1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc_implementation/g1/heapRegionSet.hpp"
  30 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  31 #include "gc_implementation/shared/gcId.hpp"
  32 #include "utilities/taskqueue.hpp"
  33 
  34 class G1CollectedHeap;
  35 class CMBitMap;
  36 class CMTask;
  37 class ConcurrentMark;
  38 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
  39 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
  40 
  41 // Closure used by CM during concurrent reference discovery
  42 // and reference processing (during remarking) to determine
  43 // if a particular object is alive. It is primarily used
  44 // to determine if referents of discovered reference objects
  45 // are alive. An instance is also embedded into the
  46 // reference processor as the _is_alive_non_header field
  47 class G1CMIsAliveClosure: public BoolObjectClosure {
  48   G1CollectedHeap* _g1;
  49  public:
  50   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  51 
  52   bool do_object_b(oop obj);
  53 };
  54 
  55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  56 // class, with one bit per (1<<_shifter) HeapWords.
  57 
  58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  59  protected:
  60   HeapWord* _bmStartWord;      // base address of range covered by map
  61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  62   const int _shifter;          // map to char or bit
  63   BitMap    _bm;               // the bit map itself
  64 
  65  public:
  66   // constructor
  67   CMBitMapRO(int shifter);
  68 
  69   enum { do_yield = true };
  70 
  71   // inquiries
  72   HeapWord* startWord()   const { return _bmStartWord; }
  73   size_t    sizeInWords() const { return _bmWordSize;  }
  74   // the following is one past the last word in space
  75   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  76 
  77   // read marks
  78 
  79   bool isMarked(HeapWord* addr) const {
  80     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  81            "outside underlying space?");
  82     return _bm.at(heapWordToOffset(addr));
  83   }
  84 
  85   // iteration
  86   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  87   inline bool iterate(BitMapClosure* cl);
  88 
  89   // Return the address corresponding to the next marked bit at or after
  90   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  91   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  92   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  93                                      const HeapWord* limit = NULL) const;
  94   // Return the address corresponding to the next unmarked bit at or after
  95   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  96   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  97   HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
  98                                        const HeapWord* limit = NULL) const;
  99 
 100   // conversion utilities
 101   HeapWord* offsetToHeapWord(size_t offset) const {
 102     return _bmStartWord + (offset << _shifter);
 103   }
 104   size_t heapWordToOffset(const HeapWord* addr) const {
 105     return pointer_delta(addr, _bmStartWord) >> _shifter;
 106   }
 107   int heapWordDiffToOffsetDiff(size_t diff) const;
 108 
 109   // The argument addr should be the start address of a valid object
 110   HeapWord* nextObject(HeapWord* addr) {
 111     oop obj = (oop) addr;
 112     HeapWord* res =  addr + obj->size();
 113     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
 114     return res;
 115   }
 116 
 117   void print_on_error(outputStream* st, const char* prefix) const;
 118 
 119   // debugging
 120   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 121 };
 122 
 123 class CMBitMapMappingChangedListener : public G1MappingChangedListener {
 124  private:
 125   CMBitMap* _bm;
 126  public:
 127   CMBitMapMappingChangedListener() : _bm(NULL) {}
 128 
 129   void set_bitmap(CMBitMap* bm) { _bm = bm; }
 130 
 131   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 132 };
 133 
 134 class CMBitMap : public CMBitMapRO {
 135  private:
 136   CMBitMapMappingChangedListener _listener;
 137 
 138  public:
 139   static size_t compute_size(size_t heap_size);
 140   // Returns the amount of bytes on the heap between two marks in the bitmap.
 141   static size_t mark_distance();
 142   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 143   // mark bitmap corresponds to. This is the same as the mark distance above.
 144   static size_t heap_map_factor() {
 145     return mark_distance();
 146   }
 147 
 148   CMBitMap() : CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 149 
 150   // Initializes the underlying BitMap to cover the given area.
 151   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 152 
 153   // Write marks.
 154   inline void mark(HeapWord* addr);
 155   inline void clear(HeapWord* addr);
 156   inline bool parMark(HeapWord* addr);
 157   inline bool parClear(HeapWord* addr);
 158 
 159   void markRange(MemRegion mr);
 160   void clearRange(MemRegion mr);
 161 
 162   // Starting at the bit corresponding to "addr" (inclusive), find the next
 163   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 164   // the end of this run (stopping at "end_addr").  Return the MemRegion
 165   // covering from the start of the region corresponding to the first bit
 166   // of the run to the end of the region corresponding to the last bit of
 167   // the run.  If there is no "1" bit at or after "addr", return an empty
 168   // MemRegion.
 169   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 170 
 171   // Clear the whole mark bitmap.
 172   void clearAll();
 173 };
 174 
 175 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 176 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 177   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 178   ConcurrentMark* _cm;
 179   oop* _base;        // bottom of stack
 180   jint _index;       // one more than last occupied index
 181   jint _capacity;    // max #elements
 182   jint _saved_index; // value of _index saved at start of GC
 183   NOT_PRODUCT(jint _max_depth;)   // max depth plumbed during run
 184 
 185   bool  _overflow;
 186   bool  _should_expand;
 187   DEBUG_ONLY(bool _drain_in_progress;)
 188   DEBUG_ONLY(bool _drain_in_progress_yields;)
 189 
 190  public:
 191   CMMarkStack(ConcurrentMark* cm);
 192   ~CMMarkStack();
 193 
 194 #ifndef PRODUCT
 195   jint max_depth() const {
 196     return _max_depth;
 197   }
 198 #endif
 199 
 200   bool allocate(size_t capacity);
 201 
 202   oop pop() {
 203     if (!isEmpty()) {
 204       return _base[--_index] ;
 205     }
 206     return NULL;
 207   }
 208 
 209   // If overflow happens, don't do the push, and record the overflow.
