1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/taskqueue.hpp"
  32 
  33 class G1CollectedHeap;
  34 class G1CMBitMap;
  35 class G1CMTask;
  36 class G1ConcurrentMark;
  37 class ConcurrentGCTimer;
  38 class G1OldTracer;
  39 typedef GenericTaskQueue<oop, mtGC>              G1CMTaskQueue;
  40 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  41 
  42 // Closure used by CM during concurrent reference discovery
  43 // and reference processing (during remarking) to determine
  44 // if a particular object is alive. It is primarily used
  45 // to determine if referents of discovered reference objects
  46 // are alive. An instance is also embedded into the
  47 // reference processor as the _is_alive_non_header field
  48 class G1CMIsAliveClosure: public BoolObjectClosure {
  49   G1CollectedHeap* _g1;
  50  public:
  51   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  52 
  53   bool do_object_b(oop obj);
  54 };
  55 
  56 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  57 // class, with one bit per (1<<_shifter) HeapWords.
  58 
  59 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  60  protected:
  61   HeapWord* _bmStartWord;      // base address of range covered by map
  62   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  63   const int _shifter;          // map to char or bit
  64   BitMap    _bm;               // the bit map itself
  65 
  66  public:
  67   // constructor
  68   G1CMBitMapRO(int shifter);
  69 
  70   // inquiries
  71   HeapWord* startWord()   const { return _bmStartWord; }
  72   // the following is one past the last word in space
  73   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  74 
  75   // read marks
  76 
  77   bool isMarked(HeapWord* addr) const {
  78     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  79            "outside underlying space?");
  80     return _bm.at(heapWordToOffset(addr));
  81   }
  82 
  83   // iteration
  84   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  85 
  86   // Return the address corresponding to the next marked bit at or after
  87   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  88   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  89   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  90                                      const HeapWord* limit = NULL) const;
  91 
  92   // conversion utilities
  93   HeapWord* offsetToHeapWord(size_t offset) const {
  94     return _bmStartWord + (offset << _shifter);
  95   }
  96   size_t heapWordToOffset(const HeapWord* addr) const {
  97     return pointer_delta(addr, _bmStartWord) >> _shifter;
  98   }
  99 
 100   // The argument addr should be the start address of a valid object
 101   inline HeapWord* nextObject(HeapWord* addr);
 102 
 103   void print_on_error(outputStream* st, const char* prefix) const;
 104 
 105   // debugging
 106   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 107 };
 108 
 109 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 110  private:
 111   G1CMBitMap* _bm;
 112  public:
 113   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 114 
 115   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 116 
 117   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 118 };
 119 
 120 class G1CMBitMap : public G1CMBitMapRO {
 121  private:
 122   G1CMBitMapMappingChangedListener _listener;
 123 
 124  public:
 125   static size_t compute_size(size_t heap_size);
 126   // Returns the amount of bytes on the heap between two marks in the bitmap.
 127   static size_t mark_distance();
 128   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 129   // mark bitmap corresponds to. This is the same as the mark distance above.
 130   static size_t heap_map_factor() {
 131     return mark_distance();
 132   }
 133 
 134   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 135 
 136   // Initializes the underlying BitMap to cover the given area.
 137   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 138 
 139   // Write marks.
 140   inline void mark(HeapWord* addr);
 141   inline void clear(HeapWord* addr);
 142   inline bool parMark(HeapWord* addr);
 143 
 144   void clear_range(MemRegion mr);
 145 };
 146 
 147 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 148 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 149   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 150   G1ConcurrentMark* _cm;
 151   oop* _base;        // bottom of stack
 152   jint _index;       // one more than last occupied index
 153   jint _capacity;    // max #elements
 154   jint _saved_index; // value of _index saved at start of GC
 155 
 156   bool  _overflow;
 157   bool  _should_expand;
 158 
 159  public:
 160   G1CMMarkStack(G1ConcurrentMark* cm);
 161   ~G1CMMarkStack();
 162 
 163   bool allocate(size_t capacity);
 164 
 165   // Pushes the first "n" elements of "ptr_arr" on the stack.
 166   // Locking impl: concurrency is allowed only with
 167   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 168   // locking strategy.
 169   void par_push_arr(oop* ptr_arr, int n);
 170 
 171   // If returns false, the array was empty.  Otherwise, removes up to "max"
 172   // elements from the stack, and transfers them to "ptr_arr" in an
 173   // unspecified order.  The actual number transferred is given in "n" ("n
 174   // == 0" is deliberately redundant with the return value.)  Locking impl:
 175   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 176   // operations, which use the same locking strategy.
 177   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 178 
 179   bool isEmpty()    { return _index == 0; }
 180   int  maxElems()   { return _capacity; }
 181 
 182   bool overflow() { return _overflow; }
 183   void clear_overflow() { _overflow = false; }
 184 
 185   bool should_expand() const { return _should_expand; }
 186   void set_should_expand();
 187 
 188   // Expand the stack, typically in response to an overflow condition
 189   void expand();
 190 
 191   int  size() { return _index; }
 192 
 193   void setEmpty()   { _index = 0; clear_overflow(); }
 194 
 195   // Record the current index.
 196   void note_start_of_gc();
 197 
 198   // Make sure that we have not added any entries to the stack during GC.
 199   void note_end_of_gc();
 200 
 201   // Apply fn to each oop in the mark stack, up to the bound recorded
 202   // via one of the above "note" functions.  The mark stack must not
 203   // be modified while iterating.
 204   template<typename Fn> void iterate(Fn fn);
 205 };
 206 
 207 class YoungList;
 208 
 209 // Root Regions are regions that are not empty at the beginning of a
 210 // marking cycle and which we might collect during an evacuation pause
 211 // while the cycle is active. Given that, during evacuation pauses, we
 212 // do not copy objects that are explicitly marked, what we have to do
 213 // for the root regions is to scan them and mark all objects reachable
 214 // from them. According to the SATB assumptions, we only need to visit
 215 // each object once during marking. So, as long as we finish this scan
 216 // before the next evacuation pause, we can copy the objects from the
 217 // root regions without having to mark them or do anything else to them.
 218 //
 219 // Currently, we only support root region scanning once (at the start
 220 // of the marking cycle) and the root regions are all the survivor
 221 // regions populated during the initial-mark pause.
 222 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 223 private:
 224   YoungList*           _young_list;
 225   G1ConcurrentMark*    _cm;
 226 
 227   volatile bool        _scan_in_progress;
 228   volatile bool        _should_abort;
 229   HeapRegion* volatile _next_survivor;
 230 
 231   void notify_scan_done();
 232 
 233 public:
 234   G1CMRootRegions();
 235   // We actually do most of the initialization in this method.
 236   void init(G1CollectedHeap* g1h, G1ConcurrentMark* cm);
 237 
 238   // Reset the claiming / scanning of the root regions.
 239   void prepare_for_scan();
 240 
 241   // Forces get_next() to return NULL so that the iteration aborts early.
 242   void abort() { _should_abort = true; }
 243 
 244   // Return true if the CM thread are actively scanning root regions,
 245   // false otherwise.
 246   bool scan_in_progress() { return _scan_in_progress; }
 247 
 248   // Claim the next root region to scan atomically, or return NULL if
 249   // all have been claimed.
 250   HeapRegion* claim_next();
 251 
 252   void cancel_scan();
 253 
 254   // Flag that we're done with root region scanning and notify anyone
 255   // who's waiting on it. If aborted is false, assume that all regions
 256   // have been claimed.
 257   void scan_finished();
 258 
 259   // If CM threads are still scanning root regions, wait until they
 260   // are done. Return true if we had to wait, false otherwise.
 261   bool wait_until_scan_finished();
 262 };
 263 
 264 class ConcurrentMarkThread;
 265 
 266 class G1ConcurrentMark: public CHeapObj<mtGC> {
 267   friend class ConcurrentMarkThread;
 268   friend class G1ParNoteEndTask;
 269   friend class CalcLiveObjectsClosure;
 270   friend class G1CMRefProcTaskProxy;
 271   friend class G1CMRefProcTaskExecutor;
 272   friend class G1CMKeepAliveAndDrainClosure;
 273   friend class G1CMDrainMarkingStackClosure;
 274   friend class G1CMBitMapClosure;
 275   friend class G1CMConcurrentMarkingTask;
 276   friend class G1CMMarkStack;
 277   friend class G1CMRemarkTask;
 278   friend class G1CMTask;
 279 
 280 protected:
 281   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 282   G1CollectedHeap*      _g1h;        // The heap
 283   uint                  _parallel_marking_threads; // The number of marking
 284                                                    // threads we're using
 285   uint                  _max_parallel_marking_threads; // Max number of marking
 286                                                        // threads we'll ever use
 287   double                _sleep_factor; // How much we have to sleep, with
 288                                        // respect to the work we just did, to
 289                                        // meet the marking overhead goal
 290   double                _marking_task_overhead; // Marking target overhead for
 291                                                 // a single task
 292 
 293   FreeRegionList        _cleanup_list;
 294 
 295   // Concurrent marking support structures
 296   G1CMBitMap              _markBitMap1;
 297   G1CMBitMap              _markBitMap2;
 298   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 299   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 300 
 301   BitMap                  _region_bm;
 302   BitMap                  _card_bm;
 303 
 304   // Heap bounds
 305   HeapWord*               _heap_start;
 306   HeapWord*               _heap_end;
 307 
 308   // Root region tracking and claiming
 309   G1CMRootRegions         _root_regions;
 310 
 311   // For gray objects
 312   G1CMMarkStack           _markStack; // Grey objects behind global finger
 313   HeapWord* volatile      _finger;  // The global finger, region aligned,
 314                                     // always points to the end of the
 315                                     // last claimed region
 316 
 317   // Marking tasks
 318   uint                    _max_worker_id;// Maximum worker id
 319   uint                    _active_tasks; // Task num currently active
 320   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 321   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 322   ParallelTaskTerminator  _terminator;   // For termination
 323 
 324   // Two sync barriers that are used to synchronize tasks when an
 325   // overflow occurs. The algorithm is the following. All tasks enter
 326   // the first one to ensure that they have all stopped manipulating
 327   // the global data structures. After they exit it, they re-initialize
 328   // their data structures and task 0 re-initializes the global data
 329   // structures. Then, they enter the second sync barrier. This
 330   // ensure, that no task starts doing work before all data
 331   // structures (local and global) have been re-initialized. When they
 332   // exit it, they are free to start working again.
 333   WorkGangBarrierSync     _first_overflow_barrier_sync;
 334   WorkGangBarrierSync     _second_overflow_barrier_sync;
 335 
 336   // This is set by any task, when an overflow on the global data
 337   // structures is detected
 338   volatile bool           _has_overflown;
 339   // True: marking is concurrent, false: we're in remark
 340   volatile bool           _concurrent;
 341   // Set at the end of a Full GC so that marking aborts
 342   volatile bool           _has_aborted;
 343 
 344   // Used when remark aborts due to an overflow to indicate that
 345   // another concurrent marking phase should start
 346   volatile bool           _restart_for_overflow;
 347 
 348   // This is true from the very start of concurrent marking until the
 349   // point when all the tasks complete their work. It is really used
 350   // to determine the points between the end of concurrent marking and
 351   // time of remark.
 352   volatile bool           _concurrent_marking_in_progress;
 353 
 354   ConcurrentGCTimer*      _gc_timer_cm;
 355 
 356   G1OldTracer*            _gc_tracer_cm;
 357 
 358   // All of these times are in ms
 359   NumberSeq _init_times;
 360   NumberSeq _remark_times;
 361   NumberSeq _remark_mark_times;
 362   NumberSeq _remark_weak_ref_times;
 363   NumberSeq _cleanup_times;
 364   double    _total_counting_time;
 365   double    _total_rs_scrub_time;
 366 
 367   double*   _accum_task_vtime;   // Accumulated task vtime
 368 
 369   WorkGang* _parallel_workers;
 370 
 371   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 372   void weakRefsWork(bool clear_all_soft_refs);
 373 
 374   void swapMarkBitMaps();
 375 
 376   // It resets the global marking data structures, as well as the
 377   // task local ones; should be called during initial mark.
 378   void reset();
 379 
 380   // Resets all the marking data structures. Called when we have to restart
 381   // marking or when marking completes (via set_non_marking_state below).
 382   void reset_marking_state(bool clear_overflow = true);
 383 
 384   // We do this after we're done with marking so that the marking data
 385   // structures are initialized to a sensible and predictable state.
 386   void set_non_marking_state();
 387 
 388   // Called to indicate how many threads are currently active.
 389   void set_concurrency(uint active_tasks);
 390 
 391   // It should be called to indicate which phase we're in (concurrent
 392   // mark or remark) and how many threads are currently active.
 393   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 394 
 395   // Prints all gathered CM-related statistics
 396   void print_stats();
 397 
 398   bool cleanup_list_is_empty() {
 399     return _cleanup_list.is_empty();
 400   }
 401 
 402   // Accessor methods
 403   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 404   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 405   double sleep_factor()                     { return _sleep_factor; }
 406   double marking_task_overhead()            { return _marking_task_overhead;}
 407 
 408   HeapWord*               finger()          { return _finger;   }
 409   bool                    concurrent()      { return _concurrent; }
 410   uint                    active_tasks()    { return _active_tasks; }
 411   ParallelTaskTerminator* terminator()      { return &_terminator; }
 412 
 413   // It claims the next available region to be scanned by a marking
 414   // task/thread. It might return NULL if the next region is empty or
 415   // we have run out of regions. In the latter case, out_of_regions()
 416   // determines whether we've really run out of regions or the task
 417   // should call claim_region() again. This might seem a bit
 418   // awkward. Originally, the code was written so that claim_region()
 419   // either successfully returned with a non-empty region or there
 420   // were no more regions to be claimed. The problem with this was
 421   // that, in certain circumstances, it iterated over large chunks of
 422   // the heap finding only empty regions and, while it was working, it
 423   // was preventing the calling task to call its regular clock
 424   // method. So, this way, each task will spend very little time in
 425   // claim_region() and is allowed to call the regular clock method
 426   // frequently.
 427   HeapRegion* claim_region(uint worker_id);
 428 
 429   // It determines whether we've run out of regions to scan. Note that
 430   // the finger can point past the heap end in case the heap was expanded
 431   // to satisfy an allocation without doing a GC. This is fine, because all
 432   // objects in those regions will be considered live anyway because of
 433   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 434   bool        out_of_regions() { return _finger >= _heap_end; }
 435 
 436   // Returns the task with the given id
 437   G1CMTask* task(int id) {
 438     assert(0 <= id && id < (int) _active_tasks,
 439            "task id not within active bounds");
 440     return _tasks[id];
 441   }
 442 
 443   // Returns the task queue with the given id
 444   G1CMTaskQueue* task_queue(int id) {
 445     assert(0 <= id && id < (int) _active_tasks,
 446            "task queue id not within active bounds");
 447     return (G1CMTaskQueue*) _task_queues->queue(id);
 448   }
 449 
 450   // Returns the task queue set
 451   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 452 
 453   // Access / manipulation of the overflow flag which is set to
 454   // indicate that the global stack has overflown
 455   bool has_overflown()           { return _has_overflown; }
 456   void set_has_overflown()       { _has_overflown = true; }
 457   void clear_has_overflown()     { _has_overflown = false; }
 458   bool restart_for_overflow()    { return _restart_for_overflow; }
 459 
 460   // Methods to enter the two overflow sync barriers
 461   void enter_first_sync_barrier(uint worker_id);
 462   void enter_second_sync_barrier(uint worker_id);
 463 
 464   // Live Data Counting data structures...
 465   // These data structures are initialized at the start of
 466   // marking. They are written to while marking is active.
 467   // They are aggregated during remark; the aggregated values
 468   // are then used to populate the _region_bm, _card_bm, and
 469   // the total live bytes, which are then subsequently updated
 470   // during cleanup.
 471 
 472   // An array of bitmaps (one bit map per task). Each bitmap
 473   // is used to record the cards spanned by the live objects
 474   // marked by that task/worker.
 475   BitMap*  _count_card_bitmaps;
 476 
 477   // Used to record the number of marked live bytes
 478   // (for each region, by worker thread).
 479   size_t** _count_marked_bytes;
 480 
 481   // Card index of the bottom of the G1 heap. Used for biasing indices into
 482   // the card bitmaps.
 483   intptr_t _heap_bottom_card_num;
 484 
 485   // Set to true when initialization is complete
 486   bool _completed_initialization;
 487 
 488   // end_timer, true to end gc timer after ending concurrent phase.
 489   void register_concurrent_phase_end_common(bool end_timer);
 490 
 491   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 492   // true, periodically insert checks to see if this method should exit prematurely.
 493   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 494 public:
 495   // Manipulation of the global mark stack.
 496   // The push and pop operations are used by tasks for transfers
 497   // between task-local queues and the global mark stack, and use
 498   // locking for concurrency safety.
 499   bool mark_stack_push(oop* arr, int n) {
 500     _markStack.par_push_arr(arr, n);
 501     if (_markStack.overflow()) {
 502       set_has_overflown();
 503       return false;
 504     }
 505     return true;
 506   }
 507   void mark_stack_pop(oop* arr, int max, int* n) {
 508     _markStack.par_pop_arr(arr, max, n);
 509   }
 510   size_t mark_stack_size()                { return _markStack.size(); }
 511   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 512   bool mark_stack_overflow()              { return _markStack.overflow(); }
 513   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 514 
 515   G1CMRootRegions* root_regions() { return &_root_regions; }
 516 
 517   bool concurrent_marking_in_progress() {
 518     return _concurrent_marking_in_progress;
 519   }
 520   void set_concurrent_marking_in_progress() {
 521     _concurrent_marking_in_progress = true;
 522   }
 523   void clear_concurrent_marking_in_progress() {
 524     _concurrent_marking_in_progress = false;
 525   }
 526 
 527   void concurrent_cycle_start();
 528   void concurrent_cycle_end();
 529 
 530   void update_accum_task_vtime(int i, double vtime) {
 531     _accum_task_vtime[i] += vtime;
 532   }
 533 
 534   double all_task_accum_vtime() {
 535     double ret = 0.0;
 536     for (uint i = 0; i < _max_worker_id; ++i)
 537       ret += _accum_task_vtime[i];
 538     return ret;
 539   }
 540 
 541   // Attempts to steal an object from the task queues of other tasks
 542   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 543 
 544   G1ConcurrentMark(G1CollectedHeap* g1h,
 545                    G1RegionToSpaceMapper* prev_bitmap_storage,
 546                    G1RegionToSpaceMapper* next_bitmap_storage);
 547   ~G1ConcurrentMark();
 548 
 549   ConcurrentMarkThread* cmThread() { return _cmThread; }
 550 
 551   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 552   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 553 
 554   // Returns the number of GC threads to be used in a concurrent
 555   // phase based on the number of GC threads being used in a STW
 556   // phase.
 557   uint scale_parallel_threads(uint n_par_threads);
 558 
 559   // Calculates the number of GC threads to be used in a concurrent phase.
 560   uint calc_parallel_marking_threads();
 561 
 562   // The following three are interaction between CM and
 563   // G1CollectedHeap
 564 
 565   // This notifies CM that a root during initial-mark needs to be
 566   // grayed. It is MT-safe. word_size is the size of the object in
 567   // words. It is passed explicitly as sometimes we cannot calculate
 568   // it from the given object because it might be in an inconsistent
 569   // state (e.g., in to-space and being copied). So the caller is
 570   // responsible for dealing with this issue (e.g., get the size from
 571   // the from-space image when the to-space image might be
 572   // inconsistent) and always passing the size. hr is the region that
 573   // contains the object and it's passed optionally from callers who
 574   // might already have it (no point in recalculating it).
 575   inline void grayRoot(oop obj,
 576                        size_t word_size,
 577                        uint worker_id,
 578                        HeapRegion* hr = NULL);
 579 
 580   // Prepare internal data structures for the next mark cycle. This includes clearing
 581   // the next mark bitmap and some internal data structures. This method is intended
 582   // to be called concurrently to the mutator. It will yield to safepoint requests.
 583   void cleanup_for_next_mark();
 584 
 585   // Clear the previous marking bitmap during safepoint.
 586   void clear_prev_bitmap(WorkGang* workers);
 587 
 588   // Return whether the next mark bitmap has no marks set. To be used for assertions
 589   // only. Will not yield to pause requests.
 590   bool nextMarkBitmapIsClear();
 591 
 592   // These two do the work that needs to be done before and after the
 593   // initial root checkpoint. Since this checkpoint can be done at two
 594   // different points (i.e. an explicit pause or piggy-backed on a
 595   // young collection), then it's nice to be able to easily share the
 596   // pre/post code. It might be the case that we can put everything in
 597   // the post method. TP
 598   void checkpointRootsInitialPre();
 599   void checkpointRootsInitialPost();
 600 
 601   // Scan all the root regions and mark everything reachable from
 602   // them.
 603   void scan_root_regions();
 604 
 605   // Scan a single root region and mark everything reachable from it.
 606   void scanRootRegion(HeapRegion* hr, uint worker_id);
 607 
 608   // Do concurrent phase of marking, to a tentative transitive closure.
 609   void mark_from_roots();
 610 
 611   void checkpointRootsFinal(bool clear_all_soft_refs);
 612   void checkpointRootsFinalWork();
 613   void cleanup();
 614   void complete_cleanup();
 615 
 616   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 617   // this carefully!
 618   inline void markPrev(oop p);
 619 
 620   // Clears marks for all objects in the given range, for the prev or
 621   // next bitmaps.  NB: the previous bitmap is usually
 622   // read-only, so use this carefully!
 623   void clearRangePrevBitmap(MemRegion mr);
 624 
 625   // Notify data structures that a GC has started.
 626   void note_start_of_gc() {
 627     _markStack.note_start_of_gc();
 628   }
 629 
 630   // Notify data structures that a GC is finished.
 631   void note_end_of_gc() {
 632     _markStack.note_end_of_gc();
 633   }
 634 
 635   // Verify that there are no CSet oops on the stacks (taskqueues /
 636   // global mark stack) and fingers (global / per-task).
 637   // If marking is not in progress, it's a no-op.
 638   void verify_no_cset_oops() PRODUCT_RETURN;
 639 
 640   inline bool isPrevMarked(oop p) const;
 641 
 642   inline bool do_yield_check(uint worker_i = 0);
 643 
 644   // Called to abort the marking cycle after a Full GC takes place.
 645   void abort();
 646 
 647   bool has_aborted()      { return _has_aborted; }
 648 
 649   void print_summary_info();
 650 
 651   void print_worker_threads_on(outputStream* st) const;
 652 
 653   void print_on_error(outputStream* st) const;
 654 
 655   // Liveness counting
 656 
 657   // Utility routine to set an exclusive range of cards on the given
 658   // card liveness bitmap
 659   inline void set_card_bitmap_range(BitMap* card_bm,
 660                                     BitMap::idx_t start_idx,
 661                                     BitMap::idx_t end_idx,
 662                                     bool is_par);
 663 
 664   // Returns the card number of the bottom of the G1 heap.
 665   // Used in biasing indices into accounting card bitmaps.
 666   intptr_t heap_bottom_card_num() const {
 667     return _heap_bottom_card_num;
 668   }
 669 
 670   // Returns the card bitmap for a given task or worker id.
 671   BitMap* count_card_bitmap_for(uint worker_id) {
 672     assert(worker_id < _max_worker_id, "oob");
 673     assert(_count_card_bitmaps != NULL, "uninitialized");
 674     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 675     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 676     return task_card_bm;
 677   }
 678 
 679   // Returns the array containing the marked bytes for each region,
 680   // for the given worker or task id.
 681   size_t* count_marked_bytes_array_for(uint worker_id) {
 682     assert(worker_id < _max_worker_id, "oob");
 683     assert(_count_marked_bytes != NULL, "uninitialized");
 684     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 685     assert(marked_bytes_array != NULL, "uninitialized");
 686     return marked_bytes_array;
 687   }
 688 
 689   // Returns the index in the liveness accounting card table bitmap
 690   // for the given address
 691   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 692 
 693   // Counts the size of the given memory region in the the given
 694   // marked_bytes array slot for the given HeapRegion.
 695   // Sets the bits in the given card bitmap that are associated with the
 696   // cards that are spanned by the memory region.
 697   inline void count_region(MemRegion mr,
 698                            HeapRegion* hr,
 699                            size_t* marked_bytes_array,
 700                            BitMap* task_card_bm);
 701 
 702   // Counts the given object in the given task/worker counting
 703   // data structures.
 704   inline void count_object(oop obj,
 705                            HeapRegion* hr,
 706                            size_t* marked_bytes_array,
 707                            BitMap* task_card_bm,
 708                            size_t word_size);
 709 
 710   // Attempts to mark the given object and, if successful, counts
 711   // the object in the given task/worker counting structures.
 712   inline bool par_mark_and_count(oop obj,
 713                                  HeapRegion* hr,
 714                                  size_t* marked_bytes_array,
 715                                  BitMap* task_card_bm);
 716 
 717   // Attempts to mark the given object and, if successful, counts
 718   // the object in the task/worker counting structures for the
 719   // given worker id.
 720   inline bool par_mark_and_count(oop obj,
 721                                  size_t word_size,
 722                                  HeapRegion* hr,
 723                                  uint worker_id);
 724 
 725   // Returns true if initialization was successfully completed.
 726   bool completed_initialization() const {
 727     return _completed_initialization;
 728   }
 729 
 730   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 731   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 732 
 733 protected:
 734   // Clear all the per-task bitmaps and arrays used to store the
 735   // counting data.
 736   void clear_all_count_data();
 737 
 738   // Aggregates the counting data for each worker/task
 739   // that was constructed while marking. Also sets
 740   // the amount of marked bytes for each region and
 741   // the top at concurrent mark count.
 742   void aggregate_count_data();
 743 
 744   // Verification routine
 745   void verify_count_data();
 746 };
 747 
 748 // A class representing a marking task.
 749 class G1CMTask : public TerminatorTerminator {
 750 private:
 751   enum PrivateConstants {
 752     // the regular clock call is called once the scanned words reaches
 753     // this limit
 754     words_scanned_period          = 12*1024,
 755     // the regular clock call is called once the number of visited
 756     // references reaches this limit
 757     refs_reached_period           = 384,
 758     // initial value for the hash seed, used in the work stealing code
 759     init_hash_seed                = 17,
 760     // how many entries will be transferred between global stack and
 761     // local queues
 762     global_stack_transfer_size    = 16
 763   };
 764 
 765   uint                        _worker_id;
 766   G1CollectedHeap*            _g1h;
 767   G1ConcurrentMark*           _cm;
 768   G1CMBitMap*                 _nextMarkBitMap;
 769   // the task queue of this task
 770   G1CMTaskQueue*              _task_queue;
 771 private:
 772   // the task queue set---needed for stealing
 773   G1CMTaskQueueSet*           _task_queues;
 774   // indicates whether the task has been claimed---this is only  for
 775   // debugging purposes
 776   bool                        _claimed;
 777 
 778   // number of calls to this task
 779   int                         _calls;
 780 
 781   // when the virtual timer reaches this time, the marking step should
 782   // exit
 783   double                      _time_target_ms;
 784   // the start time of the current marking step
 785   double                      _start_time_ms;
 786 
 787   // the oop closure used for iterations over oops
 788   G1CMOopClosure*             _cm_oop_closure;
 789 
 790   // the region this task is scanning, NULL if we're not scanning any
 791   HeapRegion*                 _curr_region;
 792   // the local finger of this task, NULL if we're not scanning a region
 793   HeapWord*                   _finger;
 794   // limit of the region this task is scanning, NULL if we're not scanning one
 795   HeapWord*                   _region_limit;
 796 
 797   // the number of words this task has scanned
 798   size_t                      _words_scanned;
 799   // When _words_scanned reaches this limit, the regular clock is
 800   // called. Notice that this might be decreased under certain
 801   // circumstances (i.e. when we believe that we did an expensive
 802   // operation).
 803   size_t                      _words_scanned_limit;
 804   // the initial value of _words_scanned_limit (i.e. what it was
 805   // before it was decreased).
 806   size_t                      _real_words_scanned_limit;
 807 
 808   // the number of references this task has visited
 809   size_t                      _refs_reached;
 810   // When _refs_reached reaches this limit, the regular clock is
 811   // called. Notice this this might be decreased under certain
 812   // circumstances (i.e. when we believe that we did an expensive
 813   // operation).
 814   size_t                      _refs_reached_limit;
 815   // the initial value of _refs_reached_limit (i.e. what it was before
 816   // it was decreased).
 817   size_t                      _real_refs_reached_limit;
 818 
 819   // used by the work stealing stuff
 820   int                         _hash_seed;
 821   // if this is true, then the task has aborted for some reason
 822   bool                        _has_aborted;
 823   // set when the task aborts because it has met its time quota
 824   bool                        _has_timed_out;
 825   // true when we're draining SATB buffers; this avoids the task
 826   // aborting due to SATB buffers being available (as we're already
 827   // dealing with them)
 828   bool                        _draining_satb_buffers;
 829 
 830   // number sequence of past step times
 831   NumberSeq                   _step_times_ms;
 832   // elapsed time of this task
 833   double                      _elapsed_time_ms;
 834   // termination time of this task
 835   double                      _termination_time_ms;
 836   // when this task got into the termination protocol
 837   double                      _termination_start_time_ms;
 838 
 839   // true when the task is during a concurrent phase, false when it is
 840   // in the remark phase (so, in the latter case, we do not have to
 841   // check all the things that we have to check during the concurrent
 842   // phase, i.e. SATB buffer availability...)
 843   bool                        _concurrent;
 844 
 845   TruncatedSeq                _marking_step_diffs_ms;
 846 
 847   // Counting data structures. Embedding the task's marked_bytes_array
 848   // and card bitmap into the actual task saves having to go through
 849   // the ConcurrentMark object.
 850   size_t*                     _marked_bytes_array;
 851   BitMap*                     _card_bm;
 852 
 853   // it updates the local fields after this task has claimed
 854   // a new region to scan
 855   void setup_for_region(HeapRegion* hr);
 856   // it brings up-to-date the limit of the region
 857   void update_region_limit();
 858 
 859   // called when either the words scanned or the refs visited limit
 860   // has been reached
 861   void reached_limit();
 862   // recalculates the words scanned and refs visited limits
 863   void recalculate_limits();
 864   // decreases the words scanned and refs visited limits when we reach
 865   // an expensive operation
 866   void decrease_limits();
 867   // it checks whether the words scanned or refs visited reached their
 868   // respective limit and calls reached_limit() if they have
 869   void check_limits() {
 870     if (_words_scanned >= _words_scanned_limit ||
 871         _refs_reached >= _refs_reached_limit) {
 872       reached_limit();
 873     }
 874   }
 875   // this is supposed to be called regularly during a marking step as
 876   // it checks a bunch of conditions that might cause the marking step
 877   // to abort
 878   void regular_clock_call();
 879   bool concurrent() { return _concurrent; }
 880 
 881   // Test whether obj might have already been passed over by the
 882   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 883   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 884 
 885   template<bool scan> void process_grey_object(oop obj);
 886 
 887 public:
 888   // It resets the task; it should be called right at the beginning of
 889   // a marking phase.
 890   void reset(G1CMBitMap* _nextMarkBitMap);
 891   // it clears all the fields that correspond to a claimed region.
 892   void clear_region_fields();
 893 
 894   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 895 
 896   // The main method of this class which performs a marking step
 897   // trying not to exceed the given duration. However, it might exit
 898   // prematurely, according to some conditions (i.e. SATB buffers are
 899   // available for processing).
 900   void do_marking_step(double target_ms,
 901                        bool do_termination,
 902                        bool is_serial);
 903 
 904   // These two calls start and stop the timer
 905   void record_start_time() {
 906     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 907   }
 908   void record_end_time() {
 909     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 910   }
 911 
 912   // returns the worker ID associated with this task.
 913   uint worker_id() { return _worker_id; }
 914 
 915   // From TerminatorTerminator. It determines whether this task should
 916   // exit the termination protocol after it's entered it.
 917   virtual bool should_exit_termination();
 918 
 919   // Resets the local region fields after a task has finished scanning a
 920   // region; or when they have become stale as a result of the region
 921   // being evacuated.
 922   void giveup_current_region();
 923 
 924   HeapWord* finger()            { return _finger; }
 925 
 926   bool has_aborted()            { return _has_aborted; }
 927   void set_has_aborted()        { _has_aborted = true; }
 928   void clear_has_aborted()      { _has_aborted = false; }
 929   bool has_timed_out()          { return _has_timed_out; }
 930   bool claimed()                { return _claimed; }
 931 
 932   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 933 
 934   // Increment the number of references this task has visited.
 935   void increment_refs_reached() { ++_refs_reached; }
 936 
 937   // Grey the object by marking it.  If not already marked, push it on
 938   // the local queue if below the finger.
 939   // Precondition: obj is in region.
 940   // Precondition: obj is below region's NTAMS.
 941   inline void make_reference_grey(oop obj, HeapRegion* region);
 942 
 943   // Grey the object (by calling make_grey_reference) if required,
 944   // e.g. obj is below its containing region's NTAMS.
 945   // Precondition: obj is a valid heap object.
 946   inline void deal_with_reference(oop obj);
 947 
 948   // It scans an object and visits its children.
 949   inline void scan_object(oop obj);
 950 
 951   // It pushes an object on the local queue.
 952   inline void push(oop obj);
 953 
 954   // These two move entries to/from the global stack.
 955   void move_entries_to_global_stack();
 956   void get_entries_from_global_stack();
 957 
 958   // It pops and scans objects from the local queue. If partially is
 959   // true, then it stops when the queue size is of a given limit. If
 960   // partially is false, then it stops when the queue is empty.
 961   void drain_local_queue(bool partially);
 962   // It moves entries from the global stack to the local queue and
 963   // drains the local queue. If partially is true, then it stops when
 964   // both the global stack and the local queue reach a given size. If
 965   // partially if false, it tries to empty them totally.
 966   void drain_global_stack(bool partially);
 967   // It keeps picking SATB buffers and processing them until no SATB
 968   // buffers are available.
 969   void drain_satb_buffers();
 970 
 971   // moves the local finger to a new location
 972   inline void move_finger_to(HeapWord* new_finger) {
 973     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 974     _finger = new_finger;
 975   }
 976 
 977   G1CMTask(uint worker_id,
 978            G1ConcurrentMark *cm,
 979            size_t* marked_bytes,
 980            BitMap* card_bm,
 981            G1CMTaskQueue* task_queue,
 982            G1CMTaskQueueSet* task_queues);
 983 
 984   // it prints statistics associated with this task
 985   void print_stats();
 986 };
 987 
 988 // Class that's used to to print out per-region liveness
 989 // information. It's currently used at the end of marking and also
 990 // after we sort the old regions at the end of the cleanup operation.
 991 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 992 private:
 993   // Accumulators for these values.
 994   size_t _total_used_bytes;
 995   size_t _total_capacity_bytes;
 996   size_t _total_prev_live_bytes;
 997   size_t _total_next_live_bytes;
 998 
 999   // Accumulator for the remembered set size
1000   size_t _total_remset_bytes;
1001 
1002   // Accumulator for strong code roots memory size
1003   size_t _total_strong_code_roots_bytes;
1004 
1005   static double perc(size_t val, size_t total) {
1006     if (total == 0) {
1007       return 0.0;
1008     } else {
1009       return 100.0 * ((double) val / (double) total);
1010     }
1011   }
1012 
1013   static double bytes_to_mb(size_t val) {
1014     return (double) val / (double) M;
1015   }
1016 
1017 public:
1018   // The header and footer are printed in the constructor and
1019   // destructor respectively.
1020   G1PrintRegionLivenessInfoClosure(const char* phase_name);
1021   virtual bool doHeapRegion(HeapRegion* r);
1022   ~G1PrintRegionLivenessInfoClosure();
1023 };
1024 
1025 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP