1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP
  27 
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1ConcurrentMark.hpp"
  30 #include "gc/shared/taskqueue.inline.hpp"
  31 
  32 inline bool G1ConcurrentMark::par_mark(oop obj) {
  33   return _nextMarkBitMap->parMark((HeapWord*)obj);
  34 }
  35 
  36 inline bool G1CMBitMapRO::iterate(BitMapClosure* cl, MemRegion mr) {
  37   HeapWord* start_addr = MAX2(startWord(), mr.start());
  38   HeapWord* end_addr = MIN2(endWord(), mr.end());
  39 
  40   if (end_addr > start_addr) {
  41     // Right-open interval [start-offset, end-offset).
  42     BitMap::idx_t start_offset = heapWordToOffset(start_addr);
  43     BitMap::idx_t end_offset = heapWordToOffset(end_addr);
  44 
  45     start_offset = _bm.get_next_one_offset(start_offset, end_offset);
  46     while (start_offset < end_offset) {
  47       if (!cl->do_bit(start_offset)) {
  48         return false;
  49       }
  50       HeapWord* next_addr = MIN2(nextObject(offsetToHeapWord(start_offset)), end_addr);
  51       BitMap::idx_t next_offset = heapWordToOffset(next_addr);
  52       start_offset = _bm.get_next_one_offset(next_offset, end_offset);
  53     }
  54   }
  55   return true;
  56 }
  57 
  58 // The argument addr should be the start address of a valid object
  59 HeapWord* G1CMBitMapRO::nextObject(HeapWord* addr) {
  60   oop obj = (oop) addr;
  61   HeapWord* res =  addr + obj->size();
  62   assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
  63   return res;
  64 }
  65 
  66 #define check_mark(addr)                                                       \
  67   assert(_bmStartWord <= (addr) && (addr) < (_bmStartWord + _bmWordSize),      \
  68          "outside underlying space?");                                         \
  69   assert(G1CollectedHeap::heap()->is_in_exact(addr),                           \
  70          "Trying to access not available bitmap " PTR_FORMAT                   \
  71          " corresponding to " PTR_FORMAT " (%u)",                              \
  72          p2i(this), p2i(addr), G1CollectedHeap::heap()->addr_to_region(addr));
  73 
  74 inline void G1CMBitMap::mark(HeapWord* addr) {
  75   check_mark(addr);
  76   _bm.set_bit(heapWordToOffset(addr));
  77 }
  78 
  79 inline void G1CMBitMap::clear(HeapWord* addr) {
  80   check_mark(addr);
  81   _bm.clear_bit(heapWordToOffset(addr));
  82 }
  83 
  84 inline bool G1CMBitMap::parMark(HeapWord* addr) {
  85   check_mark(addr);
  86   return _bm.par_set_bit(heapWordToOffset(addr));
  87 }
  88 
  89 #undef check_mark
  90 
  91 template<typename Fn>
  92 inline void G1CMMarkStack::iterate(Fn fn) {
  93   assert(_saved_index == _index, "saved index: %d index: %d", _saved_index, _index);
  94   for (int i = 0; i < _index; ++i) {
  95     fn(_base[i]);
  96   }
  97 }
  98 
  99 // It scans an object and visits its children.
 100 inline void G1CMTask::scan_object(oop obj) { process_grey_object<true>(obj); }
 101 
 102 inline void G1CMTask::push(oop obj) {
 103   HeapWord* objAddr = (HeapWord*) obj;
 104   assert(_g1h->is_in_g1_reserved(objAddr), "invariant");
 105   assert(!_g1h->is_on_master_free_list(
 106               _g1h->heap_region_containing((HeapWord*) objAddr)), "invariant");
 107   assert(!_g1h->is_obj_ill(obj), "invariant");
 108   assert(_nextMarkBitMap->isMarked(objAddr), "invariant");
 109 
 110   if (!_task_queue->push(obj)) {
 111     // The local task queue looks full. We need to push some entries
 112     // to the global stack.
 113     move_entries_to_global_stack();
 114 
 115     // this should succeed since, even if we overflow the global
 116     // stack, we should have definitely removed some entries from the
 117     // local queue. So, there must be space on it.
 118     bool success = _task_queue->push(obj);
 119     assert(success, "invariant");
 120   }
 121 }
 122 
 123 inline bool G1CMTask::is_below_finger(oop obj, HeapWord* global_finger) const {
 124   // If obj is above the global finger, then the mark bitmap scan
 125   // will find it later, and no push is needed.  Similarly, if we have
 126   // a current region and obj is between the local finger and the
 127   // end of the current region, then no push is needed.  The tradeoff
 128   // of checking both vs only checking the global finger is that the
 129   // local check will be more accurate and so result in fewer pushes,
 130   // but may also be a little slower.
 131   HeapWord* objAddr = (HeapWord*)obj;
 132   if (_finger != NULL) {
 133     // We have a current region.
 134 
 135     // Finger and region values are all NULL or all non-NULL.  We
 136     // use _finger to check since we immediately use its value.
 137     assert(_curr_region != NULL, "invariant");
 138     assert(_region_limit != NULL, "invariant");
 139     assert(_region_limit <= global_finger, "invariant");
 140 
 141     // True if obj is less than the local finger, or is between
 142     // the region limit and the global finger.
 143     if (objAddr < _finger) {
 144       return true;
 145     } else if (objAddr < _region_limit) {
 146       return false;
 147     } // Else check global finger.
 148   }
 149   // Check global finger.
 150   return objAddr < global_finger;
 151 }
 152 
 153 template<bool scan>
 154 inline void G1CMTask::process_grey_object(oop obj) {
 155   assert(scan || obj->is_typeArray(), "Skipping scan of grey non-typeArray");
 156   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
 157 
 158   size_t obj_size = obj->size();
 159   _words_scanned += obj_size;
 160 
 161   if (scan) {
 162     obj->oop_iterate(_cm_oop_closure);
 163   }
 164   check_limits();
 165 }
 166 
 167 inline void G1CMTask::make_reference_grey(oop obj) {
 168   if (_cm->par_mark(obj)) {
 169     // No OrderAccess:store_load() is needed. It is implicit in the
 170     // CAS done in G1CMBitMap::parMark() call in the routine above.
 171     HeapWord* global_finger = _cm->finger();
 172 
 173     // We only need to push a newly grey object on the mark
 174     // stack if it is in a section of memory the mark bitmap
 175     // scan has already examined.  Mark bitmap scanning
 176     // maintains progress "fingers" for determining that.
 177     //
 178     // Notice that the global finger might be moving forward
 179     // concurrently. This is not a problem. In the worst case, we
 180     // mark the object while it is above the global finger and, by
 181     // the time we read the global finger, it has moved forward
 182     // past this object. In this case, the object will probably
 183     // be visited when a task is scanning the region and will also
 184     // be pushed on the stack. So, some duplicate work, but no
 185     // correctness problems.
 186     if (is_below_finger(obj, global_finger)) {
 187       if (obj->is_typeArray()) {
 188         // Immediately process arrays of primitive types, rather
 189         // than pushing on the mark stack.  This keeps us from
 190         // adding humongous objects to the mark stack that might
 191         // be reclaimed before the entry is processed - see
 192         // selection of candidates for eager reclaim of humongous
 193         // objects.  The cost of the additional type test is
 194         // mitigated by avoiding a trip through the mark stack,
 195         // by only doing a bookkeeping update and avoiding the
 196         // actual scan of the object - a typeArray contains no
 197         // references, and the metadata is built-in.
 198         process_grey_object<false>(obj);
 199       } else {
 200         push(obj);
 201       }
 202     }
 203   }
 204 }
 205 
 206 inline void G1CMTask::deal_with_reference(oop obj) {
 207   increment_refs_reached();
 208 
 209   HeapWord* objAddr = (HeapWord*) obj;
 210   assert(obj->is_oop_or_null(true /* ignore mark word */), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
 211   if (_g1h->is_in_g1_reserved(objAddr)) {
 212     assert(obj != NULL, "null check is implicit");
 213     if (!_nextMarkBitMap->isMarked(objAddr)) {
 214       // Only get the containing region if the object is not marked on the
 215       // bitmap (otherwise, it's a waste of time since we won't do
 216       // anything with it).
 217       HeapRegion* hr = _g1h->heap_region_containing(obj);
 218       if (!hr->obj_allocated_since_next_marking(obj)) {
 219         make_reference_grey(obj);
 220       }
 221     }
 222   }
 223 }
 224 
 225 inline void G1ConcurrentMark::markPrev(oop p) {
 226   assert(!_prevMarkBitMap->isMarked((HeapWord*) p), "sanity");
 227   // Note we are overriding the read-only view of the prev map here, via
 228   // the cast.
 229   ((G1CMBitMap*)_prevMarkBitMap)->mark((HeapWord*) p);
 230 }
 231 
 232 bool G1ConcurrentMark::isPrevMarked(oop p) const {
 233   assert(p != NULL && p->is_oop(), "expected an oop");
 234   HeapWord* addr = (HeapWord*)p;
 235   assert(addr >= _prevMarkBitMap->startWord() ||
 236          addr < _prevMarkBitMap->endWord(), "in a region");
 237 
 238   return _prevMarkBitMap->isMarked(addr);
 239 }
 240 
 241 inline void G1ConcurrentMark::grayRoot(oop obj, HeapRegion* hr) {
 242   assert(obj != NULL, "pre-condition");
 243   HeapWord* addr = (HeapWord*) obj;
 244   if (hr == NULL) {
 245     hr = _g1h->heap_region_containing(addr);
 246   } else {
 247     assert(hr->is_in(addr), "pre-condition");
 248   }
 249   assert(hr != NULL, "sanity");
 250   // Given that we're looking for a region that contains an object
 251   // header it's impossible to get back a HC region.
 252   assert(!hr->is_continues_humongous(), "sanity");
 253 
 254   if (addr < hr->next_top_at_mark_start()) {
 255     if (!_nextMarkBitMap->isMarked(addr)) {
 256       par_mark(obj);
 257     }
 258   }
 259 }
 260 
 261 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_INLINE_HPP