1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGION_HPP
  27 
  28 #include "gc/g1/g1AllocationContext.hpp"
  29 #include "gc/g1/g1BlockOffsetTable.hpp"
  30 #include "gc/g1/g1HeapRegionTraceType.hpp"
  31 #include "gc/g1/heapRegionTracer.hpp"
  32 #include "gc/g1/heapRegionType.hpp"
  33 #include "gc/g1/survRateGroup.hpp"
  34 #include "gc/shared/ageTable.hpp"
  35 #include "gc/shared/spaceDecorator.hpp"
  36 #include "utilities/macros.hpp"
  37 
  38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  39 // can be collected independently.
  40 
  41 // NOTE: Although a HeapRegion is a Space, its
  42 // Space::initDirtyCardClosure method must not be called.
  43 // The problem is that the existence of this method breaks
  44 // the independence of barrier sets from remembered sets.
  45 // The solution is to remove this method from the definition
  46 // of a Space.
  47 
  48 // Each heap region is self contained. top() and end() can never
  49 // be set beyond the end of the region. For humongous objects,
  50 // the first region is a StartsHumongous region. If the humongous
  51 // object is larger than a heap region, the following regions will
  52 // be of type ContinuesHumongous. In this case the top() of the
  53 // StartHumongous region and all ContinuesHumongous regions except
  54 // the last will point to their own end. The last ContinuesHumongous
  55 // region may have top() equal the end of object if there isn't
  56 // room for filler objects to pad out to the end of the region.
  57 
  58 class G1CollectedHeap;
  59 class HeapRegionRemSet;
  60 class HeapRegionRemSetIterator;
  61 class HeapRegion;
  62 class HeapRegionSetBase;
  63 class nmethod;
  64 
  65 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
  66 #define HR_FORMAT_PARAMS(_hr_) \
  67                 (_hr_)->hrm_index(), \
  68                 (_hr_)->get_short_type_str(), \
  69                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  70 
  71 // sentinel value for hrm_index
  72 #define G1_NO_HRM_INDEX ((uint) -1)
  73 
  74 // A dirty card to oop closure for heap regions. It
  75 // knows how to get the G1 heap and how to use the bitmap
  76 // in the concurrent marker used by G1 to filter remembered
  77 // sets.
  78 
  79 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  80 private:
  81   HeapRegion* _hr;
  82   G1ParPushHeapRSClosure* _rs_scan;
  83   G1CollectedHeap* _g1;
  84 
  85   // Walk the given memory region from bottom to (actual) top
  86   // looking for objects and applying the oop closure (_cl) to
  87   // them. The base implementation of this treats the area as
  88   // blocks, where a block may or may not be an object. Sub-
  89   // classes should override this to provide more accurate
  90   // or possibly more efficient walking.
  91   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  92 
  93 public:
  94   HeapRegionDCTOC(G1CollectedHeap* g1,
  95                   HeapRegion* hr,
  96                   G1ParPushHeapRSClosure* cl,
  97                   CardTableModRefBS::PrecisionStyle precision);
  98 };
  99 
 100 // The complicating factor is that BlockOffsetTable diverged
 101 // significantly, and we need functionality that is only in the G1 version.
 102 // So I copied that code, which led to an alternate G1 version of
 103 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 104 // be reconciled, then G1OffsetTableContigSpace could go away.
 105 
 106 // The idea behind time stamps is the following. We want to keep track of
 107 // the highest address where it's safe to scan objects for each region.
 108 // This is only relevant for current GC alloc regions so we keep a time stamp
 109 // per region to determine if the region has been allocated during the current
 110 // GC or not. If the time stamp is current we report a scan_top value which
 111 // was saved at the end of the previous GC for retained alloc regions and which is
 112 // equal to the bottom for all other regions.
 113 // There is a race between card scanners and allocating gc workers where we must ensure
 114 // that card scanners do not read the memory allocated by the gc workers.
 115 // In order to enforce that, we must not return a value of _top which is more recent than the
 116 // time stamp. This is due to the fact that a region may become a gc alloc region at
 117 // some point after we've read the timestamp value as being < the current time stamp.
 118 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
 119 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
 120 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 121 class G1ContiguousSpace: public CompactibleSpace {
 122   friend class VMStructs;
 123   HeapWord* volatile _top;
 124   HeapWord* volatile _scan_top;
 125  protected:
 126   G1BlockOffsetTablePart _bot_part;
 127   Mutex _par_alloc_lock;
 128   volatile uint _gc_time_stamp;
 129   // When we need to retire an allocation region, while other threads
 130   // are also concurrently trying to allocate into it, we typically
 131   // allocate a dummy object at the end of the region to ensure that
 132   // no more allocations can take place in it. However, sometimes we
 133   // want to know where the end of the last "real" object we allocated
 134   // into the region was and this is what this keeps track.
 135   HeapWord* _pre_dummy_top;
 136 
 137  public:
 138   G1ContiguousSpace(G1BlockOffsetTable* bot);
 139 
 140   void set_top(HeapWord* value) { _top = value; }
 141   HeapWord* top() const { return _top; }
 142 
 143  protected:
 144   // Reset the G1ContiguousSpace.
 145   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 146 
 147   HeapWord* volatile* top_addr() { return &_top; }
 148   // Try to allocate at least min_word_size and up to desired_size from this Space.
 149   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 150   // space allocated.
 151   // This version assumes that all allocation requests to this Space are properly
 152   // synchronized.
 153   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 154   // Try to allocate at least min_word_size and up to desired_size from this Space.
 155   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 156   // space allocated.
 157   // This version synchronizes with other calls to par_allocate_impl().
 158   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 159 
 160  public:
 161   void reset_after_compaction() { set_top(compaction_top()); }
 162 
 163   size_t used() const { return byte_size(bottom(), top()); }
 164   size_t free() const { return byte_size(top(), end()); }
 165   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 166 
 167   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 168 
 169   void object_iterate(ObjectClosure* blk);
 170   void safe_object_iterate(ObjectClosure* blk);
 171 
 172   void mangle_unused_area() PRODUCT_RETURN;
 173   void mangle_unused_area_complete() PRODUCT_RETURN;
 174 
 175   HeapWord* scan_top() const;
 176   void record_timestamp();
 177   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 178   uint get_gc_time_stamp() { return _gc_time_stamp; }
 179   void record_retained_region();
 180 
 181   // See the comment above in the declaration of _pre_dummy_top for an
 182   // explanation of what it is.
 183   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 184     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 185     _pre_dummy_top = pre_dummy_top;
 186   }
 187   HeapWord* pre_dummy_top() {
 188     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 189   }
 190   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 191 
 192   virtual void clear(bool mangle_space);
 193 
 194   HeapWord* block_start(const void* p);
 195   HeapWord* block_start_const(const void* p) const;
 196 
 197   // Allocation (return NULL if full).  Assumes the caller has established
 198   // mutually exclusive access to the space.
 199   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 200   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 201   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 202 
 203   virtual HeapWord* allocate(size_t word_size);
 204   virtual HeapWord* par_allocate(size_t word_size);
 205 
 206   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 207 
 208   // MarkSweep support phase3
 209   virtual HeapWord* initialize_threshold();
 210   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 211 
 212   virtual void print() const;
 213 
 214   void reset_bot() {
 215     _bot_part.reset_bot();
 216   }
 217 
 218   void print_bot_on(outputStream* out) {
 219     _bot_part.print_on(out);
 220   }
 221 };
 222 
 223 class HeapRegion: public G1ContiguousSpace {
 224   friend class VMStructs;
 225   // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
 226   template <typename SpaceType>
 227   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 228  private:
 229 
 230   // The remembered set for this region.
 231   // (Might want to make this "inline" later, to avoid some alloc failure
 232   // issues.)
 233   HeapRegionRemSet* _rem_set;
 234 
 235   // Auxiliary functions for scan_and_forward support.
 236   // See comments for CompactibleSpace for more information.
 237   inline HeapWord* scan_limit() const {
 238     return top();
 239   }
 240 
 241   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 242     return true; // Always true, since scan_limit is top
 243   }
 244 
 245   inline size_t scanned_block_size(const HeapWord* addr) const {
 246     return HeapRegion::block_size(addr); // Avoid virtual call
 247   }
 248 
 249   void report_region_type_change(G1HeapRegionTraceType::Type to);
 250 
 251  protected:
 252   // The index of this region in the heap region sequence.
 253   uint  _hrm_index;
 254 
 255   AllocationContext_t _allocation_context;
 256 
 257   HeapRegionType _type;
 258 
 259   // For a humongous region, region in which it starts.
 260   HeapRegion* _humongous_start_region;
 261 
 262   // True iff an attempt to evacuate an object in the region failed.
 263   bool _evacuation_failed;
 264 
 265   // Fields used by the HeapRegionSetBase class and subclasses.
 266   HeapRegion* _next;
 267   HeapRegion* _prev;
 268 #ifdef ASSERT
 269   HeapRegionSetBase* _containing_set;
 270 #endif // ASSERT
 271 
 272   // We use concurrent marking to determine the amount of live data
 273   // in each heap region.
 274   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 275   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 276 
 277   // The calculated GC efficiency of the region.
 278   double _gc_efficiency;
 279 
 280   int  _young_index_in_cset;
 281   SurvRateGroup* _surv_rate_group;
 282   int  _age_index;
 283 
 284   // The start of the unmarked area. The unmarked area extends from this
 285   // word until the top and/or end of the region, and is the part
 286   // of the region for which no marking was done, i.e. objects may
 287   // have been allocated in this part since the last mark phase.
 288   // "prev" is the top at the start of the last completed marking.
 289   // "next" is the top at the start of the in-progress marking (if any.)
 290   HeapWord* _prev_top_at_mark_start;
 291   HeapWord* _next_top_at_mark_start;
 292   // If a collection pause is in progress, this is the top at the start
 293   // of that pause.
 294 
 295   void init_top_at_mark_start() {
 296     assert(_prev_marked_bytes == 0 &&
 297            _next_marked_bytes == 0,
 298            "Must be called after zero_marked_bytes.");
 299     HeapWord* bot = bottom();
 300     _prev_top_at_mark_start = bot;
 301     _next_top_at_mark_start = bot;
 302   }
 303 
 304   // Cached attributes used in the collection set policy information
 305 
 306   // The RSet length that was added to the total value
 307   // for the collection set.
 308   size_t _recorded_rs_length;
 309 
 310   // The predicted elapsed time that was added to total value
 311   // for the collection set.
 312   double _predicted_elapsed_time_ms;
 313 
 314  public:
 315   HeapRegion(uint hrm_index,
 316              G1BlockOffsetTable* bot,
 317              MemRegion mr);
 318 
 319   // Initializing the HeapRegion not only resets the data structure, but also
 320   // resets the BOT for that heap region.
 321   // The default values for clear_space means that we will do the clearing if
 322   // there's clearing to be done ourselves. We also always mangle the space.
 323   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 324 
 325   static int    LogOfHRGrainBytes;
 326   static int    LogOfHRGrainWords;
 327 
 328   static size_t GrainBytes;
 329   static size_t GrainWords;
 330   static size_t CardsPerRegion;
 331 
 332   static size_t align_up_to_region_byte_size(size_t sz) {
 333     return (sz + (size_t) GrainBytes - 1) &
 334                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 335   }
 336 
 337 
 338   // Returns whether a field is in the same region as the obj it points to.
 339   template <typename T>
 340   static bool is_in_same_region(T* p, oop obj) {
 341     assert(p != NULL, "p can't be NULL");
 342     assert(obj != NULL, "obj can't be NULL");
 343     return (((uintptr_t) p ^ cast_from_oop<uintptr_t>(obj)) >> LogOfHRGrainBytes) == 0;
 344   }
 345 
 346   static size_t max_region_size();
 347   static size_t min_region_size_in_words();
 348 
 349   // It sets up the heap region size (GrainBytes / GrainWords), as
 350   // well as other related fields that are based on the heap region
 351   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 352   // CardsPerRegion). All those fields are considered constant
 353   // throughout the JVM's execution, therefore they should only be set
 354   // up once during initialization time.
 355   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 356 
 357   // All allocated blocks are occupied by objects in a HeapRegion
 358   bool block_is_obj(const HeapWord* p) const;
 359 
 360   // Returns the object size for all valid block starts
 361   // and the amount of unallocated words if called on top()
 362   size_t block_size(const HeapWord* p) const;
 363 
 364   // Override for scan_and_forward support.
 365   void prepare_for_compaction(CompactPoint* cp);
 366 
 367   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
 368   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 369   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
 370 
 371   // If this region is a member of a HeapRegionManager, the index in that
 372   // sequence, otherwise -1.
 373   uint hrm_index() const { return _hrm_index; }
 374 
 375   // The number of bytes marked live in the region in the last marking phase.
 376   size_t marked_bytes()    { return _prev_marked_bytes; }
 377   size_t live_bytes() {
 378     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 379   }
 380 
 381   // The number of bytes counted in the next marking.
 382   size_t next_marked_bytes() { return _next_marked_bytes; }
 383   // The number of bytes live wrt the next marking.
 384   size_t next_live_bytes() {
 385     return
 386       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 387   }
 388 
 389   // A lower bound on the amount of garbage bytes in the region.
 390   size_t garbage_bytes() {
 391     size_t used_at_mark_start_bytes =
 392       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 393     return used_at_mark_start_bytes - marked_bytes();
 394   }
 395 
 396   // Return the amount of bytes we'll reclaim if we collect this
 397   // region. This includes not only the known garbage bytes in the
 398   // region but also any unallocated space in it, i.e., [top, end),
 399   // since it will also be reclaimed if we collect the region.
 400   size_t reclaimable_bytes() {
 401     size_t known_live_bytes = live_bytes();
 402     assert(known_live_bytes <= capacity(), "sanity");
 403     return capacity() - known_live_bytes;
 404   }
 405 
 406   // An upper bound on the number of live bytes in the region.
 407   size_t max_live_bytes() { return used() - garbage_bytes(); }
 408 
 409   void add_to_marked_bytes(size_t incr_bytes) {
 410     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 411   }
 412 
 413   void zero_marked_bytes()      {
 414     _prev_marked_bytes = _next_marked_bytes = 0;
 415   }
 416 
 417   const char* get_type_str() const { return _type.get_str(); }
 418   const char* get_short_type_str() const { return _type.get_short_str(); }
 419   G1HeapRegionTraceType::Type get_trace_type() { return _type.get_trace_type(); }
 420 
 421   bool is_free() const { return _type.is_free(); }
 422 
 423   bool is_young()    const { return _type.is_young();    }
 424   bool is_eden()     const { return _type.is_eden();     }
 425   bool is_survivor() const { return _type.is_survivor(); }
 426 
 427   bool is_humongous() const { return _type.is_humongous(); }
 428   bool is_starts_humongous() const { return _type.is_starts_humongous(); }
 429   bool is_continues_humongous() const { return _type.is_continues_humongous();   }
 430 
 431   bool is_old() const { return _type.is_old(); }
 432 
 433   bool is_old_or_humongous() const { return _type.is_old_or_humongous(); }
 434 
 435   // A pinned region contains objects which are not moved by garbage collections.
 436   // Humongous regions and archive regions are pinned.
 437   bool is_pinned() const { return _type.is_pinned(); }
 438 
 439   // An archive region is a pinned region, also tagged as old, which
 440   // should not be marked during mark/sweep. This allows the address
 441   // space to be shared by JVM instances.
 442   bool is_archive() const { return _type.is_archive(); }
 443 
 444   // For a humongous region, region in which it starts.
 445   HeapRegion* humongous_start_region() const {
 446     return _humongous_start_region;
 447   }
 448 
 449   // Makes the current region be a "starts humongous" region, i.e.,
 450   // the first region in a series of one or more contiguous regions
 451   // that will contain a single "humongous" object.
 452   //
 453   // obj_top : points to the top of the humongous object.
 454   // fill_size : size of the filler object at the end of the region series.
 455   void set_starts_humongous(HeapWord* obj_top, size_t fill_size);
 456 
 457   // Makes the current region be a "continues humongous'
 458   // region. first_hr is the "start humongous" region of the series
 459   // which this region will be part of.
 460   void set_continues_humongous(HeapRegion* first_hr);
 461 
 462   // Unsets the humongous-related fields on the region.
 463   void clear_humongous();
 464 
 465   // If the region has a remembered set, return a pointer to it.
 466   HeapRegionRemSet* rem_set() const {
 467     return _rem_set;
 468   }
 469 
 470   inline bool in_collection_set() const;
 471 
 472   void set_allocation_context(AllocationContext_t context) {
 473     _allocation_context = context;
 474   }
 475 
 476   AllocationContext_t  allocation_context() const {
 477     return _allocation_context;
 478   }
 479 
 480   // Methods used by the HeapRegionSetBase class and subclasses.
 481 
 482   // Getter and setter for the next and prev fields used to link regions into
 483   // linked lists.
 484   HeapRegion* next()              { return _next; }
 485   HeapRegion* prev()              { return _prev; }
 486 
 487   void set_next(HeapRegion* next) { _next = next; }
 488   void set_prev(HeapRegion* prev) { _prev = prev; }
 489 
 490   // Every region added to a set is tagged with a reference to that
 491   // set. This is used for doing consistency checking to make sure that
 492   // the contents of a set are as they should be and it's only
 493   // available in non-product builds.
 494 #ifdef ASSERT
 495   void set_containing_set(HeapRegionSetBase* containing_set) {
 496     assert((containing_set == NULL && _containing_set != NULL) ||
 497            (containing_set != NULL && _containing_set == NULL),
 498            "containing_set: " PTR_FORMAT " "
 499            "_containing_set: " PTR_FORMAT,
 500            p2i(containing_set), p2i(_containing_set));
 501 
 502     _containing_set = containing_set;
 503   }
 504 
 505   HeapRegionSetBase* containing_set() { return _containing_set; }
 506 #else // ASSERT
 507   void set_containing_set(HeapRegionSetBase* containing_set) { }
 508 
 509   // containing_set() is only used in asserts so there's no reason
 510   // to provide a dummy version of it.
 511 #endif // ASSERT
 512 
 513 
 514   // Reset the HeapRegion to default values.
 515   // If skip_remset is true, do not clear the remembered set.
 516   void hr_clear(bool skip_remset, bool clear_space, bool locked = false);
 517   // Clear the parts skipped by skip_remset in hr_clear() in the HeapRegion during
 518   // a concurrent phase.
 519   void par_clear();
 520 
 521   // Get the start of the unmarked area in this region.
 522   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 523   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 524 
 525   // Note the start or end of marking. This tells the heap region
 526   // that the collector is about to start or has finished (concurrently)
 527   // marking the heap.
 528 
 529   // Notify the region that concurrent marking is starting. Initialize
 530   // all fields related to the next marking info.
 531   inline void note_start_of_marking();
 532 
 533   // Notify the region that concurrent marking has finished. Copy the
 534   // (now finalized) next marking info fields into the prev marking
 535   // info fields.
