1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/taskqueue.hpp"
  32 
  33 class G1CollectedHeap;
  34 class G1CMBitMap;
  35 class G1CMTask;
  36 class G1ConcurrentMark;
  37 class ConcurrentGCTimer;
  38 class G1OldTracer;
  39 typedef GenericTaskQueue<oop, mtGC>              G1CMTaskQueue;
  40 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  41 
  42 // Closure used by CM during concurrent reference discovery
  43 // and reference processing (during remarking) to determine
  44 // if a particular object is alive. It is primarily used
  45 // to determine if referents of discovered reference objects
  46 // are alive. An instance is also embedded into the
  47 // reference processor as the _is_alive_non_header field
  48 class G1CMIsAliveClosure: public BoolObjectClosure {
  49   G1CollectedHeap* _g1;
  50  public:
  51   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  52 
  53   bool do_object_b(oop obj);
  54 };
  55 
  56 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  57 // class, with one bit per (1<<_shifter) HeapWords.
  58 
  59 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  60  protected:
  61   HeapWord* _bmStartWord;      // base address of range covered by map
  62   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  63   const int _shifter;          // map to char or bit
  64   BitMap    _bm;               // the bit map itself
  65 
  66  public:
  67   // constructor
  68   G1CMBitMapRO(int shifter);
  69 
  70   // inquiries
  71   HeapWord* startWord()   const { return _bmStartWord; }
  72   // the following is one past the last word in space
  73   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  74 
  75   // read marks
  76 
  77   bool isMarked(HeapWord* addr) const {
  78     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  79            "outside underlying space?");
  80     return _bm.at(heapWordToOffset(addr));
  81   }
  82 
  83   // iteration
  84   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  85 
  86   // Return the address corresponding to the next marked bit at or after
  87   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  88   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  89   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  90                                      const HeapWord* limit = NULL) const;
  91 
  92   // conversion utilities
  93   HeapWord* offsetToHeapWord(size_t offset) const {
  94     return _bmStartWord + (offset << _shifter);
  95   }
  96   size_t heapWordToOffset(const HeapWord* addr) const {
  97     return pointer_delta(addr, _bmStartWord) >> _shifter;
  98   }
  99 
 100   // The argument addr should be the start address of a valid object
 101   inline HeapWord* nextObject(HeapWord* addr);
 102 
 103   void print_on_error(outputStream* st, const char* prefix) const;
 104 
 105   // debugging
 106   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 107 };
 108 
 109 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 110  private:
 111   G1CMBitMap* _bm;
 112  public:
 113   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 114 
 115   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 116 
 117   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 118 };
 119 
 120 class G1CMBitMap : public G1CMBitMapRO {
 121  private:
 122   G1CMBitMapMappingChangedListener _listener;
 123 
 124  public:
 125   static size_t compute_size(size_t heap_size);
 126   // Returns the amount of bytes on the heap between two marks in the bitmap.
 127   static size_t mark_distance();
 128   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 129   // mark bitmap corresponds to. This is the same as the mark distance above.
 130   static size_t heap_map_factor() {
 131     return mark_distance();
 132   }
 133 
 134   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 135 
 136   // Initializes the underlying BitMap to cover the given area.
 137   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 138 
 139   // Write marks.
 140   inline void mark(HeapWord* addr);
 141   inline void clear(HeapWord* addr);
 142   inline bool parMark(HeapWord* addr);
 143 
 144   void clear_range(MemRegion mr);
 145 };
 146 
 147 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 148 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 149   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 150   G1ConcurrentMark* _cm;
 151   oop* _base;        // bottom of stack
 152   jint _index;       // one more than last occupied index
 153   jint _capacity;    // max #elements
 154   jint _saved_index; // value of _index saved at start of GC
 155 
 156   bool  _overflow;
 157   bool  _should_expand;
 158 
 159  public:
 160   G1CMMarkStack(G1ConcurrentMark* cm);
 161   ~G1CMMarkStack();
 162 
 163   bool allocate(size_t capacity);
 164 
 165   // Pushes the first "n" elements of "ptr_arr" on the stack.
 166   // Locking impl: concurrency is allowed only with
 167   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 168   // locking strategy.
 169   void par_push_arr(oop* ptr_arr, int n);
 170 
 171   // If returns false, the array was empty.  Otherwise, removes up to "max"
 172   // elements from the stack, and transfers them to "ptr_arr" in an
 173   // unspecified order.  The actual number transferred is given in "n" ("n
 174   // == 0" is deliberately redundant with the return value.)  Locking impl:
 175   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 176   // operations, which use the same locking strategy.
 177   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 178 
 179   bool isEmpty()    { return _index == 0; }
 180   int  maxElems()   { return _capacity; }
 181 
 182   bool overflow() { return _overflow; }
 183   void clear_overflow() { _overflow = false; }
 184 
 185   bool should_expand() const { return _should_expand; }
 186   void set_should_expand();
 187 
 188   // Expand the stack, typically in response to an overflow condition
 189   void expand();
 190 
 191   int  size() { return _index; }
 192 
 193   void setEmpty()   { _index = 0; clear_overflow(); }
 194 
 195   // Record the current index.
 196   void note_start_of_gc();
 197 
 198   // Make sure that we have not added any entries to the stack during GC.
 199   void note_end_of_gc();
 200 
 201   // Apply fn to each oop in the mark stack, up to the bound recorded
 202   // via one of the above "note" functions.  The mark stack must not
 203   // be modified while iterating.
 204   template<typename Fn> void iterate(Fn fn);
 205 };
 206 
 207 class YoungList;
 208 
 209 // Root Regions are regions that are not empty at the beginning of a
 210 // marking cycle and which we might collect during an evacuation pause
 211 // while the cycle is active. Given that, during evacuation pauses, we
 212 // do not copy objects that are explicitly marked, what we have to do
 213 // for the root regions is to scan them and mark all objects reachable
 214 // from them. According to the SATB assumptions, we only need to visit
 215 // each object once during marking. So, as long as we finish this scan
 216 // before the next evacuation pause, we can copy the objects from the
 217 // root regions without having to mark them or do anything else to them.
 218 //
 219 // Currently, we only support root region scanning once (at the start
 220 // of the marking cycle) and the root regions are all the survivor
 221 // regions populated during the initial-mark pause.
 222 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 223 private:
 224   YoungList*           _young_list;
 225   G1ConcurrentMark*    _cm;
 226 
 227   volatile bool        _scan_in_progress;
 228   volatile bool        _should_abort;
 229   HeapRegion* volatile _next_survivor;
 230 
 231   void notify_scan_done();
 232 
 233 public:
 234   G1CMRootRegions();
 235   // We actually do most of the initialization in this method.
 236   void init(G1CollectedHeap* g1h, G1ConcurrentMark* cm);
 237 
 238   // Reset the claiming / scanning of the root regions.
 239   void prepare_for_scan();
 240 
 241   // Forces get_next() to return NULL so that the iteration aborts early.
 242   void abort() { _should_abort = true; }
 243 
 244   // Return true if the CM thread are actively scanning root regions,
 245   // false otherwise.
 246   bool scan_in_progress() { return _scan_in_progress; }
 247 
 248   // Claim the next root region to scan atomically, or return NULL if
 249   // all have been claimed.
 250   HeapRegion* claim_next();
 251 
 252   void cancel_scan();
 253 
 254   // Flag that we're done with root region scanning and notify anyone
 255   // who's waiting on it. If aborted is false, assume that all regions
 256   // have been claimed.
 257   void scan_finished();
 258 
 259   // If CM threads are still scanning root regions, wait until they
 260   // are done. Return true if we had to wait, false otherwise.
 261   bool wait_until_scan_finished();
 262 };
 263 
 264 class ConcurrentMarkThread;
 265 
 266 class G1ConcurrentMark: public CHeapObj<mtGC> {
 267   friend class ConcurrentMarkThread;
 268   friend class G1ParNoteEndTask;
 269   friend class G1VerifyLiveDataClosure;
 270   friend class G1CMRefProcTaskProxy;
 271   friend class G1CMRefProcTaskExecutor;
 272   friend class G1CMKeepAliveAndDrainClosure;
 273   friend class G1CMDrainMarkingStackClosure;
 274   friend class G1CMBitMapClosure;
 275   friend class G1CMConcurrentMarkingTask;
 276   friend class G1CMMarkStack;
 277   friend class G1CMRemarkTask;
 278   friend class G1CMTask;
 279 
 280 protected:
 281   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 282   G1CollectedHeap*      _g1h;        // The heap
 283   uint                  _parallel_marking_threads; // The number of marking
 284                                                    // threads we're using
 285   uint                  _max_parallel_marking_threads; // Max number of marking
 286                                                        // threads we'll ever use
 287   double                _sleep_factor; // How much we have to sleep, with
 288                                        // respect to the work we just did, to
 289                                        // meet the marking overhead goal
 290   double                _marking_task_overhead; // Marking target overhead for
 291                                                 // a single task
 292 
 293   FreeRegionList        _cleanup_list;
 294 
 295   // Concurrent marking support structures
 296   G1CMBitMap              _markBitMap1;
 297   G1CMBitMap              _markBitMap2;
 298   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 299   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 300 
 301   // Liveness count data. After marking G1 iterates over the recently gathered mark
 302   // bitmap and records rough information about liveness on card and region basis.
 303   // This information can be used for e.g. remembered set scrubbing.
 304 
 305   // A set bit indicates whether the given region contains any live object.
 306   BitMap                  _region_live_bm;
 307   // A set bit indicates that the given card contains a live object. 
 308   BitMap                  _card_live_bm;
 309 
 310   // Heap bounds
 311   HeapWord*               _heap_start;
 312   HeapWord*               _heap_end;
 313 
 314   // Root region tracking and claiming
 315   G1CMRootRegions         _root_regions;
 316 
 317   // For gray objects
 318   G1CMMarkStack           _markStack; // Grey objects behind global finger
 319   HeapWord* volatile      _finger;  // The global finger, region aligned,
 320                                     // always points to the end of the
 321                                     // last claimed region
 322 
 323   // Marking tasks
 324   uint                    _max_worker_id;// Maximum worker id
 325   uint                    _active_tasks; // Task num currently active
 326   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 327   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 328   ParallelTaskTerminator  _terminator;   // For termination
 329 
 330   // Two sync barriers that are used to synchronize tasks when an
 331   // overflow occurs. The algorithm is the following. All tasks enter
 332   // the first one to ensure that they have all stopped manipulating
 333   // the global data structures. After they exit it, they re-initialize
 334   // their data structures and task 0 re-initializes the global data
 335   // structures. Then, they enter the second sync barrier. This
 336   // ensure, that no task starts doing work before all data
 337   // structures (local and global) have been re-initialized. When they
 338   // exit it, they are free to start working again.
 339   WorkGangBarrierSync     _first_overflow_barrier_sync;
 340   WorkGangBarrierSync     _second_overflow_barrier_sync;
 341 
 342   // This is set by any task, when an overflow on the global data
 343   // structures is detected
 344   volatile bool           _has_overflown;
 345   // True: marking is concurrent, false: we're in remark
 346   volatile bool           _concurrent;
 347   // Set at the end of a Full GC so that marking aborts
 348   volatile bool           _has_aborted;
 349 
 350   // Used when remark aborts due to an overflow to indicate that
 351   // another concurrent marking phase should start
 352   volatile bool           _restart_for_overflow;
 353 
 354   // This is true from the very start of concurrent marking until the
 355   // point when all the tasks complete their work. It is really used
 356   // to determine the points between the end of concurrent marking and
 357   // time of remark.
 358   volatile bool           _concurrent_marking_in_progress;
 359 
 360   ConcurrentGCTimer*      _gc_timer_cm;
 361 
 362   G1OldTracer*            _gc_tracer_cm;
 363 
 364   // All of these times are in ms
 365   NumberSeq _init_times;
 366   NumberSeq _remark_times;
 367   NumberSeq _remark_mark_times;
 368   NumberSeq _remark_weak_ref_times;
 369   NumberSeq _cleanup_times;
 370   double    _total_counting_time;
 371   double    _total_rs_scrub_time;
 372 
 373   double*   _accum_task_vtime;   // Accumulated task vtime
 374 
 375   WorkGang* _parallel_workers;
 376 
 377   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 378   void weakRefsWork(bool clear_all_soft_refs);
 379 
 380   void swapMarkBitMaps();
 381 
 382   // Allocates and returns a zero-ed out "large" bitmap of the given size in bits.
 383   // It is always allocated using virtual memory.
 384   BitMap allocate_large_bitmap(BitMap::idx_t size_in_bits);
 385   // Allocates the memory for all bitmaps used by the concurrent marking.
 386   void allocate_internal_bitmaps();
 387   // Pre-touches the internal bitmaps.
 388   void pretouch_internal_bitmaps();
 389 
 390   // It resets the global marking data structures, as well as the
 391   // task local ones; should be called during initial mark.
 392   void reset();
 393 
 394   // Resets all the marking data structures. Called when we have to restart
 395   // marking or when marking completes (via set_non_marking_state below).
 396   void reset_marking_state(bool clear_overflow = true);
 397 
 398   // We do this after we're done with marking so that the marking data
 399   // structures are initialized to a sensible and predictable state.
 400   void set_non_marking_state();
 401 
 402   // Called to indicate how many threads are currently active.
 403   void set_concurrency(uint active_tasks);
 404 
 405   // It should be called to indicate which phase we're in (concurrent
 406   // mark or remark) and how many threads are currently active.
 407   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 408 
 409   // Prints all gathered CM-related statistics
 410   void print_stats();
 411 
 412   bool cleanup_list_is_empty() {
 413     return _cleanup_list.is_empty();
 414   }
 415 
 416   // Accessor methods
 417   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 418   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 419   double sleep_factor()                     { return _sleep_factor; }
 420   double marking_task_overhead()            { return _marking_task_overhead;}
 421 
 422   HeapWord*               finger()          { return _finger;   }
 423   bool                    concurrent()      { return _concurrent; }
 424   uint                    active_tasks()    { return _active_tasks; }
 425   ParallelTaskTerminator* terminator()      { return &_terminator; }
 426 
 427   // It claims the next available region to be scanned by a marking
 428   // task/thread. It might return NULL if the next region is empty or
 429   // we have run out of regions. In the latter case, out_of_regions()
 430   // determines whether we've really run out of regions or the task
 431   // should call claim_region() again. This might seem a bit
 432   // awkward. Originally, the code was written so that claim_region()
 433   // either successfully returned with a non-empty region or there
 434   // were no more regions to be claimed. The problem with this was
 435   // that, in certain circumstances, it iterated over large chunks of
 436   // the heap finding only empty regions and, while it was working, it
 437   // was preventing the calling task to call its regular clock
 438   // method. So, this way, each task will spend very little time in
 439   // claim_region() and is allowed to call the regular clock method
 440   // frequently.
 441   HeapRegion* claim_region(uint worker_id);
 442 
 443   // It determines whether we've run out of regions to scan. Note that
 444   // the finger can point past the heap end in case the heap was expanded
 445   // to satisfy an allocation without doing a GC. This is fine, because all
 446   // objects in those regions will be considered live anyway because of
 447   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 448   bool        out_of_regions() { return _finger >= _heap_end; }
 449 
 450   // Returns the task with the given id
 451   G1CMTask* task(int id) {
 452     assert(0 <= id && id < (int) _active_tasks,
 453            "task id not within active bounds");
 454     return _tasks[id];
 455   }
 456 
 457   // Returns the task queue with the given id
 458   G1CMTaskQueue* task_queue(int id) {
 459     assert(0 <= id && id < (int) _active_tasks,
 460            "task queue id not within active bounds");
 461     return (G1CMTaskQueue*) _task_queues->queue(id);
 462   }
 463 
 464   // Returns the task queue set
 465   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 466 
 467   // Access / manipulation of the overflow flag which is set to
 468   // indicate that the global stack has overflown
 469   bool has_overflown()           { return _has_overflown; }
 470   void set_has_overflown()       { _has_overflown = true; }
 471   void clear_has_overflown()     { _has_overflown = false; }
 472   bool restart_for_overflow()    { return _restart_for_overflow; }
 473 
 474   // Methods to enter the two overflow sync barriers
 475   void enter_first_sync_barrier(uint worker_id);
 476   void enter_second_sync_barrier(uint worker_id);
 477 
 478   // Card index of the bottom of the G1 heap. Used for biasing indices into
 479   // the card bitmaps.
 480   intptr_t _heap_bottom_card_num;
 481 
 482   // Set to true when initialization is complete
 483   bool _completed_initialization;
 484 
 485   // end_timer, true to end gc timer after ending concurrent phase.
 486   void register_concurrent_phase_end_common(bool end_timer);
 487 
 488   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 489   // true, periodically insert checks to see if this method should exit prematurely.
 490   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 491 public:
 492   // Manipulation of the global mark stack.
 493   // The push and pop operations are used by tasks for transfers
 494   // between task-local queues and the global mark stack, and use
 495   // locking for concurrency safety.
 496   bool mark_stack_push(oop* arr, int n) {
 497     _markStack.par_push_arr(arr, n);
 498     if (_markStack.overflow()) {
 499       set_has_overflown();
 500       return false;
 501     }
 502     return true;
 503   }
 504   void mark_stack_pop(oop* arr, int max, int* n) {
 505     _markStack.par_pop_arr(arr, max, n);
 506   }
 507   size_t mark_stack_size()                { return _markStack.size(); }
 508   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 509   bool mark_stack_overflow()              { return _markStack.overflow(); }
 510   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 511 
 512   G1CMRootRegions* root_regions() { return &_root_regions; }
 513 
 514   bool concurrent_marking_in_progress() {
 515     return _concurrent_marking_in_progress;
 516   }
 517   void set_concurrent_marking_in_progress() {
 518     _concurrent_marking_in_progress = true;
 519   }
 520   void clear_concurrent_marking_in_progress() {
 521     _concurrent_marking_in_progress = false;
 522   }
 523 
 524   void concurrent_cycle_start();
 525   void concurrent_cycle_end();
 526 
 527   void update_accum_task_vtime(int i, double vtime) {
 528     _accum_task_vtime[i] += vtime;
 529   }
 530 
 531   double all_task_accum_vtime() {
 532     double ret = 0.0;
 533     for (uint i = 0; i < _max_worker_id; ++i)
 534       ret += _accum_task_vtime[i];
 535     return ret;
 536   }
 537 
 538   // Attempts to steal an object from the task queues of other tasks
 539   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 540 
 541   G1ConcurrentMark(G1CollectedHeap* g1h,
 542                    G1RegionToSpaceMapper* prev_bitmap_storage,
 543                    G1RegionToSpaceMapper* next_bitmap_storage);
 544   ~G1ConcurrentMark();
 545 
 546   ConcurrentMarkThread* cmThread() { return _cmThread; }
 547 
 548   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 549   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 550 
 551   // Returns the number of GC threads to be used in a concurrent
 552   // phase based on the number of GC threads being used in a STW
 553   // phase.
 554   uint scale_parallel_threads(uint n_par_threads);
 555 
 556   // Calculates the number of GC threads to be used in a concurrent phase.
 557   uint calc_parallel_marking_threads();
 558 
 559   // The following three are interaction between CM and
 560   // G1CollectedHeap
 561 
 562   // This notifies CM that a root during initial-mark needs to be
 563   // grayed. It is MT-safe. hr is the region that
 564   // contains the object and it's passed optionally from callers who
 565   // might already have it (no point in recalculating it).
 566   inline void grayRoot(oop obj,
 567                        HeapRegion* hr = NULL);
 568 
 569   // Prepare internal data structures for the next mark cycle. This includes clearing
 570   // the next mark bitmap and some internal data structures. This method is intended
 571   // to be called concurrently to the mutator. It will yield to safepoint requests.
 572   void cleanup_for_next_mark();
 573 
 574   // Clear the previous marking bitmap during safepoint.
 575   void clear_prev_bitmap(WorkGang* workers);
 576 
 577   // Return whether the next mark bitmap has no marks set. To be used for assertions
 578   // only. Will not yield to pause requests.
 579   bool nextMarkBitmapIsClear();
 580 
 581   // These two do the work that needs to be done before and after the
 582   // initial root checkpoint. Since this checkpoint can be done at two
 583   // different points (i.e. an explicit pause or piggy-backed on a
 584   // young collection), then it's nice to be able to easily share the
 585   // pre/post code. It might be the case that we can put everything in
 586   // the post method. TP
 587   void checkpointRootsInitialPre();
 588   void checkpointRootsInitialPost();
 589 
 590   // Scan all the root regions and mark everything reachable from
 591   // them.
 592   void scan_root_regions();
 593 
 594   // Scan a single root region and mark everything reachable from it.
 595   void scanRootRegion(HeapRegion* hr, uint worker_id);
 596 
 597   // Do concurrent phase of marking, to a tentative transitive closure.
 598   void mark_from_roots();
 599 
 600   void checkpointRootsFinal(bool clear_all_soft_refs);
 601   void checkpointRootsFinalWork();
 602   void cleanup();
 603   void complete_cleanup();
 604 
 605   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 606   // this carefully!
 607   inline void markPrev(oop p);
 608 
 609   // Clears marks for all objects in the given range, for the prev or
 610   // next bitmaps.  NB: the previous bitmap is usually
 611   // read-only, so use this carefully!
 612   void clearRangePrevBitmap(MemRegion mr);
 613 
 614   // Notify data structures that a GC has started.
 615   void note_start_of_gc() {
 616     _markStack.note_start_of_gc();
 617   }
 618 
 619   // Notify data structures that a GC is finished.
 620   void note_end_of_gc() {
 621     _markStack.note_end_of_gc();
 622   }
 623 
 624   // Verify that there are no CSet oops on the stacks (taskqueues /
 625   // global mark stack) and fingers (global / per-task).
 626   // If marking is not in progress, it's a no-op.
 627   void verify_no_cset_oops() PRODUCT_RETURN;
 628 
 629   inline bool isPrevMarked(oop p) const;
 630 
 631   inline bool do_yield_check(uint worker_i = 0);
 632 
 633   // Abandon current marking iteration due to a Full GC.
 634   void abort();
 635 
 636   bool has_aborted()      { return _has_aborted; }
 637 
 638   void print_summary_info();
 639 
 640   void print_worker_threads_on(outputStream* st) const;
 641 
 642   void print_on_error(outputStream* st) const;
 643 
 644   // Attempts to mark the given object on the next mark bitmap.
 645   inline bool par_mark(oop obj);
 646 
 647   // Returns true if initialization was successfully completed.
 648   bool completed_initialization() const {
 649     return _completed_initialization;
 650   }
 651 
 652   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 653   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 654 
 655 private:
 656   // Clear (Reset) all liveness count data.
 657   void clear_all_live_data(WorkGang* workers);
 658  
 659   // Verify all of the above data structures that they are in initial state.
 660   void verify_all_live_data();
 661 
 662   // Aggregates the per-card liveness data based on the current marking. Also sets
 663   // the amount of marked bytes for each region.
 664   void create_live_data();
 665  
 666    // Verification routine
 667   void verify_live_data();
 668 };
 669 
 670 // A class representing a marking task.
 671 class G1CMTask : public TerminatorTerminator {
 672 private:
 673   enum PrivateConstants {
 674     // the regular clock call is called once the scanned words reaches
 675     // this limit
 676     words_scanned_period          = 12*1024,
 677     // the regular clock call is called once the number of visited
 678     // references reaches this limit
 679     refs_reached_period           = 384,
 680     // initial value for the hash seed, used in the work stealing code
 681     init_hash_seed                = 17,
 682     // how many entries will be transferred between global stack and
 683     // local queues
 684     global_stack_transfer_size    = 16
 685   };
 686 
 687   uint                        _worker_id;
 688   G1CollectedHeap*            _g1h;
 689   G1ConcurrentMark*           _cm;
 690   G1CMBitMap*                 _nextMarkBitMap;
 691   // the task queue of this task
 692   G1CMTaskQueue*              _task_queue;
 693 private:
 694   // the task queue set---needed for stealing
 695   G1CMTaskQueueSet*           _task_queues;
 696   // indicates whether the task has been claimed---this is only  for
 697   // debugging purposes
 698   bool                        _claimed;
 699 
 700   // number of calls to this task
 701   int                         _calls;
 702 
 703   // when the virtual timer reaches this time, the marking step should
 704   // exit
 705   double                      _time_target_ms;
 706   // the start time of the current marking step
 707   double                      _start_time_ms;
 708 
 709   // the oop closure used for iterations over oops
 710   G1CMOopClosure*             _cm_oop_closure;
 711 
 712   // the region this task is scanning, NULL if we're not scanning any
 713   HeapRegion*                 _curr_region;
 714   // the local finger of this task, NULL if we're not scanning a region
 715   HeapWord*                   _finger;
 716   // limit of the region this task is scanning, NULL if we're not scanning one
 717   HeapWord*                   _region_limit;
 718 
 719   // the number of words this task has scanned
 720   size_t                      _words_scanned;
 721   // When _words_scanned reaches this limit, the regular clock is
 722   // called. Notice that this might be decreased under certain
 723   // circumstances (i.e. when we believe that we did an expensive
 724   // operation).
 725   size_t                      _words_scanned_limit;
 726   // the initial value of _words_scanned_limit (i.e. what it was
 727   // before it was decreased).
 728   size_t                      _real_words_scanned_limit;
 729 
 730   // the number of references this task has visited
 731   size_t                      _refs_reached;
 732   // When _refs_reached reaches this limit, the regular clock is
 733   // called. Notice this this might be decreased under certain
 734   // circumstances (i.e. when we believe that we did an expensive
 735   // operation).
 736   size_t                      _refs_reached_limit;
 737   // the initial value of _refs_reached_limit (i.e. what it was before
 738   // it was decreased).
 739   size_t                      _real_refs_reached_limit;
 740 
 741   // used by the work stealing stuff
 742   int                         _hash_seed;
 743   // if this is true, then the task has aborted for some reason
 744   bool                        _has_aborted;
 745   // set when the task aborts because it has met its time quota
 746   bool                        _has_timed_out;
 747   // true when we're draining SATB buffers; this avoids the task
 748   // aborting due to SATB buffers being available (as we're already
 749   // dealing with them)
 750   bool                        _draining_satb_buffers;
 751 
 752   // number sequence of past step times
 753   NumberSeq                   _step_times_ms;
 754   // elapsed time of this task
 755   double                      _elapsed_time_ms;
 756   // termination time of this task
 757   double                      _termination_time_ms;
 758   // when this task got into the termination protocol
 759   double                      _termination_start_time_ms;
 760 
 761   // true when the task is during a concurrent phase, false when it is
 762   // in the remark phase (so, in the latter case, we do not have to
 763   // check all the things that we have to check during the concurrent
 764   // phase, i.e. SATB buffer availability...)
 765   bool                        _concurrent;
 766 
 767   TruncatedSeq                _marking_step_diffs_ms;
 768 
 769   // it updates the local fields after this task has claimed
 770   // a new region to scan
 771   void setup_for_region(HeapRegion* hr);
 772   // it brings up-to-date the limit of the region
 773   void update_region_limit();
 774 
 775   // called when either the words scanned or the refs visited limit
 776   // has been reached
 777   void reached_limit();
 778   // recalculates the words scanned and refs visited limits
 779   void recalculate_limits();
 780   // decreases the words scanned and refs visited limits when we reach
 781   // an expensive operation
 782   void decrease_limits();
 783   // it checks whether the words scanned or refs visited reached their
 784   // respective limit and calls reached_limit() if they have
 785   void check_limits() {
 786     if (_words_scanned >= _words_scanned_limit ||
 787         _refs_reached >= _refs_reached_limit) {
 788       reached_limit();
 789     }
 790   }
 791   // this is supposed to be called regularly during a marking step as
 792   // it checks a bunch of conditions that might cause the marking step
 793   // to abort
 794   void regular_clock_call();
 795   bool concurrent() { return _concurrent; }
 796 
 797   // Test whether obj might have already been passed over by the
 798   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 799   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 800 
 801   template<bool scan> void process_grey_object(oop obj);
 802 
 803 public:
 804   // It resets the task; it should be called right at the beginning of
 805   // a marking phase.
 806   void reset(G1CMBitMap* _nextMarkBitMap);
 807   // it clears all the fields that correspond to a claimed region.
 808   void clear_region_fields();
 809 
 810   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 811 
 812   // The main method of this class which performs a marking step
 813   // trying not to exceed the given duration. However, it might exit
 814   // prematurely, according to some conditions (i.e. SATB buffers are
 815   // available for processing).
 816   void do_marking_step(double target_ms,
 817                        bool do_termination,
 818                        bool is_serial);
 819 
 820   // These two calls start and stop the timer
 821   void record_start_time() {
 822     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 823   }
 824   void record_end_time() {
 825     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 826   }
 827 
 828   // returns the worker ID associated with this task.
 829   uint worker_id() { return _worker_id; }
 830 
 831   // From TerminatorTerminator. It determines whether this task should
 832   // exit the termination protocol after it's entered it.
 833   virtual bool should_exit_termination();
 834 
 835   // Resets the local region fields after a task has finished scanning a
 836   // region; or when they have become stale as a result of the region
 837   // being evacuated.
 838   void giveup_current_region();
 839 
 840   HeapWord* finger()            { return _finger; }
 841 
 842   bool has_aborted()            { return _has_aborted; }
 843   void set_has_aborted()        { _has_aborted = true; }
 844   void clear_has_aborted()      { _has_aborted = false; }
 845   bool has_timed_out()          { return _has_timed_out; }
 846   bool claimed()                { return _claimed; }
 847 
 848   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 849 
 850   // Increment the number of references this task has visited.
 851   void increment_refs_reached() { ++_refs_reached; }
 852 
 853   // Grey the object by marking it.  If not already marked, push it on
 854   // the local queue if below the finger.
 855   // Precondition: obj is below region's NTAMS.
 856   inline void make_reference_grey(oop obj);
 857 
 858   // Grey the object (by calling make_grey_reference) if required,
 859   // e.g. obj is below its containing region's NTAMS.
 860   // Precondition: obj is a valid heap object.
 861   inline void deal_with_reference(oop obj);
 862 
 863   // It scans an object and visits its children.
 864   inline void scan_object(oop obj);
 865 
 866   // It pushes an object on the local queue.
 867   inline void push(oop obj);
 868 
 869   // These two move entries to/from the global stack.
 870   void move_entries_to_global_stack();
 871   void get_entries_from_global_stack();
 872 
 873   // It pops and scans objects from the local queue. If partially is
 874   // true, then it stops when the queue size is of a given limit. If
 875   // partially is false, then it stops when the queue is empty.
 876   void drain_local_queue(bool partially);
 877   // It moves entries from the global stack to the local queue and
 878   // drains the local queue. If partially is true, then it stops when
 879   // both the global stack and the local queue reach a given size. If
 880   // partially if false, it tries to empty them totally.
 881   void drain_global_stack(bool partially);
 882   // It keeps picking SATB buffers and processing them until no SATB
 883   // buffers are available.
 884   void drain_satb_buffers();
 885 
 886   // moves the local finger to a new location
 887   inline void move_finger_to(HeapWord* new_finger) {
 888     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 889     _finger = new_finger;
 890   }
 891 
 892   G1CMTask(uint worker_id,
 893            G1ConcurrentMark *cm,
 894            G1CMTaskQueue* task_queue,
 895            G1CMTaskQueueSet* task_queues);
 896 
 897   // it prints statistics associated with this task
 898   void print_stats();
 899 };
 900 
 901 // Class that's used to to print out per-region liveness
 902 // information. It's currently used at the end of marking and also
 903 // after we sort the old regions at the end of the cleanup operation.
 904 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 905 private:
 906   // Accumulators for these values.
 907   size_t _total_used_bytes;
 908   size_t _total_capacity_bytes;
 909   size_t _total_prev_live_bytes;
 910   size_t _total_next_live_bytes;
 911 
 912   // Accumulator for the remembered set size
 913   size_t _total_remset_bytes;
 914 
 915   // Accumulator for strong code roots memory size
 916   size_t _total_strong_code_roots_bytes;
 917 
 918   static double perc(size_t val, size_t total) {
 919     if (total == 0) {
 920       return 0.0;
 921     } else {
 922       return 100.0 * ((double) val / (double) total);
 923     }
 924   }
 925 
 926   static double bytes_to_mb(size_t val) {
 927     return (double) val / (double) M;
 928   }
 929 
 930 public:
 931   // The header and footer are printed in the constructor and
 932   // destructor respectively.
 933   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 934   virtual bool doHeapRegion(HeapRegion* r);
 935   ~G1PrintRegionLivenessInfoClosure();
 936 };
 937 
 938 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP