1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/g1AllocationContext.hpp"
  29 #include "gc_implementation/g1/g1Allocator.hpp"
  30 #include "gc_implementation/g1/concurrentMark.hpp"
  31 #include "gc_implementation/g1/evacuationInfo.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.hpp"
  33 #include "gc_implementation/g1/g1BiasedArray.hpp"
  34 #include "gc_implementation/g1/g1HRPrinter.hpp"
  35 #include "gc_implementation/g1/g1InCSetState.hpp"
  36 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  37 #include "gc_implementation/g1/g1EvacStats.hpp"
  38 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc_implementation/g1/g1YCTypes.hpp"
  40 #include "gc_implementation/g1/heapRegionManager.hpp"
  41 #include "gc_implementation/g1/heapRegionSet.hpp"
  42 #include "gc_implementation/shared/hSpaceCounters.hpp"
  43 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  44 #include "memory/barrierSet.hpp"
  45 #include "memory/memRegion.hpp"
  46 #include "memory/sharedHeap.hpp"
  47 #include "utilities/stack.hpp"
  48 
  49 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  50 // It uses the "Garbage First" heap organization and algorithm, which
  51 // may combine concurrent marking with parallel, incremental compaction of
  52 // heap subsets that will yield large amounts of garbage.
  53 
  54 // Forward declarations
  55 class HeapRegion;
  56 class HRRSCleanupTask;
  57 class GenerationSpec;
  58 class OopsInHeapRegionClosure;
  59 class G1ParScanThreadState;
  60 class G1KlassScanClosure;
  61 class ObjectClosure;
  62 class SpaceClosure;
  63 class CompactibleSpaceClosure;
  64 class Space;
  65 class G1CollectorPolicy;
  66 class GenRemSet;
  67 class G1RemSet;
  68 class HeapRegionRemSetIterator;
  69 class ConcurrentMark;
  70 class ConcurrentMarkThread;
  71 class ConcurrentG1Refine;
  72 class ConcurrentGCTimer;
  73 class GenerationCounters;
  74 class STWGCTimer;
  75 class G1NewTracer;
  76 class G1OldTracer;
  77 class EvacuationFailedInfo;
  78 class nmethod;
  79 class Ticks;
  80 
  81 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  82 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  83 
  84 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  85 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  86 
  87 class YoungList : public CHeapObj<mtGC> {
  88 private:
  89   G1CollectedHeap* _g1h;
  90 
  91   HeapRegion* _head;
  92 
  93   HeapRegion* _survivor_head;
  94   HeapRegion* _survivor_tail;
  95 
  96   HeapRegion* _curr;
  97 
  98   uint        _length;
  99   uint        _survivor_length;
 100 
 101   size_t      _last_sampled_rs_lengths;
 102   size_t      _sampled_rs_lengths;
 103 
 104   void         empty_list(HeapRegion* list);
 105 
 106 public:
 107   YoungList(G1CollectedHeap* g1h);
 108 
 109   void         push_region(HeapRegion* hr);
 110   void         add_survivor_region(HeapRegion* hr);
 111 
 112   void         empty_list();
 113   bool         is_empty() { return _length == 0; }
 114   uint         length() { return _length; }
 115   uint         survivor_length() { return _survivor_length; }
 116 
 117   // Currently we do not keep track of the used byte sum for the
 118   // young list and the survivors and it'd be quite a lot of work to
 119   // do so. When we'll eventually replace the young list with
 120   // instances of HeapRegionLinkedList we'll get that for free. So,
 121   // we'll report the more accurate information then.
 122   size_t       eden_used_bytes() {
 123     assert(length() >= survivor_length(), "invariant");
 124     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 125   }
 126   size_t       survivor_used_bytes() {
 127     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 128   }
 129 
 130   void rs_length_sampling_init();
 131   bool rs_length_sampling_more();
 132   void rs_length_sampling_next();
 133 
 134   void reset_sampled_info() {
 135     _last_sampled_rs_lengths =   0;
 136   }
 137   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 138 
 139   // for development purposes
 140   void reset_auxilary_lists();
 141   void clear() { _head = NULL; _length = 0; }
 142 
 143   void clear_survivors() {
 144     _survivor_head    = NULL;
 145     _survivor_tail    = NULL;
 146     _survivor_length  = 0;
 147   }
 148 
 149   HeapRegion* first_region() { return _head; }
 150   HeapRegion* first_survivor_region() { return _survivor_head; }
 151   HeapRegion* last_survivor_region() { return _survivor_tail; }
 152 
 153   // debugging
 154   bool          check_list_well_formed();
 155   bool          check_list_empty(bool check_sample = true);
 156   void          print();
 157 };
 158 
 159 // The G1 STW is alive closure.
 160 // An instance is embedded into the G1CH and used as the
 161 // (optional) _is_alive_non_header closure in the STW
 162 // reference processor. It is also extensively used during
 163 // reference processing during STW evacuation pauses.
 164 class G1STWIsAliveClosure: public BoolObjectClosure {
 165   G1CollectedHeap* _g1;
 166 public:
 167   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 168   bool do_object_b(oop p);
 169 };
 170 
 171 class RefineCardTableEntryClosure;
 172 
 173 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 174  private:
 175   void reset_from_card_cache(uint start_idx, size_t num_regions);
 176  public:
 177   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 178 };
 179 
 180 class G1CollectedHeap : public SharedHeap {
 181   friend class VM_CollectForMetadataAllocation;
 182   friend class VM_G1CollectForAllocation;
 183   friend class VM_G1CollectFull;
 184   friend class VM_G1IncCollectionPause;
 185   friend class VMStructs;
 186 
 187   // Closures used in implementation.
 188   friend class G1ParScanThreadState;
 189   friend class G1ParTask;
 190   friend class G1PrepareCompactClosure;
 191 
 192   // Other related classes.
 193   friend class HeapRegionClaimer;
 194 
 195   // Testing classes.
 196   friend class G1CheckCSetFastTableClosure;
 197 
 198 private:
 199   // The one and only G1CollectedHeap, so static functions can find it.
 200   static G1CollectedHeap* _g1h;
 201 
 202   static size_t _humongous_object_threshold_in_words;
 203 
 204   // The secondary free list which contains regions that have been
 205   // freed up during the cleanup process. This will be appended to
 206   // the master free list when appropriate.
 207   FreeRegionList _secondary_free_list;
 208 
 209   // It keeps track of the old regions.
 210   HeapRegionSet _old_set;
 211 
 212   // It keeps track of the humongous regions.
 213   HeapRegionSet _humongous_set;
 214 
 215   void clear_humongous_is_live_table();
 216   void eagerly_reclaim_humongous_regions();
 217 
 218   // The number of regions we could create by expansion.
 219   uint _expansion_regions;
 220 
 221   // The block offset table for the G1 heap.
 222   G1BlockOffsetSharedArray* _bot_shared;
 223 
 224   // Tears down the region sets / lists so that they are empty and the
 225   // regions on the heap do not belong to a region set / list. The
 226   // only exception is the humongous set which we leave unaltered. If
 227   // free_list_only is true, it will only tear down the master free
 228   // list. It is called before a Full GC (free_list_only == false) or
 229   // before heap shrinking (free_list_only == true).
 230   void tear_down_region_sets(bool free_list_only);
 231 
 232   // Rebuilds the region sets / lists so that they are repopulated to
 233   // reflect the contents of the heap. The only exception is the
 234   // humongous set which was not torn down in the first place. If
 235   // free_list_only is true, it will only rebuild the master free
 236   // list. It is called after a Full GC (free_list_only == false) or
 237   // after heap shrinking (free_list_only == true).
 238   void rebuild_region_sets(bool free_list_only);
 239 
 240   // Callback for region mapping changed events.
 241   G1RegionMappingChangedListener _listener;
 242 
 243   // The sequence of all heap regions in the heap.
 244   HeapRegionManager _hrm;
 245 
 246   // Manages all kinds of allocations within regions. This excludes only
 247   // humongous object allocations.
 248   G1Allocator* _allocator;
 249 
 250   // Outside of GC pauses, the number of bytes used in all regions other
 251   // than the current allocation region(s).
 252   size_t _summary_bytes_used;
 253 
 254   // Statistics for each allocation context
 255   AllocationContextStats _allocation_context_stats;
 256 
 257   // It specifies whether we should attempt to expand the heap after a
 258   // region allocation failure. If heap expansion fails we set this to
 259   // false so that we don't re-attempt the heap expansion (it's likely
 260   // that subsequent expansion attempts will also fail if one fails).
 261   // Currently, it is only consulted during GC and it's reset at the
 262   // start of each GC.
 263   bool _expand_heap_after_alloc_failure;
 264 
 265   // Helper for monitoring and management support.
 266   G1MonitoringSupport* _g1mm;
 267 
 268   // Records whether the region at the given index is kept live by roots or
 269   // references from the young generation.
 270   class HumongousIsLiveBiasedMappedArray : public G1BiasedMappedArray<bool> {
 271    protected:
 272     bool default_value() const { return false; }
 273    public:
 274     void clear() { G1BiasedMappedArray<bool>::clear(); }
 275     void set_live(uint region) {
 276       set_by_index(region, true);
 277     }
 278     bool is_live(uint region) {
 279       return get_by_index(region);
 280     }
 281   };
 282 
 283   HumongousIsLiveBiasedMappedArray _humongous_is_live;
 284   // Stores whether during humongous object registration we found candidate regions.
 285   // If not, we can skip a few steps.
 286   bool _has_humongous_reclaim_candidates;
 287 
 288   volatile unsigned _gc_time_stamp;
 289 
 290   size_t* _surviving_young_words;
 291 
 292   G1HRPrinter _hr_printer;
 293 
 294   void setup_surviving_young_words();
 295   void update_surviving_young_words(size_t* surv_young_words);
 296   void cleanup_surviving_young_words();
 297 
 298   // It decides whether an explicit GC should start a concurrent cycle
 299   // instead of doing a STW GC. Currently, a concurrent cycle is
 300   // explicitly started if:
 301   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 302   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 303   // (c) cause == _g1_humongous_allocation
 304   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 305 
 306   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 307   // concurrent cycles) we have started.
 308   volatile uint _old_marking_cycles_started;
 309 
 310   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 311   // concurrent cycles) we have completed.
 312   volatile uint _old_marking_cycles_completed;
 313 
 314   bool _concurrent_cycle_started;
 315   bool _heap_summary_sent;
 316 
 317   // This is a non-product method that is helpful for testing. It is
 318   // called at the end of a GC and artificially expands the heap by
 319   // allocating a number of dead regions. This way we can induce very
 320   // frequent marking cycles and stress the cleanup / concurrent
 321   // cleanup code more (as all the regions that will be allocated by
 322   // this method will be found dead by the marking cycle).
 323   void allocate_dummy_regions() PRODUCT_RETURN;
 324 
 325   // Clear RSets after a compaction. It also resets the GC time stamps.
 326   void clear_rsets_post_compaction();
 327 
 328   // If the HR printer is active, dump the state of the regions in the
 329   // heap after a compaction.
 330   void print_hrm_post_compaction();
 331 
 332   double verify(bool guard, const char* msg);
 333   void verify_before_gc();
 334   void verify_after_gc();
 335 
 336   void log_gc_header();
 337   void log_gc_footer(double pause_time_sec);
 338 
 339   // These are macros so that, if the assert fires, we get the correct
 340   // line number, file, etc.
 341 
 342 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 343   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 344           (_extra_message_),                                                  \
 345           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 346           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 347           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 348 
 349 #define assert_heap_locked()                                                  \
 350   do {                                                                        \
 351     assert(Heap_lock->owned_by_self(),                                        \
 352            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 353   } while (0)
 354 
 355 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 356   do {                                                                        \
 357     assert(Heap_lock->owned_by_self() ||                                      \
 358            (SafepointSynchronize::is_at_safepoint() &&                        \
 359              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 360            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 361                                         "should be at a safepoint"));         \
 362   } while (0)
 363 
 364 #define assert_heap_locked_and_not_at_safepoint()                             \
 365   do {                                                                        \
 366     assert(Heap_lock->owned_by_self() &&                                      \
 367                                     !SafepointSynchronize::is_at_safepoint(), \
 368           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 369                                        "should not be at a safepoint"));      \
 370   } while (0)
 371 
 372 #define assert_heap_not_locked()                                              \
 373   do {                                                                        \
 374     assert(!Heap_lock->owned_by_self(),                                       \
 375         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 376   } while (0)
 377 
 378 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 379   do {                                                                        \
 380     assert(!Heap_lock->owned_by_self() &&                                     \
 381                                     !SafepointSynchronize::is_at_safepoint(), \
 382       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 383                                    "should not be at a safepoint"));          \
 384   } while (0)
 385 
 386 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 387   do {                                                                        \
 388     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 389               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 390            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 391   } while (0)
 392 
 393 #define assert_not_at_safepoint()                                             \
 394   do {                                                                        \
 395     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 396            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 397   } while (0)
 398 
 399 protected:
 400 
 401   // The young region list.
 402   YoungList*  _young_list;
 403 
 404   // The current policy object for the collector.
 405   G1CollectorPolicy* _g1_policy;
 406 
 407   // This is the second level of trying to allocate a new region. If
 408   // new_region() didn't find a region on the free_list, this call will
 409   // check whether there's anything available on the
 410   // secondary_free_list and/or wait for more regions to appear on
 411   // that list, if _free_regions_coming is set.
 412   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 413 
 414   // Try to allocate a single non-humongous HeapRegion sufficient for
 415   // an allocation of the given word_size. If do_expand is true,
 416   // attempt to expand the heap if necessary to satisfy the allocation
 417   // request. If the region is to be used as an old region or for a
 418   // humongous object, set is_old to true. If not, to false.
 419   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 420 
 421   // Initialize a contiguous set of free regions of length num_regions
 422   // and starting at index first so that they appear as a single
 423   // humongous region.
 424   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 425                                                       uint num_regions,
 426                                                       size_t word_size,
 427                                                       AllocationContext_t context);
 428 
 429   // Attempt to allocate a humongous object of the given size. Return
 430   // NULL if unsuccessful.
 431   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 432 
 433   // The following two methods, allocate_new_tlab() and
 434   // mem_allocate(), are the two main entry points from the runtime
 435   // into the G1's allocation routines. They have the following
 436   // assumptions:
 437   //
 438   // * They should both be called outside safepoints.
 439   //
 440   // * They should both be called without holding the Heap_lock.
 441   //
 442   // * All allocation requests for new TLABs should go to
 443   //   allocate_new_tlab().
 444   //
 445   // * All non-TLAB allocation requests should go to mem_allocate().
 446   //
 447   // * If either call cannot satisfy the allocation request using the
 448   //   current allocating region, they will try to get a new one. If
 449   //   this fails, they will attempt to do an evacuation pause and
 450   //   retry the allocation.
 451   //
 452   // * If all allocation attempts fail, even after trying to schedule
 453   //   an evacuation pause, allocate_new_tlab() will return NULL,
 454   //   whereas mem_allocate() will attempt a heap expansion and/or
 455   //   schedule a Full GC.
 456   //
 457   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 458   //   should never be called with word_size being humongous. All
 459   //   humongous allocation requests should go to mem_allocate() which
 460   //   will satisfy them with a special path.
 461 
 462   virtual HeapWord* allocate_new_tlab(size_t word_size);
 463 
 464   virtual HeapWord* mem_allocate(size_t word_size,
 465                                  bool*  gc_overhead_limit_was_exceeded);
 466 
 467   // The following three methods take a gc_count_before_ret
 468   // parameter which is used to return the GC count if the method
 469   // returns NULL. Given that we are required to read the GC count
 470   // while holding the Heap_lock, and these paths will take the
 471   // Heap_lock at some point, it's easier to get them to read the GC
 472   // count while holding the Heap_lock before they return NULL instead
 473   // of the caller (namely: mem_allocate()) having to also take the
 474   // Heap_lock just to read the GC count.
 475 
 476   // First-level mutator allocation attempt: try to allocate out of
 477   // the mutator alloc region without taking the Heap_lock. This
 478   // should only be used for non-humongous allocations.
 479   inline HeapWord* attempt_allocation(size_t word_size,
 480                                       uint* gc_count_before_ret,
 481                                       uint* gclocker_retry_count_ret);
 482 
 483   // Second-level mutator allocation attempt: take the Heap_lock and
 484   // retry the allocation attempt, potentially scheduling a GC
 485   // pause. This should only be used for non-humongous allocations.
 486   HeapWord* attempt_allocation_slow(size_t word_size,
 487                                     AllocationContext_t context,
 488                                     uint* gc_count_before_ret,
 489                                     uint* gclocker_retry_count_ret);
 490 
 491   // Takes the Heap_lock and attempts a humongous allocation. It can
 492   // potentially schedule a GC pause.
 493   HeapWord* attempt_allocation_humongous(size_t word_size,
 494                                          uint* gc_count_before_ret,
 495                                          uint* gclocker_retry_count_ret);
 496 
 497   // Allocation attempt that should be called during safepoints (e.g.,
 498   // at the end of a successful GC). expect_null_mutator_alloc_region
 499   // specifies whether the mutator alloc region is expected to be NULL
 500   // or not.
 501   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 502                                             AllocationContext_t context,
 503                                             bool expect_null_mutator_alloc_region);
 504 
 505  public:
 506   // It dirties the cards that cover the block so that so that the post
 507   // write barrier never queues anything when updating objects on this
 508   // block. It is assumed (and in fact we assert) that the block
 509   // belongs to a young region.
 510   inline void dirty_young_block(HeapWord* start, size_t word_size);
 511 
 512   // These methods are the "callbacks" from the G1AllocRegion class.
 513 
 514   // For mutator alloc regions.
 515   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 516   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 517                                    size_t allocated_bytes);
 518 
 519   // For GC alloc regions.
 520   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 521                                   InCSetState dest);
 522   void retire_gc_alloc_region(HeapRegion* alloc_region,
 523                               size_t allocated_bytes, InCSetState dest);
 524  private:
 525   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 526   //   inspection request and should collect the entire heap
 527   // - if clear_all_soft_refs is true, all soft references should be
 528   //   cleared during the GC
 529   // - if explicit_gc is false, word_size describes the allocation that
 530   //   the GC should attempt (at least) to satisfy
 531   // - it returns false if it is unable to do the collection due to the
 532   //   GC locker being active, true otherwise
 533   bool do_collection(bool explicit_gc,
 534                      bool clear_all_soft_refs,
 535                      size_t word_size);
 536 
 537   // Callback from VM_G1CollectFull operation.
 538   // Perform a full collection.
 539   virtual void do_full_collection(bool clear_all_soft_refs);
 540 
 541   // Resize the heap if necessary after a full collection.  If this is
 542   // after a collect-for allocation, "word_size" is the allocation size,
 543   // and will be considered part of the used portion of the heap.
 544   void resize_if_necessary_after_full_collection(size_t word_size);
 545 
 546   // Callback from VM_G1CollectForAllocation operation.
 547   // This function does everything necessary/possible to satisfy a
 548   // failed allocation request (including collection, expansion, etc.)
 549   HeapWord* satisfy_failed_allocation(size_t word_size,
 550                                       AllocationContext_t context,
 551                                       bool* succeeded);
 552 
 553   // Attempting to expand the heap sufficiently
 554   // to support an allocation of the given "word_size".  If
 555   // successful, perform the allocation and return the address of the
 556   // allocated block, or else "NULL".
 557   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 558 
 559   // Process any reference objects discovered during
 560   // an incremental evacuation pause.
 561   void process_discovered_references(G1ParScanThreadState** pss, uint no_of_gc_workers);
 562 
 563   // Enqueue any remaining discovered references
 564   // after processing.
 565   void enqueue_discovered_references(uint no_of_gc_workers);
 566 
 567 public:
 568 
 569   G1Allocator* allocator() {
 570     return _allocator;
 571   }
 572 
 573   G1MonitoringSupport* g1mm() {
 574     assert(_g1mm != NULL, "should have been initialized");
 575     return _g1mm;
 576   }
 577 
 578   // Expand the garbage-first heap by at least the given size (in bytes!).
 579   // Returns true if the heap was expanded by the requested amount;
 580   // false otherwise.
 581   // (Rounds up to a HeapRegion boundary.)
 582   bool expand(size_t expand_bytes);
 583 
 584   inline AllocationContextStats& allocation_context_stats();
 585 
 586   // Do anything common to GC's.
 587   virtual void gc_prologue(bool full);
 588   virtual void gc_epilogue(bool full);
 589 
 590   inline void set_humongous_is_live(oop obj);
 591 
 592   bool humongous_is_live(uint region) {
 593     return _humongous_is_live.is_live(region);
 594   }
 595 
 596   // Returns whether the given region (which must be a humongous (start) region)
 597   // is to be considered conservatively live regardless of any other conditions.
 598   bool humongous_region_is_always_live(uint index);
 599   // Returns whether the given region (which must be a humongous (start) region)
 600   // is considered a candidate for eager reclamation.
 601   bool humongous_region_is_candidate(uint index);
 602   // Register the given region to be part of the collection set.
 603   inline void register_humongous_region_with_in_cset_fast_test(uint index);
 604   // Register regions with humongous objects (actually on the start region) in
 605   // the in_cset_fast_test table.
 606   void register_humongous_regions_with_in_cset_fast_test();
 607   // We register a region with the fast "in collection set" test. We
 608   // simply set to true the array slot corresponding to this region.
 609   void register_young_region_with_in_cset_fast_test(HeapRegion* r) {
 610     _in_cset_fast_test.set_in_young(r->hrm_index());
 611   }
 612   void register_old_region_with_in_cset_fast_test(HeapRegion* r) {
 613     _in_cset_fast_test.set_in_old(r->hrm_index());
 614   }
 615 
 616   // This is a fast test on whether a reference points into the
 617   // collection set or not. Assume that the reference
 618   // points into the heap.
 619   inline bool in_cset_fast_test(oop obj);
 620 
 621   void clear_cset_fast_test() {
 622     _in_cset_fast_test.clear();
 623   }
 624 
 625   // This is called at the start of either a concurrent cycle or a Full
 626   // GC to update the number of old marking cycles started.
 627   void increment_old_marking_cycles_started();
 628 
 629   // This is called at the end of either a concurrent cycle or a Full
 630   // GC to update the number of old marking cycles completed. Those two
 631   // can happen in a nested fashion, i.e., we start a concurrent
 632   // cycle, a Full GC happens half-way through it which ends first,
 633   // and then the cycle notices that a Full GC happened and ends
 634   // too. The concurrent parameter is a boolean to help us do a bit
 635   // tighter consistency checking in the method. If concurrent is
 636   // false, the caller is the inner caller in the nesting (i.e., the
 637   // Full GC). If concurrent is true, the caller is the outer caller
 638   // in this nesting (i.e., the concurrent cycle). Further nesting is
 639   // not currently supported. The end of this call also notifies
 640   // the FullGCCount_lock in case a Java thread is waiting for a full
 641   // GC to happen (e.g., it called System.gc() with
 642   // +ExplicitGCInvokesConcurrent).
 643   void increment_old_marking_cycles_completed(bool concurrent);
 644 
 645   uint old_marking_cycles_completed() {
 646     return _old_marking_cycles_completed;
 647   }
 648 
 649   void register_concurrent_cycle_start(const Ticks& start_time);
 650   void register_concurrent_cycle_end();
 651   void trace_heap_after_concurrent_cycle();
 652 
 653   G1YCType yc_type();
 654 
 655   G1HRPrinter* hr_printer() { return &_hr_printer; }
 656 
 657   // Allocates a new heap region instance.
 658   virtual HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 659   
 660   // Frees a non-humongous region by initializing its contents and
 661   // adding it to the free list that's passed as a parameter (this is
 662   // usually a local list which will be appended to the master free
 663   // list later). The used bytes of freed regions are accumulated in
 664   // pre_used. If par is true, the region's RSet will not be freed
 665   // up. The assumption is that this will be done later.
 666   // The locked parameter indicates if the caller has already taken
 667   // care of proper synchronization. This may allow some optimizations.
 668   void free_region(HeapRegion* hr,
 669                    FreeRegionList* free_list,
 670                    bool par,
 671                    bool locked = false);
 672 
 673   // Frees a humongous region by collapsing it into individual regions
 674   // and calling free_region() for each of them. The freed regions
 675   // will be added to the free list that's passed as a parameter (this
 676   // is usually a local list which will be appended to the master free
 677   // list later). The used bytes of freed regions are accumulated in
 678   // pre_used. If par is true, the region's RSet will not be freed
 679   // up. The assumption is that this will be done later.
 680   void free_humongous_region(HeapRegion* hr,
 681                              FreeRegionList* free_list,
 682                              bool par);
 683 protected:
 684 
 685   // Shrink the garbage-first heap by at most the given size (in bytes!).
 686   // (Rounds down to a HeapRegion boundary.)
 687   virtual void shrink(size_t expand_bytes);
 688   void shrink_helper(size_t expand_bytes);
 689 
 690   #if TASKQUEUE_STATS
 691   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 692   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 693   void reset_taskqueue_stats();
 694   #endif // TASKQUEUE_STATS
 695 
 696   // Schedule the VM operation that will do an evacuation pause to
 697   // satisfy an allocation request of word_size. *succeeded will
 698   // return whether the VM operation was successful (it did do an
 699   // evacuation pause) or not (another thread beat us to it or the GC
 700   // locker was active). Given that we should not be holding the
 701   // Heap_lock when we enter this method, we will pass the
 702   // gc_count_before (i.e., total_collections()) as a parameter since
 703   // it has to be read while holding the Heap_lock. Currently, both
 704   // methods that call do_collection_pause() release the Heap_lock
 705   // before the call, so it's easy to read gc_count_before just before.
 706   HeapWord* do_collection_pause(size_t         word_size,
 707                                 uint           gc_count_before,
 708                                 bool*          succeeded,
 709                                 GCCause::Cause gc_cause);
 710 
 711   // The guts of the incremental collection pause, executed by the vm
 712   // thread. It returns false if it is unable to do the collection due
 713   // to the GC locker being active, true otherwise
 714   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 715 
 716   // Actually do the work of evacuating the collection set.
 717   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 718   
 719   // Print the header for the per-thread termination statistics.
 720   static void print_termination_stats_hdr(outputStream* const st);
 721   // Print actual per-thread termination statistics.
 722   void print_termination_stats(outputStream* const st,
 723                                uint worker_id,
 724                                double elapsed_ms,
 725                                double strong_roots_ms,
 726                                double term_ms,
 727                                size_t term_attempts,
 728                                size_t alloc_buffer_waste,
 729                                size_t undo_waste) const;
 730   // Update object copying statistics.
 731   void record_obj_copy_mem_stats();
 732   void record_obj_copy_mem_stats(InCSetState which);
 733   
 734   // The g1 remembered set of the heap.
 735   G1RemSet* _g1_rem_set;
 736 
 737   // A set of cards that cover the objects for which the Rsets should be updated
 738   // concurrently after the collection.
 739   DirtyCardQueueSet _dirty_card_queue_set;
 740 
 741   // The closure used to refine a single card.
 742   RefineCardTableEntryClosure* _refine_cte_cl;
 743 
 744   // A DirtyCardQueueSet that is used to hold cards that contain
 745   // references into the current collection set. This is used to
 746   // update the remembered sets of the regions in the collection
 747   // set in the event of an evacuation failure.
 748   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 749 
 750   // After a collection pause, make the regions in the CS into free
 751   // regions.
 752   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 753 
 754   // Abandon the current collection set without recording policy
 755   // statistics or updating free lists.
 756   void abandon_collection_set(HeapRegion* cs_head);
 757 
 758   // Applies "scan_non_heap_roots" to roots outside the heap,
 759   // "scan_rs" to roots inside the heap (having done "set_region" to
 760   // indicate the region in which the root resides),
 761   // and does "scan_metadata" If "scan_rs" is
 762   // NULL, then this step is skipped.  The "worker_i"
 763   // param is for use with parallel roots processing, and should be
 764   // the "i" of the calling parallel worker thread's work(i) function.
 765   // In the sequential case this param will be ignored.
 766   void g1_process_roots(OopClosure* scan_non_heap_roots,
 767                         OopClosure* scan_non_heap_weak_roots,
 768                         G1ParPushHeapRSClosure* scan_rs,
 769                         CLDClosure* scan_strong_clds,
 770                         CLDClosure* scan_weak_clds,
 771                         CodeBlobClosure* scan_strong_code,
 772                         uint worker_i);
 773 
 774   // The concurrent marker (and the thread it runs in.)
 775   ConcurrentMark* _cm;
 776   ConcurrentMarkThread* _cmThread;
 777   bool _mark_in_progress;
 778 
 779   // The concurrent refiner.
 780   ConcurrentG1Refine* _cg1r;
 781 
 782   // The parallel task queues
 783   RefToScanQueueSet *_task_queues;
 784 
 785   // True iff a evacuation has failed in the current collection.
 786   bool _evacuation_failed;
 787 
 788   EvacuationFailedInfo* _evacuation_failed_info_array;
 789 
 790   // Failed evacuations cause some logical from-space objects to have
 791   // forwarding pointers to themselves.  Reset them.
 792   void remove_self_forwarding_pointers();
 793 
 794   // Together, these store an object with a preserved mark, and its mark value.
 795   Stack<oop, mtGC>     _objs_with_preserved_marks;
 796   Stack<markOop, mtGC> _preserved_marks_of_objs;
 797 
 798   // Preserve the mark of "obj", if necessary, in preparation for its mark
 799   // word being overwritten with a self-forwarding-pointer.
 800   void preserve_mark_if_necessary(oop obj, markOop m);
 801 
 802   // The stack of evac-failure objects left to be scanned.
 803   GrowableArray<oop>*    _evac_failure_scan_stack;
 804   // The closure to apply to evac-failure objects.
 805 
 806   OopsInHeapRegionClosure* _evac_failure_closure;
 807   // Set the field above.
 808   void
 809   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 810     _evac_failure_closure = evac_failure_closure;
 811   }
 812 
 813   // Push "obj" on the scan stack.
 814   void push_on_evac_failure_scan_stack(oop obj);
 815   // Process scan stack entries until the stack is empty.
 816   void drain_evac_failure_scan_stack();
 817   // True iff an invocation of "drain_scan_stack" is in progress; to
 818   // prevent unnecessary recursion.
 819   bool _drain_in_progress;
 820 
 821   // Do any necessary initialization for evacuation-failure handling.
 822   // "cl" is the closure that will be used to process evac-failure
 823   // objects.
 824   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 825   // Do any necessary cleanup for evacuation-failure handling data
 826   // structures.
 827   void finalize_for_evac_failure();
 828 
 829   // An attempt to evacuate "obj" has failed; take necessary steps.
 830   oop handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state, oop obj);
 831   void handle_evacuation_failure_common(oop obj, markOop m);
 832 
 833 #ifndef PRODUCT
 834   // Support for forcing evacuation failures. Analogous to
 835   // PromotionFailureALot for the other collectors.
 836 
 837   // Records whether G1EvacuationFailureALot should be in effect
 838   // for the current GC
 839   bool _evacuation_failure_alot_for_current_gc;
 840 
 841   // Used to record the GC number for interval checking when
 842   // determining whether G1EvaucationFailureALot is in effect
 843   // for the current GC.
 844   size_t _evacuation_failure_alot_gc_number;
 845 
 846   // Count of the number of evacuations between failures.
 847   volatile size_t _evacuation_failure_alot_count;
 848 
 849   // Set whether G1EvacuationFailureALot should be in effect
 850   // for the current GC (based upon the type of GC and which
 851   // command line flags are set);
 852   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 853                                                   bool during_initial_mark,
 854                                                   bool during_marking);
 855 
 856   inline void set_evacuation_failure_alot_for_current_gc();
 857 
 858   // Return true if it's time to cause an evacuation failure.
 859   inline bool evacuation_should_fail();
 860 
 861   // Reset the G1EvacuationFailureALot counters.  Should be called at
 862   // the end of an evacuation pause in which an evacuation failure occurred.
 863   inline void reset_evacuation_should_fail();
 864 #endif // !PRODUCT
 865 
 866   // ("Weak") Reference processing support.
 867   //
 868   // G1 has 2 instances of the reference processor class. One
 869   // (_ref_processor_cm) handles reference object discovery
 870   // and subsequent processing during concurrent marking cycles.
 871   //
 872   // The other (_ref_processor_stw) handles reference object
 873   // discovery and processing during full GCs and incremental
 874   // evacuation pauses.
 875   //
 876   // During an incremental pause, reference discovery will be
 877   // temporarily disabled for _ref_processor_cm and will be
 878   // enabled for _ref_processor_stw. At the end of the evacuation
 879   // pause references discovered by _ref_processor_stw will be
 880   // processed and discovery will be disabled. The previous
 881   // setting for reference object discovery for _ref_processor_cm
 882   // will be re-instated.
 883   //
 884   // At the start of marking:
 885   //  * Discovery by the CM ref processor is verified to be inactive
 886   //    and it's discovered lists are empty.
 887   //  * Discovery by the CM ref processor is then enabled.
 888   //
 889   // At the end of marking:
 890   //  * Any references on the CM ref processor's discovered
 891   //    lists are processed (possibly MT).
 892   //
 893   // At the start of full GC we:
 894   //  * Disable discovery by the CM ref processor and
 895   //    empty CM ref processor's discovered lists
 896   //    (without processing any entries).
 897   //  * Verify that the STW ref processor is inactive and it's
 898   //    discovered lists are empty.
 899   //  * Temporarily set STW ref processor discovery as single threaded.
 900   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 901   //    field.
 902   //  * Finally enable discovery by the STW ref processor.
 903   //
 904   // The STW ref processor is used to record any discovered
 905   // references during the full GC.
 906   //
 907   // At the end of a full GC we:
 908   //  * Enqueue any reference objects discovered by the STW ref processor
 909   //    that have non-live referents. This has the side-effect of
 910   //    making the STW ref processor inactive by disabling discovery.
 911   //  * Verify that the CM ref processor is still inactive
 912   //    and no references have been placed on it's discovered
 913   //    lists (also checked as a precondition during initial marking).
 914 
 915   // The (stw) reference processor...
 916   ReferenceProcessor* _ref_processor_stw;
 917 
 918   STWGCTimer* _gc_timer_stw;
 919   ConcurrentGCTimer* _gc_timer_cm;
 920 
 921   G1OldTracer* _gc_tracer_cm;
 922   G1NewTracer* _gc_tracer_stw;
 923 
 924   // During reference object discovery, the _is_alive_non_header
 925   // closure (if non-null) is applied to the referent object to
 926   // determine whether the referent is live. If so then the
 927   // reference object does not need to be 'discovered' and can
 928   // be treated as a regular oop. This has the benefit of reducing
 929   // the number of 'discovered' reference objects that need to
 930   // be processed.
 931   //
 932   // Instance of the is_alive closure for embedding into the
 933   // STW reference processor as the _is_alive_non_header field.
 934   // Supplying a value for the _is_alive_non_header field is
 935   // optional but doing so prevents unnecessary additions to
 936   // the discovered lists during reference discovery.
 937   G1STWIsAliveClosure _is_alive_closure_stw;
 938 
 939   // The (concurrent marking) reference processor...
 940   ReferenceProcessor* _ref_processor_cm;
 941 
 942   // Instance of the concurrent mark is_alive closure for embedding
 943   // into the Concurrent Marking reference processor as the
 944   // _is_alive_non_header field. Supplying a value for the
 945   // _is_alive_non_header field is optional but doing so prevents
 946   // unnecessary additions to the discovered lists during reference
 947   // discovery.
 948   G1CMIsAliveClosure _is_alive_closure_cm;
 949 
 950   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 951   HeapRegion** _worker_cset_start_region;
 952 
 953   // Time stamp to validate the regions recorded in the cache
 954   // used by G1CollectedHeap::start_cset_region_for_worker().
 955   // The heap region entry for a given worker is valid iff
 956   // the associated time stamp value matches the current value
 957   // of G1CollectedHeap::_gc_time_stamp.
 958   uint* _worker_cset_start_region_time_stamp;
 959 
 960   enum G1H_process_roots_tasks {
 961     G1H_PS_filter_satb_buffers,
 962     G1H_PS_refProcessor_oops_do,
 963     // Leave this one last.
 964     G1H_PS_NumElements
 965   };
 966 
 967   SubTasksDone* _process_strong_tasks;
 968 
 969   volatile bool _free_regions_coming;
 970 
 971 public:
 972 
 973   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
 974 
 975   void set_refine_cte_cl_concurrency(bool concurrent);
 976 
 977   RefToScanQueue *task_queue(int i) const;
 978 
 979   // A set of cards where updates happened during the GC
 980   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 981 
 982   // A DirtyCardQueueSet that is used to hold cards that contain
 983   // references into the current collection set. This is used to
 984   // update the remembered sets of the regions in the collection
 985   // set in the event of an evacuation failure.
 986   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
 987         { return _into_cset_dirty_card_queue_set; }
 988 
 989   // Create a G1CollectedHeap with the specified policy.
 990   // Must call the initialize method afterwards.
 991   // May not return if something goes wrong.
 992   G1CollectedHeap(G1CollectorPolicy* policy);
 993 
 994   // Initialize the G1CollectedHeap to have the initial and
 995   // maximum sizes and remembered and barrier sets
 996   // specified by the policy object.
 997   jint initialize();
 998 
 999   virtual void stop();
1000 
1001   // Return the (conservative) maximum heap alignment for any G1 heap
1002   static size_t conservative_max_heap_alignment();
1003 
1004   // Initialize weak reference processing.
1005   virtual void ref_processing_init();
1006 
1007   void set_par_threads(uint t) {
1008     SharedHeap::set_par_threads(t);
1009     // Done in SharedHeap but oddly there are
1010     // two _process_strong_tasks's in a G1CollectedHeap
1011     // so do it here too.
1012     _process_strong_tasks->set_n_threads(t);
1013   }
1014 
1015   // Set _n_par_threads according to a policy TBD.
1016   void set_par_threads();
1017 
1018   void set_n_termination(int t) {
1019     _process_strong_tasks->set_n_threads(t);
1020   }
1021 
1022   virtual CollectedHeap::Name kind() const {
1023     return CollectedHeap::G1CollectedHeap;
1024   }
1025 
1026   // The current policy object for the collector.
1027   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1028 
1029   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1030 
1031   // Adaptive size policy.  No such thing for g1.
1032   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1033 
1034   // The rem set and barrier set.
1035   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1036 
1037   unsigned get_gc_time_stamp() {
1038     return _gc_time_stamp;
1039   }
1040 
1041   inline void reset_gc_time_stamp();
1042 
1043   void check_gc_time_stamps() PRODUCT_RETURN;
1044 
1045   inline void increment_gc_time_stamp();
1046 
1047   // Reset the given region's GC timestamp. If it's starts humongous,
1048   // also reset the GC timestamp of its corresponding
1049   // continues humongous regions too.
1050   void reset_gc_time_stamps(HeapRegion* hr);
1051 
1052   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1053                                   DirtyCardQueue* into_cset_dcq,
1054                                   bool concurrent, uint worker_i);
1055 
1056   // The shared block offset table array.
1057   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1058 
1059   // Reference Processing accessors
1060 
1061   // The STW reference processor....
1062   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1063 
1064   // The Concurrent Marking reference processor...
1065   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1066 
1067   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1068   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1069 
1070   virtual size_t capacity() const;
1071   virtual size_t used() const;
1072   // This should be called when we're not holding the heap lock. The
1073   // result might be a bit inaccurate.
1074   size_t used_unlocked() const;
1075   size_t recalculate_used() const;
1076 
1077   void increase_used(size_t bytes) { _summary_bytes_used += bytes; }
1078   void set_used(size_t bytes) { _summary_bytes_used = bytes; }
1079 
1080   void decrease_used(size_t bytes) {
1081     assert(_summary_bytes_used >= bytes,
1082            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
1083                _summary_bytes_used, bytes));
1084     _summary_bytes_used -= bytes;
1085   }
1086 
1087   // These virtual functions do the actual allocation.
1088   // Some heaps may offer a contiguous region for shared non-blocking
1089   // allocation, via inlined code (by exporting the address of the top and
1090   // end fields defining the extent of the contiguous allocation region.)
1091   // But G1CollectedHeap doesn't yet support this.
1092 
1093   virtual bool is_maximal_no_gc() const {
1094     return _hrm.available() == 0;
1095   }
1096 
1097   // The current number of regions in the heap.
1098   uint num_regions() const { return _hrm.length(); }
1099 
1100   // The max number of regions in the heap.
1101   uint max_regions() const { return _hrm.max_length(); }
1102 
1103   // The number of regions that are completely free.
1104   uint num_free_regions() const { return _hrm.num_free_regions(); }
1105 
1106   // The number of regions that are not completely free.
1107   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1108 
1109   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1110   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1111   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1112   void verify_dirty_young_regions() PRODUCT_RETURN;
1113 
1114 #ifndef PRODUCT
1115   // Make sure that the given bitmap has no marked objects in the
1116   // range [from,limit). If it does, print an error message and return
1117   // false. Otherwise, just return true. bitmap_name should be "prev"
1118   // or "next".
1119   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1120                                 HeapWord* from, HeapWord* limit);
1121 
1122   // Verify that the prev / next bitmap range [tams,end) for the given
1123   // region has no marks. Return true if all is well, false if errors
1124   // are detected.
1125   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1126 #endif // PRODUCT
1127 
1128   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1129   // the given region do not have any spurious marks. If errors are
1130   // detected, print appropriate error messages and crash.
1131   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1132 
1133   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1134   // have any spurious marks. If errors are detected, print
1135   // appropriate error messages and crash.
1136   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1137 
1138   // Do sanity check on the contents of the in-cset fast test table.
1139   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1140 
1141   // verify_region_sets() performs verification over the region
1142   // lists. It will be compiled in the product code to be used when
1143   // necessary (i.e., during heap verification).
1144   void verify_region_sets();
1145 
1146   // verify_region_sets_optional() is planted in the code for
1147   // list verification in non-product builds (and it can be enabled in
1148   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1149 #if HEAP_REGION_SET_FORCE_VERIFY
1150   void verify_region_sets_optional() {
1151     verify_region_sets();
1152   }
1153 #else // HEAP_REGION_SET_FORCE_VERIFY
1154   void verify_region_sets_optional() { }
1155 #endif // HEAP_REGION_SET_FORCE_VERIFY
1156 
1157 #ifdef ASSERT
1158   bool is_on_master_free_list(HeapRegion* hr) {
1159     return _hrm.is_free(hr);
1160   }
1161 #endif // ASSERT
1162 
1163   // Wrapper for the region list operations that can be called from
1164   // methods outside this class.
1165 
1166   void secondary_free_list_add(FreeRegionList* list) {
1167     _secondary_free_list.add_ordered(list);
1168   }
1169 
1170   void append_secondary_free_list() {
1171     _hrm.insert_list_into_free_list(&_secondary_free_list);
1172   }
1173 
1174   void append_secondary_free_list_if_not_empty_with_lock() {
1175     // If the secondary free list looks empty there's no reason to
1176     // take the lock and then try to append it.
1177     if (!_secondary_free_list.is_empty()) {
1178       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1179       append_secondary_free_list();
1180     }
1181   }
1182 
1183   inline void old_set_remove(HeapRegion* hr);
1184 
1185   size_t non_young_capacity_bytes() {
1186     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1187   }
1188 
1189   void set_free_regions_coming();
1190   void reset_free_regions_coming();
1191   bool free_regions_coming() { return _free_regions_coming; }
1192   void wait_while_free_regions_coming();
1193 
1194   // Determine whether the given region is one that we are using as an
1195   // old GC alloc region.
1196   bool is_old_gc_alloc_region(HeapRegion* hr) {
1197     return _allocator->is_retained_old_region(hr);
1198   }
1199 
1200   // Perform a collection of the heap; intended for use in implementing
1201   // "System.gc".  This probably implies as full a collection as the
1202   // "CollectedHeap" supports.
1203   virtual void collect(GCCause::Cause cause);
1204 
1205   // The same as above but assume that the caller holds the Heap_lock.
1206   void collect_locked(GCCause::Cause cause);
1207 
1208   virtual bool copy_allocation_context_stats(const jint* contexts,
1209                                              jlong* totals,
1210                                              jbyte* accuracy,
1211                                              jint len);
1212 
1213   // True iff an evacuation has failed in the most-recent collection.
1214   bool evacuation_failed() { return _evacuation_failed; }
1215 
1216   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1217   void prepend_to_freelist(FreeRegionList* list);
1218   void decrement_summary_bytes(size_t bytes);
1219 
1220   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1221   virtual bool is_in(const void* p) const;
1222 #ifdef ASSERT
1223   // Returns whether p is in one of the available areas of the heap. Slow but
1224   // extensive version.
1225   bool is_in_exact(const void* p) const;
1226 #endif
1227 
1228   // Return "TRUE" iff the given object address is within the collection
1229   // set. Slow implementation.
1230   inline bool obj_in_cs(oop obj);
1231 
1232   inline bool is_in_cset(oop obj);
1233 
1234   inline bool is_in_cset_or_humongous(const oop obj);
1235 
1236  private:
1237   // This array is used for a quick test on whether a reference points into
1238   // the collection set or not. Each of the array's elements denotes whether the
1239   // corresponding region is in the collection set or not.
1240   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1241 
1242  public:
1243 
1244   inline InCSetState in_cset_state(const oop obj);
1245 
1246   // Return "TRUE" iff the given object address is in the reserved
1247   // region of g1.
1248   bool is_in_g1_reserved(const void* p) const {
1249     return _hrm.reserved().contains(p);
1250   }
1251 
1252   // Returns a MemRegion that corresponds to the space that has been
1253   // reserved for the heap
1254   MemRegion g1_reserved() const {
1255     return _hrm.reserved();
1256   }
1257 
1258   virtual bool is_in_closed_subset(const void* p) const;
1259 
1260   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1261     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1262   }
1263 
1264   // This resets the card table to all zeros.  It is used after
1265   // a collection pause which used the card table to claim cards.
1266   void cleanUpCardTable();
1267 
1268   // Iteration functions.
1269 
1270   // Iterate over all the ref-containing fields of all objects, calling
1271   // "cl.do_oop" on each.
1272   virtual void oop_iterate(ExtendedOopClosure* cl);
1273 
1274   // Iterate over all objects, calling "cl.do_object" on each.
1275   virtual void object_iterate(ObjectClosure* cl);
1276 
1277   virtual void safe_object_iterate(ObjectClosure* cl) {
1278     object_iterate(cl);
1279   }
1280 
1281   // Iterate over all spaces in use in the heap, in ascending address order.
1282   virtual void space_iterate(SpaceClosure* cl);
1283 
1284   // Iterate over heap regions, in address order, terminating the
1285   // iteration early if the "doHeapRegion" method returns "true".
1286   void heap_region_iterate(HeapRegionClosure* blk) const;
1287 
1288   // Return the region with the given index. It assumes the index is valid.
1289   inline HeapRegion* region_at(uint index) const;
1290 
1291   // Calculate the region index of the given address. Given address must be
1292   // within the heap.
1293   inline uint addr_to_region(HeapWord* addr) const;
1294 
1295   inline HeapWord* bottom_addr_for_region(uint index) const;
1296 
1297   // Iterate over the heap regions in parallel. Assumes that this will be called
1298   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1299   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1300   // to each of the regions, by attempting to claim the region using the
1301   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1302   // region. The concurrent argument should be set to true if iteration is
1303   // performed concurrently, during which no assumptions are made for consistent
1304   // attributes of the heap regions (as they might be modified while iterating).
1305   void heap_region_par_iterate(HeapRegionClosure* cl,
1306                                uint worker_id,
1307                                HeapRegionClaimer* hrclaimer,
1308                                bool concurrent = false) const;
1309 
1310   // Clear the cached cset start regions and (more importantly)
1311   // the time stamps. Called when we reset the GC time stamp.
1312   void clear_cset_start_regions();
1313 
1314   // Given the id of a worker, obtain or calculate a suitable
1315   // starting region for iterating over the current collection set.
1316   HeapRegion* start_cset_region_for_worker(uint worker_i);
1317 
1318   // Iterate over the regions (if any) in the current collection set.
1319   void collection_set_iterate(HeapRegionClosure* blk);
1320 
1321   // As above but starting from region r
1322   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1323 
1324   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1325 
1326   // A CollectedHeap will contain some number of spaces.  This finds the
1327   // space containing a given address, or else returns NULL.
1328   virtual Space* space_containing(const void* addr) const;
1329 
1330   // Returns the HeapRegion that contains addr. addr must not be NULL.
1331   template <class T>
1332   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1333 
1334   // Returns the HeapRegion that contains addr. addr must not be NULL.
1335   // If addr is within a humongous continues region, it returns its humongous start region.
1336   template <class T>
1337   inline HeapRegion* heap_region_containing(const T addr) const;
1338 
1339   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1340   // each address in the (reserved) heap is a member of exactly
1341   // one block.  The defining characteristic of a block is that it is
1342   // possible to find its size, and thus to progress forward to the next
1343   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1344   // represent Java objects, or they might be free blocks in a
1345   // free-list-based heap (or subheap), as long as the two kinds are
1346   // distinguishable and the size of each is determinable.
1347 
1348   // Returns the address of the start of the "block" that contains the
1349   // address "addr".  We say "blocks" instead of "object" since some heaps
1350   // may not pack objects densely; a chunk may either be an object or a
1351   // non-object.
1352   virtual HeapWord* block_start(const void* addr) const;
1353 
1354   // Requires "addr" to be the start of a chunk, and returns its size.
1355   // "addr + size" is required to be the start of a new chunk, or the end
1356   // of the active area of the heap.
1357   virtual size_t block_size(const HeapWord* addr) const;
1358 
1359   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1360   // the block is an object.
1361   virtual bool block_is_obj(const HeapWord* addr) const;
1362 
1363   // Does this heap support heap inspection? (+PrintClassHistogram)
1364   virtual bool supports_heap_inspection() const { return true; }
1365 
1366   // Section on thread-local allocation buffers (TLABs)
1367   // See CollectedHeap for semantics.
1368 
1369   bool supports_tlab_allocation() const;
1370   size_t tlab_capacity(Thread* ignored) const;
1371   size_t tlab_used(Thread* ignored) const;
1372   size_t max_tlab_size() const;
1373   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1374 
1375   // Can a compiler initialize a new object without store barriers?
1376   // This permission only extends from the creation of a new object
1377   // via a TLAB up to the first subsequent safepoint. If such permission
1378   // is granted for this heap type, the compiler promises to call
1379   // defer_store_barrier() below on any slow path allocation of
1380   // a new object for which such initializing store barriers will
1381   // have been elided. G1, like CMS, allows this, but should be
1382   // ready to provide a compensating write barrier as necessary
1383   // if that storage came out of a non-young region. The efficiency
1384   // of this implementation depends crucially on being able to
1385   // answer very efficiently in constant time whether a piece of
1386   // storage in the heap comes from a young region or not.
1387   // See ReduceInitialCardMarks.
1388   virtual bool can_elide_tlab_store_barriers() const {
1389     return true;
1390   }
1391 
1392   virtual bool card_mark_must_follow_store() const {
1393     return true;
1394   }
1395 
1396   inline bool is_in_young(const oop obj);
1397 
1398 #ifdef ASSERT
1399   virtual bool is_in_partial_collection(const void* p);
1400 #endif
1401 
1402   virtual bool is_scavengable(const void* addr);
1403 
1404   // We don't need barriers for initializing stores to objects
1405   // in the young gen: for the SATB pre-barrier, there is no
1406   // pre-value that needs to be remembered; for the remembered-set
1407   // update logging post-barrier, we don't maintain remembered set
1408   // information for young gen objects.
1409   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1410 
1411   // Returns "true" iff the given word_size is "very large".
1412   static bool is_humongous(size_t word_size) {
1413     // Note this has to be strictly greater-than as the TLABs
1414     // are capped at the humongous threshold and we want to
1415     // ensure that we don't try to allocate a TLAB as
1416     // humongous and that we don't allocate a humongous
1417     // object in a TLAB.
1418     return word_size > _humongous_object_threshold_in_words;
1419   }
1420 
1421   static size_t humongous_object_threshold_in_words() { return _humongous_object_threshold_in_words; }
1422   
1423   // Update mod union table with the set of dirty cards.
1424   void updateModUnion();
1425 
1426   // Set the mod union bits corresponding to the given memRegion.  Note
1427   // that this is always a safe operation, since it doesn't clear any
1428   // bits.
1429   void markModUnionRange(MemRegion mr);
1430 
1431   // Records the fact that a marking phase is no longer in progress.
1432   void set_marking_complete() {
1433     _mark_in_progress = false;
1434   }
1435   void set_marking_started() {
1436     _mark_in_progress = true;
1437   }
1438   bool mark_in_progress() {
1439     return _mark_in_progress;
1440   }
1441 
1442   // Print the maximum heap capacity.
1443   virtual size_t max_capacity() const;
1444 
1445   virtual jlong millis_since_last_gc();
1446 
1447 
1448   // Convenience function to be used in situations where the heap type can be
1449   // asserted to be this type.
1450   static G1CollectedHeap* heap();
1451 
1452   void set_region_short_lived_locked(HeapRegion* hr);
1453   // add appropriate methods for any other surv rate groups
1454 
1455   YoungList* young_list() const { return _young_list; }
1456 
1457   // debugging
1458   bool check_young_list_well_formed() {
1459     return _young_list->check_list_well_formed();
1460   }
1461 
1462   bool check_young_list_empty(bool check_heap,
1463                               bool check_sample = true);
1464 
1465   // *** Stuff related to concurrent marking.  It's not clear to me that so
1466   // many of these need to be public.
1467 
1468   // The functions below are helper functions that a subclass of
1469   // "CollectedHeap" can use in the implementation of its virtual
1470   // functions.
1471   // This performs a concurrent marking of the live objects in a
1472   // bitmap off to the side.
1473   void doConcurrentMark();
1474 
1475   bool isMarkedPrev(oop obj) const;
1476   bool isMarkedNext(oop obj) const;
1477 
1478   // Determine if an object is dead, given the object and also
1479   // the region to which the object belongs. An object is dead
1480   // iff a) it was not allocated since the last mark and b) it
1481   // is not marked.
1482   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1483     return
1484       !hr->obj_allocated_since_prev_marking(obj) &&
1485       !isMarkedPrev(obj);
1486   }
1487 
1488   // This function returns true when an object has been
1489   // around since the previous marking and hasn't yet
1490   // been marked during this marking.
1491   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1492     return
1493       !hr->obj_allocated_since_next_marking(obj) &&
1494       !isMarkedNext(obj);
1495   }
1496 
1497   // Determine if an object is dead, given only the object itself.
1498   // This will find the region to which the object belongs and
1499   // then call the region version of the same function.
1500 
1501   // Added if it is NULL it isn't dead.
1502 
1503   inline bool is_obj_dead(const oop obj) const;
1504 
1505   inline bool is_obj_ill(const oop obj) const;
1506 
1507   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1508   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1509   bool is_marked(oop obj, VerifyOption vo);
1510   const char* top_at_mark_start_str(VerifyOption vo);
1511 
1512   ConcurrentMark* concurrent_mark() const { return _cm; }
1513 
1514   // Refinement
1515 
1516   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1517 
1518   // The dirty cards region list is used to record a subset of regions
1519   // whose cards need clearing. The list if populated during the
1520   // remembered set scanning and drained during the card table
1521   // cleanup. Although the methods are reentrant, population/draining
1522   // phases must not overlap. For synchronization purposes the last
1523   // element on the list points to itself.
1524   HeapRegion* _dirty_cards_region_list;
1525   void push_dirty_cards_region(HeapRegion* hr);
1526   HeapRegion* pop_dirty_cards_region();
1527 
1528   // Optimized nmethod scanning support routines
1529 
1530   // Register the given nmethod with the G1 heap.
1531   virtual void register_nmethod(nmethod* nm);
1532 
1533   // Unregister the given nmethod from the G1 heap.
1534   virtual void unregister_nmethod(nmethod* nm);
1535 
1536   // Free up superfluous code root memory.
1537   void purge_code_root_memory();
1538 
1539   // Rebuild the strong code root lists for each region
1540   // after a full GC.
1541   void rebuild_strong_code_roots();
1542 
1543   // Delete entries for dead interned string and clean up unreferenced symbols
1544   // in symbol table, possibly in parallel.
1545   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1546 
1547   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1548   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1549 
1550   // Redirty logged cards in the refinement queue.
1551   void redirty_logged_cards();
1552   // Verification
1553 
1554   // The following is just to alert the verification code
1555   // that a full collection has occurred and that the
1556   // remembered sets are no longer up to date.
1557   bool _full_collection;
1558   void set_full_collection() { _full_collection = true;}
1559   void clear_full_collection() {_full_collection = false;}
1560   bool full_collection() {return _full_collection;}
1561 
1562   // Perform any cleanup actions necessary before allowing a verification.
1563   virtual void prepare_for_verify();
1564 
1565   // Perform verification.
1566 
1567   // vo == UsePrevMarking  -> use "prev" marking information,
1568   // vo == UseNextMarking -> use "next" marking information
1569   // vo == UseMarkWord    -> use the mark word in the object header
1570   //
1571   // NOTE: Only the "prev" marking information is guaranteed to be
1572   // consistent most of the time, so most calls to this should use
1573   // vo == UsePrevMarking.
1574   // Currently, there is only one case where this is called with
1575   // vo == UseNextMarking, which is to verify the "next" marking
1576   // information at the end of remark.
1577   // Currently there is only one place where this is called with
1578   // vo == UseMarkWord, which is to verify the marking during a
1579   // full GC.
1580   void verify(bool silent, VerifyOption vo);
1581 
1582   // Override; it uses the "prev" marking information
1583   virtual void verify(bool silent);
1584 
1585   // The methods below are here for convenience and dispatch the
1586   // appropriate method depending on value of the given VerifyOption
1587   // parameter. The values for that parameter, and their meanings,
1588   // are the same as those above.
1589 
1590   bool is_obj_dead_cond(const oop obj,
1591                         const HeapRegion* hr,
1592                         const VerifyOption vo) const;
1593 
1594   bool is_obj_dead_cond(const oop obj,
1595                         const VerifyOption vo) const;
1596 
1597   // Printing
1598 
1599   virtual void print_on(outputStream* st) const;
1600   virtual void print_extended_on(outputStream* st) const;
1601   virtual void print_on_error(outputStream* st) const;
1602 
1603   virtual void print_gc_threads_on(outputStream* st) const;
1604   virtual void gc_threads_do(ThreadClosure* tc) const;
1605 
1606   // Override
1607   void print_tracing_info() const;
1608 
1609   // The following two methods are helpful for debugging RSet issues.
1610   void print_cset_rsets() PRODUCT_RETURN;
1611   void print_all_rsets() PRODUCT_RETURN;
1612 
1613 public:
1614   size_t pending_card_num();
1615   size_t cards_scanned();
1616 
1617 protected:
1618   size_t _max_heap_capacity;
1619 };
1620 
1621 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP