1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1HeapRegionTraceType.hpp"
  30 #include "gc/g1/g1OopClosures.inline.hpp"
  31 #include "gc/g1/heapRegion.inline.hpp"
  32 #include "gc/g1/heapRegionBounds.inline.hpp"
  33 #include "gc/g1/heapRegionManager.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/g1/heapRegionTracer.hpp"
  36 #include "gc/shared/genOopClosures.inline.hpp"
  37 #include "gc/shared/space.inline.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/orderAccess.inline.hpp"
  44 
  45 int    HeapRegion::LogOfHRGrainBytes = 0;
  46 int    HeapRegion::LogOfHRGrainWords = 0;
  47 size_t HeapRegion::GrainBytes        = 0;
  48 size_t HeapRegion::GrainWords        = 0;
  49 size_t HeapRegion::CardsPerRegion    = 0;
  50 
  51 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  52                                  HeapRegion* hr,
  53                                  G1ParPushHeapRSClosure* cl,
  54                                  CardTableModRefBS::PrecisionStyle precision) :
  55   DirtyCardToOopClosure(hr, cl, precision, NULL),
  56   _hr(hr), _rs_scan(cl), _g1(g1) { }
  57 
  58 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  59                                                    OopClosure* oc) :
  60   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  61 
  62 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  63                                       HeapWord* bottom,
  64                                       HeapWord* top) {
  65   G1CollectedHeap* g1h = _g1;
  66   size_t oop_size;
  67   HeapWord* cur = bottom;
  68 
  69   // Start filtering what we add to the remembered set. If the object is
  70   // not considered dead, either because it is marked (in the mark bitmap)
  71   // or it was allocated after marking finished, then we add it. Otherwise
  72   // we can safely ignore the object.
  73   if (!g1h->is_obj_dead(oop(cur))) {
  74     oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
  75   } else {
  76     oop_size = _hr->block_size(cur);
  77   }
  78 
  79   cur += oop_size;
  80 
  81   if (cur < top) {
  82     oop cur_oop = oop(cur);
  83     oop_size = _hr->block_size(cur);
  84     HeapWord* next_obj = cur + oop_size;
  85     while (next_obj < top) {
  86       // Keep filtering the remembered set.
  87       if (!g1h->is_obj_dead(cur_oop)) {
  88         // Bottom lies entirely below top, so we can call the
  89         // non-memRegion version of oop_iterate below.
  90         cur_oop->oop_iterate(_rs_scan);
  91       }
  92       cur = next_obj;
  93       cur_oop = oop(cur);
  94       oop_size = _hr->block_size(cur);
  95       next_obj = cur + oop_size;
  96     }
  97 
  98     // Last object. Need to do dead-obj filtering here too.
  99     if (!g1h->is_obj_dead(oop(cur))) {
 100       oop(cur)->oop_iterate(_rs_scan, mr);
 101     }
 102   }
 103 }
 104 
 105 size_t HeapRegion::max_region_size() {
 106   return HeapRegionBounds::max_size();
 107 }
 108 
 109 size_t HeapRegion::min_region_size_in_words() {
 110   return HeapRegionBounds::min_size() >> LogHeapWordSize;
 111 }
 112 
 113 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 114   size_t region_size = G1HeapRegionSize;
 115   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 116     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 117     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 118                        HeapRegionBounds::min_size());
 119   }
 120 
 121   int region_size_log = log2_long((jlong) region_size);
 122   // Recalculate the region size to make sure it's a power of
 123   // 2. This means that region_size is the largest power of 2 that's
 124   // <= what we've calculated so far.
 125   region_size = ((size_t)1 << region_size_log);
 126 
 127   // Now make sure that we don't go over or under our limits.
 128   if (region_size < HeapRegionBounds::min_size()) {
 129     region_size = HeapRegionBounds::min_size();
 130   } else if (region_size > HeapRegionBounds::max_size()) {
 131     region_size = HeapRegionBounds::max_size();
 132   }
 133 
 134   // And recalculate the log.
 135   region_size_log = log2_long((jlong) region_size);
 136 
 137   // Now, set up the globals.
 138   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 139   LogOfHRGrainBytes = region_size_log;
 140 
 141   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 142   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 143 
 144   guarantee(GrainBytes == 0, "we should only set it once");
 145   // The cast to int is safe, given that we've bounded region_size by
 146   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 147   GrainBytes = region_size;
 148   log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);
 149 
 150   guarantee(GrainWords == 0, "we should only set it once");
 151   GrainWords = GrainBytes >> LogHeapWordSize;
 152   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 153 
 154   guarantee(CardsPerRegion == 0, "we should only set it once");
 155   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 156 
 157   if (G1HeapRegionSize != GrainBytes) {
 158     FLAG_SET_ERGO(size_t, G1HeapRegionSize, GrainBytes);
 159   }
 160 }
 161 
 162 void HeapRegion::reset_after_compaction() {
 163   G1ContiguousSpace::reset_after_compaction();
 164   // After a compaction the mark bitmap is invalid, so we must
 165   // treat all objects as being inside the unmarked area.
 166   zero_marked_bytes();
 167   init_top_at_mark_start();
 168 }
 169 
 170 void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) {
 171   assert(_humongous_start_region == NULL,
 172          "we should have already filtered out humongous regions");
 173   assert(!in_collection_set(),
 174          "Should not clear heap region %u in the collection set", hrm_index());
 175 
 176   set_allocation_context(AllocationContext::system());
 177   set_young_index_in_cset(-1);
 178   uninstall_surv_rate_group();
 179   set_free();
 180   reset_pre_dummy_top();
 181 
 182   if (!keep_remset) {
 183     if (locked) {
 184       rem_set()->clear_locked();
 185     } else {
 186       rem_set()->clear();
 187     }
 188   }
 189 
 190   zero_marked_bytes();
 191 
 192   init_top_at_mark_start();
 193   _gc_time_stamp = G1CollectedHeap::heap()->get_gc_time_stamp();
 194   if (clear_space) clear(SpaceDecorator::Mangle);
 195 }
 196 
 197 void HeapRegion::par_clear() {
 198   assert(used() == 0, "the region should have been already cleared");
 199   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 200   HeapRegionRemSet* hrrs = rem_set();
 201   hrrs->clear();
 202   CardTableModRefBS* ct_bs =
 203     barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
 204   ct_bs->clear(MemRegion(bottom(), end()));
 205 }
 206 
 207 void HeapRegion::calc_gc_efficiency() {
 208   // GC efficiency is the ratio of how much space would be
 209   // reclaimed over how long we predict it would take to reclaim it.
 210   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 211   G1Policy* g1p = g1h->g1_policy();
 212 
 213   // Retrieve a prediction of the elapsed time for this region for
 214   // a mixed gc because the region will only be evacuated during a
 215   // mixed gc.
 216   double region_elapsed_time_ms =
 217     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 218   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 219 }
 220 
 221 void HeapRegion::set_free() {
 222   report_region_type_change(G1HeapRegionTraceType::Free);
 223   _type.set_free();
 224 }
 225 
 226 void HeapRegion::set_eden() {
 227   report_region_type_change(G1HeapRegionTraceType::Eden);
 228   _type.set_eden();
 229 }
 230 
 231 void HeapRegion::set_eden_pre_gc() {
 232   report_region_type_change(G1HeapRegionTraceType::Eden);
 233   _type.set_eden_pre_gc();
 234 }
 235 
 236 void HeapRegion::set_survivor() {
 237   report_region_type_change(G1HeapRegionTraceType::Survivor);
 238   _type.set_survivor();
 239 }
 240 
 241 void HeapRegion::set_old() {
 242   report_region_type_change(G1HeapRegionTraceType::Old);
 243   _type.set_old();
 244 }
 245 
 246 void HeapRegion::set_archive() {
 247   report_region_type_change(G1HeapRegionTraceType::Archive);
 248   _type.set_archive();
 249 }
 250 
 251 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
 252   assert(!is_humongous(), "sanity / pre-condition");
 253   assert(top() == bottom(), "should be empty");
 254 
 255   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
 256   _type.set_starts_humongous();
 257   _humongous_start_region = this;
 258 
 259   _bot_part.set_for_starts_humongous(obj_top, fill_size);
 260 }
 261 
 262 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 263   assert(!is_humongous(), "sanity / pre-condition");
 264   assert(top() == bottom(), "should be empty");
 265   assert(first_hr->is_starts_humongous(), "pre-condition");
 266 
 267   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
 268   _type.set_continues_humongous();
 269   _humongous_start_region = first_hr;
 270 }
 271 
 272 void HeapRegion::clear_humongous() {
 273   assert(is_humongous(), "pre-condition");
 274 
 275   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 276   _humongous_start_region = NULL;
 277 }
 278 
 279 HeapRegion::HeapRegion(uint hrm_index,
 280                        G1BlockOffsetTable* bot,
 281                        MemRegion mr) :
 282     G1ContiguousSpace(bot),
 283     _hrm_index(hrm_index),
 284     _allocation_context(AllocationContext::system()),
 285     _humongous_start_region(NULL),
 286     _evacuation_failed(false),
 287     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 288     _next(NULL), _prev(NULL),
 289 #ifdef ASSERT
 290     _containing_set(NULL),
 291 #endif // ASSERT
 292      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 293     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0)
 294 {
 295   _rem_set = new HeapRegionRemSet(bot, this);
 296 
 297   initialize(mr);
 298 }
 299 
 300 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 301   assert(_rem_set->is_empty(), "Remembered set must be empty");
 302 
 303   G1ContiguousSpace::initialize(mr, clear_space, mangle_space);
 304 
 305   hr_clear(false /*par*/, false /*clear_space*/);
 306   set_top(bottom());
 307   record_timestamp();
 308 }
 309 
 310 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
 311   HeapRegionTracer::send_region_type_change(_hrm_index,
 312                                             get_trace_type(),
 313                                             to,
 314                                             (uintptr_t)bottom(),
 315                                             used(),
 316                                             (uint)allocation_context());
 317 }
 318 
 319 CompactibleSpace* HeapRegion::next_compaction_space() const {
 320   return G1CollectedHeap::heap()->next_compaction_region(this);
 321 }
 322 
 323 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 324                                                     bool during_conc_mark) {
 325   // We always recreate the prev marking info and we'll explicitly
 326   // mark all objects we find to be self-forwarded on the prev
 327   // bitmap. So all objects need to be below PTAMS.
 328   _prev_marked_bytes = 0;
 329 
 330   if (during_initial_mark) {
 331     // During initial-mark, we'll also explicitly mark all objects
 332     // we find to be self-forwarded on the next bitmap. So all
 333     // objects need to be below NTAMS.
 334     _next_top_at_mark_start = top();
 335     _next_marked_bytes = 0;
 336   } else if (during_conc_mark) {
 337     // During concurrent mark, all objects in the CSet (including
 338     // the ones we find to be self-forwarded) are implicitly live.
 339     // So all objects need to be above NTAMS.
 340     _next_top_at_mark_start = bottom();
 341     _next_marked_bytes = 0;
 342   }
 343 }
 344 
 345 void HeapRegion::note_self_forwarding_removal_end(size_t marked_bytes) {
 346   assert(marked_bytes <= used(),
 347          "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
 348   _prev_top_at_mark_start = top();
 349   _prev_marked_bytes = marked_bytes;
 350 }
 351 
 352 // Humongous objects are allocated directly in the old-gen.  Need
 353 // special handling for concurrent processing encountering an
 354 // in-progress allocation.
 355 static bool do_oops_on_card_in_humongous(MemRegion mr,
 356                                          FilterOutOfRegionClosure* cl,
 357                                          HeapRegion* hr,
 358                                          G1CollectedHeap* g1h) {
 359   assert(hr->is_humongous(), "precondition");
 360   HeapRegion* sr = hr->humongous_start_region();
 361   oop obj = oop(sr->bottom());
 362 
 363   // If concurrent and klass_or_null is NULL, then space has been
 364   // allocated but the object has not yet been published by setting
 365   // the klass.  That can only happen if the card is stale.  However,
 366   // we've already set the card clean, so we must return failure,
 367   // since the allocating thread could have performed a write to the
 368   // card that might be missed otherwise.
 369   if (!g1h->is_gc_active() && (obj->klass_or_null_acquire() == NULL)) {
 370     return false;
 371   }
 372 
 373   // We have a well-formed humongous object at the start of sr.
 374   // Only filler objects follow a humongous object in the containing
 375   // regions, and we can ignore those.  So only process the one
 376   // humongous object.
 377   if (!g1h->is_obj_dead(obj, sr)) {
 378     if (obj->is_objArray() || (sr->bottom() < mr.start())) {
 379       // objArrays are always marked precisely, so limit processing
 380       // with mr.  Non-objArrays might be precisely marked, and since
 381       // it's humongous it's worthwhile avoiding full processing.
 382       // However, the card could be stale and only cover filler
 383       // objects.  That should be rare, so not worth checking for;
 384       // instead let it fall out from the bounded iteration.
 385       obj->oop_iterate(cl, mr);
 386     } else {
 387       // If obj is not an objArray and mr contains the start of the
 388       // obj, then this could be an imprecise mark, and we need to
 389       // process the entire object.
 390       obj->oop_iterate(cl);
 391     }
 392   }
 393   return true;
 394 }
 395 
 396 bool HeapRegion::oops_on_card_seq_iterate_careful(MemRegion mr,
 397                                                   FilterOutOfRegionClosure* cl) {
 398   assert(MemRegion(bottom(), end()).contains(mr), "Card region not in heap region");
 399   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 400 
 401   // Special handling for humongous regions.
 402   if (is_humongous()) {
 403     return do_oops_on_card_in_humongous(mr, cl, this, g1h);
 404   }
 405   assert(is_old(), "precondition");
 406 
 407   // Because mr has been trimmed to what's been allocated in this
 408   // region, the parts of the heap that are examined here are always
 409   // parsable; there's no need to use klass_or_null to detect
 410   // in-progress allocation.
 411 
 412   // Cache the boundaries of the memory region in some const locals
 413   HeapWord* const start = mr.start();
 414   HeapWord* const end = mr.end();
 415 
 416   // Find the obj that extends onto mr.start().
 417   // Update BOT as needed while finding start of (possibly dead)
 418   // object containing the start of the region.
 419   HeapWord* cur = block_start(start);
 420 
 421 #ifdef ASSERT
 422   {
 423     assert(cur <= start,
 424            "cur: " PTR_FORMAT ", start: " PTR_FORMAT, p2i(cur), p2i(start));
 425     HeapWord* next = cur + block_size(cur);
 426     assert(start < next,
 427            "start: " PTR_FORMAT ", next: " PTR_FORMAT, p2i(start), p2i(next));
 428   }
 429 #endif
 430 
 431   do {
 432     oop obj = oop(cur);
 433     assert(obj->is_oop(true), "Not an oop at " PTR_FORMAT, p2i(cur));
 434     assert(obj->klass_or_null() != NULL,
 435            "Unparsable heap at " PTR_FORMAT, p2i(cur));
 436 
 437     if (g1h->is_obj_dead(obj, this)) {
 438       // Carefully step over dead object.
 439       cur += block_size(cur);
 440     } else {
 441       // Step over live object, and process its references.
 442       cur += obj->size();
 443       // Non-objArrays are usually marked imprecise at the object
 444       // start, in which case we need to iterate over them in full.
 445       // objArrays are precisely marked, but can still be iterated
 446       // over in full if completely covered.
 447       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 448         obj->oop_iterate(cl);
 449       } else {
 450         obj->oop_iterate(cl, mr);
 451       }
 452     }
 453   } while (cur < end);
 454 
 455   return true;
 456 }
 457 
 458 // Code roots support
 459 
 460 void HeapRegion::add_strong_code_root(nmethod* nm) {
 461   HeapRegionRemSet* hrrs = rem_set();
 462   hrrs->add_strong_code_root(nm);
 463 }
 464 
 465 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 466   assert_locked_or_safepoint(CodeCache_lock);
 467   HeapRegionRemSet* hrrs = rem_set();
 468   hrrs->add_strong_code_root_locked(nm);
 469 }
 470 
 471 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 472   HeapRegionRemSet* hrrs = rem_set();
 473   hrrs->remove_strong_code_root(nm);
 474 }
 475 
 476 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 477   HeapRegionRemSet* hrrs = rem_set();
 478   hrrs->strong_code_roots_do(blk);
 479 }
 480 
 481 class VerifyStrongCodeRootOopClosure: public OopClosure {
 482   const HeapRegion* _hr;
 483   bool _failures;
 484   bool _has_oops_in_region;
 485 
 486   template <class T> void do_oop_work(T* p) {
 487     T heap_oop = oopDesc::load_heap_oop(p);
 488     if (!oopDesc::is_null(heap_oop)) {
 489       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 490 
 491       // Note: not all the oops embedded in the nmethod are in the
 492       // current region. We only look at those which are.
 493       if (_hr->is_in(obj)) {
 494         // Object is in the region. Check that its less than top
 495         if (_hr->top() <= (HeapWord*)obj) {
 496           // Object is above top
 497           log_error(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT,
 498                                p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
 499           _failures = true;
 500           return;
 501         }
 502         // Nmethod has at least one oop in the current region
 503         _has_oops_in_region = true;
 504       }
 505     }
 506   }
 507 
 508 public:
 509   VerifyStrongCodeRootOopClosure(const HeapRegion* hr):
 510     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 511 
 512   void do_oop(narrowOop* p) { do_oop_work(p); }
 513   void do_oop(oop* p)       { do_oop_work(p); }
 514 
 515   bool failures()           { return _failures; }
 516   bool has_oops_in_region() { return _has_oops_in_region; }
 517 };
 518 
 519 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 520   const HeapRegion* _hr;
 521   bool _failures;
 522 public:
 523   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 524     _hr(hr), _failures(false) {}
 525 
 526   void do_code_blob(CodeBlob* cb) {
 527     nmethod* nm = (cb == NULL) ? NULL : cb->as_compiled_method()->as_nmethod_or_null();
 528     if (nm != NULL) {
 529       // Verify that the nemthod is live
 530       if (!nm->is_alive()) {
 531         log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
 532                               p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 533         _failures = true;
 534       } else {
 535         VerifyStrongCodeRootOopClosure oop_cl(_hr);
 536         nm->oops_do(&oop_cl);
 537         if (!oop_cl.has_oops_in_region()) {
 538           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
 539                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 540           _failures = true;
 541         } else if (oop_cl.failures()) {
 542           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
 543                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 544           _failures = true;
 545         }
 546       }
 547     }
 548   }
 549 
 550   bool failures()       { return _failures; }
 551 };
 552 
 553 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 554   if (!G1VerifyHeapRegionCodeRoots) {
 555     // We're not verifying code roots.
 556     return;
 557   }
 558   if (vo == VerifyOption_G1UseMarkWord) {
 559     // Marking verification during a full GC is performed after class
 560     // unloading, code cache unloading, etc so the strong code roots
 561     // attached to each heap region are in an inconsistent state. They won't
 562     // be consistent until the strong code roots are rebuilt after the
 563     // actual GC. Skip verifying the strong code roots in this particular
 564     // time.
 565     assert(VerifyDuringGC, "only way to get here");
 566     return;
 567   }
 568 
 569   HeapRegionRemSet* hrrs = rem_set();
 570   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 571 
 572   // if this region is empty then there should be no entries
 573   // on its strong code root list
 574   if (is_empty()) {
 575     if (strong_code_roots_length > 0) {
 576       log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries",
 577                             p2i(bottom()), p2i(end()), strong_code_roots_length);
 578       *failures = true;
 579     }
 580     return;
 581   }
 582 
 583   if (is_continues_humongous()) {
 584     if (strong_code_roots_length > 0) {
 585       log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
 586                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
 587       *failures = true;
 588     }
 589     return;
 590   }
 591 
 592   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 593   strong_code_roots_do(&cb_cl);
 594 
 595   if (cb_cl.failures()) {
 596     *failures = true;
 597   }
 598 }
 599 
 600 void HeapRegion::print() const { print_on(tty); }
 601 void HeapRegion::print_on(outputStream* st) const {
 602   st->print("|%4u", this->_hrm_index);
 603   st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
 604             p2i(bottom()), p2i(top()), p2i(end()));
 605   st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
 606   st->print("|%2s", get_short_type_str());
 607   if (in_collection_set()) {
 608     st->print("|CS");
 609   } else {
 610     st->print("|  ");
 611   }
 612   st->print("|TS%3u", _gc_time_stamp);
 613   st->print("|AC%3u", allocation_context());
 614   st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "|",
 615                p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
 616 }
 617 
 618 class G1VerificationClosure : public OopClosure {
 619 protected:
 620   G1CollectedHeap* _g1h;
 621   CardTableModRefBS* _bs;
 622   oop _containing_obj;
 623   bool _failures;
 624   int _n_failures;
 625   VerifyOption _vo;
 626 public:
 627   // _vo == UsePrevMarking -> use "prev" marking information,
 628   // _vo == UseNextMarking -> use "next" marking information,
 629   // _vo == UseMarkWord    -> use mark word from object header.
 630   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 631     _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
 632     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
 633   }
 634 
 635   void set_containing_obj(oop obj) {
 636     _containing_obj = obj;
 637   }
 638 
 639   bool failures() { return _failures; }
 640   int n_failures() { return _n_failures; }
 641 
 642   void print_object(outputStream* out, oop obj) {
 643 #ifdef PRODUCT
 644     Klass* k = obj->klass();
 645     const char* class_name = k->external_name();
 646     out->print_cr("class name %s", class_name);
 647 #else // PRODUCT
 648     obj->print_on(out);
 649 #endif // PRODUCT
 650   }
 651 };
 652 
 653 class VerifyLiveClosure : public G1VerificationClosure {
 654 public:
 655   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 656   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 657   virtual void do_oop(oop* p) { do_oop_work(p); }
 658 
 659   template <class T>
 660   void do_oop_work(T* p) {
 661     assert(_containing_obj != NULL, "Precondition");
 662     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 663       "Precondition");
 664     verify_liveness(p);
 665   }
 666 
 667   template <class T>
 668   void verify_liveness(T* p) {
 669     T heap_oop = oopDesc::load_heap_oop(p);
 670     Log(gc, verify) log;
 671     if (!oopDesc::is_null(heap_oop)) {
 672       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 673       bool failed = false;
 674       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 675         MutexLockerEx x(ParGCRareEvent_lock,
 676           Mutex::_no_safepoint_check_flag);
 677 
 678         if (!_failures) {
 679           log.error("----------");
 680         }
 681         ResourceMark rm;
 682         if (!_g1h->is_in_closed_subset(obj)) {
 683           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 684           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 685             p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 686           print_object(log.error_stream(), _containing_obj);
 687           log.error("points to obj " PTR_FORMAT " not in the heap", p2i(obj));
 688         } else {
 689           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 690           HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
 691           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 692             p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 693           print_object(log.error_stream(), _containing_obj);
 694           log.error("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 695             p2i(obj), p2i(to->bottom()), p2i(to->end()));
 696           print_object(log.error_stream(), obj);
 697         }
 698         log.error("----------");
 699         _failures = true;
 700         failed = true;
 701         _n_failures++;
 702       }
 703     }
 704   }
 705 };
 706 
 707 class VerifyRemSetClosure : public G1VerificationClosure {
 708 public:
 709   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 710   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 711   virtual void do_oop(oop* p) { do_oop_work(p); }
 712 
 713   template <class T>
 714   void do_oop_work(T* p) {
 715     assert(_containing_obj != NULL, "Precondition");
 716     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 717       "Precondition");
 718     verify_remembered_set(p);
 719   }
 720 
 721   template <class T>
 722   void verify_remembered_set(T* p) {
 723     T heap_oop = oopDesc::load_heap_oop(p);
 724     Log(gc, verify) log;
 725     if (!oopDesc::is_null(heap_oop)) {
 726       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 727       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 728       HeapRegion* to = _g1h->heap_region_containing(obj);
 729       if (from != NULL && to != NULL &&
 730         from != to &&
 731         !to->is_pinned()) {
 732         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 733         jbyte cv_field = *_bs->byte_for_const(p);
 734         const jbyte dirty = CardTableModRefBS::dirty_card_val();
 735 
 736         bool is_bad = !(from->is_young()
 737           || to->rem_set()->contains_reference(p)
 738           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 739           (_containing_obj->is_objArray() ?
 740           cv_field == dirty
 741           : cv_obj == dirty || cv_field == dirty));
 742         if (is_bad) {
 743           MutexLockerEx x(ParGCRareEvent_lock,
 744             Mutex::_no_safepoint_check_flag);
 745 
 746           if (!_failures) {
 747             log.error("----------");
 748           }
 749           log.error("Missing rem set entry:");
 750           log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT,
 751             p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 752           ResourceMark rm;
 753           _containing_obj->print_on(log.error_stream());
 754           log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to));
 755           if (obj->is_oop()) {
 756             obj->print_on(log.error_stream());
 757           }
 758           log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
 759           log.error("----------");
 760           _failures = true;
 761           _n_failures++;
 762         }
 763       }
 764     }
 765   }
 766 };
 767 
 768 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 769 // We would need a mechanism to make that code skip dead objects.
 770 
 771 void HeapRegion::verify(VerifyOption vo,
 772                         bool* failures) const {
 773   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 774   *failures = false;
 775   HeapWord* p = bottom();
 776   HeapWord* prev_p = NULL;
 777   VerifyLiveClosure vl_cl(g1, vo);
 778   VerifyRemSetClosure vr_cl(g1, vo);
 779   bool is_region_humongous = is_humongous();
 780   size_t object_num = 0;
 781   while (p < top()) {
 782     oop obj = oop(p);
 783     size_t obj_size = block_size(p);
 784     object_num += 1;
 785 
 786     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 787       if (obj->is_oop()) {
 788         Klass* klass = obj->klass();
 789         bool is_metaspace_object = Metaspace::contains(klass) ||
 790                                    (vo == VerifyOption_G1UsePrevMarking &&
 791                                    ClassLoaderDataGraph::unload_list_contains(klass));
 792         if (!is_metaspace_object) {
 793           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 794                                 "not metadata", p2i(klass), p2i(obj));
 795           *failures = true;
 796           return;
 797         } else if (!klass->is_klass()) {
 798           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 799                                 "not a klass", p2i(klass), p2i(obj));
 800           *failures = true;
 801           return;
 802         } else {
 803           vl_cl.set_containing_obj(obj);
 804           if (!g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
 805             // verify liveness and rem_set
 806             vr_cl.set_containing_obj(obj);
 807             G1Mux2Closure mux(&vl_cl, &vr_cl);
 808             obj->oop_iterate_no_header(&mux);
 809 
 810             if (vr_cl.failures()) {
 811               *failures = true;
 812             }
 813             if (G1MaxVerifyFailures >= 0 &&
 814               vr_cl.n_failures() >= G1MaxVerifyFailures) {
 815               return;
 816             }
 817           } else {
 818             // verify only liveness
 819             obj->oop_iterate_no_header(&vl_cl);
 820           }
 821           if (vl_cl.failures()) {
 822             *failures = true;
 823           }
 824           if (G1MaxVerifyFailures >= 0 &&
 825               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 826             return;
 827           }
 828         }
 829       } else {
 830         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 831         *failures = true;
 832         return;
 833       }
 834     }
 835     prev_p = p;
 836     p += obj_size;
 837   }
 838 
 839   if (!is_young() && !is_empty()) {
 840     _bot_part.verify();
 841   }
 842 
 843   if (is_region_humongous) {
 844     oop obj = oop(this->humongous_start_region()->bottom());
 845     if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
 846       log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
 847       *failures = true;
 848       return;
 849     }
 850   }
 851 
 852   if (!is_region_humongous && p != top()) {
 853     log_error(gc, verify)("end of last object " PTR_FORMAT " "
 854                           "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 855     *failures = true;
 856     return;
 857   }
 858 
 859   HeapWord* the_end = end();
 860   // Do some extra BOT consistency checking for addresses in the
 861   // range [top, end). BOT look-ups in this range should yield
 862   // top. No point in doing that if top == end (there's nothing there).
 863   if (p < the_end) {
 864     // Look up top
 865     HeapWord* addr_1 = p;
 866     HeapWord* b_start_1 = _bot_part.block_start_const(addr_1);
 867     if (b_start_1 != p) {
 868       log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
 869                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 870                             p2i(addr_1), p2i(b_start_1), p2i(p));
 871       *failures = true;
 872       return;
 873     }
 874 
 875     // Look up top + 1
 876     HeapWord* addr_2 = p + 1;
 877     if (addr_2 < the_end) {
 878       HeapWord* b_start_2 = _bot_part.block_start_const(addr_2);
 879       if (b_start_2 != p) {
 880         log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
 881                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 882                               p2i(addr_2), p2i(b_start_2), p2i(p));
 883         *failures = true;
 884         return;
 885       }
 886     }
 887 
 888     // Look up an address between top and end
 889     size_t diff = pointer_delta(the_end, p) / 2;
 890     HeapWord* addr_3 = p + diff;
 891     if (addr_3 < the_end) {
 892       HeapWord* b_start_3 = _bot_part.block_start_const(addr_3);
 893       if (b_start_3 != p) {
 894         log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
 895                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 896                               p2i(addr_3), p2i(b_start_3), p2i(p));
 897         *failures = true;
 898         return;
 899       }
 900     }
 901 
 902     // Look up end - 1
 903     HeapWord* addr_4 = the_end - 1;
 904     HeapWord* b_start_4 = _bot_part.block_start_const(addr_4);
 905     if (b_start_4 != p) {
 906       log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
 907                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 908                             p2i(addr_4), p2i(b_start_4), p2i(p));
 909       *failures = true;
 910       return;
 911     }
 912   }
 913 
 914   verify_strong_code_roots(vo, failures);
 915 }
 916 
 917 void HeapRegion::verify() const {
 918   bool dummy = false;
 919   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 920 }
 921 
 922 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
 923   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 924   *failures = false;
 925   HeapWord* p = bottom();
 926   HeapWord* prev_p = NULL;
 927   VerifyRemSetClosure vr_cl(g1, vo);
 928   while (p < top()) {
 929     oop obj = oop(p);
 930     size_t obj_size = block_size(p);
 931 
 932     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 933       if (obj->is_oop()) {
 934         vr_cl.set_containing_obj(obj);
 935         obj->oop_iterate_no_header(&vr_cl);
 936 
 937         if (vr_cl.failures()) {
 938           *failures = true;
 939         }
 940         if (G1MaxVerifyFailures >= 0 &&
 941           vr_cl.n_failures() >= G1MaxVerifyFailures) {
 942           return;
 943         }
 944       } else {
 945         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 946         *failures = true;
 947         return;
 948       }
 949     }
 950 
 951     prev_p = p;
 952     p += obj_size;
 953   }
 954 }
 955 
 956 void HeapRegion::verify_rem_set() const {
 957   bool failures = false;
 958   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
 959   guarantee(!failures, "HeapRegion RemSet verification failed");
 960 }
 961 
 962 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 963   scan_and_forward(this, cp);
 964 }
 965 
 966 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 967 // away eventually.
 968 
 969 void G1ContiguousSpace::clear(bool mangle_space) {
 970   set_top(bottom());
 971   _scan_top = bottom();
 972   CompactibleSpace::clear(mangle_space);
 973   reset_bot();
 974 }
 975 
 976 #ifndef PRODUCT
 977 void G1ContiguousSpace::mangle_unused_area() {
 978   mangle_unused_area_complete();
 979 }
 980 
 981 void G1ContiguousSpace::mangle_unused_area_complete() {
 982   SpaceMangler::mangle_region(MemRegion(top(), end()));
 983 }
 984 #endif
 985 
 986 void G1ContiguousSpace::print() const {
 987   print_short();
 988   tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 989                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 990                 p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end()));
 991 }
 992 
 993 HeapWord* G1ContiguousSpace::initialize_threshold() {
 994   return _bot_part.initialize_threshold();
 995 }
 996 
 997 HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start,
 998                                                     HeapWord* end) {
 999   _bot_part.alloc_block(start, end);
1000   return _bot_part.threshold();
1001 }
1002 
1003 HeapWord* G1ContiguousSpace::scan_top() const {
1004   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1005   HeapWord* local_top = top();
1006   OrderAccess::loadload();
1007   const unsigned local_time_stamp = _gc_time_stamp;
1008   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1009   if (local_time_stamp < g1h->get_gc_time_stamp()) {
1010     return local_top;
1011   } else {
1012     return _scan_top;
1013   }
1014 }
1015 
1016 void G1ContiguousSpace::record_timestamp() {
1017   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1018   uint curr_gc_time_stamp = g1h->get_gc_time_stamp();
1019 
1020   if (_gc_time_stamp < curr_gc_time_stamp) {
1021     // Setting the time stamp here tells concurrent readers to look at
1022     // scan_top to know the maximum allowed address to look at.
1023 
1024     // scan_top should be bottom for all regions except for the
1025     // retained old alloc region which should have scan_top == top
1026     HeapWord* st = _scan_top;
1027     guarantee(st == _bottom || st == _top, "invariant");
1028 
1029     _gc_time_stamp = curr_gc_time_stamp;
1030   }
1031 }
1032 
1033 void G1ContiguousSpace::record_retained_region() {
1034   // scan_top is the maximum address where it's safe for the next gc to
1035   // scan this region.
1036   _scan_top = top();
1037 }
1038 
1039 void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
1040   object_iterate(blk);
1041 }
1042 
1043 void G1ContiguousSpace::object_iterate(ObjectClosure* blk) {
1044   HeapWord* p = bottom();
1045   while (p < top()) {
1046     if (block_is_obj(p)) {
1047       blk->do_object(oop(p));
1048     }
1049     p += block_size(p);
1050   }
1051 }
1052 
1053 G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) :
1054   _bot_part(bot, this),
1055   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1056   _gc_time_stamp(0)
1057 {
1058 }
1059 
1060 void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1061   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1062   _top = bottom();
1063   _scan_top = bottom();
1064   set_saved_mark_word(NULL);
1065   reset_bot();
1066 }
1067