,
 461                                                       AllocationContext_t context);
 462 
 463   // Attempt to allocate a humongous object of the given size. Return
 464   // NULL if unsuccessful.
 465   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 466 
 467   // The following two methods, allocate_new_tlab() and
 468   // mem_allocate(), are the two main entry points from the runtime
 469   // into the G1's allocation routines. They have the following
 470   // assumptions:
 471   //
 472   // * They should both be called outside safepoints.
 473   //
 474   // * They should both be called without holding the Heap_lock.
 475   //
 476   // * All allocation requests for new TLABs should go to
 477   //   allocate_new_tlab().
 478   //
 479   // * All non-TLAB allocation requests should go to mem_allocate().
 480   //
 481   // * If either call cannot satisfy the allocation request using the
 482   //   current allocating region, they will try to get a new one. If
 483   //   this fails, they will attempt to do an evacuation pause and
 484   //   retry the allocation.
 485   //
 486   // * If all allocation attempts fail, even after trying to schedule
 487   //   an evacuation pause, allocate_new_tlab() will return NULL,
 488   //   whereas mem_allocate() will attempt a heap expansion and/or
 489   //   schedule a Full GC.
 490   //
 491   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 492   //   should never be called with word_size being humongous. All
 493   //   humongous allocation requests should go to mem_allocate() which
 494   //   will satisfy them with a special path.
 495 
 496   virtual HeapWord* allocate_new_tlab(size_t word_size);
 497 
 498   virtual HeapWord* mem_allocate(size_t word_size,
 499                                  bool*  gc_overhead_limit_was_exceeded);
 500 
 501   // The following three methods take a gc_count_before_ret
 502   // parameter which is used to return the GC count if the method
 503   // returns NULL. Given that we are required to read the GC count
 504   // while holding the Heap_lock, and these paths will take the
 505   // Heap_lock at some point, it's easier to get them to read the GC
 506   // count while holding the Heap_lock before they return NULL instead
 507   // of the caller (namely: mem_allocate()) having to also take the
 508   // Heap_lock just to read the GC count.
 509 
 510   // First-level mutator allocation attempt: try to allocate out of
 511   // the mutator alloc region without taking the Heap_lock. This
 512   // should only be used for non-humongous allocations.
 513   inline HeapWord* attempt_allocation(size_t word_size,
 514                                       unsigned int* gc_count_before_ret,
 515                                       int* gclocker_retry_count_ret);
 516 
 517   // Second-level mutator allocation attempt: take the Heap_lock and
 518   // retry the allocation attempt, potentially scheduling a GC
 519   // pause. This should only be used for non-humongous allocations.
 520   HeapWord* attempt_allocation_slow(size_t word_size,
 521                                     AllocationContext_t context,
 522                                     unsigned int* gc_count_before_ret,
 523                                     int* gclocker_retry_count_ret);
 524 
 525   // Takes the Heap_lock and attempts a humongous allocation. It can
 526   // potentially schedule a GC pause.
 527   HeapWord* attempt_allocation_humongous(size_t word_size,
 528                                          unsigned int* gc_count_before_ret,
 529                                          int* gclocker_retry_count_ret);
 530 
 531   // Allocation attempt that should be called during safepoints (e.g.,
 532   // at the end of a successful GC). expect_null_mutator_alloc_region
 533   // specifies whether the mutator alloc region is expected to be NULL
 534   // or not.
 535   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 536                                             AllocationContext_t context,
 537                                             bool expect_null_mutator_alloc_region);
 538 
 539   // It dirties the cards that cover the block so that so that the post
 540   // write barrier never queues anything when updating objects on this
 541   // block. It is assumed (and in fact we assert) that the block
 542   // belongs to a young region.
 543   inline void dirty_young_block(HeapWord* start, size_t word_size);
 544 
 545   // Allocate blocks during garbage collection. Will ensure an
 546   // allocation region, either by picking one or expanding the
 547   // heap, and then allocate a block of the given size. The block
 548   // may not be a humongous - it must fit into a single heap region.
 549   inline HeapWord* par_allocate_during_gc(InCSetState dest,
 550                                           size_t word_size,
 551                                           AllocationContext_t context);
 552   // Ensure that no further allocations can happen in "r", bearing in mind
 553   // that parallel threads might be attempting allocations.
 554   void par_allocate_remaining_space(HeapRegion* r);
 555 
 556   // Allocation attempt during GC for a survivor object / PLAB.
 557   inline HeapWord* survivor_attempt_allocation(size_t word_size,
 558                                                AllocationContext_t context);
 559 
 560   // Allocation attempt during GC for an old object / PLAB.
 561   inline HeapWord* old_attempt_allocation(size_t word_size,
 562                                           AllocationContext_t context);
 563 
 564   // These methods are the "callbacks" from the G1AllocRegion class.
 565 
 566   // For mutator alloc regions.
 567   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 568   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 569                                    size_t allocated_bytes);
 570 
 571   // For GC alloc regions.
 572   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 573                                   InCSetState dest);
 574   void retire_gc_alloc_region(HeapRegion* alloc_region,
 575                               size_t allocated_bytes, InCSetState dest);
 576 
 577   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 578   //   inspection request and should collect the entire heap
 579   // - if clear_all_soft_refs is true, all soft references should be
 580   //   cleared during the GC
 581   // - if explicit_gc is false, word_size describes the allocation that
 582   //   the GC should attempt (at least) to satisfy
 583   // - it returns false if it is unable to do the collection due to the
 584   //   GC locker being active, true otherwise
 585   bool do_collection(bool explicit_gc,
 586                      bool clear_all_soft_refs,
 587                      size_t word_size);
 588 
 589   // Callback from VM_G1CollectFull operation.
 590   // Perform a full collection.
 591   virtual void do_full_collection(bool clear_all_soft_refs);
 592 
 593   // Resize the heap if necessary after a full collection.  If this is
 594   // after a collect-for allocation, "word_size" is the allocation size,
 595   // and will be considered part of the used portion of the heap.
 596   void resize_if_necessary_after_full_collection(size_t word_size);
 597 
 598   // Callback from VM_G1CollectForAllocation operation.
 599   // This function does everything necessary/possible to satisfy a
 600   // failed allocation request (including collection, expansion, etc.)
 601   HeapWord* satisfy_failed_allocation(size_t word_size,
 602                                       AllocationContext_t context,
 603                                       bool* succeeded);
 604 
 605   // Attempting to expand the heap sufficiently
 606   // to support an allocation of the given "word_size".  If
 607   // successful, perform the allocation and return the address of the
 608   // allocated block, or else "NULL".
 609   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 610 
 611   // Process any reference objects discovered during
 612   // an incremental evacuation pause.
 613   void process_discovered_references(uint no_of_gc_workers);
 614 
 615   // Enqueue any remaining discovered references
 616   // after processing.
 617   void enqueue_discovered_references(uint no_of_gc_workers);
 618 
 619 public:
 620 
 621   G1Allocator* allocator() {
 622     return _allocator;
 623   }
 624 
 625   G1MonitoringSupport* g1mm() {
 626     assert(_g1mm != NULL, "should have been initialized");
 627     return _g1mm;
 628   }
 629 
 630   // Expand the garbage-first heap by at least the given size (in bytes!).
 631   // Returns true if the heap was expanded by the requested amount;
 632   // false otherwise.
 633   // (Rounds up to a HeapRegion boundary.)
 634   bool expand(size_t expand_bytes);
 635 
 636   // Returns the PLAB statistics for a given destination.
 637   inline PLABStats* alloc_buffer_stats(InCSetState dest);
 638 
 639   // Determines PLAB size for a given destination.
 640   inline size_t desired_plab_sz(InCSetState dest);
 641 
 642   inline AllocationContextStats& allocation_context_stats();
 643 
 644   // Do anything common to GC's.
 645   virtual void gc_prologue(bool full);
 646   virtual void gc_epilogue(bool full);
 647 
 648   inline void set_humongous_is_live(oop obj);
 649 
 650   bool humongous_is_live(uint region) {
 651     return _humongous_is_live.is_live(region);
 652   }
 653 
 654   // Returns whether the given region (which must be a humongous (start) region)
 655   // is to be considered conservatively live regardless of any other conditions.
 656   bool humongous_region_is_always_live(uint index);
 657   // Register the given region to be part of the collection set.
 658   inline void register_humongous_region_with_in_cset_fast_test(uint index);
 659   // Register regions with humongous objects (actually on the start region) in
 660   // the in_cset_fast_test table.
 661   void register_humongous_regions_with_in_cset_fast_test();
 662   // We register a region with the fast "in collection set" test. We
 663   // simply set to true the array slot corresponding to this region.
 664   void register_young_region_with_in_cset_fast_test(HeapRegion* r) {
 665     _in_cset_fast_test.set_in_young(r->hrm_index());
 666   }
 667   void register_old_region_with_in_cset_fast_test(HeapRegion* r) {
 668     _in_cset_fast_test.set_in_old(r->hrm_index());
 669   }
 670 
 671   // This is a fast test on whether a reference points into the
 672   // collection set or not. Assume that the reference
 673   // points into the heap.
 674   inline bool in_cset_fast_test(oop obj);
 675 
 676   void clear_cset_fast_test() {
 677     _in_cset_fast_test.clear();
 678   }
 679 
 680   // This is called at the start of either a concurrent cycle or a Full
 681   // GC to update the number of old marking cycles started.
 682   void increment_old_marking_cycles_started();
 683 
 684   // This is called at the end of either a concurrent cycle or a Full
 685   // GC to update the number of old marking cycles completed. Those two
 686   // can happen in a nested fashion, i.e., we start a concurrent
 687   // cycle, a Full GC happens half-way through it which ends first,
 688   // and then the cycle notices that a Full GC happened and ends
 689   // too. The concurrent parameter is a boolean to help us do a bit
 690   // tighter consistency checking in the method. If concurrent is
 691   // false, the caller is the inner caller in the nesting (i.e., the
 692   // Full GC). If concurrent is true, the caller is the outer caller
 693   // in this nesting (i.e., the concurrent cycle). Further nesting is
 694   // not currently supported. The end of this call also notifies
 695   // the FullGCCount_lock in case a Java thread is waiting for a full
 696   // GC to happen (e.g., it called System.gc() with
 697   // +ExplicitGCInvokesConcurrent).
 698   void increment_old_marking_cycles_completed(bool concurrent);
 699 
 700   unsigned int old_marking_cycles_completed() {
 701     return _old_marking_cycles_completed;
 702   }
 703 
 704   void register_concurrent_cycle_start(const Ticks& start_time);
 705   void register_concurrent_cycle_end();
 706   void trace_heap_after_concurrent_cycle();
 707 
 708   G1YCType yc_type();
 709 
 710   G1HRPrinter* hr_printer() { return &_hr_printer; }
 711 
 712   // Frees a non-humongous region by initializing its contents and
 713   // adding it to the free list that's passed as a parameter (this is
 714   // usually a local list which will be appended to the master free
 715   // list later). The used bytes of freed regions are accumulated in
 716   // pre_used. If par is true, the region's RSet will not be freed
 717   // up. The assumption is that this will be done later.
 718   // The locked parameter indicates if the caller has already taken
 719   // care of proper synchronization. This may allow some optimizations.
 720   void free_region(HeapRegion* hr,
 721                    FreeRegionList* free_list,
 722                    bool par,
 723                    bool locked = false);
 724 
 725   // Frees a humongous region by collapsing it into individual regions
 726   // and calling free_region() for each of them. The freed regions
 727   // will be added to the free list that's passed as a parameter (this
 728   // is usually a local list which will be appended to the master free
 729   // list later). The used bytes of freed regions are accumulated in
 730   // pre_used. If par is true, the region's RSet will not be freed
 731   // up. The assumption is that this will be done later.
 732   void free_humongous_region(HeapRegion* hr,
 733                              FreeRegionList* free_list,
 734                              bool par);
 735 protected:
 736 
 737   // Shrink the garbage-first heap by at most the given size (in bytes!).
 738   // (Rounds down to a HeapRegion boundary.)
 739   virtual void shrink(size_t expand_bytes);
 740   void shrink_helper(size_t expand_bytes);
 741 
 742   #if TASKQUEUE_STATS
 743   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 744   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 745   void reset_taskqueue_stats();
 746   #endif // TASKQUEUE_STATS
 747 
 748   // Schedule the VM operation that will do an evacuation pause to
 749   // satisfy an allocation request of word_size. *succeeded will
 750   // return whether the VM operation was successful (it did do an
 751   // evacuation pause) or not (another thread beat us to it or the GC
 752   // locker was active). Given that we should not be holding the
 753   // Heap_lock when we enter this method, we will pass the
 754   // gc_count_before (i.e., total_collections()) as a parameter since
 755   // it has to be read while holding the Heap_lock. Currently, both
 756   // methods that call do_collection_pause() release the Heap_lock
 757   // before the call, so it's easy to read gc_count_before just before.
 758   HeapWord* do_collection_pause(size_t         word_size,
 759                                 unsigned int   gc_count_before,
 760                                 bool*          succeeded,
 761                                 GCCause::Cause gc_cause);
 762 
 763   // The guts of the incremental collection pause, executed by the vm
 764   // thread. It returns false if it is unable to do the collection due
 765   // to the GC locker being active, true otherwise
 766   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 767 
 768   // Actually do the work of evacuating the collection set.
 769   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 770 
 771   // The g1 remembered set of the heap.
 772   G1RemSet* _g1_rem_set;
 773 
 774   // A set of cards that cover the objects for which the Rsets should be updated
 775   // concurrently after the collection.
 776   DirtyCardQueueSet _dirty_card_queue_set;
 777 
 778   // The closure used to refine a single card.
 779   RefineCardTableEntryClosure* _refine_cte_cl;
 780 
 781   // A function to check the consistency of dirty card logs.
 782   void check_ct_logs_at_safepoint();
 783 
 784   // A DirtyCardQueueSet that is used to hold cards that contain
 785   // references into the current collection set. This is used to
 786   // update the remembered sets of the regions in the collection
 787   // set in the event of an evacuation failure.
 788   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 789 
 790   // After a collection pause, make the regions in the CS into free
 791   // regions.
 792   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 793 
 794   // Abandon the current collection set without recording policy
 795   // statistics or updating free lists.
 796   void abandon_collection_set(HeapRegion* cs_head);
 797 
 798   // Applies "scan_non_heap_roots" to roots outside the heap,
 799   // "scan_rs" to roots inside the heap (having done "set_region" to
 800   // indicate the region in which the root resides),
 801   // and does "scan_metadata" If "scan_rs" is
 802   // NULL, then this step is skipped.  The "worker_i"
 803   // param is for use with parallel roots processing, and should be
 804   // the "i" of the calling parallel worker thread's work(i) function.
 805   // In the sequential case this param will be ignored.
 806   void g1_process_roots(OopClosure* scan_non_heap_roots,
 807                         OopClosure* scan_non_heap_weak_roots,
 808                         OopsInHeapRegionClosure* scan_rs,
 809                         CLDClosure* scan_strong_clds,
 810                         CLDClosure* scan_weak_clds,
 811                         CodeBlobClosure* scan_strong_code,
 812                         uint worker_i);
 813 
 814   // The concurrent marker (and the thread it runs in.)
 815   ConcurrentMark* _cm;
 816   ConcurrentMarkThread* _cmThread;
 817   bool _mark_in_progress;
 818 
 819   // The concurrent refiner.
 820   ConcurrentG1Refine* _cg1r;
 821 
 822   // The parallel task queues
 823   RefToScanQueueSet *_task_queues;
 824 
 825   // True iff a evacuation has failed in the current collection.
 826   bool _evacuation_failed;
 827 
 828   EvacuationFailedInfo* _evacuation_failed_info_array;
 829 
 830   // Failed evacuations cause some logical from-space objects to have
 831   // forwarding pointers to themselves.  Reset them.
 832   void remove_self_forwarding_pointers();
 833 
 834   // Together, these store an object with a preserved mark, and its mark value.
 835   Stack<oop, mtGC>     _objs_with_preserved_marks;
 836   Stack<markOop, mtGC> _preserved_marks_of_objs;
 837 
 838   // Preserve the mark of "obj", if necessary, in preparation for its mark
 839   // word being overwritten with a self-forwarding-pointer.
 840   void preserve_mark_if_necessary(oop obj, markOop m);
 841 
 842   // The stack of evac-failure objects left to be scanned.
 843   GrowableArray<oop>*    _evac_failure_scan_stack;
 844   // The closure to apply to evac-failure objects.
 845 
 846   OopsInHeapRegionClosure* _evac_failure_closure;
 847   // Set the field above.
 848   void
 849   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 850     _evac_failure_closure = evac_failure_closure;
 851   }
 852 
 853   // Push "obj" on the scan stack.
 854   void push_on_evac_failure_scan_stack(oop obj);
 855   // Process scan stack entries until the stack is empty.
 856   void drain_evac_failure_scan_stack();
 857   // True iff an invocation of "drain_scan_stack" is in progress; to
 858   // prevent unnecessary recursion.
 859   bool _drain_in_progress;
 860 
 861   // Do any necessary initialization for evacuation-failure handling.
 862   // "cl" is the closure that will be used to process evac-failure
 863   // objects.
 864   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 865   // Do any necessary cleanup for evacuation-failure handling data
 866   // structures.
 867   void finalize_for_evac_failure();
 868 
 869   // An attempt to evacuate "obj" has failed; take necessary steps.
 870   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 871   void handle_evacuation_failure_common(oop obj, markOop m);
 872 
 873 #ifndef PRODUCT
 874   // Support for forcing evacuation failures. Analogous to
 875   // PromotionFailureALot for the other collectors.
 876 
 877   // Records whether G1EvacuationFailureALot should be in effect
 878   // for the current GC
 879   bool _evacuation_failure_alot_for_current_gc;
 880 
 881   // Used to record the GC number for interval checking when
 882   // determining whether G1EvaucationFailureALot is in effect
 883   // for the current GC.
 884   size_t _evacuation_failure_alot_gc_number;
 885 
 886   // Count of the number of evacuations between failures.
 887   volatile size_t _evacuation_failure_alot_count;
 888 
 889   // Set whether G1EvacuationFailureALot should be in effect
 890   // for the current GC (based upon the type of GC and which
 891   // command line flags are set);
 892   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 893                                                   bool during_initial_mark,
 894                                                   bool during_marking);
 895 
 896   inline void set_evacuation_failure_alot_for_current_gc();
 897 
 898   // Return true if it's time to cause an evacuation failure.
 899   inline bool evacuation_should_fail();
 900 
 901   // Reset the G1EvacuationFailureALot counters.  Should be called at
 902   // the end of an evacuation pause in which an evacuation failure occurred.
 903   inline void reset_evacuation_should_fail();
 904 #endif // !PRODUCT
 905 
 906   // ("Weak") Reference processing support.
 907   //
 908   // G1 has 2 instances of the reference processor class. One
 909   // (_ref_processor_cm) handles reference object discovery
 910   // and subsequent processing during concurrent marking cycles.
 911   //
 912   // The other (_ref_processor_stw) handles reference object
 913   // discovery and processing during full GCs and incremental
 914   // evacuation pauses.
 915   //
 916   // During an incremental pause, reference discovery will be
 917   // temporarily disabled for _ref_processor_cm and will be
 918   // enabled for _ref_processor_stw. At the end of the evacuation
 919   // pause references discovered by _ref_processor_stw will be
 920   // processed and discovery will be disabled. The previous
 921   // setting for reference object discovery for _ref_processor_cm
 922   // will be re-instated.
 923   //
 924   // At the start of marking:
 925   //  * Discovery by the CM ref processor is verified to be inactive
 926   //    and it's discovered lists are empty.
 927   //  * Discovery by the CM ref processor is then enabled.
 928   //
 929   // At the end of marking:
 930   //  * Any references on the CM ref processor's discovered
 931   //    lists are processed (possibly MT).
 932   //
 933   // At the start of full GC we:
 934   //  * Disable discovery by the CM ref processor and
 935   //    empty CM ref processor's discovered lists
 936   //    (without processing any entries).
 937   //  * Verify that the STW ref processor is inactive and it's
 938   //    discovered lists are empty.
 939   //  * Temporarily set STW ref processor discovery as single threaded.
 940   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 941   //    field.
 942   //  * Finally enable discovery by the STW ref processor.
 943   //
 944   // The STW ref processor is used to record any discovered
 945   // references during the full GC.
 946   //
 947   // At the end of a full GC we:
 948   //  * Enqueue any reference objects discovered by the STW ref processor
 949   //    that have non-live referents. This has the side-effect of
 950   //    making the STW ref processor inactive by disabling discovery.
 951   //  * Verify that the CM ref processor is still inactive
 952   //    and no references have been placed on it's discovered
 953   //    lists (also checked as a precondition during initial marking).
 954 
 955   // The (stw) reference processor...
 956   ReferenceProcessor* _ref_processor_stw;
 957 
 958   STWGCTimer* _gc_timer_stw;
 959   ConcurrentGCTimer* _gc_timer_cm;
 960 
 961   G1OldTracer* _gc_tracer_cm;
 962   G1NewTracer* _gc_tracer_stw;
 963 
 964   // During reference object discovery, the _is_alive_non_header
 965   // closure (if non-null) is applied to the referent object to
 966   // determine whether the referent is live. If so then the
 967   // reference object does not need to be 'discovered' and can
 968   // be treated as a regular oop. This has the benefit of reducing
 969   // the number of 'discovered' reference objects that need to
 970   // be processed.
 971   //
 972   // Instance of the is_alive closure for embedding into the
 973   // STW reference processor as the _is_alive_non_header field.
 974   // Supplying a value for the _is_alive_non_header field is
 975   // optional but doing so prevents unnecessary additions to
 976   // the discovered lists during reference discovery.
 977   G1STWIsAliveClosure _is_alive_closure_stw;
 978 
 979   // The (concurrent marking) reference processor...
 980   ReferenceProcessor* _ref_processor_cm;
 981 
 982   // Instance of the concurrent mark is_alive closure for embedding
 983   // into the Concurrent Marking reference processor as the
 984   // _is_alive_non_header field. Supplying a value for the
 985   // _is_alive_non_header field is optional but doing so prevents
 986   // unnecessary additions to the discovered lists during reference
 987   // discovery.
 988   G1CMIsAliveClosure _is_alive_closure_cm;
 989 
 990   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 991   HeapRegion** _worker_cset_start_region;
 992 
 993   // Time stamp to validate the regions recorded in the cache
 994   // used by G1CollectedHeap::start_cset_region_for_worker().
 995   // The heap region entry for a given worker is valid iff
 996   // the associated time stamp value matches the current value
 997   // of G1CollectedHeap::_gc_time_stamp.
 998   unsigned int* _worker_cset_start_region_time_stamp;
 999 
1000   enum G1H_process_roots_tasks {
1001     G1H_PS_filter_satb_buffers,
1002     G1H_PS_refProcessor_oops_do,
1003     // Leave this one last.
1004     G1H_PS_NumElements
1005   };
1006 
1007   SubTasksDone* _process_strong_tasks;
1008 
1009   volatile bool _free_regions_coming;
1010 
1011 public:
1012 
1013   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1014 
1015   void set_refine_cte_cl_concurrency(bool concurrent);
1016 
1017   RefToScanQueue *task_queue(int i) const;
1018 
1019   // A set of cards where updates happened during the GC
1020   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1021 
1022   // A DirtyCardQueueSet that is used to hold cards that contain
1023   // references into the current collection set. This is used to
1024   // update the remembered sets of the regions in the collection
1025   // set in the event of an evacuation failure.
1026   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1027         { return _into_cset_dirty_card_queue_set; }
1028 
1029   // Create a G1CollectedHeap with the specified policy.
1030   // Must call the initialize method afterwards.
1031   // May not return if something goes wrong.
1032   G1CollectedHeap(G1CollectorPolicy* policy);
1033 
1034   // Initialize the G1CollectedHeap to have the initial and
1035   // maximum sizes and remembered and barrier sets
1036   // specified by the policy object.
1037   jint initialize();
1038 
1039   virtual void stop();
1040 
1041   // Return the (conservative) maximum heap alignment for any G1 heap
1042   static size_t conservative_max_heap_alignment();
1043 
1044   // Initialize weak reference processing.
1045   virtual void ref_processing_init();
1046 
1047   void set_par_threads(uint t) {
1048     SharedHeap::set_par_threads(t);
1049     // Done in SharedHeap but oddly there are
1050     // two _process_strong_tasks's in a G1CollectedHeap
1051     // so do it here too.
1052     _process_strong_tasks->set_n_threads(t);
1053   }
1054 
1055   // Set _n_par_threads according to a policy TBD.
1056   void set_par_threads();
1057 
1058   void set_n_termination(int t) {
1059     _process_strong_tasks->set_n_threads(t);
1060   }
1061 
1062   virtual CollectedHeap::Name kind() const {
1063     return CollectedHeap::G1CollectedHeap;
1064   }
1065 
1066   // The current policy object for the collector.
1067   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1068 
1069   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1070 
1071   // Adaptive size policy.  No such thing for g1.
1072   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1073 
1074   // The rem set and barrier set.
1075   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1076 
1077   unsigned get_gc_time_stamp() {
1078     return _gc_time_stamp;
1079   }
1080 
1081   inline void reset_gc_time_stamp();
1082 
1083   void check_gc_time_stamps() PRODUCT_RETURN;
1084 
1085   inline void increment_gc_time_stamp();
1086 
1087   // Reset the given region's GC timestamp. If it's starts humongous,
1088   // also reset the GC timestamp of its corresponding
1089   // continues humongous regions too.
1090   void reset_gc_time_stamps(HeapRegion* hr);
1091 
1092   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1093                                   DirtyCardQueue* into_cset_dcq,
1094                                   bool concurrent, uint worker_i);
1095 
1096   // The shared block offset table array.
1097   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1098 
1099   // Reference Processing accessors
1100 
1101   // The STW reference processor....
1102   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1103 
1104   // The Concurrent Marking reference processor...
1105   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1106 
1107   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1108   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1109 
1110   virtual size_t capacity() const;
1111   virtual size_t used() const;
1112   // This should be called when we're not holding the heap lock. The
1113   // result might be a bit inaccurate.
1114   size_t used_unlocked() const;
1115   size_t recalculate_used() const;
1116 
1117   // These virtual functions do the actual allocation.
1118   // Some heaps may offer a contiguous region for shared non-blocking
1119   // allocation, via inlined code (by exporting the address of the top and
1120   // end fields defining the extent of the contiguous allocation region.)
1121   // But G1CollectedHeap doesn't yet support this.
1122 
1123   virtual bool is_maximal_no_gc() const {
1124     return _hrm.available() == 0;
1125   }
1126 
1127   // The current number of regions in the heap.
1128   uint num_regions() const { return _hrm.length(); }
1129 
1130   // The max number of regions in the heap.
1131   uint max_regions() const { return _hrm.max_length(); }
1132 
1133   // The number of regions that are completely free.
1134   uint num_free_regions() const { return _hrm.num_free_regions(); }
1135 
1136   // The number of regions that are not completely free.
1137   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1138 
1139   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1140   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1141   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1142   void verify_dirty_young_regions() PRODUCT_RETURN;
1143 
1144 #ifndef PRODUCT
1145   // Make sure that the given bitmap has no marked objects in the
1146   // range [from,limit). If it does, print an error message and return
1147   // false. Otherwise, just return true. bitmap_name should be "prev"
1148   // or "next".
1149   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1150                                 HeapWord* from, HeapWord* limit);
1151 
1152   // Verify that the prev / next bitmap range [tams,end) for the given
1153   // region has no marks. Return true if all is well, false if errors
1154   // are detected.
1155   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1156 #endif // PRODUCT
1157 
1158   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1159   // the given region do not have any spurious marks. If errors are
1160   // detected, print appropriate error messages and crash.
1161   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1162 
1163   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1164   // have any spurious marks. If errors are detected, print
1165   // appropriate error messages and crash.
1166   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1167 
1168   // Do sanity check on the contents of the in-cset fast test table.
1169   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1170 
1171   // verify_region_sets() performs verification over the region
1172   // lists. It will be compiled in the product code to be used when
1173   // necessary (i.e., during heap verification).
1174   void verify_region_sets();
1175 
1176   // verify_region_sets_optional() is planted in the code for
1177   // list verification in non-product builds (and it can be enabled in
1178   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1179 #if HEAP_REGION_SET_FORCE_VERIFY
1180   void verify_region_sets_optional() {
1181     verify_region_sets();
1182   }
1183 #else // HEAP_REGION_SET_FORCE_VERIFY
1184   void verify_region_sets_optional() { }
1185 #endif // HEAP_REGION_SET_FORCE_VERIFY
1186 
1187 #ifdef ASSERT
1188   bool is_on_master_free_list(HeapRegion* hr) {
1189     return _hrm.is_free(hr);
1190   }
1191 #endif // ASSERT
1192 
1193   // Wrapper for the region list operations that can be called from
1194   // methods outside this class.
1195 
1196   void secondary_free_list_add(FreeRegionList* list) {
1197     _secondary_free_list.add_ordered(list);
1198   }
1199 
1200   void append_secondary_free_list() {
1201     _hrm.insert_list_into_free_list(&_secondary_free_list);
1202   }
1203 
1204   void append_secondary_free_list_if_not_empty_with_lock() {
1205     // If the secondary free list looks empty there's no reason to
1206     // take the lock and then try to append it.
1207     if (!_secondary_free_list.is_empty()) {
1208       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1209       append_secondary_free_list();
1210     }
1211   }
1212 
1213   inline void old_set_remove(HeapRegion* hr);
1214 
1215   size_t non_young_capacity_bytes() {
1216     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1217   }
1218 
1219   void set_free_regions_coming();
1220   void reset_free_regions_coming();
1221   bool free_regions_coming() { return _free_regions_coming; }
1222   void wait_while_free_regions_coming();
1223 
1224   // Determine whether the given region is one that we are using as an
1225   // old GC alloc region.
1226   bool is_old_gc_alloc_region(HeapRegion* hr) {
1227     return _allocator->is_retained_old_region(hr);
1228   }
1229 
1230   // Perform a collection of the heap; intended for use in implementing
1231   // "System.gc".  This probably implies as full a collection as the
1232   // "CollectedHeap" supports.
1233   virtual void collect(GCCause::Cause cause);
1234 
1235   // The same as above but assume that the caller holds the Heap_lock.
1236   void collect_locked(GCCause::Cause cause);
1237 
1238   virtual bool copy_allocation_context_stats(const jint* contexts,
1239                                              jlong* totals,
1240                                              jbyte* accuracy,
1241                                              jint len);
1242 
1243   // True iff an evacuation has failed in the most-recent collection.
1244   bool evacuation_failed() { return _evacuation_failed; }
1245 
1246   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1247   void prepend_to_freelist(FreeRegionList* list);
1248   void decrement_summary_bytes(size_t bytes);
1249 
1250   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1251   virtual bool is_in(const void* p) const;
1252 #ifdef ASSERT
1253   // Returns whether p is in one of the available areas of the heap. Slow but
1254   // extensive version.
1255   bool is_in_exact(const void* p) const;
1256 #endif
1257 
1258   // Return "TRUE" iff the given object address is within the collection
1259   // set. Slow implementation.
1260   inline bool obj_in_cs(oop obj);
1261 
1262   inline bool is_in_cset(oop obj);
1263 
1264   inline bool is_in_cset_or_humongous(const oop obj);
1265 
1266  private:
1267   // This array is used for a quick test on whether a reference points into
1268   // the collection set or not. Each of the array's elements denotes whether the
1269   // corresponding region is in the collection set or not.
1270   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1271 
1272  public:
1273 
1274   inline InCSetState in_cset_state(const oop obj);
1275 
1276   // Return "TRUE" iff the given object address is in the reserved
1277   // region of g1.
1278   bool is_in_g1_reserved(const void* p) const {
1279     return _hrm.reserved().contains(p);
1280   }
1281 
1282   // Returns a MemRegion that corresponds to the space that has been
1283   // reserved for the heap
1284   MemRegion g1_reserved() const {
1285     return _hrm.reserved();
1286   }
1287 
1288   virtual bool is_in_closed_subset(const void* p) const;
1289 
1290   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1291     return (G1SATBCardTableLoggingModRefBS*) barrier_set();
1292   }
1293 
1294   // This resets the card table to all zeros.  It is used after
1295   // a collection pause which used the card table to claim cards.
1296   void cleanUpCardTable();
1297 
1298   // Iteration functions.
1299 
1300   // Iterate over all the ref-containing fields of all objects, calling
1301   // "cl.do_oop" on each.
1302   virtual void oop_iterate(ExtendedOopClosure* cl);
1303 
1304   // Iterate over all objects, calling "cl.do_object" on each.
1305   virtual void object_iterate(ObjectClosure* cl);
1306 
1307   virtual void safe_object_iterate(ObjectClosure* cl) {
1308     object_iterate(cl);
1309   }
1310 
1311   // Iterate over all spaces in use in the heap, in ascending address order.
1312   virtual void space_iterate(SpaceClosure* cl);
1313 
1314   // Iterate over heap regions, in address order, terminating the
1315   // iteration early if the "doHeapRegion" method returns "true".
1316   void heap_region_iterate(HeapRegionClosure* blk) const;
1317 
1318   // Return the region with the given index. It assumes the index is valid.
1319   inline HeapRegion* region_at(uint index) const;
1320 
1321   // Calculate the region index of the given address. Given address must be
1322   // within the heap.
1323   inline uint addr_to_region(HeapWord* addr) const;
1324 
1325   inline HeapWord* bottom_addr_for_region(uint index) const;
1326 
1327   // Divide the heap region sequence into "chunks" of some size (the number
1328   // of regions divided by the number of parallel threads times some
1329   // overpartition factor, currently 4).  Assumes that this will be called
1330   // in parallel by ParallelGCThreads worker threads with discinct worker
1331   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1332   // calls will use the same "claim_value", and that that claim value is
1333   // different from the claim_value of any heap region before the start of
1334   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1335   // attempting to claim the first region in each chunk, and, if
1336   // successful, applying the closure to each region in the chunk (and
1337   // setting the claim value of the second and subsequent regions of the
1338   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1339   // i.e., that a closure never attempt to abort a traversal.
1340   void heap_region_par_iterate_chunked(HeapRegionClosure* cl,
1341                                        uint worker_id,
1342                                        uint num_workers,
1343                                        jint claim_value) const;
1344 
1345   // It resets all the region claim values to the default.
1346   void reset_heap_region_claim_values();
1347 
1348   // Resets the claim values of regions in the current
1349   // collection set to the default.
1350   void reset_cset_heap_region_claim_values();
1351 
1352 #ifdef ASSERT
1353   bool check_heap_region_claim_values(jint claim_value);
1354 
1355   // Same as the routine above but only checks regions in the
1356   // current collection set.
1357   bool check_cset_heap_region_claim_values(jint claim_value);
1358 #endif // ASSERT
1359 
1360   // Clear the cached cset start regions and (more importantly)
1361   // the time stamps. Called when we reset the GC time stamp.
1362   void clear_cset_start_regions();
1363 
1364   // Given the id of a worker, obtain or calculate a suitable
1365   // starting region for iterating over the current collection set.
1366   HeapRegion* start_cset_region_for_worker(uint worker_i);
1367 
1368   // Iterate over the regions (if any) in the current collection set.
1369   void collection_set_iterate(HeapRegionClosure* blk);
1370 
1371   // As above but starting from region r
1372   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1373 
1374   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1375 
1376   // A CollectedHeap will contain some number of spaces.  This finds the
1377   // space containing a given address, or else returns NULL.
1378   virtual Space* space_containing(const void* addr) const;
1379 
1380   // Returns the HeapRegion that contains addr. addr must not be NULL.
1381   template <class T>
1382   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1383 
1384   // Returns the HeapRegion that contains addr. addr must not be NULL.
1385   // If addr is within a humongous continues region, it returns its humongous start region.
1386   template <class T>
1387   inline HeapRegion* heap_region_containing(const T addr) const;
1388 
1389   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1390   // each address in the (reserved) heap is a member of exactly
1391   // one block.  The defining characteristic of a block is that it is
1392   // possible to find its size, and thus to progress forward to the next
1393   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1394   // represent Java objects, or they might be free blocks in a
1395   // free-list-based heap (or subheap), as long as the two kinds are
1396   // distinguishable and the size of each is determinable.
1397 
1398   // Returns the address of the start of the "block" that contains the
1399   // address "addr".  We say "blocks" instead of "object" since some heaps
1400   // may not pack objects densely; a chunk may either be an object or a
1401   // non-object.
1402   virtual HeapWord* block_start(const void* addr) const;
1403 
1404   // Requires "addr" to be the start of a chunk, and returns its size.
1405   // "addr + size" is required to be the start of a new chunk, or the end
1406   // of the active area of the heap.
1407   virtual size_t block_size(const HeapWord* addr) const;
1408 
1409   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1410   // the block is an object.
1411   virtual bool block_is_obj(const HeapWord* addr) const;
1412 
1413   // Does this heap support heap inspection? (+PrintClassHistogram)
1414   virtual bool supports_heap_inspection() const { return true; }
1415 
1416   // Section on thread-local allocation buffers (TLABs)
1417   // See CollectedHeap for semantics.
1418 
1419   bool supports_tlab_allocation() const;
1420   size_t tlab_capacity(Thread* ignored) const;
1421   size_t tlab_used(Thread* ignored) const;
1422   size_t max_tlab_size() const;
1423   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1424 
1425   // Can a compiler initialize a new object without store barriers?
1426   // This permission only extends from the creation of a new object
1427   // via a TLAB up to the first subsequent safepoint. If such permission
1428   // is granted for this heap type, the compiler promises to call
1429   // defer_store_barrier() below on any slow path allocation of
1430   // a new object for which such initializing store barriers will
1431   // have been elided. G1, like CMS, allows this, but should be
1432   // ready to provide a compensating write barrier as necessary
1433   // if that storage came out of a non-young region. The efficiency
1434   // of this implementation depends crucially on being able to
1435   // answer very efficiently in constant time whether a piece of
1436   // storage in the heap comes from a young region or not.
1437   // See ReduceInitialCardMarks.
1438   virtual bool can_elide_tlab_store_barriers() const {
1439     return true;
1440   }
1441 
1442   virtual bool card_mark_must_follow_store() const {
1443     return true;
1444   }
1445 
1446   inline bool is_in_young(const oop obj);
1447 
1448 #ifdef ASSERT
1449   virtual bool is_in_partial_collection(const void* p);
1450 #endif
1451 
1452   virtual bool is_scavengable(const void* addr);
1453 
1454   // We don't need barriers for initializing stores to objects
1455   // in the young gen: for the SATB pre-barrier, there is no
1456   // pre-value that needs to be remembered; for the remembered-set
1457   // update logging post-barrier, we don't maintain remembered set
1458   // information for young gen objects.
1459   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1460 
1461   // Returns "true" iff the given word_size is "very large".
1462   static bool isHumongous(size_t word_size) {
1463     // Note this has to be strictly greater-than as the TLABs
1464     // are capped at the humongous thresold and we want to
1465     // ensure that we don't try to allocate a TLAB as
1466     // humongous and that we don't allocate a humongous
1467     // object in a TLAB.
1468     return word_size > _humongous_object_threshold_in_words;
1469   }
1470 
1471   // Update mod union table with the set of dirty cards.
1472   void updateModUnion();
1473 
1474   // Set the mod union bits corresponding to the given memRegion.  Note
1475   // that this is always a safe operation, since it doesn't clear any
1476   // bits.
1477   void markModUnionRange(MemRegion mr);
1478 
1479   // Records the fact that a marking phase is no longer in progress.
1480   void set_marking_complete() {
1481     _mark_in_progress = false;
1482   }
1483   void set_marking_started() {
1484     _mark_in_progress = true;
1485   }
1486   bool mark_in_progress() {
1487     return _mark_in_progress;
1488   }
1489 
1490   // Print the maximum heap capacity.
1491   virtual size_t max_capacity() const;
1492 
1493   virtual jlong millis_since_last_gc();
1494 
1495 
1496   // Convenience function to be used in situations where the heap type can be
1497   // asserted to be this type.
1498   static G1CollectedHeap* heap();
1499 
1500   void set_region_short_lived_locked(HeapRegion* hr);
1501   // add appropriate methods for any other surv rate groups
1502 
1503   YoungList* young_list() const { return _young_list; }
1504 
1505   // debugging
1506   bool check_young_list_well_formed() {
1507     return _young_list->check_list_well_formed();
1508   }
1509 
1510   bool check_young_list_empty(bool check_heap,
1511                               bool check_sample = true);
1512 
1513   // *** Stuff related to concurrent marking.  It's not clear to me that so
1514   // many of these need to be public.
1515 
1516   // The functions below are helper functions that a subclass of
1517   // "CollectedHeap" can use in the implementation of its virtual
1518   // functions.
1519   // This performs a concurrent marking of the live objects in a
1520   // bitmap off to the side.
1521   void doConcurrentMark();
1522 
1523   bool isMarkedPrev(oop obj) const;
1524   bool isMarkedNext(oop obj) const;
1525 
1526   // Determine if an object is dead, given the object and also
1527   // the region to which the object belongs. An object is dead
1528   // iff a) it was not allocated since the last mark and b) it
1529   // is not marked.
1530   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1531     return
1532       !hr->obj_allocated_since_prev_marking(obj) &&
1533       !isMarkedPrev(obj);
1534   }
1535 
1536   // This function returns true when an object has been
1537   // around since the previous marking and hasn't yet
1538   // been marked during this marking.
1539   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1540     return
1541       !hr->obj_allocated_since_next_marking(obj) &&
1542       !isMarkedNext(obj);
1543   }
1544 
1545   // Determine if an object is dead, given only the object itself.
1546   // This will find the region to which the object belongs and
1547   // then call the region version of the same function.
1548 
1549   // Added if it is NULL it isn't dead.
1550 
1551   inline bool is_obj_dead(const oop obj) const;
1552 
1553   inline bool is_obj_ill(const oop obj) const;
1554 
1555   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1556   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1557   bool is_marked(oop obj, VerifyOption vo);
1558   const char* top_at_mark_start_str(VerifyOption vo);
1559 
1560   ConcurrentMark* concurrent_mark() const { return _cm; }
1561 
1562   // Refinement
1563 
1564   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1565 
1566   // The dirty cards region list is used to record a subset of regions
1567   // whose cards need clearing. The list if populated during the
1568   // remembered set scanning and drained during the card table
1569   // cleanup. Although the methods are reentrant, population/draining
1570   // phases must not overlap. For synchronization purposes the last
1571   // element on the list points to itself.
1572   HeapRegion* _dirty_cards_region_list;
1573   void push_dirty_cards_region(HeapRegion* hr);
1574   HeapRegion* pop_dirty_cards_region();
1575 
1576   // Optimized nmethod scanning support routines
1577 
1578   // Register the given nmethod with the G1 heap
1579   virtual void register_nmethod(nmethod* nm);
1580 
1581   // Unregister the given nmethod from the G1 heap
1582   virtual void unregister_nmethod(nmethod* nm);
1583 
1584   // Free up superfluous code root memory.
1585   void purge_code_root_memory();
1586 
1587   // Rebuild the stong code root lists for each region
1588   // after a full GC
1589   void rebuild_strong_code_roots();
1590 
1591   // Delete entries for dead interned string and clean up unreferenced symbols
1592   // in symbol table, possibly in parallel.
1593   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1594 
1595   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1596   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1597 
1598   // Redirty logged cards in the refinement queue.
1599   void redirty_logged_cards();
1600   // Verification
1601 
1602   // The following is just to alert the verification code
1603   // that a full collection has occurred and that the
1604   // remembered sets are no longer up to date.
1605   bool _full_collection;
1606   void set_full_collection() { _full_collection = true;}
1607   void clear_full_collection() {_full_collection = false;}
1608   bool full_collection() {return _full_collection;}
1609 
1610   // Perform any cleanup actions necessary before allowing a verification.
1611   virtual void prepare_for_verify();
1612 
1613   // Perform verification.
1614 
1615   // vo == UsePrevMarking  -> use "prev" marking information,
1616   // vo == UseNextMarking -> use "next" marking information
1617   // vo == UseMarkWord    -> use the mark word in the object header
1618   //
1619   // NOTE: Only the "prev" marking information is guaranteed to be
1620   // consistent most of the time, so most calls to this should use
1621   // vo == UsePrevMarking.
1622   // Currently, there is only one case where this is called with
1623   // vo == UseNextMarking, which is to verify the "next" marking
1624   // information at the end of remark.
1625   // Currently there is only one place where this is called with
1626   // vo == UseMarkWord, which is to verify the marking during a
1627   // full GC.
1628   void verify(bool silent, VerifyOption vo);
1629 
1630   // Override; it uses the "prev" marking information
1631   virtual void verify(bool silent);
1632 
1633   // The methods below are here for convenience and dispatch the
1634   // appropriate method depending on value of the given VerifyOption
1635   // parameter. The values for that parameter, and their meanings,
1636   // are the same as those above.
1637 
1638   bool is_obj_dead_cond(const oop obj,
1639                         const HeapRegion* hr,
1640                         const VerifyOption vo) const;
1641 
1642   bool is_obj_dead_cond(const oop obj,
1643                         const VerifyOption vo) const;
1644 
1645   // Printing
1646 
1647   virtual void print_on(outputStream* st) const;
1648   virtual void print_extended_on(outputStream* st) const;
1649   virtual void print_on_error(outputStream* st) const;
1650 
1651   virtual void print_gc_threads_on(outputStream* st) const;
1652   virtual void gc_threads_do(ThreadClosure* tc) const;
1653 
1654   // Override
1655   void print_tracing_info() const;
1656 
1657   // The following two methods are helpful for debugging RSet issues.
1658   void print_cset_rsets() PRODUCT_RETURN;
1659   void print_all_rsets() PRODUCT_RETURN;
1660 
1661 public:
1662   size_t pending_card_num();
1663   size_t cards_scanned();
1664 
1665 protected:
1666   size_t _max_heap_capacity;
1667 };
1668 
1669 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP