1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorPolicy.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/g1/suspendibleThreadSet.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/taskqueue.inline.hpp"
  49 #include "gc/shared/vmGCOperations.hpp"
  50 #include "logging/log.hpp"
  51 #include "logging/logTag.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 
  61 // Concurrent marking bit map wrapper
  62 
  63 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  64   _bm(),
  65   _shifter(shifter) {
  66   _bmStartWord = 0;
  67   _bmWordSize = 0;
  68 }
  69 
  70 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  71                                                  const HeapWord* limit) const {
  72   // First we must round addr *up* to a possible object boundary.
  73   addr = (HeapWord*)align_size_up((intptr_t)addr,
  74                                   HeapWordSize << _shifter);
  75   size_t addrOffset = heapWordToOffset(addr);
  76   assert(limit != NULL, "limit must not be NULL");
  77   size_t limitOffset = heapWordToOffset(limit);
  78   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  79   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  80   assert(nextAddr >= addr, "get_next_one postcondition");
  81   assert(nextAddr == limit || isMarked(nextAddr),
  82          "get_next_one postcondition");
  83   return nextAddr;
  84 }
  85 
  86 #ifndef PRODUCT
  87 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  88   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  89   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  90          "size inconsistency");
  91   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  92          _bmWordSize  == heap_rs.word_size();
  93 }
  94 #endif
  95 
  96 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  97   _bm.print_on_error(st, prefix);
  98 }
  99 
 100 size_t G1CMBitMap::compute_size(size_t heap_size) {
 101   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 102 }
 103 
 104 size_t G1CMBitMap::mark_distance() {
 105   return MinObjAlignmentInBytes * BitsPerByte;
 106 }
 107 
 108 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 109   _bmStartWord = heap.start();
 110   _bmWordSize = heap.word_size();
 111 
 112   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 113   _bm.set_size(_bmWordSize >> _shifter);
 114 
 115   storage->set_mapping_changed_listener(&_listener);
 116 }
 117 
 118 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 119   if (zero_filled) {
 120     return;
 121   }
 122   // We need to clear the bitmap on commit, removing any existing information.
 123   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 124   _bm->clear_range(mr);
 125 }
 126 
 127 void G1CMBitMap::clear_range(MemRegion mr) {
 128   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 129   assert(!mr.is_empty(), "unexpected empty region");
 130   // convert address range into offset range
 131   _bm.at_put_range(heapWordToOffset(mr.start()),
 132                    heapWordToOffset(mr.end()), false);
 133 }
 134 
 135 G1CMMarkStack::G1CMMarkStack(G1ConcurrentMark* cm) :
 136   _base(NULL), _cm(cm)
 137 {}
 138 
 139 bool G1CMMarkStack::allocate(size_t capacity) {
 140   // allocate a stack of the requisite depth
 141   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 142   if (!rs.is_reserved()) {
 143     log_warning(gc)("ConcurrentMark MarkStack allocation failure");
 144     return false;
 145   }
 146   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 147   if (!_virtual_space.initialize(rs, rs.size())) {
 148     log_warning(gc)("ConcurrentMark MarkStack backing store failure");
 149     // Release the virtual memory reserved for the marking stack
 150     rs.release();
 151     return false;
 152   }
 153   assert(_virtual_space.committed_size() == rs.size(),
 154          "Didn't reserve backing store for all of G1ConcurrentMark stack?");
 155   _base = (oop*) _virtual_space.low();
 156   setEmpty();
 157   _capacity = (jint) capacity;
 158   _saved_index = -1;
 159   _should_expand = false;
 160   return true;
 161 }
 162 
 163 void G1CMMarkStack::expand() {
 164   // Called, during remark, if we've overflown the marking stack during marking.
 165   assert(isEmpty(), "stack should been emptied while handling overflow");
 166   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 167   // Clear expansion flag
 168   _should_expand = false;
 169   if (_capacity == (jint) MarkStackSizeMax) {
 170     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 171     return;
 172   }
 173   // Double capacity if possible
 174   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 175   // Do not give up existing stack until we have managed to
 176   // get the double capacity that we desired.
 177   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 178                                                            sizeof(oop)));
 179   if (rs.is_reserved()) {
 180     // Release the backing store associated with old stack
 181     _virtual_space.release();
 182     // Reinitialize virtual space for new stack
 183     if (!_virtual_space.initialize(rs, rs.size())) {
 184       fatal("Not enough swap for expanded marking stack capacity");
 185     }
 186     _base = (oop*)(_virtual_space.low());
 187     _index = 0;
 188     _capacity = new_capacity;
 189   } else {
 190     // Failed to double capacity, continue;
 191     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 192                   _capacity / K, new_capacity / K);
 193   }
 194 }
 195 
 196 void G1CMMarkStack::set_should_expand() {
 197   // If we're resetting the marking state because of an
 198   // marking stack overflow, record that we should, if
 199   // possible, expand the stack.
 200   _should_expand = _cm->has_overflown();
 201 }
 202 
 203 G1CMMarkStack::~G1CMMarkStack() {
 204   if (_base != NULL) {
 205     _base = NULL;
 206     _virtual_space.release();
 207   }
 208 }
 209 
 210 void G1CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 211   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 212   jint start = _index;
 213   jint next_index = start + n;
 214   if (next_index > _capacity) {
 215     _overflow = true;
 216     return;
 217   }
 218   // Otherwise.
 219   _index = next_index;
 220   for (int i = 0; i < n; i++) {
 221     int ind = start + i;
 222     assert(ind < _capacity, "By overflow test above.");
 223     _base[ind] = ptr_arr[i];
 224   }
 225 }
 226 
 227 bool G1CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 228   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 229   jint index = _index;
 230   if (index == 0) {
 231     *n = 0;
 232     return false;
 233   } else {
 234     int k = MIN2(max, index);
 235     jint  new_ind = index - k;
 236     for (int j = 0; j < k; j++) {
 237       ptr_arr[j] = _base[new_ind + j];
 238     }
 239     _index = new_ind;
 240     *n = k;
 241     return true;
 242   }
 243 }
 244 
 245 void G1CMMarkStack::note_start_of_gc() {
 246   assert(_saved_index == -1,
 247          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 248   _saved_index = _index;
 249 }
 250 
 251 void G1CMMarkStack::note_end_of_gc() {
 252   // This is intentionally a guarantee, instead of an assert. If we
 253   // accidentally add something to the mark stack during GC, it
 254   // will be a correctness issue so it's better if we crash. we'll
 255   // only check this once per GC anyway, so it won't be a performance
 256   // issue in any way.
 257   guarantee(_saved_index == _index,
 258             "saved index: %d index: %d", _saved_index, _index);
 259   _saved_index = -1;
 260 }
 261 
 262 G1CMRootRegions::G1CMRootRegions() :
 263   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 264   _should_abort(false),  _next_survivor(NULL) { }
 265 
 266 void G1CMRootRegions::init(G1CollectedHeap* g1h, G1ConcurrentMark* cm) {
 267   _young_list = g1h->young_list();
 268   _cm = cm;
 269 }
 270 
 271 void G1CMRootRegions::prepare_for_scan() {
 272   assert(!scan_in_progress(), "pre-condition");
 273 
 274   // Currently, only survivors can be root regions.
 275   assert(_next_survivor == NULL, "pre-condition");
 276   _next_survivor = _young_list->first_survivor_region();
 277   _scan_in_progress = (_next_survivor != NULL);
 278   _should_abort = false;
 279 }
 280 
 281 HeapRegion* G1CMRootRegions::claim_next() {
 282   if (_should_abort) {
 283     // If someone has set the should_abort flag, we return NULL to
 284     // force the caller to bail out of their loop.
 285     return NULL;
 286   }
 287 
 288   // Currently, only survivors can be root regions.
 289   HeapRegion* res = _next_survivor;
 290   if (res != NULL) {
 291     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 292     // Read it again in case it changed while we were waiting for the lock.
 293     res = _next_survivor;
 294     if (res != NULL) {
 295       if (res == _young_list->last_survivor_region()) {
 296         // We just claimed the last survivor so store NULL to indicate
 297         // that we're done.
 298         _next_survivor = NULL;
 299       } else {
 300         _next_survivor = res->get_next_young_region();
 301       }
 302     } else {
 303       // Someone else claimed the last survivor while we were trying
 304       // to take the lock so nothing else to do.
 305     }
 306   }
 307   assert(res == NULL || res->is_survivor(), "post-condition");
 308 
 309   return res;
 310 }
 311 
 312 void G1CMRootRegions::notify_scan_done() {
 313   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 314   _scan_in_progress = false;
 315   RootRegionScan_lock->notify_all();
 316 }
 317 
 318 void G1CMRootRegions::cancel_scan() {
 319   notify_scan_done();
 320 }
 321 
 322 void G1CMRootRegions::scan_finished() {
 323   assert(scan_in_progress(), "pre-condition");
 324 
 325   // Currently, only survivors can be root regions.
 326   if (!_should_abort) {
 327     assert(_next_survivor == NULL, "we should have claimed all survivors");
 328   }
 329   _next_survivor = NULL;
 330 
 331   notify_scan_done();
 332 }
 333 
 334 bool G1CMRootRegions::wait_until_scan_finished() {
 335   if (!scan_in_progress()) return false;
 336 
 337   {
 338     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 339     while (scan_in_progress()) {
 340       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 341     }
 342   }
 343   return true;
 344 }
 345 
 346 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 347   return MAX2((n_par_threads + 2) / 4, 1U);
 348 }
 349 
 350 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 351   _g1h(g1h),
 352   _markBitMap1(),
 353   _markBitMap2(),
 354   _parallel_marking_threads(0),
 355   _max_parallel_marking_threads(0),
 356   _sleep_factor(0.0),
 357   _marking_task_overhead(1.0),
 358   _cleanup_list("Cleanup List"),
 359   _region_live_bm(),
 360   _card_live_bm(),
 361 
 362   _prevMarkBitMap(&_markBitMap1),
 363   _nextMarkBitMap(&_markBitMap2),
 364 
 365   _markStack(this),
 366   // _finger set in set_non_marking_state
 367 
 368   _max_worker_id(ParallelGCThreads),
 369   // _active_tasks set in set_non_marking_state
 370   // _tasks set inside the constructor
 371   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 372   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 373 
 374   _has_overflown(false),
 375   _concurrent(false),
 376   _has_aborted(false),
 377   _restart_for_overflow(false),
 378   _concurrent_marking_in_progress(false),
 379   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 380   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 381 
 382   // _verbose_level set below
 383 
 384   _init_times(),
 385   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 386   _cleanup_times(),
 387   _total_counting_time(0.0),
 388   _total_rs_scrub_time(0.0),
 389 
 390   _parallel_workers(NULL),
 391 
 392   _completed_initialization(false) {
 393 
 394   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 395   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 396 
 397   // Create & start a ConcurrentMark thread.
 398   _cmThread = new ConcurrentMarkThread(this);
 399   assert(cmThread() != NULL, "CM Thread should have been created");
 400   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 401   if (_cmThread->osthread() == NULL) {
 402       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 403   }
 404 
 405   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 406   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 407   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 408 
 409   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 410   satb_qs.set_buffer_size(G1SATBBufferSize);
 411 
 412   _root_regions.init(_g1h, this);
 413 
 414   if (ConcGCThreads > ParallelGCThreads) {
 415     log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
 416                     ConcGCThreads, ParallelGCThreads);
 417     return;
 418   }
 419   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 420     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 421     // if both are set
 422     _sleep_factor             = 0.0;
 423     _marking_task_overhead    = 1.0;
 424   } else if (G1MarkingOverheadPercent > 0) {
 425     // We will calculate the number of parallel marking threads based
 426     // on a target overhead with respect to the soft real-time goal
 427     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 428     double overall_cm_overhead =
 429       (double) MaxGCPauseMillis * marking_overhead /
 430       (double) GCPauseIntervalMillis;
 431     double cpu_ratio = 1.0 / (double) os::processor_count();
 432     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 433     double marking_task_overhead =
 434       overall_cm_overhead / marking_thread_num *
 435                                               (double) os::processor_count();
 436     double sleep_factor =
 437                        (1.0 - marking_task_overhead) / marking_task_overhead;
 438 
 439     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 440     _sleep_factor             = sleep_factor;
 441     _marking_task_overhead    = marking_task_overhead;
 442   } else {
 443     // Calculate the number of parallel marking threads by scaling
 444     // the number of parallel GC threads.
 445     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 446     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 447     _sleep_factor             = 0.0;
 448     _marking_task_overhead    = 1.0;
 449   }
 450 
 451   assert(ConcGCThreads > 0, "Should have been set");
 452   _parallel_marking_threads = ConcGCThreads;
 453   _max_parallel_marking_threads = _parallel_marking_threads;
 454 
 455   _parallel_workers = new WorkGang("G1 Marker",
 456        _max_parallel_marking_threads, false, true);
 457   if (_parallel_workers == NULL) {
 458     vm_exit_during_initialization("Failed necessary allocation.");
 459   } else {
 460     _parallel_workers->initialize_workers();
 461   }
 462 
 463   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 464     size_t mark_stack_size =
 465       MIN2(MarkStackSizeMax,
 466           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 467     // Verify that the calculated value for MarkStackSize is in range.
 468     // It would be nice to use the private utility routine from Arguments.
 469     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 470       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 471                       "must be between 1 and " SIZE_FORMAT,
 472                       mark_stack_size, MarkStackSizeMax);
 473       return;
 474     }
 475     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 476   } else {
 477     // Verify MarkStackSize is in range.
 478     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 479       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 480         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 481           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 482                           "must be between 1 and " SIZE_FORMAT,
 483                           MarkStackSize, MarkStackSizeMax);
 484           return;
 485         }
 486       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 487         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 488           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 489                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 490                           MarkStackSize, MarkStackSizeMax);
 491           return;
 492         }
 493       }
 494     }
 495   }
 496 
 497   if (!_markStack.allocate(MarkStackSize)) {
 498     log_warning(gc)("Failed to allocate CM marking stack");
 499     return;
 500   }
 501 
 502   allocate_internal_bitmaps();
 503 
 504   if (G1PretouchAuxiliaryMemory) {
 505     pretouch_internal_bitmaps();
 506   }
 507 
 508   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 509   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 510 
 511   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 512   _active_tasks = _max_worker_id;
 513 
 514   for (uint i = 0; i < _max_worker_id; ++i) {
 515     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 516     task_queue->initialize();
 517     _task_queues->register_queue(i, task_queue);
 518 
 519     _tasks[i] = new G1CMTask(i, this, task_queue, _task_queues);
 520 
 521     _accum_task_vtime[i] = 0.0;
 522   }
 523 
 524   // so that the call below can read a sensible value
 525   _heap_start = g1h->reserved_region().start();
 526   set_non_marking_state();
 527   _completed_initialization = true;
 528 }
 529 
 530 void G1ConcurrentMark::reset() {
 531   // Starting values for these two. This should be called in a STW
 532   // phase.
 533   MemRegion reserved = _g1h->g1_reserved();
 534   _heap_start = reserved.start();
 535   _heap_end   = reserved.end();
 536 
 537   // Separated the asserts so that we know which one fires.
 538   assert(_heap_start != NULL, "heap bounds should look ok");
 539   assert(_heap_end != NULL, "heap bounds should look ok");
 540   assert(_heap_start < _heap_end, "heap bounds should look ok");
 541 
 542   // Reset all the marking data structures and any necessary flags
 543   reset_marking_state();
 544 
 545   // We do reset all of them, since different phases will use
 546   // different number of active threads. So, it's easiest to have all
 547   // of them ready.
 548   for (uint i = 0; i < _max_worker_id; ++i) {
 549     _tasks[i]->reset(_nextMarkBitMap);
 550   }
 551 
 552   // we need this to make sure that the flag is on during the evac
 553   // pause with initial mark piggy-backed
 554   set_concurrent_marking_in_progress();
 555 }
 556 
 557 
 558 void G1ConcurrentMark::reset_marking_state(bool clear_overflow) {
 559   _markStack.set_should_expand();
 560   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 561   if (clear_overflow) {
 562     clear_has_overflown();
 563   } else {
 564     assert(has_overflown(), "pre-condition");
 565   }
 566   _finger = _heap_start;
 567 
 568   for (uint i = 0; i < _max_worker_id; ++i) {
 569     G1CMTaskQueue* queue = _task_queues->queue(i);
 570     queue->set_empty();
 571   }
 572 }
 573 
 574 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 575   assert(active_tasks <= _max_worker_id, "we should not have more");
 576 
 577   _active_tasks = active_tasks;
 578   // Need to update the three data structures below according to the
 579   // number of active threads for this phase.
 580   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 581   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 582   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 583 }
 584 
 585 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 586   set_concurrency(active_tasks);
 587 
 588   _concurrent = concurrent;
 589   // We propagate this to all tasks, not just the active ones.
 590   for (uint i = 0; i < _max_worker_id; ++i)
 591     _tasks[i]->set_concurrent(concurrent);
 592 
 593   if (concurrent) {
 594     set_concurrent_marking_in_progress();
 595   } else {
 596     // We currently assume that the concurrent flag has been set to
 597     // false before we start remark. At this point we should also be
 598     // in a STW phase.
 599     assert(!concurrent_marking_in_progress(), "invariant");
 600     assert(out_of_regions(),
 601            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 602            p2i(_finger), p2i(_heap_end));
 603   }
 604 }
 605 
 606 void G1ConcurrentMark::set_non_marking_state() {
 607   // We set the global marking state to some default values when we're
 608   // not doing marking.
 609   reset_marking_state();
 610   _active_tasks = 0;
 611   clear_concurrent_marking_in_progress();
 612 }
 613 
 614 G1ConcurrentMark::~G1ConcurrentMark() {
 615   // The G1ConcurrentMark instance is never freed.
 616   ShouldNotReachHere();
 617 }
 618 
 619 class G1ClearBitMapTask : public AbstractGangTask {
 620   // Heap region closure used for clearing the given mark bitmap.
 621   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 622   private:
 623     G1CMBitMap* _bitmap;
 624     G1ConcurrentMark* _cm;
 625   public:
 626     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 627     }
 628 
 629     virtual bool doHeapRegion(HeapRegion* r) {
 630       size_t const chunk_size_in_words = M / HeapWordSize;
 631 
 632       HeapWord* cur = r->bottom();
 633       HeapWord* const end = r->end();
 634 
 635       while (cur < end) {
 636         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 637         _bitmap->clear_range(mr);
 638 
 639         cur += chunk_size_in_words;
 640 
 641         // Abort iteration if after yielding the marking has been aborted.
 642         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 643           return true;
 644         }
 645         // Repeat the asserts from before the start of the closure. We will do them
 646         // as asserts here to minimize their overhead on the product. However, we
 647         // will have them as guarantees at the beginning / end of the bitmap
 648         // clearing to get some checking in the product.
 649         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 650         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 651       }
 652       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 653 
 654       return false;
 655     }
 656   };
 657 
 658   G1ClearBitmapHRClosure _cl;
 659   HeapRegionClaimer _hr_claimer;
 660   bool _suspendible; // If the task is suspendible, workers must join the STS.
 661 
 662 public:
 663   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 664     AbstractGangTask("Parallel Clear Bitmap Task"),
 665     _cl(bitmap, suspendible ? cm : NULL),
 666     _hr_claimer(n_workers),
 667     _suspendible(suspendible)
 668   { }
 669 
 670   void work(uint worker_id) {
 671     SuspendibleThreadSetJoiner sts_join(_suspendible);
 672     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer, true);
 673   }
 674 
 675   bool is_complete() {
 676     return _cl.complete();
 677   }
 678 };
 679 
 680 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 681   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 682 
 683   G1ClearBitMapTask task(bitmap, this, workers->active_workers(), may_yield);
 684   workers->run_task(&task);
 685   guarantee(!may_yield || task.is_complete(), "Must have completed iteration when not yielding.");
 686 }
 687 
 688 void G1ConcurrentMark::cleanup_for_next_mark() {
 689   // Make sure that the concurrent mark thread looks to still be in
 690   // the current cycle.
 691   guarantee(cmThread()->during_cycle(), "invariant");
 692 
 693   // We are finishing up the current cycle by clearing the next
 694   // marking bitmap and getting it ready for the next cycle. During
 695   // this time no other cycle can start. So, let's make sure that this
 696   // is the case.
 697   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 698 
 699   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 700 
 701   // Clear the live count data. If the marking has been aborted, the abort()
 702   // call already did that.
 703   if (!has_aborted()) {
 704     clear_all_live_data(_parallel_workers);
 705     DEBUG_ONLY(verify_all_live_data());
 706   }
 707 
 708   // Repeat the asserts from above.
 709   guarantee(cmThread()->during_cycle(), "invariant");
 710   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 711 }
 712 
 713 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 714   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 715   clear_bitmap((G1CMBitMap*)_prevMarkBitMap, workers, false);
 716 }
 717 
 718 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 719   G1CMBitMap* _bitmap;
 720   bool _error;
 721  public:
 722   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 723   }
 724 
 725   virtual bool doHeapRegion(HeapRegion* r) {
 726     // This closure can be called concurrently to the mutator, so we must make sure
 727     // that the result of the getNextMarkedWordAddress() call is compared to the
 728     // value passed to it as limit to detect any found bits.
 729     // end never changes in G1.
 730     HeapWord* end = r->end();
 731     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 732   }
 733 };
 734 
 735 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 736   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 737   _g1h->heap_region_iterate(&cl);
 738   return cl.complete();
 739 }
 740 
 741 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 742 public:
 743   bool doHeapRegion(HeapRegion* r) {
 744     r->note_start_of_marking();
 745     return false;
 746   }
 747 };
 748 
 749 void G1ConcurrentMark::checkpointRootsInitialPre() {
 750   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 751   G1CollectorPolicy* g1p = g1h->g1_policy();
 752 
 753   _has_aborted = false;
 754 
 755   // Initialize marking structures. This has to be done in a STW phase.
 756   reset();
 757 
 758   // For each region note start of marking.
 759   NoteStartOfMarkHRClosure startcl;
 760   g1h->heap_region_iterate(&startcl);
 761 }
 762 
 763 
 764 void G1ConcurrentMark::checkpointRootsInitialPost() {
 765   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 766 
 767   // Start Concurrent Marking weak-reference discovery.
 768   ReferenceProcessor* rp = g1h->ref_processor_cm();
 769   // enable ("weak") refs discovery
 770   rp->enable_discovery();
 771   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 772 
 773   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 774   // This is the start of  the marking cycle, we're expected all
 775   // threads to have SATB queues with active set to false.
 776   satb_mq_set.set_active_all_threads(true, /* new active value */
 777                                      false /* expected_active */);
 778 
 779   _root_regions.prepare_for_scan();
 780 
 781   // update_g1_committed() will be called at the end of an evac pause
 782   // when marking is on. So, it's also called at the end of the
 783   // initial-mark pause to update the heap end, if the heap expands
 784   // during it. No need to call it here.
 785 }
 786 
 787 /*
 788  * Notice that in the next two methods, we actually leave the STS
 789  * during the barrier sync and join it immediately afterwards. If we
 790  * do not do this, the following deadlock can occur: one thread could
 791  * be in the barrier sync code, waiting for the other thread to also
 792  * sync up, whereas another one could be trying to yield, while also
 793  * waiting for the other threads to sync up too.
 794  *
 795  * Note, however, that this code is also used during remark and in
 796  * this case we should not attempt to leave / enter the STS, otherwise
 797  * we'll either hit an assert (debug / fastdebug) or deadlock
 798  * (product). So we should only leave / enter the STS if we are
 799  * operating concurrently.
 800  *
 801  * Because the thread that does the sync barrier has left the STS, it
 802  * is possible to be suspended for a Full GC or an evacuation pause
 803  * could occur. This is actually safe, since the entering the sync
 804  * barrier is one of the last things do_marking_step() does, and it
 805  * doesn't manipulate any data structures afterwards.
 806  */
 807 
 808 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 809   bool barrier_aborted;
 810   {
 811     SuspendibleThreadSetLeaver sts_leave(concurrent());
 812     barrier_aborted = !_first_overflow_barrier_sync.enter();
 813   }
 814 
 815   // at this point everyone should have synced up and not be doing any
 816   // more work
 817 
 818   if (barrier_aborted) {
 819     // If the barrier aborted we ignore the overflow condition and
 820     // just abort the whole marking phase as quickly as possible.
 821     return;
 822   }
 823 
 824   // If we're executing the concurrent phase of marking, reset the marking
 825   // state; otherwise the marking state is reset after reference processing,
 826   // during the remark pause.
 827   // If we reset here as a result of an overflow during the remark we will
 828   // see assertion failures from any subsequent set_concurrency_and_phase()
 829   // calls.
 830   if (concurrent()) {
 831     // let the task associated with with worker 0 do this
 832     if (worker_id == 0) {
 833       // task 0 is responsible for clearing the global data structures
 834       // We should be here because of an overflow. During STW we should
 835       // not clear the overflow flag since we rely on it being true when
 836       // we exit this method to abort the pause and restart concurrent
 837       // marking.
 838       reset_marking_state(true /* clear_overflow */);
 839 
 840       log_info(gc, marking)("Concurrent Mark reset for overflow");
 841     }
 842   }
 843 
 844   // after this, each task should reset its own data structures then
 845   // then go into the second barrier
 846 }
 847 
 848 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 849   SuspendibleThreadSetLeaver sts_leave(concurrent());
 850   _second_overflow_barrier_sync.enter();
 851 
 852   // at this point everything should be re-initialized and ready to go
 853 }
 854 
 855 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 856 private:
 857   G1ConcurrentMark*     _cm;
 858   ConcurrentMarkThread* _cmt;
 859 
 860 public:
 861   void work(uint worker_id) {
 862     assert(Thread::current()->is_ConcurrentGC_thread(),
 863            "this should only be done by a conc GC thread");
 864     ResourceMark rm;
 865 
 866     double start_vtime = os::elapsedVTime();
 867 
 868     {
 869       SuspendibleThreadSetJoiner sts_join;
 870 
 871       assert(worker_id < _cm->active_tasks(), "invariant");
 872       G1CMTask* the_task = _cm->task(worker_id);
 873       the_task->record_start_time();
 874       if (!_cm->has_aborted()) {
 875         do {
 876           double start_vtime_sec = os::elapsedVTime();
 877           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 878 
 879           the_task->do_marking_step(mark_step_duration_ms,
 880                                     true  /* do_termination */,
 881                                     false /* is_serial*/);
 882 
 883           double end_vtime_sec = os::elapsedVTime();
 884           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 885           _cm->clear_has_overflown();
 886 
 887           _cm->do_yield_check(worker_id);
 888 
 889           jlong sleep_time_ms;
 890           if (!_cm->has_aborted() && the_task->has_aborted()) {
 891             sleep_time_ms =
 892               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 893             {
 894               SuspendibleThreadSetLeaver sts_leave;
 895               os::sleep(Thread::current(), sleep_time_ms, false);
 896             }
 897           }
 898         } while (!_cm->has_aborted() && the_task->has_aborted());
 899       }
 900       the_task->record_end_time();
 901       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 902     }
 903 
 904     double end_vtime = os::elapsedVTime();
 905     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 906   }
 907 
 908   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 909                             ConcurrentMarkThread* cmt) :
 910       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 911 
 912   ~G1CMConcurrentMarkingTask() { }
 913 };
 914 
 915 // Calculates the number of active workers for a concurrent
 916 // phase.
 917 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 918   uint n_conc_workers = 0;
 919   if (!UseDynamicNumberOfGCThreads ||
 920       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 921        !ForceDynamicNumberOfGCThreads)) {
 922     n_conc_workers = max_parallel_marking_threads();
 923   } else {
 924     n_conc_workers =
 925       AdaptiveSizePolicy::calc_default_active_workers(
 926                                    max_parallel_marking_threads(),
 927                                    1, /* Minimum workers */
 928                                    parallel_marking_threads(),
 929                                    Threads::number_of_non_daemon_threads());
 930     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 931     // that scaling has already gone into "_max_parallel_marking_threads".
 932   }
 933   assert(n_conc_workers > 0, "Always need at least 1");
 934   return n_conc_workers;
 935 }
 936 
 937 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
 938   // Currently, only survivors can be root regions.
 939   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 940   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 941 
 942   const uintx interval = PrefetchScanIntervalInBytes;
 943   HeapWord* curr = hr->bottom();
 944   const HeapWord* end = hr->top();
 945   while (curr < end) {
 946     Prefetch::read(curr, interval);
 947     oop obj = oop(curr);
 948     int size = obj->oop_iterate_size(&cl);
 949     assert(size == obj->size(), "sanity");
 950     curr += size;
 951   }
 952 }
 953 
 954 class G1CMRootRegionScanTask : public AbstractGangTask {
 955 private:
 956   G1ConcurrentMark* _cm;
 957 
 958 public:
 959   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 960     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 961 
 962   void work(uint worker_id) {
 963     assert(Thread::current()->is_ConcurrentGC_thread(),
 964            "this should only be done by a conc GC thread");
 965 
 966     G1CMRootRegions* root_regions = _cm->root_regions();
 967     HeapRegion* hr = root_regions->claim_next();
 968     while (hr != NULL) {
 969       _cm->scanRootRegion(hr, worker_id);
 970       hr = root_regions->claim_next();
 971     }
 972   }
 973 };
 974 
 975 void G1ConcurrentMark::scan_root_regions() {
 976   // scan_in_progress() will have been set to true only if there was
 977   // at least one root region to scan. So, if it's false, we
 978   // should not attempt to do any further work.
 979   if (root_regions()->scan_in_progress()) {
 980     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 981 
 982     _parallel_marking_threads = calc_parallel_marking_threads();
 983     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 984            "Maximum number of marking threads exceeded");
 985     uint active_workers = MAX2(1U, parallel_marking_threads());
 986 
 987     G1CMRootRegionScanTask task(this);
 988     _parallel_workers->set_active_workers(active_workers);
 989     _parallel_workers->run_task(&task);
 990 
 991     // It's possible that has_aborted() is true here without actually
 992     // aborting the survivor scan earlier. This is OK as it's
 993     // mainly used for sanity checking.
 994     root_regions()->scan_finished();
 995   }
 996 }
 997 
 998 void G1ConcurrentMark::concurrent_cycle_start() {
 999   _gc_timer_cm->register_gc_start();
1000 
1001   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
1002 
1003   _g1h->trace_heap_before_gc(_gc_tracer_cm);
1004 }
1005 
1006 void G1ConcurrentMark::concurrent_cycle_end() {
1007   _g1h->trace_heap_after_gc(_gc_tracer_cm);
1008 
1009   if (has_aborted()) {
1010     _gc_tracer_cm->report_concurrent_mode_failure();
1011   }
1012 
1013   _gc_timer_cm->register_gc_end();
1014 
1015   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1016 }
1017 
1018 void G1ConcurrentMark::mark_from_roots() {
1019   // we might be tempted to assert that:
1020   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1021   //        "inconsistent argument?");
1022   // However that wouldn't be right, because it's possible that
1023   // a safepoint is indeed in progress as a younger generation
1024   // stop-the-world GC happens even as we mark in this generation.
1025 
1026   _restart_for_overflow = false;
1027 
1028   // _g1h has _n_par_threads
1029   _parallel_marking_threads = calc_parallel_marking_threads();
1030   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1031     "Maximum number of marking threads exceeded");
1032 
1033   uint active_workers = MAX2(1U, parallel_marking_threads());
1034   assert(active_workers > 0, "Should have been set");
1035 
1036   // Parallel task terminator is set in "set_concurrency_and_phase()"
1037   set_concurrency_and_phase(active_workers, true /* concurrent */);
1038 
1039   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1040   _parallel_workers->set_active_workers(active_workers);
1041   _parallel_workers->run_task(&markingTask);
1042   print_stats();
1043 }
1044 
1045 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1046   // world is stopped at this checkpoint
1047   assert(SafepointSynchronize::is_at_safepoint(),
1048          "world should be stopped");
1049 
1050   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1051 
1052   // If a full collection has happened, we shouldn't do this.
1053   if (has_aborted()) {
1054     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1055     return;
1056   }
1057 
1058   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1059 
1060   if (VerifyDuringGC) {
1061     HandleMark hm;  // handle scope
1062     g1h->prepare_for_verify();
1063     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1064   }
1065   g1h->verifier()->check_bitmaps("Remark Start");
1066 
1067   G1CollectorPolicy* g1p = g1h->g1_policy();
1068   g1p->record_concurrent_mark_remark_start();
1069 
1070   double start = os::elapsedTime();
1071 
1072   checkpointRootsFinalWork();
1073 
1074   double mark_work_end = os::elapsedTime();
1075 
1076   weakRefsWork(clear_all_soft_refs);
1077 
1078   if (has_overflown()) {
1079     // Oops.  We overflowed.  Restart concurrent marking.
1080     _restart_for_overflow = true;
1081 
1082     // Verify the heap w.r.t. the previous marking bitmap.
1083     if (VerifyDuringGC) {
1084       HandleMark hm;  // handle scope
1085       g1h->prepare_for_verify();
1086       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1087     }
1088 
1089     // Clear the marking state because we will be restarting
1090     // marking due to overflowing the global mark stack.
1091     reset_marking_state();
1092   } else {
1093     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1094     // We're done with marking.
1095     // This is the end of  the marking cycle, we're expected all
1096     // threads to have SATB queues with active set to true.
1097     satb_mq_set.set_active_all_threads(false, /* new active value */
1098                                        true /* expected_active */);
1099 
1100     if (VerifyDuringGC) {
1101       HandleMark hm;  // handle scope
1102       g1h->prepare_for_verify();
1103       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1104     }
1105     g1h->verifier()->check_bitmaps("Remark End");
1106     assert(!restart_for_overflow(), "sanity");
1107     // Completely reset the marking state since marking completed
1108     set_non_marking_state();
1109   }
1110 
1111   // Expand the marking stack, if we have to and if we can.
1112   if (_markStack.should_expand()) {
1113     _markStack.expand();
1114   }
1115 
1116   // Statistics
1117   double now = os::elapsedTime();
1118   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1119   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1120   _remark_times.add((now - start) * 1000.0);
1121 
1122   g1p->record_concurrent_mark_remark_end();
1123 
1124   G1CMIsAliveClosure is_alive(g1h);
1125   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1126 }
1127 
1128 // Helper class that provides functionality to generate the Live Data Count
1129 // information.
1130 class G1LiveDataHelper VALUE_OBJ_CLASS_SPEC {
1131 private:
1132   BitMap* _region_bm;
1133   BitMap* _card_bm;
1134 
1135   // The card number of the bottom of the G1 heap. Used for converting addresses
1136   // to bitmap indices quickly.
1137   BitMap::idx_t _heap_card_bias;
1138 
1139   // Utility routine to set an exclusive range of bits on the given
1140   // bitmap, optimized for very small ranges.
1141   // There must be at least one bit to set.
1142   inline void set_card_bitmap_range(BitMap* bm,
1143                                     BitMap::idx_t start_idx,
1144                                     BitMap::idx_t end_idx) {
1145 
1146     // Set the exclusive bit range [start_idx, end_idx).
1147     assert((end_idx - start_idx) > 0, "at least one bit");
1148     assert(end_idx <= bm->size(), "sanity");
1149 
1150     // For small ranges use a simple loop; otherwise use set_range or
1151     // use par_at_put_range (if parallel). The range is made up of the
1152     // cards that are spanned by an object/mem region so 8 cards will
1153     // allow up to object sizes up to 4K to be handled using the loop.
1154     if ((end_idx - start_idx) <= 8) {
1155       for (BitMap::idx_t i = start_idx; i < end_idx; i += 1) {
1156         bm->set_bit(i);
1157       }
1158     } else {
1159       bm->set_range(start_idx, end_idx);
1160     }    
1161   }
1162 
1163   // We cache the last mark set. This avoids setting the same bit multiple times.
1164   // This is particularly interesting for dense bitmaps, as this avoids doing
1165   // lots of work most of the time.
1166   BitMap::idx_t _last_marked_bit_idx;
1167 
1168   // Mark the card liveness bitmap for the object spanning from start to end.
1169   void mark_card_bitmap_range(HeapWord* start, HeapWord* end) {
1170     BitMap::idx_t start_idx = card_live_bitmap_index_for(start);
1171     BitMap::idx_t end_idx = card_live_bitmap_index_for((HeapWord*)align_ptr_up(end, CardTableModRefBS::card_size));
1172 
1173     assert((end_idx - start_idx) > 0, "Trying to mark zero sized range.");
1174     
1175     if (start_idx == _last_marked_bit_idx) {
1176       start_idx++;
1177     }
1178     if (start_idx == end_idx) {
1179       return;
1180     }
1181     
1182     // Set the bits in the card bitmap for the cards spanned by this object.
1183     set_card_bitmap_range(_card_bm, start_idx, end_idx);
1184     _last_marked_bit_idx = end_idx - 1;
1185   }
1186 
1187   void reset_mark_cache() {
1188     _last_marked_bit_idx = (BitMap::idx_t)-1;
1189   }
1190 
1191 public:
1192   // Returns the index in the per-card liveness count bitmap
1193   // for the given address
1194   inline BitMap::idx_t card_live_bitmap_index_for(HeapWord* addr) {
1195     // Below, the term "card num" means the result of shifting an address
1196     // by the card shift -- address 0 corresponds to card number 0.  One
1197     // must subtract the card num of the bottom of the heap to obtain a
1198     // card table index.
1199     BitMap::idx_t card_num = (BitMap::idx_t)(uintptr_t(addr) >> CardTableModRefBS::card_shift);
1200     return card_num - _heap_card_bias;
1201   }
1202 
1203   // Takes a region that's not empty (i.e., it has at least one
1204   // live object in it and sets its corresponding bit on the region
1205   // bitmap to 1.
1206   void set_bit_for_region(HeapRegion* hr) {
1207     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1208     _region_bm->par_at_put(index, true);
1209   }
1210 
1211   // Mark the range of bits covered by allocations done since the last marking
1212   // in the given heap region, i.e. from NTAMS to top of the given region.
1213   // Returns if there has been some allocation in this region since the last marking.
1214   bool mark_allocated_since_marking(HeapRegion* hr) {
1215     reset_mark_cache();
1216 
1217     HeapWord* ntams = hr->next_top_at_mark_start();
1218     HeapWord* top   = hr->top();
1219 
1220     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1221 
1222     // Mark the allocated-since-marking portion...
1223     if (ntams < top) {
1224       mark_card_bitmap_range(ntams, top);
1225       return true;
1226     } else {
1227       return false;
1228     }
1229   }
1230 
1231   // Mark the range of bits covered by live objects on the mark bitmap between
1232   // bottom and NTAMS of the given region.
1233   // Returns the number of live bytes marked within that area for the given
1234   // heap region.
1235   size_t mark_marked_during_marking(G1CMBitMap* mark_bitmap, HeapRegion* hr) {
1236     reset_mark_cache();
1237 
1238     size_t marked_bytes = 0;
1239 
1240     HeapWord* ntams = hr->next_top_at_mark_start();
1241     HeapWord* start = hr->bottom();
1242 
1243     if (ntams <= start) {
1244       // Skip empty regions.
1245       return 0;
1246     } else if (hr->is_humongous()) {
1247       mark_card_bitmap_range(start, hr->top());
1248       return pointer_delta(hr->top(), start, 1);
1249     }
1250 
1251     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1252            "Preconditions not met - "
1253            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1254            p2i(start), p2i(ntams), p2i(hr->end()));
1255 
1256     // Find the first marked object at or after "start".
1257     start = mark_bitmap->getNextMarkedWordAddress(start, ntams);
1258     while (start < ntams) {
1259       oop obj = oop(start);
1260       int obj_sz = obj->size();
1261       HeapWord* obj_end = start + obj_sz;
1262 
1263       assert(obj_end <= hr->end(), "Humongous objects must have been handled elsewhere.");
1264         
1265       mark_card_bitmap_range(start, obj_end);
1266 
1267       // Add the size of this object to the number of marked bytes.
1268       marked_bytes += (size_t)obj_sz * HeapWordSize;
1269 
1270       // Find the next marked object after this one.
1271       start = mark_bitmap->getNextMarkedWordAddress(obj_end, ntams);
1272     }
1273 
1274     return marked_bytes;
1275   }
1276 
1277   G1LiveDataHelper(BitMap* region_bm,
1278                    BitMap* card_bm):
1279     _region_bm(region_bm),
1280     _card_bm(card_bm) {
1281     //assert(region_bm != NULL, "");
1282     assert(card_bm != NULL, "");
1283     // Calculate the card number for the bottom of the heap. Used
1284     // in biasing indexes into the accounting card bitmaps.
1285     _heap_card_bias =
1286       (BitMap::idx_t)(uintptr_t(G1CollectedHeap::heap()->reserved_region().start()) >> CardTableModRefBS::card_shift);
1287   }
1288 };
1289 
1290 // Heap region closure used for verifying the live count data
1291 // that was created concurrently and finalized during
1292 // the remark pause. This closure is applied to the heap
1293 // regions during the STW cleanup pause.
1294 class G1VerifyLiveDataHRClosure: public HeapRegionClosure {
1295 private:
1296   G1CollectedHeap* _g1h;
1297   G1CMBitMap* _mark_bitmap;
1298   G1LiveDataHelper _calc_helper;
1299 
1300   BitMap* _act_region_bm; // Region BM to be verified
1301   BitMap* _act_card_bm;   // Card BM to be verified
1302 
1303   BitMap* _exp_region_bm; // Expected Region BM values
1304   BitMap* _exp_card_bm;   // Expected card BM values
1305 
1306   int _failures;
1307 
1308   // Updates the live data count for the given heap region and returns the number
1309   // of bytes marked.
1310   size_t create_live_data_count(HeapRegion* hr) {
1311     size_t bytes_marked = _calc_helper.mark_marked_during_marking(_mark_bitmap, hr);
1312     bool allocated_since_marking = _calc_helper.mark_allocated_since_marking(hr);
1313     if (allocated_since_marking || bytes_marked > 0) {
1314       _calc_helper.set_bit_for_region(hr);
1315     }
1316     return bytes_marked;
1317   }
1318 
1319 public:
1320   G1VerifyLiveDataHRClosure(G1CollectedHeap* g1h,
1321                             G1CMBitMap* mark_bitmap,
1322                             BitMap* act_region_bm,
1323                             BitMap* act_card_bm,
1324                             BitMap* exp_region_bm,
1325                             BitMap* exp_card_bm) :
1326     _g1h(g1h),
1327     _mark_bitmap(mark_bitmap),
1328     _calc_helper(exp_region_bm, exp_card_bm),
1329     _act_region_bm(act_region_bm),
1330     _act_card_bm(act_card_bm),
1331     _exp_region_bm(exp_region_bm),
1332     _exp_card_bm(exp_card_bm),
1333     _failures(0) { }
1334 
1335   int failures() const { return _failures; }
1336 
1337   bool doHeapRegion(HeapRegion* hr) {
1338     int failures = 0;
1339 
1340     // Walk the marking bitmap for this region and set the corresponding bits
1341     // in the expected region and card bitmaps.
1342     size_t exp_marked_bytes = create_live_data_count(hr);
1343     size_t act_marked_bytes = hr->next_marked_bytes();
1344     // Verify the marked bytes for this region.
1345 
1346     if (exp_marked_bytes != act_marked_bytes) {
1347       failures += 1;
1348     } else if (exp_marked_bytes > HeapRegion::GrainBytes) {
1349       failures += 1;
1350     }
1351 
1352     // Verify the bit, for this region, in the actual and expected
1353     // (which was just calculated) region bit maps.
1354     // We're not OK if the bit in the calculated expected region
1355     // bitmap is set and the bit in the actual region bitmap is not.
1356     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1357 
1358     bool expected = _exp_region_bm->at(index);
1359     bool actual = _act_region_bm->at(index);
1360     if (expected && !actual) {
1361       failures += 1;
1362     }
1363 
1364     // Verify that the card bit maps for the cards spanned by the current
1365     // region match. We have an error if we have a set bit in the expected
1366     // bit map and the corresponding bit in the actual bitmap is not set.
1367 
1368     BitMap::idx_t start_idx = _calc_helper.card_live_bitmap_index_for(hr->bottom());
1369     BitMap::idx_t end_idx = _calc_helper.card_live_bitmap_index_for(hr->top());
1370 
1371     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1372       expected = _exp_card_bm->at(i);
1373       actual = _act_card_bm->at(i);
1374 
1375       if (expected && !actual) {
1376         failures += 1;
1377       }
1378     }
1379 
1380     _failures += failures;
1381 
1382     // We could stop iteration over the heap when we
1383     // find the first violating region by returning true.
1384     return false;
1385   }
1386 };
1387 
1388 class G1VerifyLiveDataTask: public AbstractGangTask {
1389 protected:
1390   G1CollectedHeap* _g1h;
1391   G1CMBitMap* _mark_bitmap;
1392   BitMap* _actual_region_bm;
1393   BitMap* _actual_card_bm;
1394 
1395   BitMap _expected_region_bm;
1396   BitMap _expected_card_bm;
1397 
1398   int  _failures;
1399 
1400   HeapRegionClaimer _hr_claimer;
1401 
1402 public:
1403   G1VerifyLiveDataTask(G1CollectedHeap* g1h,
1404                        G1CMBitMap* bitmap,
1405                        BitMap* region_bm,
1406                        BitMap* card_bm,
1407                        uint n_workers)
1408   : AbstractGangTask("G1 verify final counting"),
1409     _g1h(g1h),
1410     _mark_bitmap(bitmap),
1411     _actual_region_bm(region_bm),
1412     _actual_card_bm(card_bm),
1413     _expected_region_bm(region_bm->size(), true /* in_resource_area */),
1414     _expected_card_bm(card_bm->size(), true /* in_resource_area */),
1415     _failures(0),
1416     _hr_claimer(n_workers) {
1417     assert(VerifyDuringGC, "don't call this otherwise");
1418   }
1419 
1420   void work(uint worker_id) {
1421     G1VerifyLiveDataHRClosure cl(_g1h,
1422                                  _mark_bitmap,
1423                                  _actual_region_bm,
1424                                  _actual_card_bm,
1425                                  &_expected_region_bm,
1426                                  &_expected_card_bm);
1427     _g1h->heap_region_par_iterate(&cl, worker_id, &_hr_claimer);
1428 
1429     Atomic::add(cl.failures(), &_failures);
1430   }
1431 
1432   int failures() const { return _failures; }
1433 };
1434 
1435 class G1FinalizeLiveDataTask: public AbstractGangTask {
1436   // Finalizes the liveness counting data.
1437   // Sets the bits corresponding to the interval [NTAMS, top]
1438   // (which contains the implicitly live objects) in the
1439   // card liveness bitmap. Also sets the bit for each region
1440   // containing live data, in the region liveness bitmap.
1441   class G1FinalizeCountDataClosure: public HeapRegionClosure {
1442   private:
1443     G1LiveDataHelper _helper;
1444   public:
1445     G1FinalizeCountDataClosure(G1CMBitMap* bitmap,
1446                                BitMap* region_bm,
1447                                BitMap* card_bm) :
1448       HeapRegionClosure(),
1449       _helper(region_bm, card_bm) { }
1450 
1451     bool doHeapRegion(HeapRegion* hr) {
1452       bool allocated_since_marking = _helper.mark_allocated_since_marking(hr);
1453       if (allocated_since_marking || hr->next_marked_bytes() > 0) {
1454         _helper.set_bit_for_region(hr);
1455       }
1456       return false;
1457     }
1458   };
1459 
1460   G1CMBitMap* _bitmap;
1461 
1462   BitMap* _actual_region_bm;
1463   BitMap* _actual_card_bm;
1464 
1465   HeapRegionClaimer _hr_claimer;
1466 
1467 public:
1468   G1FinalizeLiveDataTask(G1CMBitMap* bitmap, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1469     AbstractGangTask("G1 final counting"),
1470     _bitmap(bitmap),
1471     _actual_region_bm(region_bm),
1472     _actual_card_bm(card_bm),
1473     _hr_claimer(n_workers) {
1474   }
1475 
1476   void work(uint worker_id) {
1477     G1FinalizeCountDataClosure cl(_bitmap,
1478                                   _actual_region_bm,
1479                                   _actual_card_bm);
1480 
1481     G1CollectedHeap::heap()->heap_region_par_iterate(&cl, worker_id, &_hr_claimer);
1482   }
1483 };
1484 
1485 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1486   G1CollectedHeap* _g1;
1487   size_t _freed_bytes;
1488   FreeRegionList* _local_cleanup_list;
1489   uint _old_regions_removed;
1490   uint _humongous_regions_removed;
1491   HRRSCleanupTask* _hrrs_cleanup_task;
1492 
1493 public:
1494   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1495                              FreeRegionList* local_cleanup_list,
1496                              HRRSCleanupTask* hrrs_cleanup_task) :
1497     _g1(g1),
1498     _freed_bytes(0),
1499     _local_cleanup_list(local_cleanup_list),
1500     _old_regions_removed(0),
1501     _humongous_regions_removed(0),
1502     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1503 
1504   size_t freed_bytes() { return _freed_bytes; }
1505   const uint old_regions_removed() { return _old_regions_removed; }
1506   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1507 
1508   bool doHeapRegion(HeapRegion *hr) {
1509     if (hr->is_archive()) {
1510       return false;
1511     }
1512     // We use a claim value of zero here because all regions
1513     // were claimed with value 1 in the FinalCount task.
1514     _g1->reset_gc_time_stamps(hr);
1515     hr->note_end_of_marking();
1516 
1517     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1518       _freed_bytes += hr->used();
1519       hr->set_containing_set(NULL);
1520       if (hr->is_humongous()) {
1521         _humongous_regions_removed++;
1522         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1523       } else {
1524         _old_regions_removed++;
1525         _g1->free_region(hr, _local_cleanup_list, true);
1526       }
1527     } else {
1528       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1529     }
1530 
1531     return false;
1532   }
1533 };
1534 
1535 class G1ParNoteEndTask: public AbstractGangTask {
1536   friend class G1NoteEndOfConcMarkClosure;
1537 
1538 protected:
1539   G1CollectedHeap* _g1h;
1540   FreeRegionList* _cleanup_list;
1541   HeapRegionClaimer _hrclaimer;
1542 
1543 public:
1544   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1545       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1546   }
1547 
1548   void work(uint worker_id) {
1549     FreeRegionList local_cleanup_list("Local Cleanup List");
1550     HRRSCleanupTask hrrs_cleanup_task;
1551     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1552                                            &hrrs_cleanup_task);
1553     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1554     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1555 
1556     // Now update the lists
1557     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1558     {
1559       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1560       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1561 
1562       // If we iterate over the global cleanup list at the end of
1563       // cleanup to do this printing we will not guarantee to only
1564       // generate output for the newly-reclaimed regions (the list
1565       // might not be empty at the beginning of cleanup; we might
1566       // still be working on its previous contents). So we do the
1567       // printing here, before we append the new regions to the global
1568       // cleanup list.
1569 
1570       G1HRPrinter* hr_printer = _g1h->hr_printer();
1571       if (hr_printer->is_active()) {
1572         FreeRegionListIterator iter(&local_cleanup_list);
1573         while (iter.more_available()) {
1574           HeapRegion* hr = iter.get_next();
1575           hr_printer->cleanup(hr);
1576         }
1577       }
1578 
1579       _cleanup_list->add_ordered(&local_cleanup_list);
1580       assert(local_cleanup_list.is_empty(), "post-condition");
1581 
1582       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1583     }
1584   }
1585 };
1586 
1587 void G1ConcurrentMark::cleanup() {
1588   // world is stopped at this checkpoint
1589   assert(SafepointSynchronize::is_at_safepoint(),
1590          "world should be stopped");
1591   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1592 
1593   // If a full collection has happened, we shouldn't do this.
1594   if (has_aborted()) {
1595     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1596     return;
1597   }
1598 
1599   g1h->verifier()->verify_region_sets_optional();
1600 
1601   if (VerifyDuringGC) {
1602     HandleMark hm;  // handle scope
1603     g1h->prepare_for_verify();
1604     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1605   }
1606   g1h->verifier()->check_bitmaps("Cleanup Start");
1607 
1608   G1CollectorPolicy* g1p = g1h->g1_policy();
1609   g1p->record_concurrent_mark_cleanup_start();
1610 
1611   double start = os::elapsedTime();
1612 
1613   HeapRegionRemSet::reset_for_cleanup_tasks();
1614 
1615   {
1616     // Finalize the live data.
1617     G1FinalizeLiveDataTask cl(_nextMarkBitMap,
1618                               &_region_live_bm,
1619                               &_card_live_bm,
1620                               g1h->workers()->active_workers());
1621     g1h->workers()->run_task(&cl);
1622   }
1623 
1624   if (VerifyDuringGC) {
1625     // Verify that the liveness count data created concurrently matches one created
1626     // during this safepoint.
1627     ResourceMark rm;
1628     G1VerifyLiveDataTask cl(G1CollectedHeap::heap(),
1629                             _nextMarkBitMap,
1630                             &_region_live_bm,
1631                             &_card_live_bm,
1632                             g1h->workers()->active_workers());
1633     g1h->workers()->run_task(&cl);
1634 
1635     guarantee(cl.failures() == 0, "Unexpected accounting failures");
1636   }
1637 
1638   g1h->collector_state()->set_mark_in_progress(false);
1639 
1640   double count_end = os::elapsedTime();
1641   double this_final_counting_time = (count_end - start);
1642   _total_counting_time += this_final_counting_time;
1643 
1644   if (log_is_enabled(Trace, gc, liveness)) {
1645     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1646     _g1h->heap_region_iterate(&cl);
1647   }
1648 
1649   // Install newly created mark bitMap as "prev".
1650   swapMarkBitMaps();
1651 
1652   g1h->reset_gc_time_stamp();
1653 
1654   uint n_workers = _g1h->workers()->active_workers();
1655 
1656   // Note end of marking in all heap regions.
1657   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1658   g1h->workers()->run_task(&g1_par_note_end_task);
1659   g1h->check_gc_time_stamps();
1660 
1661   if (!cleanup_list_is_empty()) {
1662     // The cleanup list is not empty, so we'll have to process it
1663     // concurrently. Notify anyone else that might be wanting free
1664     // regions that there will be more free regions coming soon.
1665     g1h->set_free_regions_coming();
1666   }
1667 
1668   // call below, since it affects the metric by which we sort the heap
1669   // regions.
1670   if (G1ScrubRemSets) {
1671     double rs_scrub_start = os::elapsedTime();
1672     g1h->scrub_rem_set(&_region_live_bm, &_card_live_bm);
1673     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1674   }
1675 
1676   // this will also free any regions totally full of garbage objects,
1677   // and sort the regions.
1678   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1679 
1680   // Statistics.
1681   double end = os::elapsedTime();
1682   _cleanup_times.add((end - start) * 1000.0);
1683 
1684   // Clean up will have freed any regions completely full of garbage.
1685   // Update the soft reference policy with the new heap occupancy.
1686   Universe::update_heap_info_at_gc();
1687 
1688   if (VerifyDuringGC) {
1689     HandleMark hm;  // handle scope
1690     g1h->prepare_for_verify();
1691     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1692   }
1693 
1694   g1h->verifier()->check_bitmaps("Cleanup End");
1695 
1696   g1h->verifier()->verify_region_sets_optional();
1697 
1698   // We need to make this be a "collection" so any collection pause that
1699   // races with it goes around and waits for completeCleanup to finish.
1700   g1h->increment_total_collections();
1701 
1702   // Clean out dead classes and update Metaspace sizes.
1703   if (ClassUnloadingWithConcurrentMark) {
1704     ClassLoaderDataGraph::purge();
1705   }
1706   MetaspaceGC::compute_new_size();
1707 
1708   // We reclaimed old regions so we should calculate the sizes to make
1709   // sure we update the old gen/space data.
1710   g1h->g1mm()->update_sizes();
1711   g1h->allocation_context_stats().update_after_mark();
1712 }
1713 
1714 void G1ConcurrentMark::complete_cleanup() {
1715   if (has_aborted()) return;
1716 
1717   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1718 
1719   _cleanup_list.verify_optional();
1720   FreeRegionList tmp_free_list("Tmp Free List");
1721 
1722   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1723                                   "cleanup list has %u entries",
1724                                   _cleanup_list.length());
1725 
1726   // No one else should be accessing the _cleanup_list at this point,
1727   // so it is not necessary to take any locks
1728   while (!_cleanup_list.is_empty()) {
1729     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1730     assert(hr != NULL, "Got NULL from a non-empty list");
1731     hr->par_clear();
1732     tmp_free_list.add_ordered(hr);
1733 
1734     // Instead of adding one region at a time to the secondary_free_list,
1735     // we accumulate them in the local list and move them a few at a
1736     // time. This also cuts down on the number of notify_all() calls
1737     // we do during this process. We'll also append the local list when
1738     // _cleanup_list is empty (which means we just removed the last
1739     // region from the _cleanup_list).
1740     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1741         _cleanup_list.is_empty()) {
1742       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1743                                       "appending %u entries to the secondary_free_list, "
1744                                       "cleanup list still has %u entries",
1745                                       tmp_free_list.length(),
1746                                       _cleanup_list.length());
1747 
1748       {
1749         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1750         g1h->secondary_free_list_add(&tmp_free_list);
1751         SecondaryFreeList_lock->notify_all();
1752       }
1753 #ifndef PRODUCT
1754       if (G1StressConcRegionFreeing) {
1755         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1756           os::sleep(Thread::current(), (jlong) 1, false);
1757         }
1758       }
1759 #endif
1760     }
1761   }
1762   assert(tmp_free_list.is_empty(), "post-condition");
1763 }
1764 
1765 // Supporting Object and Oop closures for reference discovery
1766 // and processing in during marking
1767 
1768 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1769   HeapWord* addr = (HeapWord*)obj;
1770   return addr != NULL &&
1771          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1772 }
1773 
1774 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1775 // Uses the G1CMTask associated with a worker thread (for serial reference
1776 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1777 // trace referent objects.
1778 //
1779 // Using the G1CMTask and embedded local queues avoids having the worker
1780 // threads operating on the global mark stack. This reduces the risk
1781 // of overflowing the stack - which we would rather avoid at this late
1782 // state. Also using the tasks' local queues removes the potential
1783 // of the workers interfering with each other that could occur if
1784 // operating on the global stack.
1785 
1786 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1787   G1ConcurrentMark* _cm;
1788   G1CMTask*         _task;
1789   int               _ref_counter_limit;
1790   int               _ref_counter;
1791   bool              _is_serial;
1792  public:
1793   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1794     _cm(cm), _task(task), _is_serial(is_serial),
1795     _ref_counter_limit(G1RefProcDrainInterval) {
1796     assert(_ref_counter_limit > 0, "sanity");
1797     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1798     _ref_counter = _ref_counter_limit;
1799   }
1800 
1801   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1802   virtual void do_oop(      oop* p) { do_oop_work(p); }
1803 
1804   template <class T> void do_oop_work(T* p) {
1805     if (!_cm->has_overflown()) {
1806       oop obj = oopDesc::load_decode_heap_oop(p);
1807       _task->deal_with_reference(obj);
1808       _ref_counter--;
1809 
1810       if (_ref_counter == 0) {
1811         // We have dealt with _ref_counter_limit references, pushing them
1812         // and objects reachable from them on to the local stack (and
1813         // possibly the global stack). Call G1CMTask::do_marking_step() to
1814         // process these entries.
1815         //
1816         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1817         // there's nothing more to do (i.e. we're done with the entries that
1818         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1819         // above) or we overflow.
1820         //
1821         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1822         // flag while there may still be some work to do. (See the comment at
1823         // the beginning of G1CMTask::do_marking_step() for those conditions -
1824         // one of which is reaching the specified time target.) It is only
1825         // when G1CMTask::do_marking_step() returns without setting the
1826         // has_aborted() flag that the marking step has completed.
1827         do {
1828           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1829           _task->do_marking_step(mark_step_duration_ms,
1830                                  false      /* do_termination */,
1831                                  _is_serial);
1832         } while (_task->has_aborted() && !_cm->has_overflown());
1833         _ref_counter = _ref_counter_limit;
1834       }
1835     }
1836   }
1837 };
1838 
1839 // 'Drain' oop closure used by both serial and parallel reference processing.
1840 // Uses the G1CMTask associated with a given worker thread (for serial
1841 // reference processing the G1CMtask for worker 0 is used). Calls the
1842 // do_marking_step routine, with an unbelievably large timeout value,
1843 // to drain the marking data structures of the remaining entries
1844 // added by the 'keep alive' oop closure above.
1845 
1846 class G1CMDrainMarkingStackClosure: public VoidClosure {
1847   G1ConcurrentMark* _cm;
1848   G1CMTask*         _task;
1849   bool              _is_serial;
1850  public:
1851   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1852     _cm(cm), _task(task), _is_serial(is_serial) {
1853     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1854   }
1855 
1856   void do_void() {
1857     do {
1858       // We call G1CMTask::do_marking_step() to completely drain the local
1859       // and global marking stacks of entries pushed by the 'keep alive'
1860       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1861       //
1862       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1863       // if there's nothing more to do (i.e. we've completely drained the
1864       // entries that were pushed as a a result of applying the 'keep alive'
1865       // closure to the entries on the discovered ref lists) or we overflow
1866       // the global marking stack.
1867       //
1868       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1869       // flag while there may still be some work to do. (See the comment at
1870       // the beginning of G1CMTask::do_marking_step() for those conditions -
1871       // one of which is reaching the specified time target.) It is only
1872       // when G1CMTask::do_marking_step() returns without setting the
1873       // has_aborted() flag that the marking step has completed.
1874 
1875       _task->do_marking_step(1000000000.0 /* something very large */,
1876                              true         /* do_termination */,
1877                              _is_serial);
1878     } while (_task->has_aborted() && !_cm->has_overflown());
1879   }
1880 };
1881 
1882 // Implementation of AbstractRefProcTaskExecutor for parallel
1883 // reference processing at the end of G1 concurrent marking
1884 
1885 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1886 private:
1887   G1CollectedHeap*  _g1h;
1888   G1ConcurrentMark* _cm;
1889   WorkGang*         _workers;
1890   uint              _active_workers;
1891 
1892 public:
1893   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1894                           G1ConcurrentMark* cm,
1895                           WorkGang* workers,
1896                           uint n_workers) :
1897     _g1h(g1h), _cm(cm),
1898     _workers(workers), _active_workers(n_workers) { }
1899 
1900   // Executes the given task using concurrent marking worker threads.
1901   virtual void execute(ProcessTask& task);
1902   virtual void execute(EnqueueTask& task);
1903 };
1904 
1905 class G1CMRefProcTaskProxy: public AbstractGangTask {
1906   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1907   ProcessTask&      _proc_task;
1908   G1CollectedHeap*  _g1h;
1909   G1ConcurrentMark* _cm;
1910 
1911 public:
1912   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1913                        G1CollectedHeap* g1h,
1914                        G1ConcurrentMark* cm) :
1915     AbstractGangTask("Process reference objects in parallel"),
1916     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1917     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1918     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1919   }
1920 
1921   virtual void work(uint worker_id) {
1922     ResourceMark rm;
1923     HandleMark hm;
1924     G1CMTask* task = _cm->task(worker_id);
1925     G1CMIsAliveClosure g1_is_alive(_g1h);
1926     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1927     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1928 
1929     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1930   }
1931 };
1932 
1933 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1934   assert(_workers != NULL, "Need parallel worker threads.");
1935   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1936 
1937   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1938 
1939   // We need to reset the concurrency level before each
1940   // proxy task execution, so that the termination protocol
1941   // and overflow handling in G1CMTask::do_marking_step() knows
1942   // how many workers to wait for.
1943   _cm->set_concurrency(_active_workers);
1944   _workers->run_task(&proc_task_proxy);
1945 }
1946 
1947 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1948   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1949   EnqueueTask& _enq_task;
1950 
1951 public:
1952   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1953     AbstractGangTask("Enqueue reference objects in parallel"),
1954     _enq_task(enq_task) { }
1955 
1956   virtual void work(uint worker_id) {
1957     _enq_task.work(worker_id);
1958   }
1959 };
1960 
1961 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1962   assert(_workers != NULL, "Need parallel worker threads.");
1963   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1964 
1965   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1966 
1967   // Not strictly necessary but...
1968   //
1969   // We need to reset the concurrency level before each
1970   // proxy task execution, so that the termination protocol
1971   // and overflow handling in G1CMTask::do_marking_step() knows
1972   // how many workers to wait for.
1973   _cm->set_concurrency(_active_workers);
1974   _workers->run_task(&enq_task_proxy);
1975 }
1976 
1977 void G1ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
1978   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
1979 }
1980 
1981 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1982   if (has_overflown()) {
1983     // Skip processing the discovered references if we have
1984     // overflown the global marking stack. Reference objects
1985     // only get discovered once so it is OK to not
1986     // de-populate the discovered reference lists. We could have,
1987     // but the only benefit would be that, when marking restarts,
1988     // less reference objects are discovered.
1989     return;
1990   }
1991 
1992   ResourceMark rm;
1993   HandleMark   hm;
1994 
1995   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1996 
1997   // Is alive closure.
1998   G1CMIsAliveClosure g1_is_alive(g1h);
1999 
2000   // Inner scope to exclude the cleaning of the string and symbol
2001   // tables from the displayed time.
2002   {
2003     GCTraceTime(Debug, gc) trace("Reference Processing", _gc_timer_cm);
2004 
2005     ReferenceProcessor* rp = g1h->ref_processor_cm();
2006 
2007     // See the comment in G1CollectedHeap::ref_processing_init()
2008     // about how reference processing currently works in G1.
2009 
2010     // Set the soft reference policy
2011     rp->setup_policy(clear_all_soft_refs);
2012     assert(_markStack.isEmpty(), "mark stack should be empty");
2013 
2014     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2015     // in serial reference processing. Note these closures are also
2016     // used for serially processing (by the the current thread) the
2017     // JNI references during parallel reference processing.
2018     //
2019     // These closures do not need to synchronize with the worker
2020     // threads involved in parallel reference processing as these
2021     // instances are executed serially by the current thread (e.g.
2022     // reference processing is not multi-threaded and is thus
2023     // performed by the current thread instead of a gang worker).
2024     //
2025     // The gang tasks involved in parallel reference processing create
2026     // their own instances of these closures, which do their own
2027     // synchronization among themselves.
2028     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2029     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2030 
2031     // We need at least one active thread. If reference processing
2032     // is not multi-threaded we use the current (VMThread) thread,
2033     // otherwise we use the work gang from the G1CollectedHeap and
2034     // we utilize all the worker threads we can.
2035     bool processing_is_mt = rp->processing_is_mt();
2036     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2037     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2038 
2039     // Parallel processing task executor.
2040     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2041                                               g1h->workers(), active_workers);
2042     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2043 
2044     // Set the concurrency level. The phase was already set prior to
2045     // executing the remark task.
2046     set_concurrency(active_workers);
2047 
2048     // Set the degree of MT processing here.  If the discovery was done MT,
2049     // the number of threads involved during discovery could differ from
2050     // the number of active workers.  This is OK as long as the discovered
2051     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2052     rp->set_active_mt_degree(active_workers);
2053 
2054     // Process the weak references.
2055     const ReferenceProcessorStats& stats =
2056         rp->process_discovered_references(&g1_is_alive,
2057                                           &g1_keep_alive,
2058                                           &g1_drain_mark_stack,
2059                                           executor,
2060                                           _gc_timer_cm);
2061     _gc_tracer_cm->report_gc_reference_stats(stats);
2062 
2063     // The do_oop work routines of the keep_alive and drain_marking_stack
2064     // oop closures will set the has_overflown flag if we overflow the
2065     // global marking stack.
2066 
2067     assert(_markStack.overflow() || _markStack.isEmpty(),
2068             "mark stack should be empty (unless it overflowed)");
2069 
2070     if (_markStack.overflow()) {
2071       // This should have been done already when we tried to push an
2072       // entry on to the global mark stack. But let's do it again.
2073       set_has_overflown();
2074     }
2075 
2076     assert(rp->num_q() == active_workers, "why not");
2077 
2078     rp->enqueue_discovered_references(executor);
2079 
2080     rp->verify_no_references_recorded();
2081     assert(!rp->discovery_enabled(), "Post condition");
2082   }
2083 
2084   if (has_overflown()) {
2085     // We can not trust g1_is_alive if the marking stack overflowed
2086     return;
2087   }
2088 
2089   assert(_markStack.isEmpty(), "Marking should have completed");
2090 
2091   // Unload Klasses, String, Symbols, Code Cache, etc.
2092   {
2093     GCTraceTime(Debug, gc) trace("Unloading", _gc_timer_cm);
2094 
2095     if (ClassUnloadingWithConcurrentMark) {
2096       bool purged_classes;
2097 
2098       {
2099         GCTraceTime(Trace, gc) trace("System Dictionary Unloading", _gc_timer_cm);
2100         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2101       }
2102 
2103       {
2104         GCTraceTime(Trace, gc) trace("Parallel Unloading", _gc_timer_cm);
2105         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2106       }
2107     }
2108 
2109     if (G1StringDedup::is_enabled()) {
2110       GCTraceTime(Trace, gc) trace("String Deduplication Unlink", _gc_timer_cm);
2111       G1StringDedup::unlink(&g1_is_alive);
2112     }
2113   }
2114 }
2115 
2116 void G1ConcurrentMark::swapMarkBitMaps() {
2117   G1CMBitMapRO* temp = _prevMarkBitMap;
2118   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
2119   _nextMarkBitMap    = (G1CMBitMap*)  temp;
2120 }
2121 
2122 BitMap G1ConcurrentMark::allocate_large_bitmap(BitMap::idx_t size_in_bits) {
2123   size_t size_in_words = BitMap::size_in_words(size_in_bits);
2124 
2125   BitMap::bm_word_t* map = MmapArrayAllocator<BitMap::bm_word_t, mtGC>::allocate(size_in_words);
2126   
2127   return BitMap(map, size_in_bits);
2128 }
2129 
2130 void G1ConcurrentMark::allocate_internal_bitmaps() {
2131   double start_time = os::elapsedTime();
2132 
2133   _region_live_bm = allocate_large_bitmap(_g1h->max_regions());
2134 
2135   guarantee(_g1h->max_capacity() % CardTableModRefBS::card_size == 0,
2136             "Heap capacity must be aligned to card size.");
2137   _card_live_bm = allocate_large_bitmap(_g1h->max_capacity() / CardTableModRefBS::card_size);
2138 
2139   log_debug(gc, marking)("Allocating internal bitmaps took %1.2f seconds.", os::elapsedTime() - start_time);
2140 }
2141 
2142 void G1ConcurrentMark::pretouch_internal_bitmaps() {
2143   double start_time = os::elapsedTime();
2144 
2145   _region_live_bm.pretouch();
2146   _card_live_bm.pretouch();
2147   
2148   log_debug(gc, marking)("Pre-touching internal bitmaps took %1.2f seconds.", os::elapsedTime() - start_time);
2149 }
2150 
2151 // Closure for marking entries in SATB buffers.
2152 class G1CMSATBBufferClosure : public SATBBufferClosure {
2153 private:
2154   G1CMTask* _task;
2155   G1CollectedHeap* _g1h;
2156 
2157   // This is very similar to G1CMTask::deal_with_reference, but with
2158   // more relaxed requirements for the argument, so this must be more
2159   // circumspect about treating the argument as an object.
2160   void do_entry(void* entry) const {
2161     _task->increment_refs_reached();
2162     HeapRegion* hr = _g1h->heap_region_containing(entry);
2163     if (entry < hr->next_top_at_mark_start()) {
2164       // Until we get here, we don't know whether entry refers to a valid
2165       // object; it could instead have been a stale reference.
2166       oop obj = static_cast<oop>(entry);
2167       assert(obj->is_oop(true /* ignore mark word */),
2168              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2169       _task->make_reference_grey(obj);
2170     }
2171   }
2172 
2173 public:
2174   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
2175     : _task(task), _g1h(g1h) { }
2176 
2177   virtual void do_buffer(void** buffer, size_t size) {
2178     for (size_t i = 0; i < size; ++i) {
2179       do_entry(buffer[i]);
2180     }
2181   }
2182 };
2183 
2184 class G1RemarkThreadsClosure : public ThreadClosure {
2185   G1CMSATBBufferClosure _cm_satb_cl;
2186   G1CMOopClosure _cm_cl;
2187   MarkingCodeBlobClosure _code_cl;
2188   int _thread_parity;
2189 
2190  public:
2191   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
2192     _cm_satb_cl(task, g1h),
2193     _cm_cl(g1h, g1h->concurrent_mark(), task),
2194     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2195     _thread_parity(Threads::thread_claim_parity()) {}
2196 
2197   void do_thread(Thread* thread) {
2198     if (thread->is_Java_thread()) {
2199       if (thread->claim_oops_do(true, _thread_parity)) {
2200         JavaThread* jt = (JavaThread*)thread;
2201 
2202         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2203         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2204         // * Alive if on the stack of an executing method
2205         // * Weakly reachable otherwise
2206         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2207         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2208         jt->nmethods_do(&_code_cl);
2209 
2210         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2211       }
2212     } else if (thread->is_VM_thread()) {
2213       if (thread->claim_oops_do(true, _thread_parity)) {
2214         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2215       }
2216     }
2217   }
2218 };
2219 
2220 class G1CMRemarkTask: public AbstractGangTask {
2221 private:
2222   G1ConcurrentMark* _cm;
2223 public:
2224   void work(uint worker_id) {
2225     // Since all available tasks are actually started, we should
2226     // only proceed if we're supposed to be active.
2227     if (worker_id < _cm->active_tasks()) {
2228       G1CMTask* task = _cm->task(worker_id);
2229       task->record_start_time();
2230       {
2231         ResourceMark rm;
2232         HandleMark hm;
2233 
2234         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2235         Threads::threads_do(&threads_f);
2236       }
2237 
2238       do {
2239         task->do_marking_step(1000000000.0 /* something very large */,
2240                               true         /* do_termination       */,
2241                               false        /* is_serial            */);
2242       } while (task->has_aborted() && !_cm->has_overflown());
2243       // If we overflow, then we do not want to restart. We instead
2244       // want to abort remark and do concurrent marking again.
2245       task->record_end_time();
2246     }
2247   }
2248 
2249   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
2250     AbstractGangTask("Par Remark"), _cm(cm) {
2251     _cm->terminator()->reset_for_reuse(active_workers);
2252   }
2253 };
2254 
2255 void G1ConcurrentMark::checkpointRootsFinalWork() {
2256   ResourceMark rm;
2257   HandleMark   hm;
2258   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2259 
2260   GCTraceTime(Debug, gc) trace("Finalize Marking", _gc_timer_cm);
2261 
2262   g1h->ensure_parsability(false);
2263 
2264   // this is remark, so we'll use up all active threads
2265   uint active_workers = g1h->workers()->active_workers();
2266   set_concurrency_and_phase(active_workers, false /* concurrent */);
2267   // Leave _parallel_marking_threads at it's
2268   // value originally calculated in the G1ConcurrentMark
2269   // constructor and pass values of the active workers
2270   // through the gang in the task.
2271 
2272   {
2273     StrongRootsScope srs(active_workers);
2274 
2275     G1CMRemarkTask remarkTask(this, active_workers);
2276     // We will start all available threads, even if we decide that the
2277     // active_workers will be fewer. The extra ones will just bail out
2278     // immediately.
2279     g1h->workers()->run_task(&remarkTask);
2280   }
2281 
2282   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2283   guarantee(has_overflown() ||
2284             satb_mq_set.completed_buffers_num() == 0,
2285             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
2286             BOOL_TO_STR(has_overflown()),
2287             satb_mq_set.completed_buffers_num());
2288 
2289   print_stats();
2290 }
2291 
2292 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2293   // Note we are overriding the read-only view of the prev map here, via
2294   // the cast.
2295   ((G1CMBitMap*)_prevMarkBitMap)->clear_range(mr);
2296 }
2297 
2298 HeapRegion*
2299 G1ConcurrentMark::claim_region(uint worker_id) {
2300   // "checkpoint" the finger
2301   HeapWord* finger = _finger;
2302 
2303   // _heap_end will not change underneath our feet; it only changes at
2304   // yield points.
2305   while (finger < _heap_end) {
2306     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2307 
2308     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2309 
2310     // Above heap_region_containing may return NULL as we always scan claim
2311     // until the end of the heap. In this case, just jump to the next region.
2312     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2313 
2314     // Is the gap between reading the finger and doing the CAS too long?
2315     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2316     if (res == finger && curr_region != NULL) {
2317       // we succeeded
2318       HeapWord*   bottom        = curr_region->bottom();
2319       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2320 
2321       // notice that _finger == end cannot be guaranteed here since,
2322       // someone else might have moved the finger even further
2323       assert(_finger >= end, "the finger should have moved forward");
2324 
2325       if (limit > bottom) {
2326         return curr_region;
2327       } else {
2328         assert(limit == bottom,
2329                "the region limit should be at bottom");
2330         // we return NULL and the caller should try calling
2331         // claim_region() again.
2332         return NULL;
2333       }
2334     } else {
2335       assert(_finger > finger, "the finger should have moved forward");
2336       // read it again
2337       finger = _finger;
2338     }
2339   }
2340 
2341   return NULL;
2342 }
2343 
2344 #ifndef PRODUCT
2345 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2346 private:
2347   G1CollectedHeap* _g1h;
2348   const char* _phase;
2349   int _info;
2350 
2351 public:
2352   VerifyNoCSetOops(const char* phase, int info = -1) :
2353     _g1h(G1CollectedHeap::heap()),
2354     _phase(phase),
2355     _info(info)
2356   { }
2357 
2358   void operator()(oop obj) const {
2359     guarantee(obj->is_oop(),
2360               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2361               p2i(obj), _phase, _info);
2362     guarantee(!_g1h->obj_in_cs(obj),
2363               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2364               p2i(obj), _phase, _info);
2365   }
2366 };
2367 
2368 void G1ConcurrentMark::verify_no_cset_oops() {
2369   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2370   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2371     return;
2372   }
2373 
2374   // Verify entries on the global mark stack
2375   _markStack.iterate(VerifyNoCSetOops("Stack"));
2376 
2377   // Verify entries on the task queues
2378   for (uint i = 0; i < _max_worker_id; ++i) {
2379     G1CMTaskQueue* queue = _task_queues->queue(i);
2380     queue->iterate(VerifyNoCSetOops("Queue", i));
2381   }
2382 
2383   // Verify the global finger
2384   HeapWord* global_finger = finger();
2385   if (global_finger != NULL && global_finger < _heap_end) {
2386     // Since we always iterate over all regions, we might get a NULL HeapRegion
2387     // here.
2388     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2389     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2390               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2391               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2392   }
2393 
2394   // Verify the task fingers
2395   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2396   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2397     G1CMTask* task = _tasks[i];
2398     HeapWord* task_finger = task->finger();
2399     if (task_finger != NULL && task_finger < _heap_end) {
2400       // See above note on the global finger verification.
2401       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2402       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2403                 !task_hr->in_collection_set(),
2404                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2405                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2406     }
2407   }
2408 }
2409 #endif // PRODUCT
2410 
2411 class G1CreateLiveDataTask: public AbstractGangTask {
2412   // Aggregate the counting data that was constructed concurrently
2413   // with marking.
2414   class G1CreateLiveDataHRClosure: public HeapRegionClosure {
2415     G1LiveDataHelper _helper;
2416 
2417     G1CMBitMap* _mark_bitmap;
2418 
2419     G1ConcurrentMark* _cm;
2420   public:
2421     G1CreateLiveDataHRClosure(G1ConcurrentMark* cm,
2422                               G1CMBitMap* mark_bitmap,
2423                               BitMap* cm_card_bm) :
2424       HeapRegionClosure(),
2425       _helper(NULL, cm_card_bm),
2426       _mark_bitmap(mark_bitmap),
2427       _cm(cm) { }
2428 
2429     bool doHeapRegion(HeapRegion* hr) {
2430       size_t marked_bytes = _helper.mark_marked_during_marking(_mark_bitmap, hr);
2431       if (marked_bytes > 0) {
2432         hr->add_to_marked_bytes(marked_bytes);
2433       }
2434 
2435       if (_cm->do_yield_check() && _cm->has_aborted()) {
2436         return true;
2437       }
2438       return false;
2439     }
2440   };
2441 
2442   G1CollectedHeap* _g1h;
2443   G1ConcurrentMark* _cm;
2444   BitMap* _cm_card_bm;
2445   HeapRegionClaimer _hr_claimer;
2446 
2447 public:
2448   G1CreateLiveDataTask(G1CollectedHeap* g1h,
2449                        BitMap* cm_card_bm,
2450                        uint n_workers) :
2451       AbstractGangTask("Create Live Data"),
2452       _g1h(g1h),
2453       _cm_card_bm(cm_card_bm),
2454       _hr_claimer(n_workers) {
2455   }
2456 
2457   void work(uint worker_id) {
2458     SuspendibleThreadSetJoiner sts_join;
2459 
2460     G1CreateLiveDataHRClosure cl(_g1h->concurrent_mark(), _g1h->concurrent_mark()->nextMarkBitMap(), _cm_card_bm);
2461     _g1h->heap_region_par_iterate(&cl, worker_id, &_hr_claimer);
2462   }
2463 };
2464 
2465 
2466 void G1ConcurrentMark::create_live_data() {
2467   uint n_workers = _parallel_workers->active_workers();
2468 
2469   G1CreateLiveDataTask cl(_g1h,
2470                           &_card_live_bm,
2471                           n_workers);
2472   _parallel_workers->run_task(&cl);
2473 }
2474 
2475 class G1ClearAllLiveDataTask : public AbstractGangTask {
2476   BitMap* _bitmap;
2477   size_t _num_tasks;
2478   size_t _cur_task;
2479 public:
2480   G1ClearAllLiveDataTask(BitMap* bitmap, size_t num_tasks) :
2481     AbstractGangTask("Clear All Live Data"),
2482     _bitmap(bitmap),
2483     _num_tasks(num_tasks),
2484     _cur_task(0) {
2485   }
2486 
2487   virtual void work(uint worker_id) {
2488     while (true) {
2489       size_t to_process = Atomic::add(1, &_cur_task) - 1;
2490       if (to_process >= _num_tasks) {
2491         break;
2492       }
2493 
2494       BitMap::idx_t start = M * BitsPerByte * to_process;
2495       BitMap::idx_t end = MIN2(start + M * BitsPerByte, _bitmap->size());
2496       _bitmap->clear_range(start, end);
2497     }
2498   }
2499 };
2500 
2501 void G1ConcurrentMark::clear_all_live_data(WorkGang* workers) {
2502   double start_time = os::elapsedTime();
2503    
2504   guarantee(Universe::is_fully_initialized(), "Should not call this during initialization.");
2505   
2506   size_t const num_chunks = align_size_up(_card_live_bm.size_in_words() * HeapWordSize, M) / M;
2507 
2508   G1ClearAllLiveDataTask cl(&_card_live_bm, num_chunks);
2509   workers->run_task(&cl);
2510 
2511   // The region live bitmap is always very small, even for huge heaps. Clear
2512   // directly.
2513   _region_live_bm.clear();
2514 
2515 
2516   log_debug(gc, marking)("Clear Live Data took %.3fms", (os::elapsedTime() - start_time) * 1000.0);
2517 }
2518 
2519 void G1ConcurrentMark::verify_all_live_data() {
2520   assert(_card_live_bm.count_one_bits() == 0, "Master card bitmap not clear");
2521   assert(_region_live_bm.count_one_bits() == 0, "Master region bitmap not clear");
2522 }
2523 
2524 void G1ConcurrentMark::print_stats() {
2525   if (!log_is_enabled(Debug, gc, stats)) {
2526     return;
2527   }
2528   log_debug(gc, stats)("---------------------------------------------------------------------");
2529   for (size_t i = 0; i < _active_tasks; ++i) {
2530     _tasks[i]->print_stats();
2531     log_debug(gc, stats)("---------------------------------------------------------------------");
2532   }
2533 }
2534 
2535 void G1ConcurrentMark::abort() {
2536   if (!cmThread()->during_cycle() || _has_aborted) {
2537     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2538     return;
2539   }
2540 
2541   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2542   // concurrent bitmap clearing.
2543   clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
2544 
2545   // Note we cannot clear the previous marking bitmap here
2546   // since VerifyDuringGC verifies the objects marked during
2547   // a full GC against the previous bitmap.
2548 
2549   clear_all_live_data(_g1h->workers());
2550   DEBUG_ONLY(verify_all_live_data());
2551   // Empty mark stack
2552   reset_marking_state();
2553   for (uint i = 0; i < _max_worker_id; ++i) {
2554     _tasks[i]->clear_region_fields();
2555   }
2556   _first_overflow_barrier_sync.abort();
2557   _second_overflow_barrier_sync.abort();
2558   _has_aborted = true;
2559 
2560   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2561   satb_mq_set.abandon_partial_marking();
2562   // This can be called either during or outside marking, we'll read
2563   // the expected_active value from the SATB queue set.
2564   satb_mq_set.set_active_all_threads(
2565                                  false, /* new active value */
2566                                  satb_mq_set.is_active() /* expected_active */);
2567 }
2568 
2569 static void print_ms_time_info(const char* prefix, const char* name,
2570                                NumberSeq& ns) {
2571   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2572                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2573   if (ns.num() > 0) {
2574     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2575                            prefix, ns.sd(), ns.maximum());
2576   }
2577 }
2578 
2579 void G1ConcurrentMark::print_summary_info() {
2580   LogHandle(gc, marking) log;
2581   if (!log.is_trace()) {
2582     return;
2583   }
2584 
2585   log.trace(" Concurrent marking:");
2586   print_ms_time_info("  ", "init marks", _init_times);
2587   print_ms_time_info("  ", "remarks", _remark_times);
2588   {
2589     print_ms_time_info("     ", "final marks", _remark_mark_times);
2590     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2591 
2592   }
2593   print_ms_time_info("  ", "cleanups", _cleanup_times);
2594   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2595             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2596   if (G1ScrubRemSets) {
2597     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2598               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2599   }
2600   log.trace("  Total stop_world time = %8.2f s.",
2601             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2602   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2603             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2604 }
2605 
2606 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2607   _parallel_workers->print_worker_threads_on(st);
2608 }
2609 
2610 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2611   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2612       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2613   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2614   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2615 }
2616 
2617 // We take a break if someone is trying to stop the world.
2618 bool G1ConcurrentMark::do_yield_check(uint worker_id) {
2619   if (SuspendibleThreadSet::should_yield()) {
2620     SuspendibleThreadSet::yield();
2621     return true;
2622   } else {
2623     return false;
2624   }
2625 }
2626 
2627 // Closure for iteration over bitmaps
2628 class G1CMBitMapClosure : public BitMapClosure {
2629 private:
2630   // the bitmap that is being iterated over
2631   G1CMBitMap*                 _nextMarkBitMap;
2632   G1ConcurrentMark*           _cm;
2633   G1CMTask*                   _task;
2634 
2635 public:
2636   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2637     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2638 
2639   bool do_bit(size_t offset) {
2640     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2641     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2642     assert( addr < _cm->finger(), "invariant");
2643     assert(addr >= _task->finger(), "invariant");
2644 
2645     // We move that task's local finger along.
2646     _task->move_finger_to(addr);
2647 
2648     _task->scan_object(oop(addr));
2649     // we only partially drain the local queue and global stack
2650     _task->drain_local_queue(true);
2651     _task->drain_global_stack(true);
2652 
2653     // if the has_aborted flag has been raised, we need to bail out of
2654     // the iteration
2655     return !_task->has_aborted();
2656   }
2657 };
2658 
2659 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2660   ReferenceProcessor* result = g1h->ref_processor_cm();
2661   assert(result != NULL, "CM reference processor should not be NULL");
2662   return result;
2663 }
2664 
2665 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2666                                G1ConcurrentMark* cm,
2667                                G1CMTask* task)
2668   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2669     _g1h(g1h), _cm(cm), _task(task)
2670 { }
2671 
2672 void G1CMTask::setup_for_region(HeapRegion* hr) {
2673   assert(hr != NULL,
2674         "claim_region() should have filtered out NULL regions");
2675   _curr_region  = hr;
2676   _finger       = hr->bottom();
2677   update_region_limit();
2678 }
2679 
2680 void G1CMTask::update_region_limit() {
2681   HeapRegion* hr            = _curr_region;
2682   HeapWord* bottom          = hr->bottom();
2683   HeapWord* limit           = hr->next_top_at_mark_start();
2684 
2685   if (limit == bottom) {
2686     // The region was collected underneath our feet.
2687     // We set the finger to bottom to ensure that the bitmap
2688     // iteration that will follow this will not do anything.
2689     // (this is not a condition that holds when we set the region up,
2690     // as the region is not supposed to be empty in the first place)
2691     _finger = bottom;
2692   } else if (limit >= _region_limit) {
2693     assert(limit >= _finger, "peace of mind");
2694   } else {
2695     assert(limit < _region_limit, "only way to get here");
2696     // This can happen under some pretty unusual circumstances.  An
2697     // evacuation pause empties the region underneath our feet (NTAMS
2698     // at bottom). We then do some allocation in the region (NTAMS
2699     // stays at bottom), followed by the region being used as a GC
2700     // alloc region (NTAMS will move to top() and the objects
2701     // originally below it will be grayed). All objects now marked in
2702     // the region are explicitly grayed, if below the global finger,
2703     // and we do not need in fact to scan anything else. So, we simply
2704     // set _finger to be limit to ensure that the bitmap iteration
2705     // doesn't do anything.
2706     _finger = limit;
2707   }
2708 
2709   _region_limit = limit;
2710 }
2711 
2712 void G1CMTask::giveup_current_region() {
2713   assert(_curr_region != NULL, "invariant");
2714   clear_region_fields();
2715 }
2716 
2717 void G1CMTask::clear_region_fields() {
2718   // Values for these three fields that indicate that we're not
2719   // holding on to a region.
2720   _curr_region   = NULL;
2721   _finger        = NULL;
2722   _region_limit  = NULL;
2723 }
2724 
2725 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2726   if (cm_oop_closure == NULL) {
2727     assert(_cm_oop_closure != NULL, "invariant");
2728   } else {
2729     assert(_cm_oop_closure == NULL, "invariant");
2730   }
2731   _cm_oop_closure = cm_oop_closure;
2732 }
2733 
2734 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2735   guarantee(nextMarkBitMap != NULL, "invariant");
2736   _nextMarkBitMap                = nextMarkBitMap;
2737   clear_region_fields();
2738 
2739   _calls                         = 0;
2740   _elapsed_time_ms               = 0.0;
2741   _termination_time_ms           = 0.0;
2742   _termination_start_time_ms     = 0.0;
2743 }
2744 
2745 bool G1CMTask::should_exit_termination() {
2746   regular_clock_call();
2747   // This is called when we are in the termination protocol. We should
2748   // quit if, for some reason, this task wants to abort or the global
2749   // stack is not empty (this means that we can get work from it).
2750   return !_cm->mark_stack_empty() || has_aborted();
2751 }
2752 
2753 void G1CMTask::reached_limit() {
2754   assert(_words_scanned >= _words_scanned_limit ||
2755          _refs_reached >= _refs_reached_limit ,
2756          "shouldn't have been called otherwise");
2757   regular_clock_call();
2758 }
2759 
2760 void G1CMTask::regular_clock_call() {
2761   if (has_aborted()) return;
2762 
2763   // First, we need to recalculate the words scanned and refs reached
2764   // limits for the next clock call.
2765   recalculate_limits();
2766 
2767   // During the regular clock call we do the following
2768 
2769   // (1) If an overflow has been flagged, then we abort.
2770   if (_cm->has_overflown()) {
2771     set_has_aborted();
2772     return;
2773   }
2774 
2775   // If we are not concurrent (i.e. we're doing remark) we don't need
2776   // to check anything else. The other steps are only needed during
2777   // the concurrent marking phase.
2778   if (!concurrent()) return;
2779 
2780   // (2) If marking has been aborted for Full GC, then we also abort.
2781   if (_cm->has_aborted()) {
2782     set_has_aborted();
2783     return;
2784   }
2785 
2786   double curr_time_ms = os::elapsedVTime() * 1000.0;
2787 
2788   // (4) We check whether we should yield. If we have to, then we abort.
2789   if (SuspendibleThreadSet::should_yield()) {
2790     // We should yield. To do this we abort the task. The caller is
2791     // responsible for yielding.
2792     set_has_aborted();
2793     return;
2794   }
2795 
2796   // (5) We check whether we've reached our time quota. If we have,
2797   // then we abort.
2798   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2799   if (elapsed_time_ms > _time_target_ms) {
2800     set_has_aborted();
2801     _has_timed_out = true;
2802     return;
2803   }
2804 
2805   // (6) Finally, we check whether there are enough completed STAB
2806   // buffers available for processing. If there are, we abort.
2807   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2808   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2809     // we do need to process SATB buffers, we'll abort and restart
2810     // the marking task to do so
2811     set_has_aborted();
2812     return;
2813   }
2814 }
2815 
2816 void G1CMTask::recalculate_limits() {
2817   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2818   _words_scanned_limit      = _real_words_scanned_limit;
2819 
2820   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2821   _refs_reached_limit       = _real_refs_reached_limit;
2822 }
2823 
2824 void G1CMTask::decrease_limits() {
2825   // This is called when we believe that we're going to do an infrequent
2826   // operation which will increase the per byte scanned cost (i.e. move
2827   // entries to/from the global stack). It basically tries to decrease the
2828   // scanning limit so that the clock is called earlier.
2829 
2830   _words_scanned_limit = _real_words_scanned_limit -
2831     3 * words_scanned_period / 4;
2832   _refs_reached_limit  = _real_refs_reached_limit -
2833     3 * refs_reached_period / 4;
2834 }
2835 
2836 void G1CMTask::move_entries_to_global_stack() {
2837   // local array where we'll store the entries that will be popped
2838   // from the local queue
2839   oop buffer[global_stack_transfer_size];
2840 
2841   int n = 0;
2842   oop obj;
2843   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2844     buffer[n] = obj;
2845     ++n;
2846   }
2847 
2848   if (n > 0) {
2849     // we popped at least one entry from the local queue
2850 
2851     if (!_cm->mark_stack_push(buffer, n)) {
2852       set_has_aborted();
2853     }
2854   }
2855 
2856   // this operation was quite expensive, so decrease the limits
2857   decrease_limits();
2858 }
2859 
2860 void G1CMTask::get_entries_from_global_stack() {
2861   // local array where we'll store the entries that will be popped
2862   // from the global stack.
2863   oop buffer[global_stack_transfer_size];
2864   int n;
2865   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2866   assert(n <= global_stack_transfer_size,
2867          "we should not pop more than the given limit");
2868   if (n > 0) {
2869     // yes, we did actually pop at least one entry
2870     for (int i = 0; i < n; ++i) {
2871       bool success = _task_queue->push(buffer[i]);
2872       // We only call this when the local queue is empty or under a
2873       // given target limit. So, we do not expect this push to fail.
2874       assert(success, "invariant");
2875     }
2876   }
2877 
2878   // this operation was quite expensive, so decrease the limits
2879   decrease_limits();
2880 }
2881 
2882 void G1CMTask::drain_local_queue(bool partially) {
2883   if (has_aborted()) return;
2884 
2885   // Decide what the target size is, depending whether we're going to
2886   // drain it partially (so that other tasks can steal if they run out
2887   // of things to do) or totally (at the very end).
2888   size_t target_size;
2889   if (partially) {
2890     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2891   } else {
2892     target_size = 0;
2893   }
2894 
2895   if (_task_queue->size() > target_size) {
2896     oop obj;
2897     bool ret = _task_queue->pop_local(obj);
2898     while (ret) {
2899       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2900       assert(!_g1h->is_on_master_free_list(
2901                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2902 
2903       scan_object(obj);
2904 
2905       if (_task_queue->size() <= target_size || has_aborted()) {
2906         ret = false;
2907       } else {
2908         ret = _task_queue->pop_local(obj);
2909       }
2910     }
2911   }
2912 }
2913 
2914 void G1CMTask::drain_global_stack(bool partially) {
2915   if (has_aborted()) return;
2916 
2917   // We have a policy to drain the local queue before we attempt to
2918   // drain the global stack.
2919   assert(partially || _task_queue->size() == 0, "invariant");
2920 
2921   // Decide what the target size is, depending whether we're going to
2922   // drain it partially (so that other tasks can steal if they run out
2923   // of things to do) or totally (at the very end).  Notice that,
2924   // because we move entries from the global stack in chunks or
2925   // because another task might be doing the same, we might in fact
2926   // drop below the target. But, this is not a problem.
2927   size_t target_size;
2928   if (partially) {
2929     target_size = _cm->partial_mark_stack_size_target();
2930   } else {
2931     target_size = 0;
2932   }
2933 
2934   if (_cm->mark_stack_size() > target_size) {
2935     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2936       get_entries_from_global_stack();
2937       drain_local_queue(partially);
2938     }
2939   }
2940 }
2941 
2942 // SATB Queue has several assumptions on whether to call the par or
2943 // non-par versions of the methods. this is why some of the code is
2944 // replicated. We should really get rid of the single-threaded version
2945 // of the code to simplify things.
2946 void G1CMTask::drain_satb_buffers() {
2947   if (has_aborted()) return;
2948 
2949   // We set this so that the regular clock knows that we're in the
2950   // middle of draining buffers and doesn't set the abort flag when it
2951   // notices that SATB buffers are available for draining. It'd be
2952   // very counter productive if it did that. :-)
2953   _draining_satb_buffers = true;
2954 
2955   G1CMSATBBufferClosure satb_cl(this, _g1h);
2956   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2957 
2958   // This keeps claiming and applying the closure to completed buffers
2959   // until we run out of buffers or we need to abort.
2960   while (!has_aborted() &&
2961          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2962     regular_clock_call();
2963   }
2964 
2965   _draining_satb_buffers = false;
2966 
2967   assert(has_aborted() ||
2968          concurrent() ||
2969          satb_mq_set.completed_buffers_num() == 0, "invariant");
2970 
2971   // again, this was a potentially expensive operation, decrease the
2972   // limits to get the regular clock call early
2973   decrease_limits();
2974 }
2975 
2976 void G1CMTask::print_stats() {
2977   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
2978                        _worker_id, _calls);
2979   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2980                        _elapsed_time_ms, _termination_time_ms);
2981   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2982                        _step_times_ms.num(), _step_times_ms.avg(),
2983                        _step_times_ms.sd());
2984   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2985                        _step_times_ms.maximum(), _step_times_ms.sum());
2986 }
2987 
2988 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
2989   return _task_queues->steal(worker_id, hash_seed, obj);
2990 }
2991 
2992 /*****************************************************************************
2993 
2994     The do_marking_step(time_target_ms, ...) method is the building
2995     block of the parallel marking framework. It can be called in parallel
2996     with other invocations of do_marking_step() on different tasks
2997     (but only one per task, obviously) and concurrently with the
2998     mutator threads, or during remark, hence it eliminates the need
2999     for two versions of the code. When called during remark, it will
3000     pick up from where the task left off during the concurrent marking
3001     phase. Interestingly, tasks are also claimable during evacuation
3002     pauses too, since do_marking_step() ensures that it aborts before
3003     it needs to yield.
3004 
3005     The data structures that it uses to do marking work are the
3006     following:
3007 
3008       (1) Marking Bitmap. If there are gray objects that appear only
3009       on the bitmap (this happens either when dealing with an overflow
3010       or when the initial marking phase has simply marked the roots
3011       and didn't push them on the stack), then tasks claim heap
3012       regions whose bitmap they then scan to find gray objects. A
3013       global finger indicates where the end of the last claimed region
3014       is. A local finger indicates how far into the region a task has
3015       scanned. The two fingers are used to determine how to gray an
3016       object (i.e. whether simply marking it is OK, as it will be
3017       visited by a task in the future, or whether it needs to be also
3018       pushed on a stack).
3019 
3020       (2) Local Queue. The local queue of the task which is accessed
3021       reasonably efficiently by the task. Other tasks can steal from
3022       it when they run out of work. Throughout the marking phase, a
3023       task attempts to keep its local queue short but not totally
3024       empty, so that entries are available for stealing by other
3025       tasks. Only when there is no more work, a task will totally
3026       drain its local queue.
3027 
3028       (3) Global Mark Stack. This handles local queue overflow. During
3029       marking only sets of entries are moved between it and the local
3030       queues, as access to it requires a mutex and more fine-grain
3031       interaction with it which might cause contention. If it
3032       overflows, then the marking phase should restart and iterate
3033       over the bitmap to identify gray objects. Throughout the marking
3034       phase, tasks attempt to keep the global mark stack at a small
3035       length but not totally empty, so that entries are available for
3036       popping by other tasks. Only when there is no more work, tasks
3037       will totally drain the global mark stack.
3038 
3039       (4) SATB Buffer Queue. This is where completed SATB buffers are
3040       made available. Buffers are regularly removed from this queue
3041       and scanned for roots, so that the queue doesn't get too
3042       long. During remark, all completed buffers are processed, as
3043       well as the filled in parts of any uncompleted buffers.
3044 
3045     The do_marking_step() method tries to abort when the time target
3046     has been reached. There are a few other cases when the
3047     do_marking_step() method also aborts:
3048 
3049       (1) When the marking phase has been aborted (after a Full GC).
3050 
3051       (2) When a global overflow (on the global stack) has been
3052       triggered. Before the task aborts, it will actually sync up with
3053       the other tasks to ensure that all the marking data structures
3054       (local queues, stacks, fingers etc.)  are re-initialized so that
3055       when do_marking_step() completes, the marking phase can
3056       immediately restart.
3057 
3058       (3) When enough completed SATB buffers are available. The
3059       do_marking_step() method only tries to drain SATB buffers right
3060       at the beginning. So, if enough buffers are available, the
3061       marking step aborts and the SATB buffers are processed at
3062       the beginning of the next invocation.
3063 
3064       (4) To yield. when we have to yield then we abort and yield
3065       right at the end of do_marking_step(). This saves us from a lot
3066       of hassle as, by yielding we might allow a Full GC. If this
3067       happens then objects will be compacted underneath our feet, the
3068       heap might shrink, etc. We save checking for this by just
3069       aborting and doing the yield right at the end.
3070 
3071     From the above it follows that the do_marking_step() method should
3072     be called in a loop (or, otherwise, regularly) until it completes.
3073 
3074     If a marking step completes without its has_aborted() flag being
3075     true, it means it has completed the current marking phase (and
3076     also all other marking tasks have done so and have all synced up).
3077 
3078     A method called regular_clock_call() is invoked "regularly" (in
3079     sub ms intervals) throughout marking. It is this clock method that
3080     checks all the abort conditions which were mentioned above and
3081     decides when the task should abort. A work-based scheme is used to
3082     trigger this clock method: when the number of object words the
3083     marking phase has scanned or the number of references the marking
3084     phase has visited reach a given limit. Additional invocations to
3085     the method clock have been planted in a few other strategic places
3086     too. The initial reason for the clock method was to avoid calling
3087     vtime too regularly, as it is quite expensive. So, once it was in
3088     place, it was natural to piggy-back all the other conditions on it
3089     too and not constantly check them throughout the code.
3090 
3091     If do_termination is true then do_marking_step will enter its
3092     termination protocol.
3093 
3094     The value of is_serial must be true when do_marking_step is being
3095     called serially (i.e. by the VMThread) and do_marking_step should
3096     skip any synchronization in the termination and overflow code.
3097     Examples include the serial remark code and the serial reference
3098     processing closures.
3099 
3100     The value of is_serial must be false when do_marking_step is
3101     being called by any of the worker threads in a work gang.
3102     Examples include the concurrent marking code (CMMarkingTask),
3103     the MT remark code, and the MT reference processing closures.
3104 
3105  *****************************************************************************/
3106 
3107 void G1CMTask::do_marking_step(double time_target_ms,
3108                                bool do_termination,
3109                                bool is_serial) {
3110   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3111   assert(concurrent() == _cm->concurrent(), "they should be the same");
3112 
3113   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3114   assert(_task_queues != NULL, "invariant");
3115   assert(_task_queue != NULL, "invariant");
3116   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3117 
3118   assert(!_claimed,
3119          "only one thread should claim this task at any one time");
3120 
3121   // OK, this doesn't safeguard again all possible scenarios, as it is
3122   // possible for two threads to set the _claimed flag at the same
3123   // time. But it is only for debugging purposes anyway and it will
3124   // catch most problems.
3125   _claimed = true;
3126 
3127   _start_time_ms = os::elapsedVTime() * 1000.0;
3128 
3129   // If do_stealing is true then do_marking_step will attempt to
3130   // steal work from the other G1CMTasks. It only makes sense to
3131   // enable stealing when the termination protocol is enabled
3132   // and do_marking_step() is not being called serially.
3133   bool do_stealing = do_termination && !is_serial;
3134 
3135   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3136   _time_target_ms = time_target_ms - diff_prediction_ms;
3137 
3138   // set up the variables that are used in the work-based scheme to
3139   // call the regular clock method
3140   _words_scanned = 0;
3141   _refs_reached  = 0;
3142   recalculate_limits();
3143 
3144   // clear all flags
3145   clear_has_aborted();
3146   _has_timed_out = false;
3147   _draining_satb_buffers = false;
3148 
3149   ++_calls;
3150 
3151   // Set up the bitmap and oop closures. Anything that uses them is
3152   // eventually called from this method, so it is OK to allocate these
3153   // statically.
3154   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3155   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
3156   set_cm_oop_closure(&cm_oop_closure);
3157 
3158   if (_cm->has_overflown()) {
3159     // This can happen if the mark stack overflows during a GC pause
3160     // and this task, after a yield point, restarts. We have to abort
3161     // as we need to get into the overflow protocol which happens
3162     // right at the end of this task.
3163     set_has_aborted();
3164   }
3165 
3166   // First drain any available SATB buffers. After this, we will not
3167   // look at SATB buffers before the next invocation of this method.
3168   // If enough completed SATB buffers are queued up, the regular clock
3169   // will abort this task so that it restarts.
3170   drain_satb_buffers();
3171   // ...then partially drain the local queue and the global stack
3172   drain_local_queue(true);
3173   drain_global_stack(true);
3174 
3175   do {
3176     if (!has_aborted() && _curr_region != NULL) {
3177       // This means that we're already holding on to a region.
3178       assert(_finger != NULL, "if region is not NULL, then the finger "
3179              "should not be NULL either");
3180 
3181       // We might have restarted this task after an evacuation pause
3182       // which might have evacuated the region we're holding on to
3183       // underneath our feet. Let's read its limit again to make sure
3184       // that we do not iterate over a region of the heap that
3185       // contains garbage (update_region_limit() will also move
3186       // _finger to the start of the region if it is found empty).
3187       update_region_limit();
3188       // We will start from _finger not from the start of the region,
3189       // as we might be restarting this task after aborting half-way
3190       // through scanning this region. In this case, _finger points to
3191       // the address where we last found a marked object. If this is a
3192       // fresh region, _finger points to start().
3193       MemRegion mr = MemRegion(_finger, _region_limit);
3194 
3195       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3196              "humongous regions should go around loop once only");
3197 
3198       // Some special cases:
3199       // If the memory region is empty, we can just give up the region.
3200       // If the current region is humongous then we only need to check
3201       // the bitmap for the bit associated with the start of the object,
3202       // scan the object if it's live, and give up the region.
3203       // Otherwise, let's iterate over the bitmap of the part of the region
3204       // that is left.
3205       // If the iteration is successful, give up the region.
3206       if (mr.is_empty()) {
3207         giveup_current_region();
3208         regular_clock_call();
3209       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3210         if (_nextMarkBitMap->isMarked(mr.start())) {
3211           // The object is marked - apply the closure
3212           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3213           bitmap_closure.do_bit(offset);
3214         }
3215         // Even if this task aborted while scanning the humongous object
3216         // we can (and should) give up the current region.
3217         giveup_current_region();
3218         regular_clock_call();
3219       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3220         giveup_current_region();
3221         regular_clock_call();
3222       } else {
3223         assert(has_aborted(), "currently the only way to do so");
3224         // The only way to abort the bitmap iteration is to return
3225         // false from the do_bit() method. However, inside the
3226         // do_bit() method we move the _finger to point to the
3227         // object currently being looked at. So, if we bail out, we
3228         // have definitely set _finger to something non-null.
3229         assert(_finger != NULL, "invariant");
3230 
3231         // Region iteration was actually aborted. So now _finger
3232         // points to the address of the object we last scanned. If we
3233         // leave it there, when we restart this task, we will rescan
3234         // the object. It is easy to avoid this. We move the finger by
3235         // enough to point to the next possible object header (the
3236         // bitmap knows by how much we need to move it as it knows its
3237         // granularity).
3238         assert(_finger < _region_limit, "invariant");
3239         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3240         // Check if bitmap iteration was aborted while scanning the last object
3241         if (new_finger >= _region_limit) {
3242           giveup_current_region();
3243         } else {
3244           move_finger_to(new_finger);
3245         }
3246       }
3247     }
3248     // At this point we have either completed iterating over the
3249     // region we were holding on to, or we have aborted.
3250 
3251     // We then partially drain the local queue and the global stack.
3252     // (Do we really need this?)
3253     drain_local_queue(true);
3254     drain_global_stack(true);
3255 
3256     // Read the note on the claim_region() method on why it might
3257     // return NULL with potentially more regions available for
3258     // claiming and why we have to check out_of_regions() to determine
3259     // whether we're done or not.
3260     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3261       // We are going to try to claim a new region. We should have
3262       // given up on the previous one.
3263       // Separated the asserts so that we know which one fires.
3264       assert(_curr_region  == NULL, "invariant");
3265       assert(_finger       == NULL, "invariant");
3266       assert(_region_limit == NULL, "invariant");
3267       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3268       if (claimed_region != NULL) {
3269         // Yes, we managed to claim one
3270         setup_for_region(claimed_region);
3271         assert(_curr_region == claimed_region, "invariant");
3272       }
3273       // It is important to call the regular clock here. It might take
3274       // a while to claim a region if, for example, we hit a large
3275       // block of empty regions. So we need to call the regular clock
3276       // method once round the loop to make sure it's called
3277       // frequently enough.
3278       regular_clock_call();
3279     }
3280 
3281     if (!has_aborted() && _curr_region == NULL) {
3282       assert(_cm->out_of_regions(),
3283              "at this point we should be out of regions");
3284     }
3285   } while ( _curr_region != NULL && !has_aborted());
3286 
3287   if (!has_aborted()) {
3288     // We cannot check whether the global stack is empty, since other
3289     // tasks might be pushing objects to it concurrently.
3290     assert(_cm->out_of_regions(),
3291            "at this point we should be out of regions");
3292     // Try to reduce the number of available SATB buffers so that
3293     // remark has less work to do.
3294     drain_satb_buffers();
3295   }
3296 
3297   // Since we've done everything else, we can now totally drain the
3298   // local queue and global stack.
3299   drain_local_queue(false);
3300   drain_global_stack(false);
3301 
3302   // Attempt at work stealing from other task's queues.
3303   if (do_stealing && !has_aborted()) {
3304     // We have not aborted. This means that we have finished all that
3305     // we could. Let's try to do some stealing...
3306 
3307     // We cannot check whether the global stack is empty, since other
3308     // tasks might be pushing objects to it concurrently.
3309     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3310            "only way to reach here");
3311     while (!has_aborted()) {
3312       oop obj;
3313       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3314         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3315                "any stolen object should be marked");
3316         scan_object(obj);
3317 
3318         // And since we're towards the end, let's totally drain the
3319         // local queue and global stack.
3320         drain_local_queue(false);
3321         drain_global_stack(false);
3322       } else {
3323         break;
3324       }
3325     }
3326   }
3327 
3328   // We still haven't aborted. Now, let's try to get into the
3329   // termination protocol.
3330   if (do_termination && !has_aborted()) {
3331     // We cannot check whether the global stack is empty, since other
3332     // tasks might be concurrently pushing objects on it.
3333     // Separated the asserts so that we know which one fires.
3334     assert(_cm->out_of_regions(), "only way to reach here");
3335     assert(_task_queue->size() == 0, "only way to reach here");
3336     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3337 
3338     // The G1CMTask class also extends the TerminatorTerminator class,
3339     // hence its should_exit_termination() method will also decide
3340     // whether to exit the termination protocol or not.
3341     bool finished = (is_serial ||
3342                      _cm->terminator()->offer_termination(this));
3343     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3344     _termination_time_ms +=
3345       termination_end_time_ms - _termination_start_time_ms;
3346 
3347     if (finished) {
3348       // We're all done.
3349 
3350       if (_worker_id == 0) {
3351         // let's allow task 0 to do this
3352         if (concurrent()) {
3353           assert(_cm->concurrent_marking_in_progress(), "invariant");
3354           // we need to set this to false before the next
3355           // safepoint. This way we ensure that the marking phase
3356           // doesn't observe any more heap expansions.
3357           _cm->clear_concurrent_marking_in_progress();
3358         }
3359       }
3360 
3361       // We can now guarantee that the global stack is empty, since
3362       // all other tasks have finished. We separated the guarantees so
3363       // that, if a condition is false, we can immediately find out
3364       // which one.
3365       guarantee(_cm->out_of_regions(), "only way to reach here");
3366       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3367       guarantee(_task_queue->size() == 0, "only way to reach here");
3368       guarantee(!_cm->has_overflown(), "only way to reach here");
3369       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3370     } else {
3371       // Apparently there's more work to do. Let's abort this task. It
3372       // will restart it and we can hopefully find more things to do.
3373       set_has_aborted();
3374     }
3375   }
3376 
3377   // Mainly for debugging purposes to make sure that a pointer to the
3378   // closure which was statically allocated in this frame doesn't
3379   // escape it by accident.
3380   set_cm_oop_closure(NULL);
3381   double end_time_ms = os::elapsedVTime() * 1000.0;
3382   double elapsed_time_ms = end_time_ms - _start_time_ms;
3383   // Update the step history.
3384   _step_times_ms.add(elapsed_time_ms);
3385 
3386   if (has_aborted()) {
3387     // The task was aborted for some reason.
3388     if (_has_timed_out) {
3389       double diff_ms = elapsed_time_ms - _time_target_ms;
3390       // Keep statistics of how well we did with respect to hitting
3391       // our target only if we actually timed out (if we aborted for
3392       // other reasons, then the results might get skewed).
3393       _marking_step_diffs_ms.add(diff_ms);
3394     }
3395 
3396     if (_cm->has_overflown()) {
3397       // This is the interesting one. We aborted because a global
3398       // overflow was raised. This means we have to restart the
3399       // marking phase and start iterating over regions. However, in
3400       // order to do this we have to make sure that all tasks stop
3401       // what they are doing and re-initialize in a safe manner. We
3402       // will achieve this with the use of two barrier sync points.
3403 
3404       if (!is_serial) {
3405         // We only need to enter the sync barrier if being called
3406         // from a parallel context
3407         _cm->enter_first_sync_barrier(_worker_id);
3408 
3409         // When we exit this sync barrier we know that all tasks have
3410         // stopped doing marking work. So, it's now safe to
3411         // re-initialize our data structures. At the end of this method,
3412         // task 0 will clear the global data structures.
3413       }
3414 
3415       // We clear the local state of this task...
3416       clear_region_fields();
3417 
3418       if (!is_serial) {
3419         // ...and enter the second barrier.
3420         _cm->enter_second_sync_barrier(_worker_id);
3421       }
3422       // At this point, if we're during the concurrent phase of
3423       // marking, everything has been re-initialized and we're
3424       // ready to restart.
3425     }
3426   }
3427 
3428   _claimed = false;
3429 }
3430 
3431 G1CMTask::G1CMTask(uint worker_id,
3432                    G1ConcurrentMark* cm,
3433                    G1CMTaskQueue* task_queue,
3434                    G1CMTaskQueueSet* task_queues)
3435   : _g1h(G1CollectedHeap::heap()),
3436     _worker_id(worker_id), _cm(cm),
3437     _claimed(false),
3438     _nextMarkBitMap(NULL), _hash_seed(17),
3439     _task_queue(task_queue),
3440     _task_queues(task_queues),
3441     _cm_oop_closure(NULL) {
3442   guarantee(task_queue != NULL, "invariant");
3443   guarantee(task_queues != NULL, "invariant");
3444 
3445   _marking_step_diffs_ms.add(0.5);
3446 }
3447 
3448 // These are formatting macros that are used below to ensure
3449 // consistent formatting. The *_H_* versions are used to format the
3450 // header for a particular value and they should be kept consistent
3451 // with the corresponding macro. Also note that most of the macros add
3452 // the necessary white space (as a prefix) which makes them a bit
3453 // easier to compose.
3454 
3455 // All the output lines are prefixed with this string to be able to
3456 // identify them easily in a large log file.
3457 #define G1PPRL_LINE_PREFIX            "###"
3458 
3459 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3460 #ifdef _LP64
3461 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3462 #else // _LP64
3463 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3464 #endif // _LP64
3465 
3466 // For per-region info
3467 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3468 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3469 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3470 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3471 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3472 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3473 
3474 // For summary info
3475 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3476 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3477 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3478 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3479 
3480 G1PrintRegionLivenessInfoClosure::
3481 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3482   : _total_used_bytes(0), _total_capacity_bytes(0),
3483     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3484     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3485   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3486   MemRegion g1_reserved = g1h->g1_reserved();
3487   double now = os::elapsedTime();
3488 
3489   // Print the header of the output.
3490   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3491   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3492                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3493                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3494                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3495                           HeapRegion::GrainBytes);
3496   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3497   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3498                           G1PPRL_TYPE_H_FORMAT
3499                           G1PPRL_ADDR_BASE_H_FORMAT
3500                           G1PPRL_BYTE_H_FORMAT
3501                           G1PPRL_BYTE_H_FORMAT
3502                           G1PPRL_BYTE_H_FORMAT
3503                           G1PPRL_DOUBLE_H_FORMAT
3504                           G1PPRL_BYTE_H_FORMAT
3505                           G1PPRL_BYTE_H_FORMAT,
3506                           "type", "address-range",
3507                           "used", "prev-live", "next-live", "gc-eff",
3508                           "remset", "code-roots");
3509   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3510                           G1PPRL_TYPE_H_FORMAT
3511                           G1PPRL_ADDR_BASE_H_FORMAT
3512                           G1PPRL_BYTE_H_FORMAT
3513                           G1PPRL_BYTE_H_FORMAT
3514                           G1PPRL_BYTE_H_FORMAT
3515                           G1PPRL_DOUBLE_H_FORMAT
3516                           G1PPRL_BYTE_H_FORMAT
3517                           G1PPRL_BYTE_H_FORMAT,
3518                           "", "",
3519                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3520                           "(bytes)", "(bytes)");
3521 }
3522 
3523 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3524   const char* type       = r->get_type_str();
3525   HeapWord* bottom       = r->bottom();
3526   HeapWord* end          = r->end();
3527   size_t capacity_bytes  = r->capacity();
3528   size_t used_bytes      = r->used();
3529   size_t prev_live_bytes = r->live_bytes();
3530   size_t next_live_bytes = r->next_live_bytes();
3531   double gc_eff          = r->gc_efficiency();
3532   size_t remset_bytes    = r->rem_set()->mem_size();
3533   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3534 
3535   _total_used_bytes      += used_bytes;
3536   _total_capacity_bytes  += capacity_bytes;
3537   _total_prev_live_bytes += prev_live_bytes;
3538   _total_next_live_bytes += next_live_bytes;
3539   _total_remset_bytes    += remset_bytes;
3540   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3541 
3542   // Print a line for this particular region.
3543   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3544                           G1PPRL_TYPE_FORMAT
3545                           G1PPRL_ADDR_BASE_FORMAT
3546                           G1PPRL_BYTE_FORMAT
3547                           G1PPRL_BYTE_FORMAT
3548                           G1PPRL_BYTE_FORMAT
3549                           G1PPRL_DOUBLE_FORMAT
3550                           G1PPRL_BYTE_FORMAT
3551                           G1PPRL_BYTE_FORMAT,
3552                           type, p2i(bottom), p2i(end),
3553                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3554                           remset_bytes, strong_code_roots_bytes);
3555 
3556   return false;
3557 }
3558 
3559 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3560   // add static memory usages to remembered set sizes
3561   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3562   // Print the footer of the output.
3563   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3564   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3565                          " SUMMARY"
3566                          G1PPRL_SUM_MB_FORMAT("capacity")
3567                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3568                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3569                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3570                          G1PPRL_SUM_MB_FORMAT("remset")
3571                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3572                          bytes_to_mb(_total_capacity_bytes),
3573                          bytes_to_mb(_total_used_bytes),
3574                          perc(_total_used_bytes, _total_capacity_bytes),
3575                          bytes_to_mb(_total_prev_live_bytes),
3576                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3577                          bytes_to_mb(_total_next_live_bytes),
3578                          perc(_total_next_live_bytes, _total_capacity_bytes),
3579                          bytes_to_mb(_total_remset_bytes),
3580                          bytes_to_mb(_total_strong_code_roots_bytes));
3581 }