 210   // *Requires* that "ptr" is already marked.
 211   void push(oop ptr) {
 212     if (isFull()) {
 213       // Record overflow.
 214       _overflow = true;
 215       return;
 216     } else {
 217       _base[_index++] = ptr;
 218       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 219     }
 220   }
 221   // Non-block impl.  Note: concurrency is allowed only with other
 222   // "par_push" operations, not with "pop" or "drain".  We would need
 223   // parallel versions of them if such concurrency was desired.
 224   void par_push(oop ptr);
 225 
 226   // Pushes the first "n" elements of "ptr_arr" on the stack.
 227   // Non-block impl.  Note: concurrency is allowed only with other
 228   // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
 229   void par_adjoin_arr(oop* ptr_arr, int n);
 230 
 231   // Pushes the first "n" elements of "ptr_arr" on the stack.
 232   // Locking impl: concurrency is allowed only with
 233   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 234   // locking strategy.
 235   void par_push_arr(oop* ptr_arr, int n);
 236 
 237   // If returns false, the array was empty.  Otherwise, removes up to "max"
 238   // elements from the stack, and transfers them to "ptr_arr" in an
 239   // unspecified order.  The actual number transferred is given in "n" ("n
 240   // == 0" is deliberately redundant with the return value.)  Locking impl:
 241   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 242   // operations, which use the same locking strategy.
 243   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 244 
 245   // Drain the mark stack, applying the given closure to all fields of
 246   // objects on the stack.  (That is, continue until the stack is empty,
 247   // even if closure applications add entries to the stack.)  The "bm"
 248   // argument, if non-null, may be used to verify that only marked objects
 249   // are on the mark stack.  If "yield_after" is "true", then the
 250   // concurrent marker performing the drain offers to yield after
 251   // processing each object.  If a yield occurs, stops the drain operation
 252   // and returns false.  Otherwise, returns true.
 253   template<class OopClosureClass>
 254   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 255 
 256   bool isEmpty()    { return _index == 0; }
 257   bool isFull()     { return _index == _capacity; }
 258   int  maxElems()   { return _capacity; }
 259 
 260   bool overflow() { return _overflow; }
 261   void clear_overflow() { _overflow = false; }
 262 
 263   bool should_expand() const { return _should_expand; }
 264   void set_should_expand();
 265 
 266   // Expand the stack, typically in response to an overflow condition
 267   void expand();
 268 
 269   int  size() { return _index; }
 270 
 271   void setEmpty()   { _index = 0; clear_overflow(); }
 272 
 273   // Record the current index.
 274   void note_start_of_gc();
 275 
 276   // Make sure that we have not added any entries to the stack during GC.
 277   void note_end_of_gc();
 278 
 279   // iterate over the oops in the mark stack, up to the bound recorded via
 280   // the call above.
 281   void oops_do(OopClosure* f);
 282 };
 283 
 284 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 285 private:
 286 #ifndef PRODUCT
 287   uintx _num_remaining;
 288   bool _force;
 289 #endif // !defined(PRODUCT)
 290 
 291 public:
 292   void init() PRODUCT_RETURN;
 293   void update() PRODUCT_RETURN;
 294   bool should_force() PRODUCT_RETURN_( return false; );
 295 };
 296 
 297 // this will enable a variety of different statistics per GC task
 298 #define _MARKING_STATS_       0
 299 // this will enable the higher verbose levels
 300 #define _MARKING_VERBOSE_     0
 301 
 302 #if _MARKING_STATS_
 303 #define statsOnly(statement)  \
 304 do {                          \
 305   statement ;                 \
 306 } while (0)
 307 #else // _MARKING_STATS_
 308 #define statsOnly(statement)  \
 309 do {                          \
 310 } while (0)
 311 #endif // _MARKING_STATS_
 312 
 313 typedef enum {
 314   no_verbose  = 0,   // verbose turned off
 315   stats_verbose,     // only prints stats at the end of marking
 316   low_verbose,       // low verbose, mostly per region and per major event
 317   medium_verbose,    // a bit more detailed than low
 318   high_verbose       // per object verbose
 319 } CMVerboseLevel;
 320 
 321 class YoungList;
 322 
 323 // Root Regions are regions that are not empty at the beginning of a
 324 // marking cycle and which we might collect during an evacuation pause
 325 // while the cycle is active. Given that, during evacuation pauses, we
 326 // do not copy objects that are explicitly marked, what we have to do
 327 // for the root regions is to scan them and mark all objects reachable
 328 // from them. According to the SATB assumptions, we only need to visit
 329 // each object once during marking. So, as long as we finish this scan
 330 // before the next evacuation pause, we can copy the objects from the
 331 // root regions without having to mark them or do anything else to them.
 332 //
 333 // Currently, we only support root region scanning once (at the start
 334 // of the marking cycle) and the root regions are all the survivor
 335 // regions populated during the initial-mark pause.
 336 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
 337 private:
 338   YoungList*           _young_list;
 339   ConcurrentMark*      _cm;
 340 
 341   volatile bool        _scan_in_progress;
 342   volatile bool        _should_abort;
 343   HeapRegion* volatile _next_survivor;
 344 
 345 public:
 346   CMRootRegions();
 347   // We actually do most of the initialization in this method.
 348   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
 349 
 350   // Reset the claiming / scanning of the root regions.
 351   void prepare_for_scan();
 352 
 353   // Forces get_next() to return NULL so that the iteration aborts early.
 354   void abort() { _should_abort = true; }
 355 
 356   // Return true if the CM thread are actively scanning root regions,
 357   // false otherwise.
 358   bool scan_in_progress() { return _scan_in_progress; }
 359 
 360   // Claim the next root region to scan atomically, or return NULL if
 361   // all have been claimed.
 362   HeapRegion* claim_next();
 363 
 364   // Flag that we're done with root region scanning and notify anyone
 365   // who's waiting on it. If aborted is false, assume that all regions
 366   // have been claimed.
 367   void scan_finished();
 368 
 369   // If CM threads are still scanning root regions, wait until they
 370   // are done. Return true if we had to wait, false otherwise.
 371   bool wait_until_scan_finished();
 372 };
 373 
 374 class ConcurrentMarkThread;
 375 
 376 class ConcurrentMark: public CHeapObj<mtGC> {
 377   friend class CMMarkStack;
 378   friend class ConcurrentMarkThread;
 379   friend class CMTask;
 380   friend class CMBitMapClosure;
 381   friend class CMGlobalObjectClosure;
 382   friend class CMRemarkTask;
 383   friend class CMConcurrentMarkingTask;
 384   friend class G1ParNoteEndTask;
 385   friend class CalcLiveObjectsClosure;
 386   friend class G1CMRefProcTaskProxy;
 387   friend class G1CMRefProcTaskExecutor;
 388   friend class G1CMKeepAliveAndDrainClosure;
 389   friend class G1CMDrainMarkingStackClosure;
 390 
 391 protected:
 392   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 393   G1CollectedHeap*      _g1h;        // The heap
 394   uint                  _parallel_marking_threads; // The number of marking
 395                                                    // threads we're using
 396   uint                  _max_parallel_marking_threads; // Max number of marking
 397                                                        // threads we'll ever use
 398   double                _sleep_factor; // How much we have to sleep, with
 399                                        // respect to the work we just did, to
 400                                        // meet the marking overhead goal
 401   double                _marking_task_overhead; // Marking target overhead for
 402                                                 // a single task
 403 
 404   // Same as the two above, but for the cleanup task
 405   double                _cleanup_sleep_factor;
 406   double                _cleanup_task_overhead;
 407 
 408   FreeRegionList        _cleanup_list;
 409 
 410   // Concurrent marking support structures
 411   CMBitMap                _markBitMap1;
 412   CMBitMap                _markBitMap2;
 413   CMBitMapRO*             _prevMarkBitMap; // Completed mark bitmap
 414   CMBitMap*               _nextMarkBitMap; // Under-construction mark bitmap
 415 
 416   BitMap                  _region_bm;
 417   BitMap                  _card_bm;
 418 
 419   // Heap bounds
 420   HeapWord*               _heap_start;
 421   HeapWord*               _heap_end;
 422 
 423   // Root region tracking and claiming
 424   CMRootRegions           _root_regions;
 425 
 426   // For gray objects
 427   CMMarkStack             _markStack; // Grey objects behind global finger
 428   HeapWord* volatile      _finger;  // The global finger, region aligned,
 429                                     // always points to the end of the
 430                                     // last claimed region
 431 
 432   // Marking tasks
 433   uint                    _max_worker_id;// Maximum worker id
 434   uint                    _active_tasks; // Task num currently active
 435   CMTask**                _tasks;        // Task queue array (max_worker_id len)
 436   CMTaskQueueSet*         _task_queues;  // Task queue set
 437   ParallelTaskTerminator  _terminator;   // For termination
 438 
 439   // Two sync barriers that are used to synchronize tasks when an
 440   // overflow occurs. The algorithm is the following. All tasks enter
 441   // the first one to ensure that they have all stopped manipulating
 442   // the global data structures. After they exit it, they re-initialize
 443   // their data structures and task 0 re-initializes the global data
 444   // structures. Then, they enter the second sync barrier. This
 445   // ensure, that no task starts doing work before all data
 446   // structures (local and global) have been re-initialized. When they
 447   // exit it, they are free to start working again.
 448   WorkGangBarrierSync     _first_overflow_barrier_sync;
 449   WorkGangBarrierSync     _second_overflow_barrier_sync;
 450 
 451   // This is set by any task, when an overflow on the global data
 452   // structures is detected
 453   volatile bool           _has_overflown;
 454   // True: marking is concurrent, false: we're in remark
 455   volatile bool           _concurrent;
 456   // Set at the end of a Full GC so that marking aborts
 457   volatile bool           _has_aborted;
 458   GCId                    _aborted_gc_id;
 459 
 460   // Used when remark aborts due to an overflow to indicate that
 461   // another concurrent marking phase should start
 462   volatile bool           _restart_for_overflow;
 463 
 464   // This is true from the very start of concurrent marking until the
 465   // point when all the tasks complete their work. It is really used
 466   // to determine the points between the end of concurrent marking and
 467   // time of remark.
 468   volatile bool           _concurrent_marking_in_progress;
 469 
 470   // Verbose level
 471   CMVerboseLevel          _verbose_level;
 472 
 473   // All of these times are in ms
 474   NumberSeq _init_times;
 475   NumberSeq _remark_times;
 476   NumberSeq   _remark_mark_times;
 477   NumberSeq   _remark_weak_ref_times;
 478   NumberSeq _cleanup_times;
 479   double    _total_counting_time;
 480   double    _total_rs_scrub_time;
 481 
 482   double*   _accum_task_vtime;   // Accumulated task vtime
 483 
 484   FlexibleWorkGang* _parallel_workers;
 485 
 486   ForceOverflowSettings _force_overflow_conc;
 487   ForceOverflowSettings _force_overflow_stw;
 488 
 489   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 490   void weakRefsWork(bool clear_all_soft_refs);
 491 
 492   void swapMarkBitMaps();
 493 
 494   // It resets the global marking data structures, as well as the
 495   // task local ones; should be called during initial mark.
 496   void reset();
 497 
 498   // Resets all the marking data structures. Called when we have to restart
 499   // marking or when marking completes (via set_non_marking_state below).
 500   void reset_marking_state(bool clear_overflow = true);
 501 
 502   // We do this after we're done with marking so that the marking data
 503   // structures are initialized to a sensible and predictable state.
 504   void set_non_marking_state();
 505 
 506   // Called to indicate how many threads are currently active.
 507   void set_concurrency(uint active_tasks);
 508 
 509   // It should be called to indicate which phase we're in (concurrent
 510   // mark or remark) and how many threads are currently active.
 511   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 512 
 513   // Prints all gathered CM-related statistics
 514   void print_stats();
 515 
 516   bool cleanup_list_is_empty() {
 517     return _cleanup_list.is_empty();
 518   }
 519 
 520   // Accessor methods
 521   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 522   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 523   double sleep_factor()                     { return _sleep_factor; }
 524   double marking_task_overhead()            { return _marking_task_overhead;}
 525   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
 526   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
 527 
 528   HeapWord*               finger()          { return _finger;   }
 529   bool                    concurrent()      { return _concurrent; }
 530   uint                    active_tasks()    { return _active_tasks; }
 531   ParallelTaskTerminator* terminator()      { return &_terminator; }
 532 
 533   // It claims the next available region to be scanned by a marking
 534   // task/thread. It might return NULL if the next region is empty or
 535   // we have run out of regions. In the latter case, out_of_regions()
 536   // determines whether we've really run out of regions or the task
 537   // should call claim_region() again. This might seem a bit
 538   // awkward. Originally, the code was written so that claim_region()
 539   // either successfully returned with a non-empty region or there
 540   // were no more regions to be claimed. The problem with this was
 541   // that, in certain circumstances, it iterated over large chunks of
 542   // the heap finding only empty regions and, while it was working, it
 543   // was preventing the calling task to call its regular clock
 544   // method. So, this way, each task will spend very little time in
 545   // claim_region() and is allowed to call the regular clock method
 546   // frequently.
 547   HeapRegion* claim_region(uint worker_id);
 548 
 549   // It determines whether we've run out of regions to scan. Note that
 550   // the finger can point past the heap end in case the heap was expanded
 551   // to satisfy an allocation without doing a GC. This is fine, because all
 552   // objects in those regions will be considered live anyway because of
 553   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 554   bool        out_of_regions() { return _finger >= _heap_end; }
 555 
 556   // Returns the task with the given id
 557   CMTask* task(int id) {
 558     assert(0 <= id && id < (int) _active_tasks,
 559            "task id not within active bounds");
 560     return _tasks[id];
 561   }
 562 
 563   // Returns the task queue with the given id
 564   CMTaskQueue* task_queue(int id) {
 565     assert(0 <= id && id < (int) _active_tasks,
 566            "task queue id not within active bounds");
 567     return (CMTaskQueue*) _task_queues->queue(id);
 568   }
 569 
 570   // Returns the task queue set
 571   CMTaskQueueSet* task_queues()  { return _task_queues; }
 572 
 573   // Access / manipulation of the overflow flag which is set to
 574   // indicate that the global stack has overflown
 575   bool has_overflown()           { return _has_overflown; }
 576   void set_has_overflown()       { _has_overflown = true; }
 577   void clear_has_overflown()     { _has_overflown = false; }
 578   bool restart_for_overflow()    { return _restart_for_overflow; }
 579 
 580   // Methods to enter the two overflow sync barriers
 581   void enter_first_sync_barrier(uint worker_id);
 582   void enter_second_sync_barrier(uint worker_id);
 583 
 584   ForceOverflowSettings* force_overflow_conc() {
 585     return &_force_overflow_conc;
 586   }
 587 
 588   ForceOverflowSettings* force_overflow_stw() {
 589     return &_force_overflow_stw;
 590   }
 591 
 592   ForceOverflowSettings* force_overflow() {
 593     if (concurrent()) {
 594       return force_overflow_conc();
 595     } else {
 596       return force_overflow_stw();
 597     }
 598   }
 599 
 600   // Live Data Counting data structures...
 601   // These data structures are initialized at the start of
 602   // marking. They are written to while marking is active.
 603   // They are aggregated during remark; the aggregated values
 604   // are then used to populate the _region_bm, _card_bm, and
 605   // the total live bytes, which are then subsequently updated
 606   // during cleanup.
 607 
 608   // An array of bitmaps (one bit map per task). Each bitmap
 609   // is used to record the cards spanned by the live objects
 610   // marked by that task/worker.
 611   BitMap*  _count_card_bitmaps;
 612 
 613   // Used to record the number of marked live bytes
 614   // (for each region, by worker thread).
 615   size_t** _count_marked_bytes;
 616 
 617   // Card index of the bottom of the G1 heap. Used for biasing indices into
 618   // the card bitmaps.
 619   intptr_t _heap_bottom_card_num;
 620 
 621   // Set to true when initialization is complete
 622   bool _completed_initialization;
 623 
 624 public:
 625   // Manipulation of the global mark stack.
 626   // Notice that the first mark_stack_push is CAS-based, whereas the
 627   // two below are Mutex-based. This is OK since the first one is only
 628   // called during evacuation pauses and doesn't compete with the
 629   // other two (which are called by the marking tasks during
 630   // concurrent marking or remark).
