1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  34 #include "gc_implementation/shared/liveRange.hpp"
  35 #include "memory/genOopClosures.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/space.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/orderAccess.inline.hpp"
  40 
  41 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  42 
  43 int    HeapRegion::LogOfHRGrainBytes = 0;
  44 int    HeapRegion::LogOfHRGrainWords = 0;
  45 size_t HeapRegion::GrainBytes        = 0;
  46 size_t HeapRegion::GrainWords        = 0;
  47 size_t HeapRegion::CardsPerRegion    = 0;
  48 
  49 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  50                                  HeapRegion* hr, ExtendedOopClosure* cl,
  51                                  CardTableModRefBS::PrecisionStyle precision,
  52                                  FilterKind fk) :
  53   DirtyCardToOopClosure(hr, cl, precision, NULL),
  54   _hr(hr), _fk(fk), _g1(g1) { }
  55 
  56 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  57                                                    OopClosure* oc) :
  58   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  59 
  60 template<class ClosureType>
  61 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  62                                HeapRegion* hr,
  63                                HeapWord* cur, HeapWord* top) {
  64   oop cur_oop = oop(cur);
  65   size_t oop_size = hr->block_size(cur);
  66   HeapWord* next_obj = cur + oop_size;
  67   while (next_obj < top) {
  68     // Keep filtering the remembered set.
  69     if (!g1h->is_obj_dead(cur_oop, hr)) {
  70       // Bottom lies entirely below top, so we can call the
  71       // non-memRegion version of oop_iterate below.
  72       cur_oop->oop_iterate(cl);
  73     }
  74     cur = next_obj;
  75     cur_oop = oop(cur);
  76     oop_size = hr->block_size(cur);
  77     next_obj = cur + oop_size;
  78   }
  79   return cur;
  80 }
  81 
  82 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  83                                       HeapWord* bottom,
  84                                       HeapWord* top) {
  85   G1CollectedHeap* g1h = _g1;
  86   size_t oop_size;
  87   ExtendedOopClosure* cl2 = NULL;
  88 
  89   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
  90   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
  91 
  92   switch (_fk) {
  93   case NoFilterKind:          cl2 = _cl; break;
  94   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  95   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  96   default:                    ShouldNotReachHere();
  97   }
  98 
  99   // Start filtering what we add to the remembered set. If the object is
 100   // not considered dead, either because it is marked (in the mark bitmap)
 101   // or it was allocated after marking finished, then we add it. Otherwise
 102   // we can safely ignore the object.
 103   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 104     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 105   } else {
 106     oop_size = _hr->block_size(bottom);
 107   }
 108 
 109   bottom += oop_size;
 110 
 111   if (bottom < top) {
 112     // We replicate the loop below for several kinds of possible filters.
 113     switch (_fk) {
 114     case NoFilterKind:
 115       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
 116       break;
 117 
 118     case IntoCSFilterKind: {
 119       FilterIntoCSClosure filt(this, g1h, _cl);
 120       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 121       break;
 122     }
 123 
 124     case OutOfRegionFilterKind: {
 125       FilterOutOfRegionClosure filt(_hr, _cl);
 126       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 127       break;
 128     }
 129 
 130     default:
 131       ShouldNotReachHere();
 132     }
 133 
 134     // Last object. Need to do dead-obj filtering here too.
 135     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 136       oop(bottom)->oop_iterate(cl2, mr);
 137     }
 138   }
 139 }
 140 
 141 size_t HeapRegion::max_region_size() {
 142   return HeapRegionBounds::max_size();
 143 }
 144 
 145 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 146   uintx region_size = G1HeapRegionSize;
 147   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 148     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 149     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 150                        (uintx) HeapRegionBounds::min_size());
 151   }
 152 
 153   int region_size_log = log2_long((jlong) region_size);
 154   // Recalculate the region size to make sure it's a power of
 155   // 2. This means that region_size is the largest power of 2 that's
 156   // <= what we've calculated so far.
 157   region_size = ((uintx)1 << region_size_log);
 158 
 159   // Now make sure that we don't go over or under our limits.
 160   if (region_size < HeapRegionBounds::min_size()) {
 161     region_size = HeapRegionBounds::min_size();
 162   } else if (region_size > HeapRegionBounds::max_size()) {
 163     region_size = HeapRegionBounds::max_size();
 164   }
 165 
 166   // And recalculate the log.
 167   region_size_log = log2_long((jlong) region_size);
 168 
 169   // Now, set up the globals.
 170   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 171   LogOfHRGrainBytes = region_size_log;
 172 
 173   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 174   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 175 
 176   guarantee(GrainBytes == 0, "we should only set it once");
 177   // The cast to int is safe, given that we've bounded region_size by
 178   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 179   GrainBytes = (size_t)region_size;
 180 
 181   guarantee(GrainWords == 0, "we should only set it once");
 182   GrainWords = GrainBytes >> LogHeapWordSize;
 183   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 184 
 185   guarantee(CardsPerRegion == 0, "we should only set it once");
 186   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 187 }
 188 
 189 void HeapRegion::reset_after_compaction() {
 190   G1OffsetTableContigSpace::reset_after_compaction();
 191   // After a compaction the mark bitmap is invalid, so we must
 192   // treat all objects as being inside the unmarked area.
 193   zero_marked_bytes();
 194   init_top_at_mark_start();
 195 }
 196 
 197 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 198   assert(_humongous_start_region == NULL,
 199          "we should have already filtered out humongous regions");
 200   assert(_end == _orig_end,
 201          "we should have already filtered out humongous regions");
 202 
 203   _in_collection_set = false;
 204 
 205   set_allocation_context(AllocationContext::system());
 206   set_young_index_in_cset(-1);
 207   uninstall_surv_rate_group();
 208   set_free();
 209   reset_pre_dummy_top();
 210 
 211   if (!par) {
 212     // If this is parallel, this will be done later.
 213     HeapRegionRemSet* hrrs = rem_set();
 214     if (locked) {
 215       hrrs->clear_locked();
 216     } else {
 217       hrrs->clear();
 218     }
 219     _claimed = InitialClaimValue;
 220   }
 221   zero_marked_bytes();
 222 
 223   _offsets.resize(HeapRegion::GrainWords);
 224   init_top_at_mark_start();
 225   if (clear_space) clear(SpaceDecorator::Mangle);
 226 }
 227 
 228 void HeapRegion::par_clear() {
 229   assert(used() == 0, "the region should have been already cleared");
 230   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 231   HeapRegionRemSet* hrrs = rem_set();
 232   hrrs->clear();
 233   CardTableModRefBS* ct_bs =
 234                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 235   ct_bs->clear(MemRegion(bottom(), end()));
 236 }
 237 
 238 void HeapRegion::calc_gc_efficiency() {
 239   // GC efficiency is the ratio of how much space would be
 240   // reclaimed over how long we predict it would take to reclaim it.
 241   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 242   G1CollectorPolicy* g1p = g1h->g1_policy();
 243 
 244   // Retrieve a prediction of the elapsed time for this region for
 245   // a mixed gc because the region will only be evacuated during a
 246   // mixed gc.
 247   double region_elapsed_time_ms =
 248     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 249   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 250 }
 251 
 252 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 253   assert(!isHumongous(), "sanity / pre-condition");
 254   assert(end() == _orig_end,
 255          "Should be normal before the humongous object allocation");
 256   assert(top() == bottom(), "should be empty");
 257   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 258 
 259   _type.set_starts_humongous();
 260   _humongous_start_region = this;
 261 
 262   set_end(new_end);
 263   _offsets.set_for_starts_humongous(new_top);
 264 }
 265 
 266 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 267   assert(!isHumongous(), "sanity / pre-condition");
 268   assert(end() == _orig_end,
 269          "Should be normal before the humongous object allocation");
 270   assert(top() == bottom(), "should be empty");
 271   assert(first_hr->startsHumongous(), "pre-condition");
 272 
 273   _type.set_continues_humongous();
 274   _humongous_start_region = first_hr;
 275 }
 276 
 277 void HeapRegion::clear_humongous() {
 278   assert(isHumongous(), "pre-condition");
 279 
 280   if (startsHumongous()) {
 281     assert(top() <= end(), "pre-condition");
 282     set_end(_orig_end);
 283     if (top() > end()) {
 284       // at least one "continues humongous" region after it
 285       set_top(end());
 286     }
 287   } else {
 288     // continues humongous
 289     assert(end() == _orig_end, "sanity");
 290   }
 291 
 292   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 293   _humongous_start_region = NULL;
 294 }
 295 
 296 bool HeapRegion::claimHeapRegion(jint claimValue) {
 297   jint current = _claimed;
 298   if (current != claimValue) {
