/* * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_G1_G1OOPCLOSURES_INLINE_HPP #define SHARE_VM_GC_G1_G1OOPCLOSURES_INLINE_HPP #include "gc/g1/g1CollectedHeap.hpp" #include "gc/g1/g1ConcurrentMark.inline.hpp" #include "gc/g1/g1OopClosures.hpp" #include "gc/g1/g1ParScanThreadState.inline.hpp" #include "gc/g1/g1RemSet.hpp" #include "gc/g1/g1RemSet.inline.hpp" #include "gc/g1/heapRegion.inline.hpp" #include "gc/g1/heapRegionRemSet.hpp" #include "memory/iterator.inline.hpp" #include "runtime/prefetch.inline.hpp" /* * This really ought to be an inline function, but apparently the C++ * compiler sometimes sees fit to ignore inline declarations. Sigh. */ template inline void FilterIntoCSClosure::do_oop_work(T* p) { T heap_oop = oopDesc::load_heap_oop(p); if (!oopDesc::is_null(heap_oop) && _g1->is_in_cset_or_humongous(oopDesc::decode_heap_oop_not_null(heap_oop))) { _oc->do_oop(p); } } template inline void FilterOutOfRegionClosure::do_oop_nv(T* p) { T heap_oop = oopDesc::load_heap_oop(p); if (!oopDesc::is_null(heap_oop)) { HeapWord* obj_hw = (HeapWord*)oopDesc::decode_heap_oop_not_null(heap_oop); if (obj_hw < _r_bottom || obj_hw >= _r_end) { _oc->do_oop(p); } } } // This closure is applied to the fields of the objects that have just been copied. template inline void G1ParScanClosure::do_oop_nv(T* p) { T heap_oop = oopDesc::load_heap_oop(p); if (!oopDesc::is_null(heap_oop)) { oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); const InCSetState state = _g1->in_cset_state(obj); if (state.is_in_cset()) { // We're not going to even bother checking whether the object is // already forwarded or not, as this usually causes an immediate // stall. We'll try to prefetch the object (for write, given that // we might need to install the forwarding reference) and we'll // get back to it when pop it from the queue Prefetch::write(obj->mark_addr(), 0); Prefetch::read(obj->mark_addr(), (HeapWordSize*2)); // slightly paranoid test; I'm trying to catch potential // problems before we go into push_on_queue to know where the // problem is coming from assert((obj == oopDesc::load_decode_heap_oop(p)) || (obj->is_forwarded() && obj->forwardee() == oopDesc::load_decode_heap_oop(p)), "p should still be pointing to obj or to its forwardee"); _par_scan_state->push_on_queue(p); } else { if (state.is_humongous()) { _g1->set_humongous_is_live(obj); } else if (state.is_ext()) { _par_scan_state->do_oop_ext(p); } _par_scan_state->update_rs(_from, p, obj); } } } template inline void G1ParPushHeapRSClosure::do_oop_nv(T* p) { T heap_oop = oopDesc::load_heap_oop(p); if (!oopDesc::is_null(heap_oop)) { oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); const InCSetState state = _g1->in_cset_state(obj); if (state.is_in_cset_or_humongous()) { Prefetch::write(obj->mark_addr(), 0); Prefetch::read(obj->mark_addr(), (HeapWordSize*2)); // Place on the references queue _par_scan_state->push_on_queue(p); } else if (state.is_ext()) { _par_scan_state->do_oop_ext(p); } else { assert(!_g1->obj_in_cs(obj), "checking"); } } } template inline void G1CMOopClosure::do_oop_nv(T* p) { oop obj = oopDesc::load_decode_heap_oop(p); _task->deal_with_reference(obj); } template inline void G1RootRegionScanClosure::do_oop_nv(T* p) { T heap_oop = oopDesc::load_heap_oop(p); if (!oopDesc::is_null(heap_oop)) { oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); HeapRegion* hr = _g1h->heap_region_containing((HeapWord*) obj); _cm->grayRoot(obj, hr); } } template inline void G1Mux2Closure::do_oop_work(T* p) { // Apply first closure; then apply the second. _c1->do_oop(p); _c2->do_oop(p); } void G1Mux2Closure::do_oop(oop* p) { do_oop_work(p); } void G1Mux2Closure::do_oop(narrowOop* p) { do_oop_work(p); } template inline void G1TriggerClosure::do_oop_work(T* p) { // Record that this closure was actually applied (triggered). _triggered = true; } void G1TriggerClosure::do_oop(oop* p) { do_oop_work(p); } void G1TriggerClosure::do_oop(narrowOop* p) { do_oop_work(p); } template inline void G1InvokeIfNotTriggeredClosure::do_oop_work(T* p) { if (!_trigger_cl->triggered()) { _oop_cl->do_oop(p); } } void G1InvokeIfNotTriggeredClosure::do_oop(oop* p) { do_oop_work(p); } void G1InvokeIfNotTriggeredClosure::do_oop(narrowOop* p) { do_oop_work(p); } template inline void G1UpdateRSOrPushRefOopClosure::do_oop_work(T* p) { oop obj = oopDesc::load_decode_heap_oop(p); if (obj == NULL) { return; } #ifdef ASSERT // can't do because of races // assert(obj == NULL || obj->is_oop(), "expected an oop"); assert(check_obj_alignment(obj), "not oop aligned"); assert(_g1->is_in_reserved(obj), "must be in heap"); #endif // ASSERT assert(_from != NULL, "from region must be non-NULL"); assert(_from->is_in_reserved(p), "p is not in from"); HeapRegion* to = _g1->heap_region_containing(obj); if (_from == to) { // Normally this closure should only be called with cross-region references. // But since Java threads are manipulating the references concurrently and we // reload the values things may have changed. return; } // The _record_refs_into_cset flag is true during the RSet // updating part of an evacuation pause. It is false at all // other times: // * rebuilding the remembered sets after a full GC // * during concurrent refinement. // * updating the remembered sets of regions in the collection // set in the event of an evacuation failure (when deferred // updates are enabled). if (_record_refs_into_cset && to->in_collection_set()) { // We are recording references that point into the collection // set and this particular reference does exactly that... // If the referenced object has already been forwarded // to itself, we are handling an evacuation failure and // we have already visited/tried to copy this object // there is no need to retry. if (!self_forwarded(obj)) { assert(_push_ref_cl != NULL, "should not be null"); // Push the reference in the refs queue of the G1ParScanThreadState // instance for this worker thread. _push_ref_cl->do_oop(p); } // Deferred updates to the CSet are either discarded (in the normal case), // or processed (if an evacuation failure occurs) at the end // of the collection. // See G1RemSet::cleanup_after_oops_into_collection_set_do(). } else { // We either don't care about pushing references that point into the // collection set (i.e. we're not during an evacuation pause) _or_ // the reference doesn't point into the collection set. Either way // we add the reference directly to the RSet of the region containing // the referenced object. assert(to->rem_set() != NULL, "Need per-region 'into' remsets."); to->rem_set()->add_reference(p, _worker_i); } } void G1UpdateRSOrPushRefOopClosure::do_oop(oop* p) { do_oop_work(p); } void G1UpdateRSOrPushRefOopClosure::do_oop(narrowOop* p) { do_oop_work(p); } template void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) { if (_g1->heap_region_containing(new_obj)->is_young()) { _scanned_klass->record_modified_oops(); } } void G1ParCopyHelper::mark_object(oop obj) { assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet"); // We know that the object is not moving so it's safe to read its size. _cm->grayRoot(obj); } void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) { assert(from_obj->is_forwarded(), "from obj should be forwarded"); assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee"); assert(from_obj != to_obj, "should not be self-forwarded"); assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet"); assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet"); // The object might be in the process of being copied by another // worker so we cannot trust that its to-space image is // well-formed. So we have to read its size from its from-space // image which we know should not be changing. _cm->grayRoot(to_obj); } template template void G1ParCopyClosure::do_oop_work(T* p) { T heap_oop = oopDesc::load_heap_oop(p); if (oopDesc::is_null(heap_oop)) { return; } oop obj = oopDesc::decode_heap_oop_not_null(heap_oop); assert(_worker_id == _par_scan_state->worker_id(), "sanity"); const InCSetState state = _g1->in_cset_state(obj); if (state.is_in_cset()) { oop forwardee; markOop m = obj->mark(); if (m->is_marked()) { forwardee = (oop) m->decode_pointer(); } else { forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m); } assert(forwardee != NULL, "forwardee should not be NULL"); oopDesc::encode_store_heap_oop(p, forwardee); if (do_mark_object != G1MarkNone && forwardee != obj) { // If the object is self-forwarded we don't need to explicitly // mark it, the evacuation failure protocol will do so. mark_forwarded_object(obj, forwardee); } if (barrier == G1BarrierKlass) { do_klass_barrier(p, forwardee); } } else { if (state.is_humongous()) { _g1->set_humongous_is_live(obj); } if (use_ext && state.is_ext()) { _par_scan_state->do_oop_ext(p); } // The object is not in collection set. If we're a root scanning // closure during an initial mark pause then attempt to mark the object. if (do_mark_object == G1MarkFromRoot) { mark_object(obj); } } } #endif // SHARE_VM_GC_G1_G1OOPCLOSURES_INLINE_HPP