 536   inline void note_end_of_marking();
 537 
 538   // Notify the region that it will be used as to-space during a GC
 539   // and we are about to start copying objects into it.
 540   inline void note_start_of_copying(bool during_initial_mark);
 541 
 542   // Notify the region that it ceases being to-space during a GC and
 543   // we will not copy objects into it any more.
 544   inline void note_end_of_copying(bool during_initial_mark);
 545 
 546   // Notify the region that we are about to start processing
 547   // self-forwarded objects during evac failure handling.
 548   void note_self_forwarding_removal_start(bool during_initial_mark,
 549                                           bool during_conc_mark);
 550 
 551   // Notify the region that we have finished processing self-forwarded
 552   // objects during evac failure handling.
 553   void note_self_forwarding_removal_end(size_t marked_bytes);
 554 
 555   // Returns "false" iff no object in the region was allocated when the
 556   // last mark phase ended.
 557   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 558 
 559   void reset_during_compaction() {
 560     assert(is_humongous(),
 561            "should only be called for humongous regions");
 562 
 563     zero_marked_bytes();
 564     init_top_at_mark_start();
 565   }
 566 
 567   void calc_gc_efficiency(void);
 568   double gc_efficiency() { return _gc_efficiency;}
 569 
 570   int  young_index_in_cset() const { return _young_index_in_cset; }
 571   void set_young_index_in_cset(int index) {
 572     assert( (index == -1) || is_young(), "pre-condition" );
 573     _young_index_in_cset = index;
 574   }
 575 
 576   int age_in_surv_rate_group() {
 577     assert( _surv_rate_group != NULL, "pre-condition" );
 578     assert( _age_index > -1, "pre-condition" );
 579     return _surv_rate_group->age_in_group(_age_index);
 580   }
 581 
 582   void record_surv_words_in_group(size_t words_survived) {
 583     assert( _surv_rate_group != NULL, "pre-condition" );
 584     assert( _age_index > -1, "pre-condition" );
 585     int age_in_group = age_in_surv_rate_group();
 586     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 587   }
 588 
 589   int age_in_surv_rate_group_cond() {
 590     if (_surv_rate_group != NULL)
 591       return age_in_surv_rate_group();
 592     else
 593       return -1;
 594   }
 595 
 596   SurvRateGroup* surv_rate_group() {
 597     return _surv_rate_group;
 598   }
 599 
 600   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 601     assert( surv_rate_group != NULL, "pre-condition" );
 602     assert( _surv_rate_group == NULL, "pre-condition" );
 603     assert( is_young(), "pre-condition" );
 604 
 605     _surv_rate_group = surv_rate_group;
 606     _age_index = surv_rate_group->next_age_index();
 607   }
 608 
 609   void uninstall_surv_rate_group() {
 610     if (_surv_rate_group != NULL) {
 611       assert( _age_index > -1, "pre-condition" );
 612       assert( is_young(), "pre-condition" );
 613 
 614       _surv_rate_group = NULL;
 615       _age_index = -1;
 616     } else {
 617       assert( _age_index == -1, "pre-condition" );
 618     }
 619   }
 620 
 621   void set_free();
 622 
 623   void set_eden();
 624   void set_eden_pre_gc();
 625   void set_survivor();
 626 
 627   void set_old();
 628 
 629   void set_archive();
 630 
 631   // Determine if an object has been allocated since the last
 632   // mark performed by the collector. This returns true iff the object
 633   // is within the unmarked area of the region.
 634   bool obj_allocated_since_prev_marking(oop obj) const {
 635     return (HeapWord *) obj >= prev_top_at_mark_start();
 636   }
 637   bool obj_allocated_since_next_marking(oop obj) const {
 638     return (HeapWord *) obj >= next_top_at_mark_start();
 639   }
 640 
 641   // Returns the "evacuation_failed" property of the region.
 642   bool evacuation_failed() { return _evacuation_failed; }
 643 
 644   // Sets the "evacuation_failed" property of the region.
 645   void set_evacuation_failed(bool b) {
 646     _evacuation_failed = b;
 647 
 648     if (b) {
 649       _next_marked_bytes = 0;
 650     }
 651   }
 652 
 653   // Iterate over the objects overlapping part of a card, applying cl
 654   // to all references in the region.  This is a helper for
 655   // G1RemSet::refine_card, and is tightly coupled with it.
 656   // mr: the memory region covered by the card, trimmed to the
 657   // allocated space for this region.  Must not be empty.
 658   // This region must be old or humongous.
 659   // Returns true if the designated objects were successfully
 660   // processed, false if an unparsable part of the heap was
 661   // encountered; that only happens when invoked concurrently with the
 662   // mutator.
 663   bool oops_on_card_seq_iterate_careful(MemRegion mr,
 664                                         G1UpdateRSOrPushRefOopClosure* cl);
 665 
 666   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 667   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 668 
 669   void set_recorded_rs_length(size_t rs_length) {
 670     _recorded_rs_length = rs_length;
 671   }
 672 
 673   void set_predicted_elapsed_time_ms(double ms) {
 674     _predicted_elapsed_time_ms = ms;
 675   }
 676 
 677   virtual CompactibleSpace* next_compaction_space() const;
 678 
 679   virtual void reset_after_compaction();
 680 
 681   // Routines for managing a list of code roots (attached to the
 682   // this region's RSet) that point into this heap region.
 683   void add_strong_code_root(nmethod* nm);
 684   void add_strong_code_root_locked(nmethod* nm);
 685   void remove_strong_code_root(nmethod* nm);
 686 
 687   // Applies blk->do_code_blob() to each of the entries in
 688   // the strong code roots list for this region
 689   void strong_code_roots_do(CodeBlobClosure* blk) const;
 690 
 691   // Verify that the entries on the strong code root list for this
 692   // region are live and include at least one pointer into this region.
 693   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 694 
 695   void print() const;
 696   void print_on(outputStream* st) const;
 697 
 698   // vo == UsePrevMarking  -> use "prev" marking information,
 699   // vo == UseNextMarking -> use "next" marking information
 700   // vo == UseMarkWord    -> use the mark word in the object header
 701   //
 702   // NOTE: Only the "prev" marking information is guaranteed to be
 703   // consistent most of the time, so most calls to this should use
 704   // vo == UsePrevMarking.
 705   // Currently, there is only one case where this is called with
 706   // vo == UseNextMarking, which is to verify the "next" marking
 707   // information at the end of remark.
 708   // Currently there is only one place where this is called with
 709   // vo == UseMarkWord, which is to verify the marking during a
 710   // full GC.
 711   void verify(VerifyOption vo, bool *failures) const;
 712 
 713   // Override; it uses the "prev" marking information
 714   virtual void verify() const;
 715 
 716   void verify_rem_set(VerifyOption vo, bool *failures) const;
 717   void verify_rem_set() const;
 718 };
 719 
 720 // HeapRegionClosure is used for iterating over regions.
 721 // Terminates the iteration when the "doHeapRegion" method returns "true".
 722 class HeapRegionClosure : public StackObj {
 723   friend class HeapRegionManager;
 724   friend class G1CollectionSet;
 725 
 726   bool _complete;
 727   void incomplete() { _complete = false; }
 728 
 729  public:
 730   HeapRegionClosure(): _complete(true) {}
 731 
 732   // Typically called on each region until it returns true.
 733   virtual bool doHeapRegion(HeapRegion* r) = 0;
 734 
 735   // True after iteration if the closure was applied to all heap regions
 736   // and returned "false" in all cases.
 737   bool complete() { return _complete; }
 738 };
 739 
 740 #endif // SHARE_VM_GC_G1_HEAPREGION_HPP