 299     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 300     if (res == current) {
 301       return true;
 302     }
 303   }
 304   return false;
 305 }
 306 
 307 HeapRegion::HeapRegion(uint hrm_index,
 308                        G1BlockOffsetSharedArray* sharedOffsetArray,
 309                        MemRegion mr) :
 310     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 311     _hrm_index(hrm_index),
 312     _allocation_context(AllocationContext::system()),
 313     _humongous_start_region(NULL),
 314     _in_collection_set(false),
 315     _next_in_special_set(NULL), _orig_end(NULL),
 316     _claimed(InitialClaimValue), _evacuation_failed(false),
 317     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 318     _next_young_region(NULL),
 319     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 320 #ifdef ASSERT
 321     _containing_set(NULL),
 322 #endif // ASSERT
 323      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 324     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 325     _predicted_bytes_to_copy(0)
 326 {
 327   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 328   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 329 
 330   initialize(mr);
 331 }
 332 
 333 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 334   assert(_rem_set->is_empty(), "Remembered set must be empty");
 335 
 336   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 337 
 338   _orig_end = mr.end();
 339   hr_clear(false /*par*/, false /*clear_space*/);
 340   set_top(bottom());
 341   record_timestamp();
 342 }
 343 
 344 CompactibleSpace* HeapRegion::next_compaction_space() const {
 345   return G1CollectedHeap::heap()->next_compaction_region(this);
 346 }
 347 
 348 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 349                                                     bool during_conc_mark) {
 350   // We always recreate the prev marking info and we'll explicitly
 351   // mark all objects we find to be self-forwarded on the prev
 352   // bitmap. So all objects need to be below PTAMS.
 353   _prev_marked_bytes = 0;
 354 
 355   if (during_initial_mark) {
 356     // During initial-mark, we'll also explicitly mark all objects
 357     // we find to be self-forwarded on the next bitmap. So all
 358     // objects need to be below NTAMS.
 359     _next_top_at_mark_start = top();
 360     _next_marked_bytes = 0;
 361   } else if (during_conc_mark) {
 362     // During concurrent mark, all objects in the CSet (including
 363     // the ones we find to be self-forwarded) are implicitly live.
 364     // So all objects need to be above NTAMS.
 365     _next_top_at_mark_start = bottom();
 366     _next_marked_bytes = 0;
 367   }
 368 }
 369 
 370 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 371                                                   bool during_conc_mark,
 372                                                   size_t marked_bytes) {
 373   assert(0 <= marked_bytes && marked_bytes <= used(),
 374          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 375                  marked_bytes, used()));
 376   _prev_top_at_mark_start = top();
 377   _prev_marked_bytes = marked_bytes;
 378 }
 379 
 380 HeapWord*
 381 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 382                                                  ObjectClosure* cl) {
 383   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 384   // We used to use "block_start_careful" here.  But we're actually happy
 385   // to update the BOT while we do this...
 386   HeapWord* cur = block_start(mr.start());
 387   mr = mr.intersection(used_region());
 388   if (mr.is_empty()) return NULL;
 389   // Otherwise, find the obj that extends onto mr.start().
 390 
 391   assert(cur <= mr.start()
 392          && (oop(cur)->klass_or_null() == NULL ||
 393              cur + oop(cur)->size() > mr.start()),
 394          "postcondition of block_start");
 395   oop obj;
 396   while (cur < mr.end()) {
 397     obj = oop(cur);
 398     if (obj->klass_or_null() == NULL) {
 399       // Ran into an unparseable point.
 400       return cur;
 401     } else if (!g1h->is_obj_dead(obj)) {
 402       cl->do_object(obj);
 403     }
 404     if (cl->abort()) return cur;
 405     // The check above must occur before the operation below, since an
 406     // abort might invalidate the "size" operation.
 407     cur += block_size(cur);
 408   }
 409   return NULL;
 410 }
 411 
 412 HeapWord*
 413 HeapRegion::
 414 oops_on_card_seq_iterate_careful(MemRegion mr,
 415                                  FilterOutOfRegionClosure* cl,
 416                                  bool filter_young,
 417                                  jbyte* card_ptr) {
 418   // Currently, we should only have to clean the card if filter_young
 419   // is true and vice versa.
 420   if (filter_young) {
 421     assert(card_ptr != NULL, "pre-condition");
 422   } else {
 423     assert(card_ptr == NULL, "pre-condition");
 424   }
 425   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 426 
 427   // If we're within a stop-world GC, then we might look at a card in a
 428   // GC alloc region that extends onto a GC LAB, which may not be
 429   // parseable.  Stop such at the "scan_top" of the region.
 430   if (g1h->is_gc_active()) {
 431     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 432   } else {
 433     mr = mr.intersection(used_region());
 434   }
 435   if (mr.is_empty()) return NULL;
 436   // Otherwise, find the obj that extends onto mr.start().
 437 
 438   // The intersection of the incoming mr (for the card) and the
 439   // allocated part of the region is non-empty. This implies that
 440   // we have actually allocated into this region. The code in
 441   // G1CollectedHeap.cpp that allocates a new region sets the
 442   // is_young tag on the region before allocating. Thus we
 443   // safely know if this region is young.
 444   if (is_young() && filter_young) {
 445     return NULL;
 446   }
 447 
 448   assert(!is_young(), "check value of filter_young");
 449 
 450   // We can only clean the card here, after we make the decision that
 451   // the card is not young. And we only clean the card if we have been
 452   // asked to (i.e., card_ptr != NULL).
 453   if (card_ptr != NULL) {
 454     *card_ptr = CardTableModRefBS::clean_card_val();
 455     // We must complete this write before we do any of the reads below.
 456     OrderAccess::storeload();
 457   }
 458 
 459   // Cache the boundaries of the memory region in some const locals
 460   HeapWord* const start = mr.start();
 461   HeapWord* const end = mr.end();
 462 
 463   // We used to use "block_start_careful" here.  But we're actually happy
 464   // to update the BOT while we do this...
 465   HeapWord* cur = block_start(start);
 466   assert(cur <= start, "Postcondition");
 467 
 468   oop obj;
 469 
 470   HeapWord* next = cur;
 471   do {
 472     cur = next;
 473     obj = oop(cur);
 474     if (obj->klass_or_null() == NULL) {
 475       // Ran into an unparseable point.
 476       return cur;
 477     }
 478     // Otherwise...
 479     next = cur + block_size(cur);
 480   } while (next <= start);
 481 
 482   // If we finish the above loop...We have a parseable object that
 483   // begins on or before the start of the memory region, and ends
 484   // inside or spans the entire region.
 485   assert(cur <= start, "Loop postcondition");
 486   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 487 
 488   do {
 489     obj = oop(cur);
 490     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
 491     if (obj->klass_or_null() == NULL) {
 492       // Ran into an unparseable point.
 493       return cur;
 494     }
 495 
 496     // Advance the current pointer. "obj" still points to the object to iterate.
 497     cur = cur + block_size(cur);
 498 
 499     if (!g1h->is_obj_dead(obj)) {
 500       // Non-objArrays are sometimes marked imprecise at the object start. We
 501       // always need to iterate over them in full.
 502       // We only iterate over object arrays in full if they are completely contained
 503       // in the memory region.
 504       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 505         obj->oop_iterate(cl);
 506       } else {
 507         obj->oop_iterate(cl, mr);
 508       }
 509     }
 510   } while (cur < end);
 511 
 512   return NULL;
 513 }
 514 
 515 // Code roots support
 516 
 517 void HeapRegion::add_strong_code_root(nmethod* nm) {
 518   HeapRegionRemSet* hrrs = rem_set();
 519   hrrs->add_strong_code_root(nm);
 520 }
 521 
 522 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 523   assert_locked_or_safepoint(CodeCache_lock);
 524   HeapRegionRemSet* hrrs = rem_set();
 525   hrrs->add_strong_code_root_locked(nm);
 526 }
 527 
 528 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 529   HeapRegionRemSet* hrrs = rem_set();
 530   hrrs->remove_strong_code_root(nm);
 531 }
 532 
 533 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 534   HeapRegionRemSet* hrrs = rem_set();
 535   hrrs->strong_code_roots_do(blk);
 536 }
 537 
 538 class VerifyStrongCodeRootOopClosure: public OopClosure {
 539   const HeapRegion* _hr;
 540   nmethod* _nm;
 541   bool _failures;
 542   bool _has_oops_in_region;
 543 
 544   template <class T> void do_oop_work(T* p) {
 545     T heap_oop = oopDesc::load_heap_oop(p);
 546     if (!oopDesc::is_null(heap_oop)) {
 547       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 548 
 549       // Note: not all the oops embedded in the nmethod are in the
 550       // current region. We only look at those which are.
 551       if (_hr->is_in(obj)) {
 552         // Object is in the region. Check that its less than top
 553         if (_hr->top() <= (HeapWord*)obj) {
 554           // Object is above top
 555           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 556                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 557                                  "top "PTR_FORMAT,
 558                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 559           _failures = true;
 560           return;
 561         }
 562         // Nmethod has at least one oop in the current region
 563         _has_oops_in_region = true;
 564       }
 565     }
 566   }
 567 
 568 public:
 569   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 570     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 571 
 572   void do_oop(narrowOop* p) { do_oop_work(p); }
 573   void do_oop(oop* p)       { do_oop_work(p); }
 574 
 575   bool failures()           { return _failures; }
 576   bool has_oops_in_region() { return _has_oops_in_region; }
 577 };
 578 
 579 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 580   const HeapRegion* _hr;
 581   bool _failures;
 582 public:
 583   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 584     _hr(hr), _failures(false) {}
 585 
 586   void do_code_blob(CodeBlob* cb) {
 587     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 588     if (nm != NULL) {
 589       // Verify that the nemthod is live
 590       if (!nm->is_alive()) {
 591         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 592                                PTR_FORMAT" in its strong code roots",
 593                                _hr->bottom(), _hr->end(), nm);
 594         _failures = true;
 595       } else {
 596         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 597         nm->oops_do(&oop_cl);
 598         if (!oop_cl.has_oops_in_region()) {
 599           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 600                                  PTR_FORMAT" in its strong code roots "
 601                                  "with no pointers into region",
 602                                  _hr->bottom(), _hr->end(), nm);
 603           _failures = true;
 604         } else if (oop_cl.failures()) {
 605           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 606                                  "failures for nmethod "PTR_FORMAT,
 607                                  _hr->bottom(), _hr->end(), nm);
 608           _failures = true;
 609         }
 610       }
 611     }
 612   }
 613 
 614   bool failures()       { return _failures; }
 615 };
 616 
 617 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 618   if (!G1VerifyHeapRegionCodeRoots) {
 619     // We're not verifying code roots.
 620     return;
 621   }
 622   if (vo == VerifyOption_G1UseMarkWord) {
 623     // Marking verification during a full GC is performed after class
 624     // unloading, code cache unloading, etc so the strong code roots
 625     // attached to each heap region are in an inconsistent state. They won't
 626     // be consistent until the strong code roots are rebuilt after the
 627     // actual GC. Skip verifying the strong code roots in this particular
 628     // time.
 629     assert(VerifyDuringGC, "only way to get here");
 630     return;
 631   }
 632 
 633   HeapRegionRemSet* hrrs = rem_set();
 634   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 635 
 636   // if this region is empty then there should be no entries
 637   // on its strong code root list
 638   if (is_empty()) {
 639     if (strong_code_roots_length > 0) {
 640       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 641                              "but has "SIZE_FORMAT" code root entries",
 642                              bottom(), end(), strong_code_roots_length);
 643       *failures = true;
 644     }
 645     return;
 646   }
 647 
 648   if (continuesHumongous()) {
 649     if (strong_code_roots_length > 0) {
 650       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 651                              "region but has "SIZE_FORMAT" code root entries",
 652                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 653       *failures = true;
 654     }
 655     return;
 656   }
 657 
 658   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 659   strong_code_roots_do(&cb_cl);
 660 
 661   if (cb_cl.failures()) {
 662     *failures = true;
 663   }
 664 }
 665 
 666 void HeapRegion::print() const { print_on(gclog_or_tty); }
 667 void HeapRegion::print_on(outputStream* st) const {
 668   st->print("AC%4u", allocation_context());
 669   st->print(" %2s", get_short_type_str());
 670   if (in_collection_set())
 671     st->print(" CS");
 672   else
 673     st->print("   ");
 674   st->print(" TS %5d", _gc_time_stamp);
 675   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 676             prev_top_at_mark_start(), next_top_at_mark_start());
 677   G1OffsetTableContigSpace::print_on(st);
 678 }
 679 
 680 class VerifyLiveClosure: public OopClosure {
 681 private:
 682   G1CollectedHeap* _g1h;
 683   CardTableModRefBS* _bs;
 684   oop _containing_obj;
 685   bool _failures;
 686   int _n_failures;
 687   VerifyOption _vo;
 688 public:
 689   // _vo == UsePrevMarking -> use "prev" marking information,
 690   // _vo == UseNextMarking -> use "next" marking information,
 691   // _vo == UseMarkWord    -> use mark word from object header.
 692   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 693     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 694     _failures(false), _n_failures(0), _vo(vo)
 695   {
 696     BarrierSet* bs = _g1h->barrier_set();
 697     if (bs->is_a(BarrierSet::CardTableModRef))
 698       _bs = (CardTableModRefBS*)bs;
 699   }
 700 
 701   void set_containing_obj(oop obj) {
 702     _containing_obj = obj;
 703   }
 704 
 705   bool failures() { return _failures; }
 706   int n_failures() { return _n_failures; }
 707 
 708   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 709   virtual void do_oop(      oop* p) { do_oop_work(p); }
 710 
 711   void print_object(outputStream* out, oop obj) {
 712 #ifdef PRODUCT
 713     Klass* k = obj->klass();
 714     const char* class_name = InstanceKlass::cast(k)->external_name();
 715     out->print_cr("class name %s", class_name);
 716 #else // PRODUCT
 717     obj->print_on(out);
 718 #endif // PRODUCT
 719   }
 720 
 721   template <class T>
 722   void do_oop_work(T* p) {
 723     assert(_containing_obj != NULL, "Precondition");
 724     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 725            "Precondition");
 726     T heap_oop = oopDesc::load_heap_oop(p);
 727     if (!oopDesc::is_null(heap_oop)) {
 728       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 729       bool failed = false;
 730       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 731         MutexLockerEx x(ParGCRareEvent_lock,
 732                         Mutex::_no_safepoint_check_flag);
 733 
 734         if (!_failures) {
 735           gclog_or_tty->cr();
 736           gclog_or_tty->print_cr("----------");
 737         }
 738         if (!_g1h->is_in_closed_subset(obj)) {
 739           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 740           gclog_or_tty->print_cr("Field "PTR_FORMAT
 741                                  " of live obj "PTR_FORMAT" in region "
 742                                  "["PTR_FORMAT", "PTR_FORMAT")",
 743                                  p, (void*) _containing_obj,
 744                                  from->bottom(), from->end());
 745           print_object(gclog_or_tty, _containing_obj);
 746           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 747                                  (void*) obj);
 748         } else {
 749           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 750           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 751           gclog_or_tty->print_cr("Field "PTR_FORMAT
 752                                  " of live obj "PTR_FORMAT" in region "
 753                                  "["PTR_FORMAT", "PTR_FORMAT")",
 754                                  p, (void*) _containing_obj,
 755                                  from->bottom(), from->end());
 756           print_object(gclog_or_tty, _containing_obj);
 757           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 758                                  "["PTR_FORMAT", "PTR_FORMAT")",
 759                                  (void*) obj, to->bottom(), to->end());
 760           print_object(gclog_or_tty, obj);
 761         }
 762         gclog_or_tty->print_cr("----------");
 763         gclog_or_tty->flush();
 764         _failures = true;
 765         failed = true;
 766         _n_failures++;
 767       }
 768 
 769       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 770         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 771         HeapRegion* to   = _g1h->heap_region_containing(obj);
 772         if (from != NULL && to != NULL &&
 773             from != to &&
 774             !to->isHumongous()) {
 775           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 776           jbyte cv_field = *_bs->byte_for_const(p);
 777           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 778 
 779           bool is_bad = !(from->is_young()
 780                           || to->rem_set()->contains_reference(p)
 781                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 782                               (_containing_obj->is_objArray() ?
 783                                   cv_field == dirty
 784                                : cv_obj == dirty || cv_field == dirty));
 785           if (is_bad) {
 786             MutexLockerEx x(ParGCRareEvent_lock,
 787                             Mutex::_no_safepoint_check_flag);
 788 
 789             if (!_failures) {
 790               gclog_or_tty->cr();
 791               gclog_or_tty->print_cr("----------");
 792             }
 793             gclog_or_tty->print_cr("Missing rem set entry:");
 794             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 795                                    "of obj "PTR_FORMAT", "
 796                                    "in region "HR_FORMAT,
 797                                    p, (void*) _containing_obj,
 798                                    HR_FORMAT_PARAMS(from));
 799             _containing_obj->print_on(gclog_or_tty);
 800             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 801                                    "in region "HR_FORMAT,
 802                                    (void*) obj,
 803                                    HR_FORMAT_PARAMS(to));
 804             obj->print_on(gclog_or_tty);
 805             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 806                           cv_obj, cv_field);
 807             gclog_or_tty->print_cr("----------");
 808             gclog_or_tty->flush();
 809             _failures = true;
 810             if (!failed) _n_failures++;
 811           }
 812         }
 813       }
 814     }
 815   }
 816 };
 817 
 818 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 819 // We would need a mechanism to make that code skip dead objects.
 820 
 821 void HeapRegion::verify(VerifyOption vo,
 822                         bool* failures) const {
 823   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 824   *failures = false;
 825   HeapWord* p = bottom();
 826   HeapWord* prev_p = NULL;
 827   VerifyLiveClosure vl_cl(g1, vo);
 828   bool is_humongous = isHumongous();
 829   bool do_bot_verify = !is_young();
 830   size_t object_num = 0;
 831   while (p < top()) {
 832     oop obj = oop(p);
 833     size_t obj_size = block_size(p);
 834     object_num += 1;
 835 
 836     if (is_humongous != g1->isHumongous(obj_size) &&
 837         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 838       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 839                              SIZE_FORMAT" words) in a %shumongous region",
 840                              p, g1->isHumongous(obj_size) ? "" : "non-",
 841                              obj_size, is_humongous ? "" : "non-");
 842        *failures = true;
 843        return;
 844     }
 845 
 846     // If it returns false, verify_for_object() will output the
 847     // appropriate message.
 848     if (do_bot_verify &&
 849         !g1->is_obj_dead(obj, this) &&
 850         !_offsets.verify_for_object(p, obj_size)) {
 851       *failures = true;
 852       return;
 853     }
 854 
 855     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 856       if (obj->is_oop()) {
 857         Klass* klass = obj->klass();
 858         bool is_metaspace_object = Metaspace::contains(klass) ||
 859                                    (vo == VerifyOption_G1UsePrevMarking &&
 860                                    ClassLoaderDataGraph::unload_list_contains(klass));
 861         if (!is_metaspace_object) {
 862           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 863                                  "not metadata", klass, (void *)obj);
 864           *failures = true;
 865           return;
 866         } else if (!klass->is_klass()) {
 867           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 868                                  "not a klass", klass, (void *)obj);
 869           *failures = true;
 870           return;
 871         } else {
 872           vl_cl.set_containing_obj(obj);
 873           obj->oop_iterate_no_header(&vl_cl);
 874           if (vl_cl.failures()) {
 875             *failures = true;
 876           }
 877           if (G1MaxVerifyFailures >= 0 &&
 878               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 879             return;
 880           }
 881         }
 882       } else {
 883         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 884         *failures = true;
 885         return;
 886       }
 887     }
 888     prev_p = p;
 889     p += obj_size;
 890   }
 891 
 892   if (p != top()) {
 893     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 894                            "does not match top "PTR_FORMAT, p, top());
 895     *failures = true;
 896     return;
 897   }
 898 
 899   HeapWord* the_end = end();
 900   assert(p == top(), "it should still hold");
 901   // Do some extra BOT consistency checking for addresses in the
 902   // range [top, end). BOT look-ups in this range should yield
 903   // top. No point in doing that if top == end (there's nothing there).
 904   if (p < the_end) {
 905     // Look up top
 906     HeapWord* addr_1 = p;
 907     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 908     if (b_start_1 != p) {
 909       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 910                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 911                              addr_1, b_start_1, p);
 912       *failures = true;
 913       return;
 914     }
 915 
 916     // Look up top + 1
 917     HeapWord* addr_2 = p + 1;
 918     if (addr_2 < the_end) {
 919       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 920       if (b_start_2 != p) {
 921         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 922                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 923                                addr_2, b_start_2, p);
 924         *failures = true;
 925         return;
 926       }
 927     }
 928 
 929     // Look up an address between top and end
 930     size_t diff = pointer_delta(the_end, p) / 2;
 931     HeapWord* addr_3 = p + diff;
 932     if (addr_3 < the_end) {
 933       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 934       if (b_start_3 != p) {
 935         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 936                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 937                                addr_3, b_start_3, p);
 938         *failures = true;
 939         return;
 940       }
 941     }
 942 
 943     // Loook up end - 1
 944     HeapWord* addr_4 = the_end - 1;
 945     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 946     if (b_start_4 != p) {
 947       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
 948                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 949                              addr_4, b_start_4, p);
 950       *failures = true;
 951       return;
 952     }
 953   }
 954 
 955   if (is_humongous && object_num > 1) {
 956     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 957                            "but has "SIZE_FORMAT", objects",
 958                            bottom(), end(), object_num);
 959     *failures = true;
 960     return;
 961   }
 962 
 963   verify_strong_code_roots(vo, failures);
 964 }
 965 
 966 void HeapRegion::verify() const {
 967   bool dummy = false;
 968   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 969 }
 970 
 971 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 972 // away eventually.
 973 
 974 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 975   set_top(bottom());
 976   _scan_top = bottom();
 977   CompactibleSpace::clear(mangle_space);
 978   reset_bot();
 979 }
 980 
 981 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 982   Space::set_bottom(new_bottom);
 983   _offsets.set_bottom(new_bottom);
 984 }
 985 
 986 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 987   Space::set_end(new_end);
 988   _offsets.resize(new_end - bottom());
 989 }
 990 
 991 void G1OffsetTableContigSpace::print() const {
 992   print_short();
 993   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 994                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 995                 bottom(), top(), _offsets.threshold(), end());
 996 }
 997 
 998 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 999   return _offsets.initialize_threshold();
1000 }
1001 
1002 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1003                                                     HeapWord* end) {
1004   _offsets.alloc_block(start, end);
1005   return _offsets.threshold();
1006 }
1007 
1008 HeapWord* G1OffsetTableContigSpace::scan_top() const {
1009   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1010   HeapWord* local_top = top();
1011   OrderAccess::loadload();
1012   const unsigned local_time_stamp = _gc_time_stamp;
1013   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1014   if (local_time_stamp < g1h->get_gc_time_stamp()) {
1015     return local_top;
1016   } else {
1017     return _scan_top;
1018   }
1019 }
1020 
1021 void G1OffsetTableContigSpace::record_timestamp() {
1022   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1023   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1024 
1025   if (_gc_time_stamp < curr_gc_time_stamp) {
1026     // Setting the time stamp here tells concurrent readers to look at
1027     // scan_top to know the maximum allowed address to look at.
1028 
1029     // scan_top should be bottom for all regions except for the
1030     // retained old alloc region which should have scan_top == top
1031     HeapWord* st = _scan_top;
1032     guarantee(st == _bottom || st == _top, "invariant");
1033 
1034     _gc_time_stamp = curr_gc_time_stamp;
1035   }
1036 }
1037 
1038 void G1OffsetTableContigSpace::record_retained_region() {
1039   // scan_top is the maximum address where it's safe for the next gc to
1040   // scan this region.
1041   _scan_top = top();
1042 }
1043 
1044 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1045   object_iterate(blk);
1046 }
1047 
1048 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1049   HeapWord* p = bottom();
1050   while (p < top()) {
1051     if (block_is_obj(p)) {
1052       blk->do_object(oop(p));
1053     }
1054     p += block_size(p);
1055   }
1056 }
1057 
1058 #define block_is_always_obj(q) true
1059 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1060   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1061 }
1062 #undef block_is_always_obj
1063 
1064 G1OffsetTableContigSpace::
1065 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1066                          MemRegion mr) :
1067   _offsets(sharedOffsetArray, mr),
1068   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1069   _gc_time_stamp(0)
1070 {
1071   _offsets.set_space(this);
1072 }
1073 
1074 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1075   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1076   _top = bottom();
1077   _scan_top = bottom();
1078   set_saved_mark_word(NULL);
1079   reset_bot();
1080 }
1081