 631   bool mark_stack_push(oop p) {
 632     _markStack.par_push(p);
 633     if (_markStack.overflow()) {
 634       set_has_overflown();
 635       return false;
 636     }
 637     return true;
 638   }
 639   bool mark_stack_push(oop* arr, int n) {
 640     _markStack.par_push_arr(arr, n);
 641     if (_markStack.overflow()) {
 642       set_has_overflown();
 643       return false;
 644     }
 645     return true;
 646   }
 647   void mark_stack_pop(oop* arr, int max, int* n) {
 648     _markStack.par_pop_arr(arr, max, n);
 649   }
 650   size_t mark_stack_size()                { return _markStack.size(); }
 651   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 652   bool mark_stack_overflow()              { return _markStack.overflow(); }
 653   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 654 
 655   CMRootRegions* root_regions() { return &_root_regions; }
 656 
 657   bool concurrent_marking_in_progress() {
 658     return _concurrent_marking_in_progress;
 659   }
 660   void set_concurrent_marking_in_progress() {
 661     _concurrent_marking_in_progress = true;
 662   }
 663   void clear_concurrent_marking_in_progress() {
 664     _concurrent_marking_in_progress = false;
 665   }
 666 
 667   void update_accum_task_vtime(int i, double vtime) {
 668     _accum_task_vtime[i] += vtime;
 669   }
 670 
 671   double all_task_accum_vtime() {
 672     double ret = 0.0;
 673     for (uint i = 0; i < _max_worker_id; ++i)
 674       ret += _accum_task_vtime[i];
 675     return ret;
 676   }
 677 
 678   // Attempts to steal an object from the task queues of other tasks
 679   bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
 680     return _task_queues->steal(worker_id, hash_seed, obj);
 681   }
 682 
 683   ConcurrentMark(G1CollectedHeap* g1h,
 684                  G1RegionToSpaceMapper* prev_bitmap_storage,
 685                  G1RegionToSpaceMapper* next_bitmap_storage);
 686   ~ConcurrentMark();
 687 
 688   ConcurrentMarkThread* cmThread() { return _cmThread; }
 689 
 690   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 691   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 692 
 693   // Returns the number of GC threads to be used in a concurrent
 694   // phase based on the number of GC threads being used in a STW
 695   // phase.
 696   uint scale_parallel_threads(uint n_par_threads);
 697 
 698   // Calculates the number of GC threads to be used in a concurrent phase.
 699   uint calc_parallel_marking_threads();
 700 
 701   // The following three are interaction between CM and
 702   // G1CollectedHeap
 703 
 704   // This notifies CM that a root during initial-mark needs to be
 705   // grayed. It is MT-safe. word_size is the size of the object in
 706   // words. It is passed explicitly as sometimes we cannot calculate
 707   // it from the given object because it might be in an inconsistent
 708   // state (e.g., in to-space and being copied). So the caller is
 709   // responsible for dealing with this issue (e.g., get the size from
 710   // the from-space image when the to-space image might be
 711   // inconsistent) and always passing the size. hr is the region that
 712   // contains the object and it's passed optionally from callers who
 713   // might already have it (no point in recalculating it).
 714   inline void grayRoot(oop obj,
 715                        size_t word_size,
 716                        uint worker_id,
 717                        HeapRegion* hr = NULL);
 718 
 719   // It iterates over the heap and for each object it comes across it
 720   // will dump the contents of its reference fields, as well as
 721   // liveness information for the object and its referents. The dump
 722   // will be written to a file with the following name:
 723   // G1PrintReachableBaseFile + "." + str.
 724   // vo decides whether the prev (vo == UsePrevMarking), the next
 725   // (vo == UseNextMarking) marking information, or the mark word
 726   // (vo == UseMarkWord) will be used to determine the liveness of
 727   // each object / referent.
 728   // If all is true, all objects in the heap will be dumped, otherwise
 729   // only the live ones. In the dump the following symbols / breviations
 730   // are used:
 731   //   M : an explicitly live object (its bitmap bit is set)
 732   //   > : an implicitly live object (over tams)
 733   //   O : an object outside the G1 heap (typically: in the perm gen)
 734   //   NOT : a reference field whose referent is not live
 735   //   AND MARKED : indicates that an object is both explicitly and
 736   //   implicitly live (it should be one or the other, not both)
 737   void print_reachable(const char* str,
 738                        VerifyOption vo,
 739                        bool all) PRODUCT_RETURN;
 740 
 741   // Clear the next marking bitmap (will be called concurrently).
 742   void clearNextBitmap();
 743 
 744   // Return whether the next mark bitmap has no marks set. To be used for assertions
 745   // only. Will not yield to pause requests.
 746   bool nextMarkBitmapIsClear();
 747 
 748   // These two do the work that needs to be done before and after the
 749   // initial root checkpoint. Since this checkpoint can be done at two
 750   // different points (i.e. an explicit pause or piggy-backed on a
 751   // young collection), then it's nice to be able to easily share the
 752   // pre/post code. It might be the case that we can put everything in
 753   // the post method. TP
 754   void checkpointRootsInitialPre();
 755   void checkpointRootsInitialPost();
 756 
 757   // Scan all the root regions and mark everything reachable from
 758   // them.
 759   void scanRootRegions();
 760 
 761   // Scan a single root region and mark everything reachable from it.
 762   void scanRootRegion(HeapRegion* hr, uint worker_id);
 763 
 764   // Do concurrent phase of marking, to a tentative transitive closure.
 765   void markFromRoots();
 766 
 767   void checkpointRootsFinal(bool clear_all_soft_refs);
 768   void checkpointRootsFinalWork();
 769   void cleanup();
 770   void completeCleanup();
 771 
 772   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 773   // this carefully!
 774   inline void markPrev(oop p);
 775 
 776   // Clears marks for all objects in the given range, for the prev or
 777   // next bitmaps.  NB: the previous bitmap is usually
 778   // read-only, so use this carefully!
 779   void clearRangePrevBitmap(MemRegion mr);
 780   void clearRangeNextBitmap(MemRegion mr);
 781 
 782   // Notify data structures that a GC has started.
 783   void note_start_of_gc() {
 784     _markStack.note_start_of_gc();
 785   }
 786 
 787   // Notify data structures that a GC is finished.
 788   void note_end_of_gc() {
 789     _markStack.note_end_of_gc();
 790   }
 791 
 792   // Verify that there are no CSet oops on the stacks (taskqueues /
 793   // global mark stack), enqueued SATB buffers, per-thread SATB
 794   // buffers, and fingers (global / per-task). The boolean parameters
 795   // decide which of the above data structures to verify. If marking
 796   // is not in progress, it's a no-op.
 797   void verify_no_cset_oops(bool verify_stacks,
 798                            bool verify_enqueued_buffers,
 799                            bool verify_thread_buffers,
 800                            bool verify_fingers) PRODUCT_RETURN;
 801 
 802   bool isPrevMarked(oop p) const {
 803     assert(p != NULL && p->is_oop(), "expected an oop");
 804     HeapWord* addr = (HeapWord*)p;
 805     assert(addr >= _prevMarkBitMap->startWord() ||
 806            addr < _prevMarkBitMap->endWord(), "in a region");
 807 
 808     return _prevMarkBitMap->isMarked(addr);
 809   }
 810 
 811   inline bool do_yield_check(uint worker_i = 0);
 812 
 813   // Called to abort the marking cycle after a Full GC takes place.
 814   void abort();
 815 
 816   bool has_aborted()      { return _has_aborted; }
 817 
 818   const GCId& concurrent_gc_id();
 819 
 820   // This prints the global/local fingers. It is used for debugging.
 821   NOT_PRODUCT(void print_finger();)
 822 
 823   void print_summary_info();
 824 
 825   void print_worker_threads_on(outputStream* st) const;
 826 
 827   void print_on_error(outputStream* st) const;
 828 
 829   // The following indicate whether a given verbose level has been
 830   // set. Notice that anything above stats is conditional to
 831   // _MARKING_VERBOSE_ having been set to 1
 832   bool verbose_stats() {
 833     return _verbose_level >= stats_verbose;
 834   }
 835   bool verbose_low() {
 836     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
 837   }
 838   bool verbose_medium() {
 839     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
 840   }
 841   bool verbose_high() {
 842     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
 843   }
 844 
 845   // Liveness counting
 846 
 847   // Utility routine to set an exclusive range of cards on the given
 848   // card liveness bitmap
 849   inline void set_card_bitmap_range(BitMap* card_bm,
 850                                     BitMap::idx_t start_idx,
 851                                     BitMap::idx_t end_idx,
 852                                     bool is_par);
 853 
 854   // Returns the card number of the bottom of the G1 heap.
 855   // Used in biasing indices into accounting card bitmaps.
 856   intptr_t heap_bottom_card_num() const {
 857     return _heap_bottom_card_num;
 858   }
 859 
 860   // Returns the card bitmap for a given task or worker id.
 861   BitMap* count_card_bitmap_for(uint worker_id) {
 862     assert(worker_id < _max_worker_id, "oob");
 863     assert(_count_card_bitmaps != NULL, "uninitialized");
 864     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 865     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 866     return task_card_bm;
 867   }
 868 
 869   // Returns the array containing the marked bytes for each region,
 870   // for the given worker or task id.
 871   size_t* count_marked_bytes_array_for(uint worker_id) {
 872     assert(worker_id < _max_worker_id, "oob");
 873     assert(_count_marked_bytes != NULL, "uninitialized");
 874     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 875     assert(marked_bytes_array != NULL, "uninitialized");
 876     return marked_bytes_array;
 877   }
 878 
 879   // Returns the index in the liveness accounting card table bitmap
 880   // for the given address
 881   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 882 
 883   // Counts the size of the given memory region in the the given
 884   // marked_bytes array slot for the given HeapRegion.
 885   // Sets the bits in the given card bitmap that are associated with the
 886   // cards that are spanned by the memory region.
 887   inline void count_region(MemRegion mr,
 888                            HeapRegion* hr,
 889                            size_t* marked_bytes_array,
 890                            BitMap* task_card_bm);
 891 
 892   // Counts the given memory region in the task/worker counting
 893   // data structures for the given worker id.
 894   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
 895 
 896   // Counts the given object in the given task/worker counting
 897   // data structures.
 898   inline void count_object(oop obj,
 899                            HeapRegion* hr,
 900                            size_t* marked_bytes_array,
 901                            BitMap* task_card_bm);
 902 
 903   // Attempts to mark the given object and, if successful, counts
 904   // the object in the given task/worker counting structures.
 905   inline bool par_mark_and_count(oop obj,
 906                                  HeapRegion* hr,
 907                                  size_t* marked_bytes_array,
 908                                  BitMap* task_card_bm);
 909 
 910   // Attempts to mark the given object and, if successful, counts
 911   // the object in the task/worker counting structures for the
 912   // given worker id.
 913   inline bool par_mark_and_count(oop obj,
 914                                  size_t word_size,
 915                                  HeapRegion* hr,
 916                                  uint worker_id);
 917 
 918   // Returns true if initialization was successfully completed.
 919   bool completed_initialization() const {
 920     return _completed_initialization;
 921   }
 922 
 923 protected:
 924   // Clear all the per-task bitmaps and arrays used to store the
 925   // counting data.
 926   void clear_all_count_data();
 927 
 928   // Aggregates the counting data for each worker/task
 929   // that was constructed while marking. Also sets
 930   // the amount of marked bytes for each region and
 931   // the top at concurrent mark count.
 932   void aggregate_count_data();
 933 
 934   // Verification routine
 935   void verify_count_data();
 936 };
 937 
 938 // A class representing a marking task.
 939 class CMTask : public TerminatorTerminator {
 940 private:
 941   enum PrivateConstants {
 942     // the regular clock call is called once the scanned words reaches
 943     // this limit
 944     words_scanned_period          = 12*1024,
 945     // the regular clock call is called once the number of visited
 946     // references reaches this limit
 947     refs_reached_period           = 384,
 948     // initial value for the hash seed, used in the work stealing code
 949     init_hash_seed                = 17,
 950     // how many entries will be transferred between global stack and
 951     // local queues
 952     global_stack_transfer_size    = 16
 953   };
 954 
 955   uint                        _worker_id;
 956   G1CollectedHeap*            _g1h;
 957   ConcurrentMark*             _cm;
 958   CMBitMap*                   _nextMarkBitMap;
 959   // the task queue of this task
 960   CMTaskQueue*                _task_queue;
 961 private:
 962   // the task queue set---needed for stealing
 963   CMTaskQueueSet*             _task_queues;
 964   // indicates whether the task has been claimed---this is only  for
 965   // debugging purposes
 966   bool                        _claimed;
 967 
 968   // number of calls to this task
 969   int                         _calls;
 970 
 971   // when the virtual timer reaches this time, the marking step should
 972   // exit
 973   double                      _time_target_ms;
 974   // the start time of the current marking step
 975   double                      _start_time_ms;
 976 
 977   // the oop closure used for iterations over oops
 978   G1CMOopClosure*             _cm_oop_closure;
 979 
 980   // the region this task is scanning, NULL if we're not scanning any
 981   HeapRegion*                 _curr_region;
 982   // the local finger of this task, NULL if we're not scanning a region
 983   HeapWord*                   _finger;
 984   // limit of the region this task is scanning, NULL if we're not scanning one
 985   HeapWord*                   _region_limit;
 986 
 987   // the number of words this task has scanned
 988   size_t                      _words_scanned;
 989   // When _words_scanned reaches this limit, the regular clock is
 990   // called. Notice that this might be decreased under certain
 991   // circumstances (i.e. when we believe that we did an expensive
 992   // operation).
 993   size_t                      _words_scanned_limit;
 994   // the initial value of _words_scanned_limit (i.e. what it was
 995   // before it was decreased).
 996   size_t                      _real_words_scanned_limit;
 997 
 998   // the number of references this task has visited
 999   size_t                      _refs_reached;
1000   // When _refs_reached reaches this limit, the regular clock is
1001   // called. Notice this this might be decreased under certain
1002   // circumstances (i.e. when we believe that we did an expensive
1003   // operation).
1004   size_t                      _refs_reached_limit;
1005   // the initial value of _refs_reached_limit (i.e. what it was before
1006   // it was decreased).
1007   size_t                      _real_refs_reached_limit;
1008 
1009   // used by the work stealing stuff
1010   int                         _hash_seed;
1011   // if this is true, then the task has aborted for some reason
1012   bool                        _has_aborted;
1013   // set when the task aborts because it has met its time quota
1014   bool                        _has_timed_out;
1015   // true when we're draining SATB buffers; this avoids the task
1016   // aborting due to SATB buffers being available (as we're already
1017   // dealing with them)
1018   bool                        _draining_satb_buffers;
1019 
1020   // number sequence of past step times
1021   NumberSeq                   _step_times_ms;
1022   // elapsed time of this task
1023   double                      _elapsed_time_ms;
1024   // termination time of this task
1025   double                      _termination_time_ms;
1026   // when this task got into the termination protocol
1027   double                      _termination_start_time_ms;
1028 
1029   // true when the task is during a concurrent phase, false when it is
1030   // in the remark phase (so, in the latter case, we do not have to
1031   // check all the things that we have to check during the concurrent
1032   // phase, i.e. SATB buffer availability...)
1033   bool                        _concurrent;
1034 
1035   TruncatedSeq                _marking_step_diffs_ms;
1036 
1037   // Counting data structures. Embedding the task's marked_bytes_array
1038   // and card bitmap into the actual task saves having to go through
1039   // the ConcurrentMark object.
1040   size_t*                     _marked_bytes_array;
1041   BitMap*                     _card_bm;
1042 
1043   // LOTS of statistics related with this task
1044 #if _MARKING_STATS_
1045   NumberSeq                   _all_clock_intervals_ms;
1046   double                      _interval_start_time_ms;
1047 
1048   size_t                      _aborted;
1049   size_t                      _aborted_overflow;
1050   size_t                      _aborted_cm_aborted;
1051   size_t                      _aborted_yield;
1052   size_t                      _aborted_timed_out;
1053   size_t                      _aborted_satb;
1054   size_t                      _aborted_termination;
1055 
1056   size_t                      _steal_attempts;
1057   size_t                      _steals;
1058 
1059   size_t                      _clock_due_to_marking;
1060   size_t                      _clock_due_to_scanning;
1061 
1062   size_t                      _local_pushes;
1063   size_t                      _local_pops;
1064   size_t                      _local_max_size;
1065   size_t                      _objs_scanned;
1066 
1067   size_t                      _global_pushes;
1068   size_t                      _global_pops;
1069   size_t                      _global_max_size;
1070 
1071   size_t                      _global_transfers_to;
1072   size_t                      _global_transfers_from;
1073 
1074   size_t                      _regions_claimed;
1075   size_t                      _objs_found_on_bitmap;
1076 
1077   size_t                      _satb_buffers_processed;
1078 #endif // _MARKING_STATS_
1079 
1080   // it updates the local fields after this task has claimed
1081   // a new region to scan
1082   void setup_for_region(HeapRegion* hr);
1083   // it brings up-to-date the limit of the region
1084   void update_region_limit();
1085 
1086   // called when either the words scanned or the refs visited limit
1087   // has been reached
1088   void reached_limit();
1089   // recalculates the words scanned and refs visited limits
1090   void recalculate_limits();
1091   // decreases the words scanned and refs visited limits when we reach
1092   // an expensive operation
1093   void decrease_limits();
1094   // it checks whether the words scanned or refs visited reached their
1095   // respective limit and calls reached_limit() if they have
1096   void check_limits() {
1097     if (_words_scanned >= _words_scanned_limit ||
1098         _refs_reached >= _refs_reached_limit) {
1099       reached_limit();
1100     }
1101   }
1102   // this is supposed to be called regularly during a marking step as
1103   // it checks a bunch of conditions that might cause the marking step
1104   // to abort
1105   void regular_clock_call();
1106   bool concurrent() { return _concurrent; }
1107 
1108   // Test whether objAddr might have already been passed over by the
1109   // mark bitmap scan, and so needs to be pushed onto the mark stack.
1110   bool is_below_finger(HeapWord* objAddr, HeapWord* global_finger) const;
1111 
1112   template<bool scan> void process_grey_object(oop obj);
1113 
1114 public:
1115   // It resets the task; it should be called right at the beginning of
1116   // a marking phase.
1117   void reset(CMBitMap* _nextMarkBitMap);
1118   // it clears all the fields that correspond to a claimed region.
1119   void clear_region_fields();
1120 
1121   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1122 
1123   // The main method of this class which performs a marking step
1124   // trying not to exceed the given duration. However, it might exit
1125   // prematurely, according to some conditions (i.e. SATB buffers are
1126   // available for processing).
1127   void do_marking_step(double target_ms,
1128                        bool do_termination,
1129                        bool is_serial);
1130 
1131   // These two calls start and stop the timer
1132   void record_start_time() {
1133     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1134   }
1135   void record_end_time() {
1136     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1137   }
1138 
1139   // returns the worker ID associated with this task.
1140   uint worker_id() { return _worker_id; }
1141 
1142   // From TerminatorTerminator. It determines whether this task should
1143   // exit the termination protocol after it's entered it.
1144   virtual bool should_exit_termination();
1145 
1146   // Resets the local region fields after a task has finished scanning a
1147   // region; or when they have become stale as a result of the region
1148   // being evacuated.
1149   void giveup_current_region();
1150 
1151   HeapWord* finger()            { return _finger; }
1152 
1153   bool has_aborted()            { return _has_aborted; }
1154   void set_has_aborted()        { _has_aborted = true; }
1155   void clear_has_aborted()      { _has_aborted = false; }
1156   bool has_timed_out()          { return _has_timed_out; }
1157   bool claimed()                { return _claimed; }
1158 
1159   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
1160 
1161   // It grays the object by marking it and, if necessary, pushing it
1162   // on the local queue
1163   inline void deal_with_reference(oop obj);
1164 
1165   // It scans an object and visits its children.
1166   void scan_object(oop obj) { process_grey_object<true>(obj); }
1167 
1168   // It pushes an object on the local queue.
1169   inline void push(oop obj);
1170 
1171   // These two move entries to/from the global stack.
1172   void move_entries_to_global_stack();
1173   void get_entries_from_global_stack();
1174 
1175   // It pops and scans objects from the local queue. If partially is
1176   // true, then it stops when the queue size is of a given limit. If
1177   // partially is false, then it stops when the queue is empty.
1178   void drain_local_queue(bool partially);
1179   // It moves entries from the global stack to the local queue and
1180   // drains the local queue. If partially is true, then it stops when
1181   // both the global stack and the local queue reach a given size. If
1182   // partially if false, it tries to empty them totally.
1183   void drain_global_stack(bool partially);
1184   // It keeps picking SATB buffers and processing them until no SATB
1185   // buffers are available.
1186   void drain_satb_buffers();
1187 
1188   // moves the local finger to a new location
1189   inline void move_finger_to(HeapWord* new_finger) {
1190     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1191     _finger = new_finger;
1192   }
1193 
1194   CMTask(uint worker_id,
1195          ConcurrentMark *cm,
1196          size_t* marked_bytes,
1197          BitMap* card_bm,
1198          CMTaskQueue* task_queue,
1199          CMTaskQueueSet* task_queues);
1200 
1201   // it prints statistics associated with this task
1202   void print_stats();
1203 
1204 #if _MARKING_STATS_
1205   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1206 #endif // _MARKING_STATS_
1207 };
1208 
1209 // Class that's used to to print out per-region liveness
1210 // information. It's currently used at the end of marking and also
1211 // after we sort the old regions at the end of the cleanup operation.
1212 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1213 private:
1214   outputStream* _out;
1215 
1216   // Accumulators for these values.
1217   size_t _total_used_bytes;
1218   size_t _total_capacity_bytes;
1219   size_t _total_prev_live_bytes;
1220   size_t _total_next_live_bytes;
1221 
1222   // These are set up when we come across a "stars humongous" region
1223   // (as this is where most of this information is stored, not in the
1224   // subsequent "continues humongous" regions). After that, for every
1225   // region in a given humongous region series we deduce the right
1226   // values for it by simply subtracting the appropriate amount from
1227   // these fields. All these values should reach 0 after we've visited
1228   // the last region in the series.
1229   size_t _hum_used_bytes;
1230   size_t _hum_capacity_bytes;
1231   size_t _hum_prev_live_bytes;
1232   size_t _hum_next_live_bytes;
1233 
1234   // Accumulator for the remembered set size
1235   size_t _total_remset_bytes;
1236 
1237   // Accumulator for strong code roots memory size
1238   size_t _total_strong_code_roots_bytes;
1239 
1240   static double perc(size_t val, size_t total) {
1241     if (total == 0) {
1242       return 0.0;
1243     } else {
1244       return 100.0 * ((double) val / (double) total);
1245     }
1246   }
1247 
1248   static double bytes_to_mb(size_t val) {
1249     return (double) val / (double) M;
1250   }
1251 
1252   // See the .cpp file.
1253   size_t get_hum_bytes(size_t* hum_bytes);
1254   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1255                      size_t* prev_live_bytes, size_t* next_live_bytes);
1256 
1257 public:
1258   // The header and footer are printed in the constructor and
1259   // destructor respectively.
1260   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1261   virtual bool doHeapRegion(HeapRegion* r);
1262   ~G1PrintRegionLivenessInfoClosure();
1263 };
1264 
1265 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP