1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionBounds.inline.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "gc_implementation/g1/heapRegionManager.inline.hpp"
  34 #include "gc_implementation/shared/liveRange.hpp"
  35 #include "memory/genOopClosures.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/space.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 
  42 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  43 
  44 int    HeapRegion::LogOfHRGrainBytes = 0;
  45 int    HeapRegion::LogOfHRGrainWords = 0;
  46 size_t HeapRegion::GrainBytes        = 0;
  47 size_t HeapRegion::GrainWords        = 0;
  48 size_t HeapRegion::CardsPerRegion    = 0;
  49 
  50 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  51                                  HeapRegion* hr,
  52                                  G1ParPushHeapRSClosure* cl,
  53                                  CardTableModRefBS::PrecisionStyle precision) :
  54   DirtyCardToOopClosure(hr, cl, precision, NULL),
  55   _hr(hr), _rs_scan(cl), _g1(g1) { }
  56 
  57 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  58                                                    OopClosure* oc) :
  59   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  60 
  61 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  62                                       HeapWord* bottom,
  63                                       HeapWord* top) {
  64   G1CollectedHeap* g1h = _g1;
  65   size_t oop_size;
  66   HeapWord* cur = bottom;
  67 
  68   // Start filtering what we add to the remembered set. If the object is
  69   // not considered dead, either because it is marked (in the mark bitmap)
  70   // or it was allocated after marking finished, then we add it. Otherwise
  71   // we can safely ignore the object.
  72   if (!g1h->is_obj_dead(oop(cur), _hr)) {
  73     oop_size = oop(cur)->oop_iterate(_rs_scan, mr);
  74   } else {
  75     oop_size = _hr->block_size(cur);
  76   }
  77 
  78   cur += oop_size;
  79 
  80   if (cur < top) {
  81     oop cur_oop = oop(cur);
  82     oop_size = _hr->block_size(cur);
  83     HeapWord* next_obj = cur + oop_size;
  84     while (next_obj < top) {
  85       // Keep filtering the remembered set.
  86       if (!g1h->is_obj_dead(cur_oop, _hr)) {
  87         // Bottom lies entirely below top, so we can call the
  88         // non-memRegion version of oop_iterate below.
  89         cur_oop->oop_iterate(_rs_scan);
  90       }
  91       cur = next_obj;
  92       cur_oop = oop(cur);
  93       oop_size = _hr->block_size(cur);
  94       next_obj = cur + oop_size;
  95     }
  96 
  97     // Last object. Need to do dead-obj filtering here too.
  98     if (!g1h->is_obj_dead(oop(cur), _hr)) {
  99       oop(cur)->oop_iterate(_rs_scan, mr);
 100     }
 101   }
 102 }
 103 
 104 size_t HeapRegion::max_region_size() {
 105   return HeapRegionBounds::max_size();
 106 }
 107 
 108 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 109   uintx region_size = G1HeapRegionSize;
 110   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 111     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 112     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 113                        (uintx) HeapRegionBounds::min_size());
 114   }
 115 
 116   int region_size_log = log2_long((jlong) region_size);
 117   // Recalculate the region size to make sure it's a power of
 118   // 2. This means that region_size is the largest power of 2 that's
 119   // <= what we've calculated so far.
 120   region_size = ((uintx)1 << region_size_log);
 121 
 122   // Now make sure that we don't go over or under our limits.
 123   if (region_size < HeapRegionBounds::min_size()) {
 124     region_size = HeapRegionBounds::min_size();
 125   } else if (region_size > HeapRegionBounds::max_size()) {
 126     region_size = HeapRegionBounds::max_size();
 127   }
 128 
 129   // And recalculate the log.
 130   region_size_log = log2_long((jlong) region_size);
 131 
 132   // Now, set up the globals.
 133   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 134   LogOfHRGrainBytes = region_size_log;
 135 
 136   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 137   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 138 
 139   guarantee(GrainBytes == 0, "we should only set it once");
 140   // The cast to int is safe, given that we've bounded region_size by
 141   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 142   GrainBytes = (size_t)region_size;
 143 
 144   guarantee(GrainWords == 0, "we should only set it once");
 145   GrainWords = GrainBytes >> LogHeapWordSize;
 146   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 147 
 148   guarantee(CardsPerRegion == 0, "we should only set it once");
 149   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 150 }
 151 
 152 void HeapRegion::reset_after_compaction() {
 153   G1OffsetTableContigSpace::reset_after_compaction();
 154   // After a compaction the mark bitmap is invalid, so we must
 155   // treat all objects as being inside the unmarked area.
 156   zero_marked_bytes();
 157   init_top_at_mark_start();
 158 }
 159 
 160 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 161   assert(_humongous_start_region == NULL,
 162          "we should have already filtered out humongous regions");
 163   assert(_end == orig_end(),
 164          "we should have already filtered out humongous regions");
 165   assert(!_in_collection_set,
 166          err_msg("Should not clear heap region %u in the collection set", hrm_index()));
 167 
 168   set_allocation_context(AllocationContext::system());
 169   set_young_index_in_cset(-1);
 170   uninstall_surv_rate_group();
 171   set_free();
 172   reset_pre_dummy_top();
 173 
 174   if (!par) {
 175     // If this is parallel, this will be done later.
 176     HeapRegionRemSet* hrrs = rem_set();
 177     if (locked) {
 178       hrrs->clear_locked();
 179     } else {
 180       hrrs->clear();
 181     }
 182   }
 183   zero_marked_bytes();
 184 
 185   _offsets.resize(HeapRegion::GrainWords);
 186   init_top_at_mark_start();
 187   if (clear_space) clear(SpaceDecorator::Mangle);
 188 }
 189 
 190 void HeapRegion::par_clear() {
 191   assert(used() == 0, "the region should have been already cleared");
 192   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 193   HeapRegionRemSet* hrrs = rem_set();
 194   hrrs->clear();
 195   CardTableModRefBS* ct_bs =
 196                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 197   ct_bs->clear(MemRegion(bottom(), end()));
 198 }
 199 
 200 void HeapRegion::calc_gc_efficiency() {
 201   // GC efficiency is the ratio of how much space would be
 202   // reclaimed over how long we predict it would take to reclaim it.
 203   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 204   G1CollectorPolicy* g1p = g1h->g1_policy();
 205 
 206   // Retrieve a prediction of the elapsed time for this region for
 207   // a mixed gc because the region will only be evacuated during a
 208   // mixed gc.
 209   double region_elapsed_time_ms =
 210     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 211   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 212 }
 213 
 214 void HeapRegion::set_starts_humongous(HeapWord* new_top, HeapWord* new_end) {
 215   assert(!is_humongous(), "sanity / pre-condition");
 216   assert(end() == orig_end(),
 217          "Should be normal before the humongous object allocation");
 218   assert(top() == bottom(), "should be empty");
 219   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 220 
 221   _type.set_starts_humongous();
 222   _humongous_start_region = this;
 223 
 224   set_end(new_end);
 225   _offsets.set_for_starts_humongous(new_top);
 226 }
 227 
 228 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 229   assert(!is_humongous(), "sanity / pre-condition");
 230   assert(end() == orig_end(),
 231          "Should be normal before the humongous object allocation");
 232   assert(top() == bottom(), "should be empty");
 233   assert(first_hr->is_starts_humongous(), "pre-condition");
 234 
 235   _type.set_continues_humongous();
 236   _humongous_start_region = first_hr;
 237 }
 238 
 239 void HeapRegion::clear_humongous() {
 240   assert(is_humongous(), "pre-condition");
 241 
 242   if (is_starts_humongous()) {
 243     assert(top() <= end(), "pre-condition");
 244     set_end(orig_end());
 245     if (top() > end()) {
 246       // at least one "continues humongous" region after it
 247       set_top(end());
 248     }
 249   } else {
 250     // continues humongous
 251     assert(end() == orig_end(), "sanity");
 252   }
 253 
 254   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 255   _humongous_start_region = NULL;
 256 }
 257 
 258 HeapRegion::HeapRegion(uint hrm_index,
 259                        G1BlockOffsetSharedArray* sharedOffsetArray,
 260                        MemRegion mr) :
 261     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 262     _hrm_index(hrm_index),
 263     _allocation_context(AllocationContext::system()),
 264     _humongous_start_region(NULL),
 265     _in_collection_set(false),
 266     _next_in_special_set(NULL),
 267     _evacuation_failed(false),
 268     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 269     _next_young_region(NULL),
 270     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 271 #ifdef ASSERT
 272     _containing_set(NULL),
 273 #endif // ASSERT
 274      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 275     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 276     _predicted_bytes_to_copy(0)
 277 {
 278   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 279   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 280 
 281   initialize(mr);
 282 }
 283 
 284 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 285   assert(_rem_set->is_empty(), "Remembered set must be empty");
 286 
 287   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 288 
 289   hr_clear(false /*par*/, false /*clear_space*/);
 290   set_top(bottom());
 291   record_timestamp();
 292 
 293   assert(mr.end() == orig_end(),
 294          err_msg("Given region end address " PTR_FORMAT " should match exactly "
 295                  "bottom plus one region size, i.e. " PTR_FORMAT,
 296                  p2i(mr.end()), p2i(orig_end())));
 297 }
 298 
 299 CompactibleSpace* HeapRegion::next_compaction_space() const {
 300   return G1CollectedHeap::heap()->next_compaction_region(this);
 301 }
 302 
 303 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 304                                                     bool during_conc_mark) {
 305   // We always recreate the prev marking info and we'll explicitly
 306   // mark all objects we find to be self-forwarded on the prev
 307   // bitmap. So all objects need to be below PTAMS.
 308   _prev_marked_bytes = 0;
 309 
 310   if (during_initial_mark) {
 311     // During initial-mark, we'll also explicitly mark all objects
 312     // we find to be self-forwarded on the next bitmap. So all
 313     // objects need to be below NTAMS.
 314     _next_top_at_mark_start = top();
 315     _next_marked_bytes = 0;
 316   } else if (during_conc_mark) {
 317     // During concurrent mark, all objects in the CSet (including
 318     // the ones we find to be self-forwarded) are implicitly live.
 319     // So all objects need to be above NTAMS.
 320     _next_top_at_mark_start = bottom();
 321     _next_marked_bytes = 0;
 322   }
 323 }
 324 
 325 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 326                                                   bool during_conc_mark,
 327                                                   size_t marked_bytes) {
 328   assert(0 <= marked_bytes && marked_bytes <= used(),
 329          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 330                  marked_bytes, used()));
 331   _prev_top_at_mark_start = top();
 332   _prev_marked_bytes = marked_bytes;
 333 }
 334 
 335 HeapWord*
 336 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 337                                                  ObjectClosure* cl) {
 338   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 339   // We used to use "block_start_careful" here.  But we're actually happy
 340   // to update the BOT while we do this...
 341   HeapWord* cur = block_start(mr.start());
 342   mr = mr.intersection(used_region());
 343   if (mr.is_empty()) return NULL;
 344   // Otherwise, find the obj that extends onto mr.start().
 345 
 346   assert(cur <= mr.start()
 347          && (oop(cur)->klass_or_null() == NULL ||
 348              cur + oop(cur)->size() > mr.start()),
 349          "postcondition of block_start");
 350   oop obj;
 351   while (cur < mr.end()) {
 352     obj = oop(cur);
 353     if (obj->klass_or_null() == NULL) {
 354       // Ran into an unparseable point.
 355       return cur;
 356     } else if (!g1h->is_obj_dead(obj)) {
 357       cl->do_object(obj);
 358     }
 359     cur += block_size(cur);
 360   }
 361   return NULL;
 362 }
 363 
 364 HeapWord*
 365 HeapRegion::
 366 oops_on_card_seq_iterate_careful(MemRegion mr,
 367                                  FilterOutOfRegionClosure* cl,
 368                                  bool filter_young,
 369                                  jbyte* card_ptr) {
 370   // Currently, we should only have to clean the card if filter_young
 371   // is true and vice versa.
 372   if (filter_young) {
 373     assert(card_ptr != NULL, "pre-condition");
 374   } else {
 375     assert(card_ptr == NULL, "pre-condition");
 376   }
 377   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 378 
 379   // If we're within a stop-world GC, then we might look at a card in a
 380   // GC alloc region that extends onto a GC LAB, which may not be
 381   // parseable.  Stop such at the "scan_top" of the region.
 382   if (g1h->is_gc_active()) {
 383     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 384   } else {
 385     mr = mr.intersection(used_region());
 386   }
 387   if (mr.is_empty()) return NULL;
 388   // Otherwise, find the obj that extends onto mr.start().
 389 
 390   // The intersection of the incoming mr (for the card) and the
 391   // allocated part of the region is non-empty. This implies that
 392   // we have actually allocated into this region. The code in
 393   // G1CollectedHeap.cpp that allocates a new region sets the
 394   // is_young tag on the region before allocating. Thus we
 395   // safely know if this region is young.
 396   if (is_young() && filter_young) {
 397     return NULL;
 398   }
 399 
 400   assert(!is_young(), "check value of filter_young");
 401 
 402   // We can only clean the card here, after we make the decision that
 403   // the card is not young. And we only clean the card if we have been
 404   // asked to (i.e., card_ptr != NULL).
 405   if (card_ptr != NULL) {
 406     *card_ptr = CardTableModRefBS::clean_card_val();
 407     // We must complete this write before we do any of the reads below.
 408     OrderAccess::storeload();
 409   }
 410 
 411   // Cache the boundaries of the memory region in some const locals
 412   HeapWord* const start = mr.start();
 413   HeapWord* const end = mr.end();
 414 
 415   // We used to use "block_start_careful" here.  But we're actually happy
 416   // to update the BOT while we do this...
 417   HeapWord* cur = block_start(start);
 418   assert(cur <= start, "Postcondition");
 419 
 420   oop obj;
 421 
 422   HeapWord* next = cur;
 423   while (next <= start) {
 424     cur = next;
 425     obj = oop(cur);
 426     if (obj->klass_or_null() == NULL) {
 427       // Ran into an unparseable point.
 428       return cur;
 429     }
 430     // Otherwise...
 431     next = cur + block_size(cur);
 432   }
 433 
 434   // If we finish the above loop...We have a parseable object that
 435   // begins on or before the start of the memory region, and ends
 436   // inside or spans the entire region.
 437   assert(cur <= start, "Loop postcondition");
 438   assert(obj->klass_or_null() != NULL, "Loop invariant");
 439 
 440   do {
 441     obj = oop(cur);
 442     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
 443     if (obj->klass_or_null() == NULL) {
 444       // Ran into an unparseable point.
 445       return cur;
 446     }
 447 
 448     // Advance the current pointer. "obj" still points to the object to iterate.
 449     cur = cur + block_size(cur);
 450 
 451     if (!g1h->is_obj_dead(obj)) {
 452       // Non-objArrays are sometimes marked imprecise at the object start. We
 453       // always need to iterate over them in full.
 454       // We only iterate over object arrays in full if they are completely contained
 455       // in the memory region.
 456       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur < end)) {
 457         obj->oop_iterate(cl);
 458       } else {
 459         obj->oop_iterate(cl, mr);
 460       }
 461     }
 462   } while (cur < end);
 463 
 464   return NULL;
 465 }
 466 
 467 // Code roots support
 468 
 469 void HeapRegion::add_strong_code_root(nmethod* nm) {
 470   HeapRegionRemSet* hrrs = rem_set();
 471   hrrs->add_strong_code_root(nm);
 472 }
 473 
 474 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 475   assert_locked_or_safepoint(CodeCache_lock);
 476   HeapRegionRemSet* hrrs = rem_set();
 477   hrrs->add_strong_code_root_locked(nm);
 478 }
 479 
 480 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 481   HeapRegionRemSet* hrrs = rem_set();
 482   hrrs->remove_strong_code_root(nm);
 483 }
 484 
 485 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 486   HeapRegionRemSet* hrrs = rem_set();
 487   hrrs->strong_code_roots_do(blk);
 488 }
 489 
 490 class VerifyStrongCodeRootOopClosure: public OopClosure {
 491   const HeapRegion* _hr;
 492   nmethod* _nm;
 493   bool _failures;
 494   bool _has_oops_in_region;
 495 
 496   template <class T> void do_oop_work(T* p) {
 497     T heap_oop = oopDesc::load_heap_oop(p);
 498     if (!oopDesc::is_null(heap_oop)) {
 499       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 500 
 501       // Note: not all the oops embedded in the nmethod are in the
 502       // current region. We only look at those which are.
 503       if (_hr->is_in(obj)) {
 504         // Object is in the region. Check that its less than top
 505         if (_hr->top() <= (HeapWord*)obj) {
 506           // Object is above top
 507           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 508                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 509                                  "top "PTR_FORMAT,
 510                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 511           _failures = true;
 512           return;
 513         }
 514         // Nmethod has at least one oop in the current region
 515         _has_oops_in_region = true;
 516       }
 517     }
 518   }
 519 
 520 public:
 521   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 522     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 523 
 524   void do_oop(narrowOop* p) { do_oop_work(p); }
 525   void do_oop(oop* p)       { do_oop_work(p); }
 526 
 527   bool failures()           { return _failures; }
 528   bool has_oops_in_region() { return _has_oops_in_region; }
 529 };
 530 
 531 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 532   const HeapRegion* _hr;
 533   bool _failures;
 534 public:
 535   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 536     _hr(hr), _failures(false) {}
 537 
 538   void do_code_blob(CodeBlob* cb) {
 539     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 540     if (nm != NULL) {
 541       // Verify that the nemthod is live
 542       if (!nm->is_alive()) {
 543         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 544                                PTR_FORMAT" in its strong code roots",
 545                                _hr->bottom(), _hr->end(), nm);
 546         _failures = true;
 547       } else {
 548         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 549         nm->oops_do(&oop_cl);
 550         if (!oop_cl.has_oops_in_region()) {
 551           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 552                                  PTR_FORMAT" in its strong code roots "
 553                                  "with no pointers into region",
 554                                  _hr->bottom(), _hr->end(), nm);
 555           _failures = true;
 556         } else if (oop_cl.failures()) {
 557           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 558                                  "failures for nmethod "PTR_FORMAT,
 559                                  _hr->bottom(), _hr->end(), nm);
 560           _failures = true;
 561         }
 562       }
 563     }
 564   }
 565 
 566   bool failures()       { return _failures; }
 567 };
 568 
 569 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 570   if (!G1VerifyHeapRegionCodeRoots) {
 571     // We're not verifying code roots.
 572     return;
 573   }
 574   if (vo == VerifyOption_G1UseMarkWord) {
 575     // Marking verification during a full GC is performed after class
 576     // unloading, code cache unloading, etc so the strong code roots
 577     // attached to each heap region are in an inconsistent state. They won't
 578     // be consistent until the strong code roots are rebuilt after the
 579     // actual GC. Skip verifying the strong code roots in this particular
 580     // time.
 581     assert(VerifyDuringGC, "only way to get here");
 582     return;
 583   }
 584 
 585   HeapRegionRemSet* hrrs = rem_set();
 586   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 587 
 588   // if this region is empty then there should be no entries
 589   // on its strong code root list
 590   if (is_empty()) {
 591     if (strong_code_roots_length > 0) {
 592       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 593                              "but has "SIZE_FORMAT" code root entries",
 594                              bottom(), end(), strong_code_roots_length);
 595       *failures = true;
 596     }
 597     return;
 598   }
 599 
 600   if (is_continues_humongous()) {
 601     if (strong_code_roots_length > 0) {
 602       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 603                              "region but has "SIZE_FORMAT" code root entries",
 604                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 605       *failures = true;
 606     }
 607     return;
 608   }
 609 
 610   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 611   strong_code_roots_do(&cb_cl);
 612 
 613   if (cb_cl.failures()) {
 614     *failures = true;
 615   }
 616 }
 617 
 618 void HeapRegion::print() const { print_on(gclog_or_tty); }
 619 void HeapRegion::print_on(outputStream* st) const {
 620   st->print("AC%4u", allocation_context());
 621 
 622   st->print(" %2s", get_short_type_str());
 623   if (in_collection_set())
 624     st->print(" CS");
 625   else
 626     st->print("   ");
 627   st->print(" TS %5d", _gc_time_stamp);
 628   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 629             prev_top_at_mark_start(), next_top_at_mark_start());
 630   G1OffsetTableContigSpace::print_on(st);
 631 }
 632 
 633 class VerifyLiveClosure: public OopClosure {
 634 private:
 635   G1CollectedHeap* _g1h;
 636   CardTableModRefBS* _bs;
 637   oop _containing_obj;
 638   bool _failures;
 639   int _n_failures;
 640   VerifyOption _vo;
 641 public:
 642   // _vo == UsePrevMarking -> use "prev" marking information,
 643   // _vo == UseNextMarking -> use "next" marking information,
 644   // _vo == UseMarkWord    -> use mark word from object header.
 645   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 646     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 647     _failures(false), _n_failures(0), _vo(vo)
 648   {
 649     BarrierSet* bs = _g1h->barrier_set();
 650     if (bs->is_a(BarrierSet::CardTableModRef))
 651       _bs = (CardTableModRefBS*)bs;
 652   }
 653 
 654   void set_containing_obj(oop obj) {
 655     _containing_obj = obj;
 656   }
 657 
 658   bool failures() { return _failures; }
 659   int n_failures() { return _n_failures; }
 660 
 661   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 662   virtual void do_oop(      oop* p) { do_oop_work(p); }
 663 
 664   void print_object(outputStream* out, oop obj) {
 665 #ifdef PRODUCT
 666     Klass* k = obj->klass();
 667     const char* class_name = InstanceKlass::cast(k)->external_name();
 668     out->print_cr("class name %s", class_name);
 669 #else // PRODUCT
 670     obj->print_on(out);
 671 #endif // PRODUCT
 672   }
 673 
 674   template <class T>
 675   void do_oop_work(T* p) {
 676     assert(_containing_obj != NULL, "Precondition");
 677     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 678            "Precondition");
 679     T heap_oop = oopDesc::load_heap_oop(p);
 680     if (!oopDesc::is_null(heap_oop)) {
 681       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 682       bool failed = false;
 683       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 684         MutexLockerEx x(ParGCRareEvent_lock,
 685                         Mutex::_no_safepoint_check_flag);
 686 
 687         if (!_failures) {
 688           gclog_or_tty->cr();
 689           gclog_or_tty->print_cr("----------");
 690         }
 691         if (!_g1h->is_in_closed_subset(obj)) {
 692           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 693           gclog_or_tty->print_cr("Field "PTR_FORMAT
 694                                  " of live obj "PTR_FORMAT" in region "
 695                                  "["PTR_FORMAT", "PTR_FORMAT")",
 696                                  p, (void*) _containing_obj,
 697                                  from->bottom(), from->end());
 698           print_object(gclog_or_tty, _containing_obj);
 699           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 700                                  (void*) obj);
 701         } else {
 702           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 703           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 704           gclog_or_tty->print_cr("Field "PTR_FORMAT
 705                                  " of live obj "PTR_FORMAT" in region "
 706                                  "["PTR_FORMAT", "PTR_FORMAT")",
 707                                  p, (void*) _containing_obj,
 708                                  from->bottom(), from->end());
 709           print_object(gclog_or_tty, _containing_obj);
 710           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 711                                  "["PTR_FORMAT", "PTR_FORMAT")",
 712                                  (void*) obj, to->bottom(), to->end());
 713           print_object(gclog_or_tty, obj);
 714         }
 715         gclog_or_tty->print_cr("----------");
 716         gclog_or_tty->flush();
 717         _failures = true;
 718         failed = true;
 719         _n_failures++;
 720       }
 721 
 722       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 723         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 724         HeapRegion* to   = _g1h->heap_region_containing(obj);
 725         if (from != NULL && to != NULL &&
 726             from != to &&
 727             !to->is_humongous()) {
 728           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 729           jbyte cv_field = *_bs->byte_for_const(p);
 730           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 731 
 732           bool is_bad = !(from->is_young()
 733                           || to->rem_set()->contains_reference(p)
 734                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 735                               (_containing_obj->is_objArray() ?
 736                                   cv_field == dirty
 737                                : cv_obj == dirty || cv_field == dirty));
 738           if (is_bad) {
 739             MutexLockerEx x(ParGCRareEvent_lock,
 740                             Mutex::_no_safepoint_check_flag);
 741 
 742             if (!_failures) {
 743               gclog_or_tty->cr();
 744               gclog_or_tty->print_cr("----------");
 745             }
 746             gclog_or_tty->print_cr("Missing rem set entry:");
 747             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 748                                    "of obj "PTR_FORMAT", "
 749                                    "in region "HR_FORMAT,
 750                                    p, (void*) _containing_obj,
 751                                    HR_FORMAT_PARAMS(from));
 752             _containing_obj->print_on(gclog_or_tty);
 753             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 754                                    "in region "HR_FORMAT,
 755                                    (void*) obj,
 756                                    HR_FORMAT_PARAMS(to));
 757             obj->print_on(gclog_or_tty);
 758             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 759                           cv_obj, cv_field);
 760             gclog_or_tty->print_cr("----------");
 761             gclog_or_tty->flush();
 762             _failures = true;
 763             if (!failed) _n_failures++;
 764           }
 765         }
 766       }
 767     }
 768   }
 769 };
 770 
 771 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 772 // We would need a mechanism to make that code skip dead objects.
 773 
 774 void HeapRegion::verify(VerifyOption vo,
 775                         bool* failures) const {
 776   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 777   *failures = false;
 778   HeapWord* p = bottom();
 779   HeapWord* prev_p = NULL;
 780   VerifyLiveClosure vl_cl(g1, vo);
 781   bool is_region_humongous = is_humongous();
 782   size_t object_num = 0;
 783   while (p < top()) {
 784     oop obj = oop(p);
 785     size_t obj_size = block_size(p);
 786     object_num += 1;
 787 
 788     if (is_region_humongous != g1->is_humongous(obj_size) &&
 789         !g1->is_obj_dead(obj, this)) { // Dead objects may have bigger block_size since they span several objects.
 790       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 791                              SIZE_FORMAT" words) in a %shumongous region",
 792                              p, g1->is_humongous(obj_size) ? "" : "non-",
 793                              obj_size, is_region_humongous ? "" : "non-");
 794        *failures = true;
 795        return;
 796     }
 797 
 798     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 799       if (obj->is_oop()) {
 800         Klass* klass = obj->klass();
 801         bool is_metaspace_object = Metaspace::contains(klass) ||
 802                                    (vo == VerifyOption_G1UsePrevMarking &&
 803                                    ClassLoaderDataGraph::unload_list_contains(klass));
 804         if (!is_metaspace_object) {
 805           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 806                                  "not metadata", klass, (void *)obj);
 807           *failures = true;
 808           return;
 809         } else if (!klass->is_klass()) {
 810           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 811                                  "not a klass", klass, (void *)obj);
 812           *failures = true;
 813           return;
 814         } else {
 815           vl_cl.set_containing_obj(obj);
 816           obj->oop_iterate_no_header(&vl_cl);
 817           if (vl_cl.failures()) {
 818             *failures = true;
 819           }
 820           if (G1MaxVerifyFailures >= 0 &&
 821               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 822             return;
 823           }
 824         }
 825       } else {
 826         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 827         *failures = true;
 828         return;
 829       }
 830     }
 831     prev_p = p;
 832     p += obj_size;
 833   }
 834 
 835   if (!is_young() && !is_empty()) {
 836     _offsets.verify();
 837   }
 838 
 839   if (p != top()) {
 840     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 841                            "does not match top "PTR_FORMAT, p, top());
 842     *failures = true;
 843     return;
 844   }
 845 
 846   HeapWord* the_end = end();
 847   assert(p == top(), "it should still hold");
 848   // Do some extra BOT consistency checking for addresses in the
 849   // range [top, end). BOT look-ups in this range should yield
 850   // top. No point in doing that if top == end (there's nothing there).
 851   if (p < the_end) {
 852     // Look up top
 853     HeapWord* addr_1 = p;
 854     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 855     if (b_start_1 != p) {
 856       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 857                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 858                              addr_1, b_start_1, p);
 859       *failures = true;
 860       return;
 861     }
 862 
 863     // Look up top + 1
 864     HeapWord* addr_2 = p + 1;
 865     if (addr_2 < the_end) {
 866       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 867       if (b_start_2 != p) {
 868         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 869                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 870                                addr_2, b_start_2, p);
 871         *failures = true;
 872         return;
 873       }
 874     }
 875 
 876     // Look up an address between top and end
 877     size_t diff = pointer_delta(the_end, p) / 2;
 878     HeapWord* addr_3 = p + diff;
 879     if (addr_3 < the_end) {
 880       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 881       if (b_start_3 != p) {
 882         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
 883                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 884                                addr_3, b_start_3, p);
 885         *failures = true;
 886         return;
 887       }
 888     }
 889 
 890     // Look up end - 1
 891     HeapWord* addr_4 = the_end - 1;
 892     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 893     if (b_start_4 != p) {
 894       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
 895                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 896                              addr_4, b_start_4, p);
 897       *failures = true;
 898       return;
 899     }
 900   }
 901 
 902   if (is_region_humongous && object_num > 1) {
 903     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 904                            "but has "SIZE_FORMAT", objects",
 905                            bottom(), end(), object_num);
 906     *failures = true;
 907     return;
 908   }
 909 
 910   verify_strong_code_roots(vo, failures);
 911 }
 912 
 913 void HeapRegion::verify() const {
 914   bool dummy = false;
 915   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 916 }
 917 
 918 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 919   scan_and_forward(this, cp);
 920 }
 921 
 922 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 923 // away eventually.
 924 
 925 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 926   set_top(bottom());
 927   _scan_top = bottom();
 928   CompactibleSpace::clear(mangle_space);
 929   reset_bot();
 930 }
 931 
 932 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 933   Space::set_bottom(new_bottom);
 934   _offsets.set_bottom(new_bottom);
 935 }
 936 
 937 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 938   Space::set_end(new_end);
 939   _offsets.resize(new_end - bottom());
 940 }
 941 
 942 void G1OffsetTableContigSpace::print() const {
 943   print_short();
 944   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 945                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 946                 bottom(), top(), _offsets.threshold(), end());
 947 }
 948 
 949 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 950   return _offsets.initialize_threshold();
 951 }
 952 
 953 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 954                                                     HeapWord* end) {
 955   _offsets.alloc_block(start, end);
 956   return _offsets.threshold();
 957 }
 958 
 959 HeapWord* G1OffsetTableContigSpace::scan_top() const {
 960   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 961   HeapWord* local_top = top();
 962   OrderAccess::loadload();
 963   const unsigned local_time_stamp = _gc_time_stamp;
 964   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
 965   if (local_time_stamp < g1h->get_gc_time_stamp()) {
 966     return local_top;
 967   } else {
 968     return _scan_top;
 969   }
 970 }
 971 
 972 void G1OffsetTableContigSpace::record_timestamp() {
 973   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 974   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
 975 
 976   if (_gc_time_stamp < curr_gc_time_stamp) {
 977     // Setting the time stamp here tells concurrent readers to look at
 978     // scan_top to know the maximum allowed address to look at.
 979 
 980     // scan_top should be bottom for all regions except for the
 981     // retained old alloc region which should have scan_top == top
 982     HeapWord* st = _scan_top;
 983     guarantee(st == _bottom || st == _top, "invariant");
 984 
 985     _gc_time_stamp = curr_gc_time_stamp;
 986   }
 987 }
 988 
 989 void G1OffsetTableContigSpace::record_retained_region() {
 990   // scan_top is the maximum address where it's safe for the next gc to
 991   // scan this region.
 992   _scan_top = top();
 993 }
 994 
 995 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
 996   object_iterate(blk);
 997 }
 998 
 999 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1000   HeapWord* p = bottom();
1001   while (p < top()) {
1002     if (block_is_obj(p)) {
1003       blk->do_object(oop(p));
1004     }
1005     p += block_size(p);
1006   }
1007 }
1008 
1009 G1OffsetTableContigSpace::
1010 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1011                          MemRegion mr) :
1012   _offsets(sharedOffsetArray, mr),
1013   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1014   _gc_time_stamp(0)
1015 {
1016   _offsets.set_space(this);
1017 }
1018 
1019 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1020   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1021   _top = bottom();
1022   _scan_top = bottom();
1023   set_saved_mark_word(NULL);
1024   reset_bot();
1025 }
1026