1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "utilities/globalDefinitions.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  74 
  75 // turn it on so that the contents of the young list (scan-only /
  76 // to-be-collected) are printed at "strategic" points before / during
  77 // / after the collection --- this is useful for debugging
  78 #define YOUNG_LIST_VERBOSE 0
  79 // CURRENT STATUS
  80 // This file is under construction.  Search for "FIXME".
  81 
  82 // INVARIANTS/NOTES
  83 //
  84 // All allocation activity covered by the G1CollectedHeap interface is
  85 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  86 // and allocate_new_tlab, which are the "entry" points to the
  87 // allocation code from the rest of the JVM.  (Note that this does not
  88 // apply to TLAB allocation, which is not part of this interface: it
  89 // is done by clients of this interface.)
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   bool _concurrent;
  95 public:
  96   RefineCardTableEntryClosure() : _concurrent(true) { }
  97 
  98   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  99     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112 
 113   void set_concurrent(bool b) { _concurrent = b; }
 114 };
 115 
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 118  private:
 119   size_t _num_processed;
 120 
 121  public:
 122   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 123 
 124   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 125     *card_ptr = CardTableModRefBS::dirty_card_val();
 126     _num_processed++;
 127     return true;
 128   }
 129 
 130   size_t num_processed() const { return _num_processed; }
 131 };
 132 
 133 YoungList::YoungList(G1CollectedHeap* g1h) :
 134     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 135     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 136   guarantee(check_list_empty(false), "just making sure...");
 137 }
 138 
 139 void YoungList::push_region(HeapRegion *hr) {
 140   assert(!hr->is_young(), "should not already be young");
 141   assert(hr->get_next_young_region() == NULL, "cause it should!");
 142 
 143   hr->set_next_young_region(_head);
 144   _head = hr;
 145 
 146   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 147   ++_length;
 148 }
 149 
 150 void YoungList::add_survivor_region(HeapRegion* hr) {
 151   assert(hr->is_survivor(), "should be flagged as survivor region");
 152   assert(hr->get_next_young_region() == NULL, "cause it should!");
 153 
 154   hr->set_next_young_region(_survivor_head);
 155   if (_survivor_head == NULL) {
 156     _survivor_tail = hr;
 157   }
 158   _survivor_head = hr;
 159   ++_survivor_length;
 160 }
 161 
 162 void YoungList::empty_list(HeapRegion* list) {
 163   while (list != NULL) {
 164     HeapRegion* next = list->get_next_young_region();
 165     list->set_next_young_region(NULL);
 166     list->uninstall_surv_rate_group();
 167     // This is called before a Full GC and all the non-empty /
 168     // non-humongous regions at the end of the Full GC will end up as
 169     // old anyway.
 170     list->set_old();
 171     list = next;
 172   }
 173 }
 174 
 175 void YoungList::empty_list() {
 176   assert(check_list_well_formed(), "young list should be well formed");
 177 
 178   empty_list(_head);
 179   _head = NULL;
 180   _length = 0;
 181 
 182   empty_list(_survivor_head);
 183   _survivor_head = NULL;
 184   _survivor_tail = NULL;
 185   _survivor_length = 0;
 186 
 187   _last_sampled_rs_lengths = 0;
 188 
 189   assert(check_list_empty(false), "just making sure...");
 190 }
 191 
 192 bool YoungList::check_list_well_formed() {
 193   bool ret = true;
 194 
 195   uint length = 0;
 196   HeapRegion* curr = _head;
 197   HeapRegion* last = NULL;
 198   while (curr != NULL) {
 199     if (!curr->is_young()) {
 200       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 201                              "incorrectly tagged (y: %d, surv: %d)",
 202                              p2i(curr->bottom()), p2i(curr->end()),
 203                              curr->is_young(), curr->is_survivor());
 204       ret = false;
 205     }
 206     ++length;
 207     last = curr;
 208     curr = curr->get_next_young_region();
 209   }
 210   ret = ret && (length == _length);
 211 
 212   if (!ret) {
 213     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 214     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 215                            length, _length);
 216   }
 217 
 218   return ret;
 219 }
 220 
 221 bool YoungList::check_list_empty(bool check_sample) {
 222   bool ret = true;
 223 
 224   if (_length != 0) {
 225     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 226                   _length);
 227     ret = false;
 228   }
 229   if (check_sample && _last_sampled_rs_lengths != 0) {
 230     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 231     ret = false;
 232   }
 233   if (_head != NULL) {
 234     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 235     ret = false;
 236   }
 237   if (!ret) {
 238     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 239   }
 240 
 241   return ret;
 242 }
 243 
 244 void
 245 YoungList::rs_length_sampling_init() {
 246   _sampled_rs_lengths = 0;
 247   _curr               = _head;
 248 }
 249 
 250 bool
 251 YoungList::rs_length_sampling_more() {
 252   return _curr != NULL;
 253 }
 254 
 255 void
 256 YoungList::rs_length_sampling_next() {
 257   assert( _curr != NULL, "invariant" );
 258   size_t rs_length = _curr->rem_set()->occupied();
 259 
 260   _sampled_rs_lengths += rs_length;
 261 
 262   // The current region may not yet have been added to the
 263   // incremental collection set (it gets added when it is
 264   // retired as the current allocation region).
 265   if (_curr->in_collection_set()) {
 266     // Update the collection set policy information for this region
 267     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 268   }
 269 
 270   _curr = _curr->get_next_young_region();
 271   if (_curr == NULL) {
 272     _last_sampled_rs_lengths = _sampled_rs_lengths;
 273     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 274   }
 275 }
 276 
 277 void
 278 YoungList::reset_auxilary_lists() {
 279   guarantee( is_empty(), "young list should be empty" );
 280   assert(check_list_well_formed(), "young list should be well formed");
 281 
 282   // Add survivor regions to SurvRateGroup.
 283   _g1h->g1_policy()->note_start_adding_survivor_regions();
 284   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 285 
 286   int young_index_in_cset = 0;
 287   for (HeapRegion* curr = _survivor_head;
 288        curr != NULL;
 289        curr = curr->get_next_young_region()) {
 290     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 291 
 292     // The region is a non-empty survivor so let's add it to
 293     // the incremental collection set for the next evacuation
 294     // pause.
 295     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 296     young_index_in_cset += 1;
 297   }
 298   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 299   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 300 
 301   _head   = _survivor_head;
 302   _length = _survivor_length;
 303   if (_survivor_head != NULL) {
 304     assert(_survivor_tail != NULL, "cause it shouldn't be");
 305     assert(_survivor_length > 0, "invariant");
 306     _survivor_tail->set_next_young_region(NULL);
 307   }
 308 
 309   // Don't clear the survivor list handles until the start of
 310   // the next evacuation pause - we need it in order to re-tag
 311   // the survivor regions from this evacuation pause as 'young'
 312   // at the start of the next.
 313 
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 315 
 316   assert(check_list_well_formed(), "young list should be well formed");
 317 }
 318 
 319 void YoungList::print() {
 320   HeapRegion* lists[] = {_head,   _survivor_head};
 321   const char* names[] = {"YOUNG", "SURVIVOR"};
 322 
 323   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 324     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 325     HeapRegion *curr = lists[list];
 326     if (curr == NULL)
 327       gclog_or_tty->print_cr("  empty");
 328     while (curr != NULL) {
 329       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 330                              HR_FORMAT_PARAMS(curr),
 331                              p2i(curr->prev_top_at_mark_start()),
 332                              p2i(curr->next_top_at_mark_start()),
 333                              curr->age_in_surv_rate_group_cond());
 334       curr = curr->get_next_young_region();
 335     }
 336   }
 337 
 338   gclog_or_tty->cr();
 339 }
 340 
 341 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 342   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 343 }
 344 
 345 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 346   // The from card cache is not the memory that is actually committed. So we cannot
 347   // take advantage of the zero_filled parameter.
 348   reset_from_card_cache(start_idx, num_regions);
 349 }
 350 
 351 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 352 {
 353   // Claim the right to put the region on the dirty cards region list
 354   // by installing a self pointer.
 355   HeapRegion* next = hr->get_next_dirty_cards_region();
 356   if (next == NULL) {
 357     HeapRegion* res = (HeapRegion*)
 358       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 359                           NULL);
 360     if (res == NULL) {
 361       HeapRegion* head;
 362       do {
 363         // Put the region to the dirty cards region list.
 364         head = _dirty_cards_region_list;
 365         next = (HeapRegion*)
 366           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 367         if (next == head) {
 368           assert(hr->get_next_dirty_cards_region() == hr,
 369                  "hr->get_next_dirty_cards_region() != hr");
 370           if (next == NULL) {
 371             // The last region in the list points to itself.
 372             hr->set_next_dirty_cards_region(hr);
 373           } else {
 374             hr->set_next_dirty_cards_region(next);
 375           }
 376         }
 377       } while (next != head);
 378     }
 379   }
 380 }
 381 
 382 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 383 {
 384   HeapRegion* head;
 385   HeapRegion* hr;
 386   do {
 387     head = _dirty_cards_region_list;
 388     if (head == NULL) {
 389       return NULL;
 390     }
 391     HeapRegion* new_head = head->get_next_dirty_cards_region();
 392     if (head == new_head) {
 393       // The last region.
 394       new_head = NULL;
 395     }
 396     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 397                                           head);
 398   } while (hr != head);
 399   assert(hr != NULL, "invariant");
 400   hr->set_next_dirty_cards_region(NULL);
 401   return hr;
 402 }
 403 
 404 // Returns true if the reference points to an object that
 405 // can move in an incremental collection.
 406 bool G1CollectedHeap::is_scavengable(const void* p) {
 407   HeapRegion* hr = heap_region_containing(p);
 408   return !hr->is_pinned();
 409 }
 410 
 411 // Private methods.
 412 
 413 HeapRegion*
 414 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 415   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 416   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 417     if (!_secondary_free_list.is_empty()) {
 418       if (G1ConcRegionFreeingVerbose) {
 419         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 420                                "secondary_free_list has %u entries",
 421                                _secondary_free_list.length());
 422       }
 423       // It looks as if there are free regions available on the
 424       // secondary_free_list. Let's move them to the free_list and try
 425       // again to allocate from it.
 426       append_secondary_free_list();
 427 
 428       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 429              "empty we should have moved at least one entry to the free_list");
 430       HeapRegion* res = _hrm.allocate_free_region(is_old);
 431       if (G1ConcRegionFreeingVerbose) {
 432         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 433                                "allocated " HR_FORMAT " from secondary_free_list",
 434                                HR_FORMAT_PARAMS(res));
 435       }
 436       return res;
 437     }
 438 
 439     // Wait here until we get notified either when (a) there are no
 440     // more free regions coming or (b) some regions have been moved on
 441     // the secondary_free_list.
 442     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 443   }
 444 
 445   if (G1ConcRegionFreeingVerbose) {
 446     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 447                            "could not allocate from secondary_free_list");
 448   }
 449   return NULL;
 450 }
 451 
 452 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 453   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 454          "the only time we use this to allocate a humongous region is "
 455          "when we are allocating a single humongous region");
 456 
 457   HeapRegion* res;
 458   if (G1StressConcRegionFreeing) {
 459     if (!_secondary_free_list.is_empty()) {
 460       if (G1ConcRegionFreeingVerbose) {
 461         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 462                                "forced to look at the secondary_free_list");
 463       }
 464       res = new_region_try_secondary_free_list(is_old);
 465       if (res != NULL) {
 466         return res;
 467       }
 468     }
 469   }
 470 
 471   res = _hrm.allocate_free_region(is_old);
 472 
 473   if (res == NULL) {
 474     if (G1ConcRegionFreeingVerbose) {
 475       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 476                              "res == NULL, trying the secondary_free_list");
 477     }
 478     res = new_region_try_secondary_free_list(is_old);
 479   }
 480   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 481     // Currently, only attempts to allocate GC alloc regions set
 482     // do_expand to true. So, we should only reach here during a
 483     // safepoint. If this assumption changes we might have to
 484     // reconsider the use of _expand_heap_after_alloc_failure.
 485     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 486 
 487     ergo_verbose1(ErgoHeapSizing,
 488                   "attempt heap expansion",
 489                   ergo_format_reason("region allocation request failed")
 490                   ergo_format_byte("allocation request"),
 491                   word_size * HeapWordSize);
 492     if (expand(word_size * HeapWordSize)) {
 493       // Given that expand() succeeded in expanding the heap, and we
 494       // always expand the heap by an amount aligned to the heap
 495       // region size, the free list should in theory not be empty.
 496       // In either case allocate_free_region() will check for NULL.
 497       res = _hrm.allocate_free_region(is_old);
 498     } else {
 499       _expand_heap_after_alloc_failure = false;
 500     }
 501   }
 502   return res;
 503 }
 504 
 505 HeapWord*
 506 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 507                                                            uint num_regions,
 508                                                            size_t word_size,
 509                                                            AllocationContext_t context) {
 510   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 511   assert(is_humongous(word_size), "word_size should be humongous");
 512   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 513 
 514   // Index of last region in the series + 1.
 515   uint last = first + num_regions;
 516 
 517   // We need to initialize the region(s) we just discovered. This is
 518   // a bit tricky given that it can happen concurrently with
 519   // refinement threads refining cards on these regions and
 520   // potentially wanting to refine the BOT as they are scanning
 521   // those cards (this can happen shortly after a cleanup; see CR
 522   // 6991377). So we have to set up the region(s) carefully and in
 523   // a specific order.
 524 
 525   // The word size sum of all the regions we will allocate.
 526   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 527   assert(word_size <= word_size_sum, "sanity");
 528 
 529   // This will be the "starts humongous" region.
 530   HeapRegion* first_hr = region_at(first);
 531   // The header of the new object will be placed at the bottom of
 532   // the first region.
 533   HeapWord* new_obj = first_hr->bottom();
 534   // This will be the new end of the first region in the series that
 535   // should also match the end of the last region in the series.
 536   HeapWord* new_end = new_obj + word_size_sum;
 537   // This will be the new top of the first region that will reflect
 538   // this allocation.
 539   HeapWord* new_top = new_obj + word_size;
 540 
 541   // First, we need to zero the header of the space that we will be
 542   // allocating. When we update top further down, some refinement
 543   // threads might try to scan the region. By zeroing the header we
 544   // ensure that any thread that will try to scan the region will
 545   // come across the zero klass word and bail out.
 546   //
 547   // NOTE: It would not have been correct to have used
 548   // CollectedHeap::fill_with_object() and make the space look like
 549   // an int array. The thread that is doing the allocation will
 550   // later update the object header to a potentially different array
 551   // type and, for a very short period of time, the klass and length
 552   // fields will be inconsistent. This could cause a refinement
 553   // thread to calculate the object size incorrectly.
 554   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 555 
 556   // We will set up the first region as "starts humongous". This
 557   // will also update the BOT covering all the regions to reflect
 558   // that there is a single object that starts at the bottom of the
 559   // first region.
 560   first_hr->set_starts_humongous(new_top, new_end);
 561   first_hr->set_allocation_context(context);
 562   // Then, if there are any, we will set up the "continues
 563   // humongous" regions.
 564   HeapRegion* hr = NULL;
 565   for (uint i = first + 1; i < last; ++i) {
 566     hr = region_at(i);
 567     hr->set_continues_humongous(first_hr);
 568     hr->set_allocation_context(context);
 569   }
 570   // If we have "continues humongous" regions (hr != NULL), then the
 571   // end of the last one should match new_end.
 572   assert(hr == NULL || hr->end() == new_end, "sanity");
 573 
 574   // Up to this point no concurrent thread would have been able to
 575   // do any scanning on any region in this series. All the top
 576   // fields still point to bottom, so the intersection between
 577   // [bottom,top] and [card_start,card_end] will be empty. Before we
 578   // update the top fields, we'll do a storestore to make sure that
 579   // no thread sees the update to top before the zeroing of the
 580   // object header and the BOT initialization.
 581   OrderAccess::storestore();
 582 
 583   // Now that the BOT and the object header have been initialized,
 584   // we can update top of the "starts humongous" region.
 585   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 586          "new_top should be in this region");
 587   first_hr->set_top(new_top);
 588   if (_hr_printer.is_active()) {
 589     HeapWord* bottom = first_hr->bottom();
 590     HeapWord* end = first_hr->orig_end();
 591     if ((first + 1) == last) {
 592       // the series has a single humongous region
 593       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 594     } else {
 595       // the series has more than one humongous regions
 596       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 597     }
 598   }
 599 
 600   // Now, we will update the top fields of the "continues humongous"
 601   // regions. The reason we need to do this is that, otherwise,
 602   // these regions would look empty and this will confuse parts of
 603   // G1. For example, the code that looks for a consecutive number
 604   // of empty regions will consider them empty and try to
 605   // re-allocate them. We can extend is_empty() to also include
 606   // !is_continues_humongous(), but it is easier to just update the top
 607   // fields here. The way we set top for all regions (i.e., top ==
 608   // end for all regions but the last one, top == new_top for the
 609   // last one) is actually used when we will free up the humongous
 610   // region in free_humongous_region().
 611   hr = NULL;
 612   for (uint i = first + 1; i < last; ++i) {
 613     hr = region_at(i);
 614     if ((i + 1) == last) {
 615       // last continues humongous region
 616       assert(hr->bottom() < new_top && new_top <= hr->end(),
 617              "new_top should fall on this region");
 618       hr->set_top(new_top);
 619       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 620     } else {
 621       // not last one
 622       assert(new_top > hr->end(), "new_top should be above this region");
 623       hr->set_top(hr->end());
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 625     }
 626   }
 627   // If we have continues humongous regions (hr != NULL), then the
 628   // end of the last one should match new_end and its top should
 629   // match new_top.
 630   assert(hr == NULL ||
 631          (hr->end() == new_end && hr->top() == new_top), "sanity");
 632   check_bitmaps("Humongous Region Allocation", first_hr);
 633 
 634   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 635   increase_used(first_hr->used());
 636   _humongous_set.add(first_hr);
 637 
 638   return new_obj;
 639 }
 640 
 641 // If could fit into free regions w/o expansion, try.
 642 // Otherwise, if can expand, do so.
 643 // Otherwise, if using ex regions might help, try with ex given back.
 644 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 645   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 646 
 647   verify_region_sets_optional();
 648 
 649   uint first = G1_NO_HRM_INDEX;
 650   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 651 
 652   if (obj_regions == 1) {
 653     // Only one region to allocate, try to use a fast path by directly allocating
 654     // from the free lists. Do not try to expand here, we will potentially do that
 655     // later.
 656     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 657     if (hr != NULL) {
 658       first = hr->hrm_index();
 659     }
 660   } else {
 661     // We can't allocate humongous regions spanning more than one region while
 662     // cleanupComplete() is running, since some of the regions we find to be
 663     // empty might not yet be added to the free list. It is not straightforward
 664     // to know in which list they are on so that we can remove them. We only
 665     // need to do this if we need to allocate more than one region to satisfy the
 666     // current humongous allocation request. If we are only allocating one region
 667     // we use the one-region region allocation code (see above), that already
 668     // potentially waits for regions from the secondary free list.
 669     wait_while_free_regions_coming();
 670     append_secondary_free_list_if_not_empty_with_lock();
 671 
 672     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 673     // are lucky enough to find some.
 674     first = _hrm.find_contiguous_only_empty(obj_regions);
 675     if (first != G1_NO_HRM_INDEX) {
 676       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 677     }
 678   }
 679 
 680   if (first == G1_NO_HRM_INDEX) {
 681     // Policy: We could not find enough regions for the humongous object in the
 682     // free list. Look through the heap to find a mix of free and uncommitted regions.
 683     // If so, try expansion.
 684     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 685     if (first != G1_NO_HRM_INDEX) {
 686       // We found something. Make sure these regions are committed, i.e. expand
 687       // the heap. Alternatively we could do a defragmentation GC.
 688       ergo_verbose1(ErgoHeapSizing,
 689                     "attempt heap expansion",
 690                     ergo_format_reason("humongous allocation request failed")
 691                     ergo_format_byte("allocation request"),
 692                     word_size * HeapWordSize);
 693 
 694       _hrm.expand_at(first, obj_regions);
 695       g1_policy()->record_new_heap_size(num_regions());
 696 
 697 #ifdef ASSERT
 698       for (uint i = first; i < first + obj_regions; ++i) {
 699         HeapRegion* hr = region_at(i);
 700         assert(hr->is_free(), "sanity");
 701         assert(hr->is_empty(), "sanity");
 702         assert(is_on_master_free_list(hr), "sanity");
 703       }
 704 #endif
 705       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 706     } else {
 707       // Policy: Potentially trigger a defragmentation GC.
 708     }
 709   }
 710 
 711   HeapWord* result = NULL;
 712   if (first != G1_NO_HRM_INDEX) {
 713     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 714                                                        word_size, context);
 715     assert(result != NULL, "it should always return a valid result");
 716 
 717     // A successful humongous object allocation changes the used space
 718     // information of the old generation so we need to recalculate the
 719     // sizes and update the jstat counters here.
 720     g1mm()->update_sizes();
 721   }
 722 
 723   verify_region_sets_optional();
 724 
 725   return result;
 726 }
 727 
 728 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 729   assert_heap_not_locked_and_not_at_safepoint();
 730   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 731 
 732   uint dummy_gc_count_before;
 733   uint dummy_gclocker_retry_count = 0;
 734   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 735 }
 736 
 737 HeapWord*
 738 G1CollectedHeap::mem_allocate(size_t word_size,
 739                               bool*  gc_overhead_limit_was_exceeded) {
 740   assert_heap_not_locked_and_not_at_safepoint();
 741 
 742   // Loop until the allocation is satisfied, or unsatisfied after GC.
 743   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 744     uint gc_count_before;
 745 
 746     HeapWord* result = NULL;
 747     if (!is_humongous(word_size)) {
 748       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 749     } else {
 750       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 751     }
 752     if (result != NULL) {
 753       return result;
 754     }
 755 
 756     // Create the garbage collection operation...
 757     VM_G1CollectForAllocation op(gc_count_before, word_size);
 758     op.set_allocation_context(AllocationContext::current());
 759 
 760     // ...and get the VM thread to execute it.
 761     VMThread::execute(&op);
 762 
 763     if (op.prologue_succeeded() && op.pause_succeeded()) {
 764       // If the operation was successful we'll return the result even
 765       // if it is NULL. If the allocation attempt failed immediately
 766       // after a Full GC, it's unlikely we'll be able to allocate now.
 767       HeapWord* result = op.result();
 768       if (result != NULL && !is_humongous(word_size)) {
 769         // Allocations that take place on VM operations do not do any
 770         // card dirtying and we have to do it here. We only have to do
 771         // this for non-humongous allocations, though.
 772         dirty_young_block(result, word_size);
 773       }
 774       return result;
 775     } else {
 776       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 777         return NULL;
 778       }
 779       assert(op.result() == NULL,
 780              "the result should be NULL if the VM op did not succeed");
 781     }
 782 
 783     // Give a warning if we seem to be looping forever.
 784     if ((QueuedAllocationWarningCount > 0) &&
 785         (try_count % QueuedAllocationWarningCount == 0)) {
 786       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 787     }
 788   }
 789 
 790   ShouldNotReachHere();
 791   return NULL;
 792 }
 793 
 794 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 795                                                    AllocationContext_t context,
 796                                                    uint* gc_count_before_ret,
 797                                                    uint* gclocker_retry_count_ret) {
 798   // Make sure you read the note in attempt_allocation_humongous().
 799 
 800   assert_heap_not_locked_and_not_at_safepoint();
 801   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 802          "be called for humongous allocation requests");
 803 
 804   // We should only get here after the first-level allocation attempt
 805   // (attempt_allocation()) failed to allocate.
 806 
 807   // We will loop until a) we manage to successfully perform the
 808   // allocation or b) we successfully schedule a collection which
 809   // fails to perform the allocation. b) is the only case when we'll
 810   // return NULL.
 811   HeapWord* result = NULL;
 812   for (int try_count = 1; /* we'll return */; try_count += 1) {
 813     bool should_try_gc;
 814     uint gc_count_before;
 815 
 816     {
 817       MutexLockerEx x(Heap_lock);
 818       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 819                                                                                     false /* bot_updates */);
 820       if (result != NULL) {
 821         return result;
 822       }
 823 
 824       // If we reach here, attempt_allocation_locked() above failed to
 825       // allocate a new region. So the mutator alloc region should be NULL.
 826       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 827 
 828       if (GC_locker::is_active_and_needs_gc()) {
 829         if (g1_policy()->can_expand_young_list()) {
 830           // No need for an ergo verbose message here,
 831           // can_expand_young_list() does this when it returns true.
 832           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 833                                                                                        false /* bot_updates */);
 834           if (result != NULL) {
 835             return result;
 836           }
 837         }
 838         should_try_gc = false;
 839       } else {
 840         // The GCLocker may not be active but the GCLocker initiated
 841         // GC may not yet have been performed (GCLocker::needs_gc()
 842         // returns true). In this case we do not try this GC and
 843         // wait until the GCLocker initiated GC is performed, and
 844         // then retry the allocation.
 845         if (GC_locker::needs_gc()) {
 846           should_try_gc = false;
 847         } else {
 848           // Read the GC count while still holding the Heap_lock.
 849           gc_count_before = total_collections();
 850           should_try_gc = true;
 851         }
 852       }
 853     }
 854 
 855     if (should_try_gc) {
 856       bool succeeded;
 857       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 858                                    GCCause::_g1_inc_collection_pause);
 859       if (result != NULL) {
 860         assert(succeeded, "only way to get back a non-NULL result");
 861         return result;
 862       }
 863 
 864       if (succeeded) {
 865         // If we get here we successfully scheduled a collection which
 866         // failed to allocate. No point in trying to allocate
 867         // further. We'll just return NULL.
 868         MutexLockerEx x(Heap_lock);
 869         *gc_count_before_ret = total_collections();
 870         return NULL;
 871       }
 872     } else {
 873       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 874         MutexLockerEx x(Heap_lock);
 875         *gc_count_before_ret = total_collections();
 876         return NULL;
 877       }
 878       // The GCLocker is either active or the GCLocker initiated
 879       // GC has not yet been performed. Stall until it is and
 880       // then retry the allocation.
 881       GC_locker::stall_until_clear();
 882       (*gclocker_retry_count_ret) += 1;
 883     }
 884 
 885     // We can reach here if we were unsuccessful in scheduling a
 886     // collection (because another thread beat us to it) or if we were
 887     // stalled due to the GC locker. In either can we should retry the
 888     // allocation attempt in case another thread successfully
 889     // performed a collection and reclaimed enough space. We do the
 890     // first attempt (without holding the Heap_lock) here and the
 891     // follow-on attempt will be at the start of the next loop
 892     // iteration (after taking the Heap_lock).
 893     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 894                                                                            false /* bot_updates */);
 895     if (result != NULL) {
 896       return result;
 897     }
 898 
 899     // Give a warning if we seem to be looping forever.
 900     if ((QueuedAllocationWarningCount > 0) &&
 901         (try_count % QueuedAllocationWarningCount == 0)) {
 902       warning("G1CollectedHeap::attempt_allocation_slow() "
 903               "retries %d times", try_count);
 904     }
 905   }
 906 
 907   ShouldNotReachHere();
 908   return NULL;
 909 }
 910 
 911 void G1CollectedHeap::begin_archive_alloc_range() {
 912   assert_at_safepoint(true /* should_be_vm_thread */);
 913   if (_archive_allocator == NULL) {
 914     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 915   }
 916 }
 917 
 918 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 919   // Allocations in archive regions cannot be of a size that would be considered
 920   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 921   // may be different at archive-restore time.
 922   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 923 }
 924 
 925 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 926   assert_at_safepoint(true /* should_be_vm_thread */);
 927   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 928   if (is_archive_alloc_too_large(word_size)) {
 929     return NULL;
 930   }
 931   return _archive_allocator->archive_mem_allocate(word_size);
 932 }
 933 
 934 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 935                                               size_t end_alignment_in_bytes) {
 936   assert_at_safepoint(true /* should_be_vm_thread */);
 937   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 938 
 939   // Call complete_archive to do the real work, filling in the MemRegion
 940   // array with the archive regions.
 941   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 942   delete _archive_allocator;
 943   _archive_allocator = NULL;
 944 }
 945 
 946 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 947   assert(ranges != NULL, "MemRegion array NULL");
 948   assert(count != 0, "No MemRegions provided");
 949   MemRegion reserved = _hrm.reserved();
 950   for (size_t i = 0; i < count; i++) {
 951     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 952       return false;
 953     }
 954   }
 955   return true;
 956 }
 957 
 958 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 959   assert(ranges != NULL, "MemRegion array NULL");
 960   assert(count != 0, "No MemRegions provided");
 961   MutexLockerEx x(Heap_lock);
 962 
 963   MemRegion reserved = _hrm.reserved();
 964   HeapWord* prev_last_addr = NULL;
 965   HeapRegion* prev_last_region = NULL;
 966 
 967   // Temporarily disable pretouching of heap pages. This interface is used
 968   // when mmap'ing archived heap data in, so pre-touching is wasted.
 969   FlagSetting fs(AlwaysPreTouch, false);
 970 
 971   // Enable archive object checking in G1MarkSweep. We have to let it know
 972   // about each archive range, so that objects in those ranges aren't marked.
 973   G1MarkSweep::enable_archive_object_check();
 974 
 975   // For each specified MemRegion range, allocate the corresponding G1
 976   // regions and mark them as archive regions. We expect the ranges in
 977   // ascending starting address order, without overlap.
 978   for (size_t i = 0; i < count; i++) {
 979     MemRegion curr_range = ranges[i];
 980     HeapWord* start_address = curr_range.start();
 981     size_t word_size = curr_range.word_size();
 982     HeapWord* last_address = curr_range.last();
 983     size_t commits = 0;
 984 
 985     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 986               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 987               p2i(start_address), p2i(last_address)));
 988     guarantee(start_address > prev_last_addr,
 989               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 990               p2i(start_address), p2i(prev_last_addr)));
 991     prev_last_addr = last_address;
 992 
 993     // Check for ranges that start in the same G1 region in which the previous
 994     // range ended, and adjust the start address so we don't try to allocate
 995     // the same region again. If the current range is entirely within that
 996     // region, skip it, just adjusting the recorded top.
 997     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 998     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 999       start_address = start_region->end();
1000       if (start_address > last_address) {
1001         increase_used(word_size * HeapWordSize);
1002         start_region->set_top(last_address + 1);
1003         continue;
1004       }
1005       start_region->set_top(start_address);
1006       curr_range = MemRegion(start_address, last_address + 1);
1007       start_region = _hrm.addr_to_region(start_address);
1008     }
1009 
1010     // Perform the actual region allocation, exiting if it fails.
1011     // Then note how much new space we have allocated.
1012     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1013       return false;
1014     }
1015     increase_used(word_size * HeapWordSize);
1016     if (commits != 0) {
1017       ergo_verbose1(ErgoHeapSizing,
1018                     "attempt heap expansion",
1019                     ergo_format_reason("allocate archive regions")
1020                     ergo_format_byte("total size"),
1021                     HeapRegion::GrainWords * HeapWordSize * commits);
1022     }
1023 
1024     // Mark each G1 region touched by the range as archive, add it to the old set,
1025     // and set the allocation context and top.
1026     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1027     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1028     prev_last_region = last_region;
1029 
1030     while (curr_region != NULL) {
1031       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1032              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1033       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1034       curr_region->set_allocation_context(AllocationContext::system());
1035       curr_region->set_archive();
1036       _old_set.add(curr_region);
1037       if (curr_region != last_region) {
1038         curr_region->set_top(curr_region->end());
1039         curr_region = _hrm.next_region_in_heap(curr_region);
1040       } else {
1041         curr_region->set_top(last_address + 1);
1042         curr_region = NULL;
1043       }
1044     }
1045 
1046     // Notify mark-sweep of the archive range.
1047     G1MarkSweep::mark_range_archive(curr_range);
1048   }
1049   return true;
1050 }
1051 
1052 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1053   assert(ranges != NULL, "MemRegion array NULL");
1054   assert(count != 0, "No MemRegions provided");
1055   MemRegion reserved = _hrm.reserved();
1056   HeapWord *prev_last_addr = NULL;
1057   HeapRegion* prev_last_region = NULL;
1058 
1059   // For each MemRegion, create filler objects, if needed, in the G1 regions
1060   // that contain the address range. The address range actually within the
1061   // MemRegion will not be modified. That is assumed to have been initialized
1062   // elsewhere, probably via an mmap of archived heap data.
1063   MutexLockerEx x(Heap_lock);
1064   for (size_t i = 0; i < count; i++) {
1065     HeapWord* start_address = ranges[i].start();
1066     HeapWord* last_address = ranges[i].last();
1067 
1068     assert(reserved.contains(start_address) && reserved.contains(last_address),
1069            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1070                    p2i(start_address), p2i(last_address)));
1071     assert(start_address > prev_last_addr,
1072            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1073                    p2i(start_address), p2i(prev_last_addr)));
1074 
1075     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1076     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1077     HeapWord* bottom_address = start_region->bottom();
1078 
1079     // Check for a range beginning in the same region in which the
1080     // previous one ended.
1081     if (start_region == prev_last_region) {
1082       bottom_address = prev_last_addr + 1;
1083     }
1084 
1085     // Verify that the regions were all marked as archive regions by
1086     // alloc_archive_regions.
1087     HeapRegion* curr_region = start_region;
1088     while (curr_region != NULL) {
1089       guarantee(curr_region->is_archive(),
1090                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1091       if (curr_region != last_region) {
1092         curr_region = _hrm.next_region_in_heap(curr_region);
1093       } else {
1094         curr_region = NULL;
1095       }
1096     }
1097 
1098     prev_last_addr = last_address;
1099     prev_last_region = last_region;
1100 
1101     // Fill the memory below the allocated range with dummy object(s),
1102     // if the region bottom does not match the range start, or if the previous
1103     // range ended within the same G1 region, and there is a gap.
1104     if (start_address != bottom_address) {
1105       size_t fill_size = pointer_delta(start_address, bottom_address);
1106       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1107       increase_used(fill_size * HeapWordSize);
1108     }
1109   }
1110 }
1111 
1112 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1113                                                         uint* gc_count_before_ret,
1114                                                         uint* gclocker_retry_count_ret) {
1115   // The structure of this method has a lot of similarities to
1116   // attempt_allocation_slow(). The reason these two were not merged
1117   // into a single one is that such a method would require several "if
1118   // allocation is not humongous do this, otherwise do that"
1119   // conditional paths which would obscure its flow. In fact, an early
1120   // version of this code did use a unified method which was harder to
1121   // follow and, as a result, it had subtle bugs that were hard to
1122   // track down. So keeping these two methods separate allows each to
1123   // be more readable. It will be good to keep these two in sync as
1124   // much as possible.
1125 
1126   assert_heap_not_locked_and_not_at_safepoint();
1127   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1128          "should only be called for humongous allocations");
1129 
1130   // Humongous objects can exhaust the heap quickly, so we should check if we
1131   // need to start a marking cycle at each humongous object allocation. We do
1132   // the check before we do the actual allocation. The reason for doing it
1133   // before the allocation is that we avoid having to keep track of the newly
1134   // allocated memory while we do a GC.
1135   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1136                                            word_size)) {
1137     collect(GCCause::_g1_humongous_allocation);
1138   }
1139 
1140   // We will loop until a) we manage to successfully perform the
1141   // allocation or b) we successfully schedule a collection which
1142   // fails to perform the allocation. b) is the only case when we'll
1143   // return NULL.
1144   HeapWord* result = NULL;
1145   for (int try_count = 1; /* we'll return */; try_count += 1) {
1146     bool should_try_gc;
1147     uint gc_count_before;
1148 
1149     {
1150       MutexLockerEx x(Heap_lock);
1151 
1152       // Given that humongous objects are not allocated in young
1153       // regions, we'll first try to do the allocation without doing a
1154       // collection hoping that there's enough space in the heap.
1155       result = humongous_obj_allocate(word_size, AllocationContext::current());
1156       if (result != NULL) {
1157         return result;
1158       }
1159 
1160       if (GC_locker::is_active_and_needs_gc()) {
1161         should_try_gc = false;
1162       } else {
1163          // The GCLocker may not be active but the GCLocker initiated
1164         // GC may not yet have been performed (GCLocker::needs_gc()
1165         // returns true). In this case we do not try this GC and
1166         // wait until the GCLocker initiated GC is performed, and
1167         // then retry the allocation.
1168         if (GC_locker::needs_gc()) {
1169           should_try_gc = false;
1170         } else {
1171           // Read the GC count while still holding the Heap_lock.
1172           gc_count_before = total_collections();
1173           should_try_gc = true;
1174         }
1175       }
1176     }
1177 
1178     if (should_try_gc) {
1179       // If we failed to allocate the humongous object, we should try to
1180       // do a collection pause (if we're allowed) in case it reclaims
1181       // enough space for the allocation to succeed after the pause.
1182 
1183       bool succeeded;
1184       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1185                                    GCCause::_g1_humongous_allocation);
1186       if (result != NULL) {
1187         assert(succeeded, "only way to get back a non-NULL result");
1188         return result;
1189       }
1190 
1191       if (succeeded) {
1192         // If we get here we successfully scheduled a collection which
1193         // failed to allocate. No point in trying to allocate
1194         // further. We'll just return NULL.
1195         MutexLockerEx x(Heap_lock);
1196         *gc_count_before_ret = total_collections();
1197         return NULL;
1198       }
1199     } else {
1200       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1201         MutexLockerEx x(Heap_lock);
1202         *gc_count_before_ret = total_collections();
1203         return NULL;
1204       }
1205       // The GCLocker is either active or the GCLocker initiated
1206       // GC has not yet been performed. Stall until it is and
1207       // then retry the allocation.
1208       GC_locker::stall_until_clear();
1209       (*gclocker_retry_count_ret) += 1;
1210     }
1211 
1212     // We can reach here if we were unsuccessful in scheduling a
1213     // collection (because another thread beat us to it) or if we were
1214     // stalled due to the GC locker. In either can we should retry the
1215     // allocation attempt in case another thread successfully
1216     // performed a collection and reclaimed enough space.  Give a
1217     // warning if we seem to be looping forever.
1218 
1219     if ((QueuedAllocationWarningCount > 0) &&
1220         (try_count % QueuedAllocationWarningCount == 0)) {
1221       warning("G1CollectedHeap::attempt_allocation_humongous() "
1222               "retries %d times", try_count);
1223     }
1224   }
1225 
1226   ShouldNotReachHere();
1227   return NULL;
1228 }
1229 
1230 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1231                                                            AllocationContext_t context,
1232                                                            bool expect_null_mutator_alloc_region) {
1233   assert_at_safepoint(true /* should_be_vm_thread */);
1234   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1235                                              !expect_null_mutator_alloc_region,
1236          "the current alloc region was unexpectedly found to be non-NULL");
1237 
1238   if (!is_humongous(word_size)) {
1239     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1240                                                       false /* bot_updates */);
1241   } else {
1242     HeapWord* result = humongous_obj_allocate(word_size, context);
1243     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1244       collector_state()->set_initiate_conc_mark_if_possible(true);
1245     }
1246     return result;
1247   }
1248 
1249   ShouldNotReachHere();
1250 }
1251 
1252 class PostMCRemSetClearClosure: public HeapRegionClosure {
1253   G1CollectedHeap* _g1h;
1254   ModRefBarrierSet* _mr_bs;
1255 public:
1256   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1257     _g1h(g1h), _mr_bs(mr_bs) {}
1258 
1259   bool doHeapRegion(HeapRegion* r) {
1260     HeapRegionRemSet* hrrs = r->rem_set();
1261 
1262     if (r->is_continues_humongous()) {
1263       // We'll assert that the strong code root list and RSet is empty
1264       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1265       assert(hrrs->occupied() == 0, "RSet should be empty");
1266       return false;
1267     }
1268 
1269     _g1h->reset_gc_time_stamps(r);
1270     hrrs->clear();
1271     // You might think here that we could clear just the cards
1272     // corresponding to the used region.  But no: if we leave a dirty card
1273     // in a region we might allocate into, then it would prevent that card
1274     // from being enqueued, and cause it to be missed.
1275     // Re: the performance cost: we shouldn't be doing full GC anyway!
1276     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1277 
1278     return false;
1279   }
1280 };
1281 
1282 void G1CollectedHeap::clear_rsets_post_compaction() {
1283   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1284   heap_region_iterate(&rs_clear);
1285 }
1286 
1287 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1288   G1CollectedHeap*   _g1h;
1289   UpdateRSOopClosure _cl;
1290 public:
1291   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1292     _cl(g1->g1_rem_set(), worker_i),
1293     _g1h(g1)
1294   { }
1295 
1296   bool doHeapRegion(HeapRegion* r) {
1297     if (!r->is_continues_humongous()) {
1298       _cl.set_from(r);
1299       r->oop_iterate(&_cl);
1300     }
1301     return false;
1302   }
1303 };
1304 
1305 class ParRebuildRSTask: public AbstractGangTask {
1306   G1CollectedHeap* _g1;
1307   HeapRegionClaimer _hrclaimer;
1308 
1309 public:
1310   ParRebuildRSTask(G1CollectedHeap* g1) :
1311       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1312 
1313   void work(uint worker_id) {
1314     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1315     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1316   }
1317 };
1318 
1319 class PostCompactionPrinterClosure: public HeapRegionClosure {
1320 private:
1321   G1HRPrinter* _hr_printer;
1322 public:
1323   bool doHeapRegion(HeapRegion* hr) {
1324     assert(!hr->is_young(), "not expecting to find young regions");
1325     if (hr->is_free()) {
1326       // We only generate output for non-empty regions.
1327     } else if (hr->is_starts_humongous()) {
1328       if (hr->region_num() == 1) {
1329         // single humongous region
1330         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1331       } else {
1332         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1333       }
1334     } else if (hr->is_continues_humongous()) {
1335       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1336     } else if (hr->is_archive()) {
1337       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1338     } else if (hr->is_old()) {
1339       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1340     } else {
1341       ShouldNotReachHere();
1342     }
1343     return false;
1344   }
1345 
1346   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1347     : _hr_printer(hr_printer) { }
1348 };
1349 
1350 void G1CollectedHeap::print_hrm_post_compaction() {
1351   PostCompactionPrinterClosure cl(hr_printer());
1352   heap_region_iterate(&cl);
1353 }
1354 
1355 bool G1CollectedHeap::do_collection(bool explicit_gc,
1356                                     bool clear_all_soft_refs,
1357                                     size_t word_size) {
1358   assert_at_safepoint(true /* should_be_vm_thread */);
1359 
1360   if (GC_locker::check_active_before_gc()) {
1361     return false;
1362   }
1363 
1364   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1365   gc_timer->register_gc_start();
1366 
1367   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1368   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1369 
1370   SvcGCMarker sgcm(SvcGCMarker::FULL);
1371   ResourceMark rm;
1372 
1373   G1Log::update_level();
1374   print_heap_before_gc();
1375   trace_heap_before_gc(gc_tracer);
1376 
1377   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1378 
1379   verify_region_sets_optional();
1380 
1381   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1382                            collector_policy()->should_clear_all_soft_refs();
1383 
1384   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1385 
1386   {
1387     IsGCActiveMark x;
1388 
1389     // Timing
1390     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1391     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1392 
1393     {
1394       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1395       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1396       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1397 
1398       g1_policy()->record_full_collection_start();
1399 
1400       // Note: When we have a more flexible GC logging framework that
1401       // allows us to add optional attributes to a GC log record we
1402       // could consider timing and reporting how long we wait in the
1403       // following two methods.
1404       wait_while_free_regions_coming();
1405       // If we start the compaction before the CM threads finish
1406       // scanning the root regions we might trip them over as we'll
1407       // be moving objects / updating references. So let's wait until
1408       // they are done. By telling them to abort, they should complete
1409       // early.
1410       _cm->root_regions()->abort();
1411       _cm->root_regions()->wait_until_scan_finished();
1412       append_secondary_free_list_if_not_empty_with_lock();
1413 
1414       gc_prologue(true);
1415       increment_total_collections(true /* full gc */);
1416       increment_old_marking_cycles_started();
1417 
1418       assert(used() == recalculate_used(), "Should be equal");
1419 
1420       verify_before_gc();
1421 
1422       check_bitmaps("Full GC Start");
1423       pre_full_gc_dump(gc_timer);
1424 
1425       COMPILER2_PRESENT(DerivedPointerTable::clear());
1426 
1427       // Disable discovery and empty the discovered lists
1428       // for the CM ref processor.
1429       ref_processor_cm()->disable_discovery();
1430       ref_processor_cm()->abandon_partial_discovery();
1431       ref_processor_cm()->verify_no_references_recorded();
1432 
1433       // Abandon current iterations of concurrent marking and concurrent
1434       // refinement, if any are in progress. We have to do this before
1435       // wait_until_scan_finished() below.
1436       concurrent_mark()->abort();
1437 
1438       // Make sure we'll choose a new allocation region afterwards.
1439       _allocator->release_mutator_alloc_region();
1440       _allocator->abandon_gc_alloc_regions();
1441       g1_rem_set()->cleanupHRRS();
1442 
1443       // We should call this after we retire any currently active alloc
1444       // regions so that all the ALLOC / RETIRE events are generated
1445       // before the start GC event.
1446       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1447 
1448       // We may have added regions to the current incremental collection
1449       // set between the last GC or pause and now. We need to clear the
1450       // incremental collection set and then start rebuilding it afresh
1451       // after this full GC.
1452       abandon_collection_set(g1_policy()->inc_cset_head());
1453       g1_policy()->clear_incremental_cset();
1454       g1_policy()->stop_incremental_cset_building();
1455 
1456       tear_down_region_sets(false /* free_list_only */);
1457       collector_state()->set_gcs_are_young(true);
1458 
1459       // See the comments in g1CollectedHeap.hpp and
1460       // G1CollectedHeap::ref_processing_init() about
1461       // how reference processing currently works in G1.
1462 
1463       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1464       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1465 
1466       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1467       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1468 
1469       ref_processor_stw()->enable_discovery();
1470       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1471 
1472       // Do collection work
1473       {
1474         HandleMark hm;  // Discard invalid handles created during gc
1475         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1476       }
1477 
1478       assert(num_free_regions() == 0, "we should not have added any free regions");
1479       rebuild_region_sets(false /* free_list_only */);
1480 
1481       // Enqueue any discovered reference objects that have
1482       // not been removed from the discovered lists.
1483       ref_processor_stw()->enqueue_discovered_references();
1484 
1485       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1486 
1487       MemoryService::track_memory_usage();
1488 
1489       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1490       ref_processor_stw()->verify_no_references_recorded();
1491 
1492       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1493       ClassLoaderDataGraph::purge();
1494       MetaspaceAux::verify_metrics();
1495 
1496       // Note: since we've just done a full GC, concurrent
1497       // marking is no longer active. Therefore we need not
1498       // re-enable reference discovery for the CM ref processor.
1499       // That will be done at the start of the next marking cycle.
1500       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1501       ref_processor_cm()->verify_no_references_recorded();
1502 
1503       reset_gc_time_stamp();
1504       // Since everything potentially moved, we will clear all remembered
1505       // sets, and clear all cards.  Later we will rebuild remembered
1506       // sets. We will also reset the GC time stamps of the regions.
1507       clear_rsets_post_compaction();
1508       check_gc_time_stamps();
1509 
1510       // Resize the heap if necessary.
1511       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1512 
1513       if (_hr_printer.is_active()) {
1514         // We should do this after we potentially resize the heap so
1515         // that all the COMMIT / UNCOMMIT events are generated before
1516         // the end GC event.
1517 
1518         print_hrm_post_compaction();
1519         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1520       }
1521 
1522       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1523       if (hot_card_cache->use_cache()) {
1524         hot_card_cache->reset_card_counts();
1525         hot_card_cache->reset_hot_cache();
1526       }
1527 
1528       // Rebuild remembered sets of all regions.
1529       uint n_workers =
1530         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1531                                                 workers()->active_workers(),
1532                                                 Threads::number_of_non_daemon_threads());
1533       workers()->set_active_workers(n_workers);
1534 
1535       ParRebuildRSTask rebuild_rs_task(this);
1536       workers()->run_task(&rebuild_rs_task);
1537 
1538       // Rebuild the strong code root lists for each region
1539       rebuild_strong_code_roots();
1540 
1541       if (true) { // FIXME
1542         MetaspaceGC::compute_new_size();
1543       }
1544 
1545 #ifdef TRACESPINNING
1546       ParallelTaskTerminator::print_termination_counts();
1547 #endif
1548 
1549       // Discard all rset updates
1550       JavaThread::dirty_card_queue_set().abandon_logs();
1551       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1552 
1553       _young_list->reset_sampled_info();
1554       // At this point there should be no regions in the
1555       // entire heap tagged as young.
1556       assert(check_young_list_empty(true /* check_heap */),
1557              "young list should be empty at this point");
1558 
1559       // Update the number of full collections that have been completed.
1560       increment_old_marking_cycles_completed(false /* concurrent */);
1561 
1562       _hrm.verify_optional();
1563       verify_region_sets_optional();
1564 
1565       verify_after_gc();
1566 
1567       // Clear the previous marking bitmap, if needed for bitmap verification.
1568       // Note we cannot do this when we clear the next marking bitmap in
1569       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1570       // objects marked during a full GC against the previous bitmap.
1571       // But we need to clear it before calling check_bitmaps below since
1572       // the full GC has compacted objects and updated TAMS but not updated
1573       // the prev bitmap.
1574       if (G1VerifyBitmaps) {
1575         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1576       }
1577       check_bitmaps("Full GC End");
1578 
1579       // Start a new incremental collection set for the next pause
1580       assert(g1_policy()->collection_set() == NULL, "must be");
1581       g1_policy()->start_incremental_cset_building();
1582 
1583       clear_cset_fast_test();
1584 
1585       _allocator->init_mutator_alloc_region();
1586 
1587       g1_policy()->record_full_collection_end();
1588 
1589       if (G1Log::fine()) {
1590         g1_policy()->print_heap_transition();
1591       }
1592 
1593       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1594       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1595       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1596       // before any GC notifications are raised.
1597       g1mm()->update_sizes();
1598 
1599       gc_epilogue(true);
1600     }
1601 
1602     if (G1Log::finer()) {
1603       g1_policy()->print_detailed_heap_transition(true /* full */);
1604     }
1605 
1606     print_heap_after_gc();
1607     trace_heap_after_gc(gc_tracer);
1608 
1609     post_full_gc_dump(gc_timer);
1610 
1611     gc_timer->register_gc_end();
1612     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1613   }
1614 
1615   return true;
1616 }
1617 
1618 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1619   // do_collection() will return whether it succeeded in performing
1620   // the GC. Currently, there is no facility on the
1621   // do_full_collection() API to notify the caller than the collection
1622   // did not succeed (e.g., because it was locked out by the GC
1623   // locker). So, right now, we'll ignore the return value.
1624   bool dummy = do_collection(true,                /* explicit_gc */
1625                              clear_all_soft_refs,
1626                              0                    /* word_size */);
1627 }
1628 
1629 // This code is mostly copied from TenuredGeneration.
1630 void
1631 G1CollectedHeap::
1632 resize_if_necessary_after_full_collection(size_t word_size) {
1633   // Include the current allocation, if any, and bytes that will be
1634   // pre-allocated to support collections, as "used".
1635   const size_t used_after_gc = used();
1636   const size_t capacity_after_gc = capacity();
1637   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1638 
1639   // This is enforced in arguments.cpp.
1640   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1641          "otherwise the code below doesn't make sense");
1642 
1643   // We don't have floating point command-line arguments
1644   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1645   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1646   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1647   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1648 
1649   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1650   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1651 
1652   // We have to be careful here as these two calculations can overflow
1653   // 32-bit size_t's.
1654   double used_after_gc_d = (double) used_after_gc;
1655   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1656   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1657 
1658   // Let's make sure that they are both under the max heap size, which
1659   // by default will make them fit into a size_t.
1660   double desired_capacity_upper_bound = (double) max_heap_size;
1661   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1662                                     desired_capacity_upper_bound);
1663   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1664                                     desired_capacity_upper_bound);
1665 
1666   // We can now safely turn them into size_t's.
1667   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1668   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1669 
1670   // This assert only makes sense here, before we adjust them
1671   // with respect to the min and max heap size.
1672   assert(minimum_desired_capacity <= maximum_desired_capacity,
1673          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1674                  "maximum_desired_capacity = " SIZE_FORMAT,
1675                  minimum_desired_capacity, maximum_desired_capacity));
1676 
1677   // Should not be greater than the heap max size. No need to adjust
1678   // it with respect to the heap min size as it's a lower bound (i.e.,
1679   // we'll try to make the capacity larger than it, not smaller).
1680   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1681   // Should not be less than the heap min size. No need to adjust it
1682   // with respect to the heap max size as it's an upper bound (i.e.,
1683   // we'll try to make the capacity smaller than it, not greater).
1684   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1685 
1686   if (capacity_after_gc < minimum_desired_capacity) {
1687     // Don't expand unless it's significant
1688     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1689     ergo_verbose4(ErgoHeapSizing,
1690                   "attempt heap expansion",
1691                   ergo_format_reason("capacity lower than "
1692                                      "min desired capacity after Full GC")
1693                   ergo_format_byte("capacity")
1694                   ergo_format_byte("occupancy")
1695                   ergo_format_byte_perc("min desired capacity"),
1696                   capacity_after_gc, used_after_gc,
1697                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1698     expand(expand_bytes);
1699 
1700     // No expansion, now see if we want to shrink
1701   } else if (capacity_after_gc > maximum_desired_capacity) {
1702     // Capacity too large, compute shrinking size
1703     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1704     ergo_verbose4(ErgoHeapSizing,
1705                   "attempt heap shrinking",
1706                   ergo_format_reason("capacity higher than "
1707                                      "max desired capacity after Full GC")
1708                   ergo_format_byte("capacity")
1709                   ergo_format_byte("occupancy")
1710                   ergo_format_byte_perc("max desired capacity"),
1711                   capacity_after_gc, used_after_gc,
1712                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1713     shrink(shrink_bytes);
1714   }
1715 }
1716 
1717 
1718 HeapWord*
1719 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1720                                            AllocationContext_t context,
1721                                            bool* succeeded) {
1722   assert_at_safepoint(true /* should_be_vm_thread */);
1723 
1724   *succeeded = true;
1725   // Let's attempt the allocation first.
1726   HeapWord* result =
1727     attempt_allocation_at_safepoint(word_size,
1728                                     context,
1729                                     false /* expect_null_mutator_alloc_region */);
1730   if (result != NULL) {
1731     assert(*succeeded, "sanity");
1732     return result;
1733   }
1734 
1735   // In a G1 heap, we're supposed to keep allocation from failing by
1736   // incremental pauses.  Therefore, at least for now, we'll favor
1737   // expansion over collection.  (This might change in the future if we can
1738   // do something smarter than full collection to satisfy a failed alloc.)
1739   result = expand_and_allocate(word_size, context);
1740   if (result != NULL) {
1741     assert(*succeeded, "sanity");
1742     return result;
1743   }
1744 
1745   // Expansion didn't work, we'll try to do a Full GC.
1746   bool gc_succeeded = do_collection(false, /* explicit_gc */
1747                                     false, /* clear_all_soft_refs */
1748                                     word_size);
1749   if (!gc_succeeded) {
1750     *succeeded = false;
1751     return NULL;
1752   }
1753 
1754   // Retry the allocation
1755   result = attempt_allocation_at_safepoint(word_size,
1756                                            context,
1757                                            true /* expect_null_mutator_alloc_region */);
1758   if (result != NULL) {
1759     assert(*succeeded, "sanity");
1760     return result;
1761   }
1762 
1763   // Then, try a Full GC that will collect all soft references.
1764   gc_succeeded = do_collection(false, /* explicit_gc */
1765                                true,  /* clear_all_soft_refs */
1766                                word_size);
1767   if (!gc_succeeded) {
1768     *succeeded = false;
1769     return NULL;
1770   }
1771 
1772   // Retry the allocation once more
1773   result = attempt_allocation_at_safepoint(word_size,
1774                                            context,
1775                                            true /* expect_null_mutator_alloc_region */);
1776   if (result != NULL) {
1777     assert(*succeeded, "sanity");
1778     return result;
1779   }
1780 
1781   assert(!collector_policy()->should_clear_all_soft_refs(),
1782          "Flag should have been handled and cleared prior to this point");
1783 
1784   // What else?  We might try synchronous finalization later.  If the total
1785   // space available is large enough for the allocation, then a more
1786   // complete compaction phase than we've tried so far might be
1787   // appropriate.
1788   assert(*succeeded, "sanity");
1789   return NULL;
1790 }
1791 
1792 // Attempting to expand the heap sufficiently
1793 // to support an allocation of the given "word_size".  If
1794 // successful, perform the allocation and return the address of the
1795 // allocated block, or else "NULL".
1796 
1797 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1798   assert_at_safepoint(true /* should_be_vm_thread */);
1799 
1800   verify_region_sets_optional();
1801 
1802   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1803   ergo_verbose1(ErgoHeapSizing,
1804                 "attempt heap expansion",
1805                 ergo_format_reason("allocation request failed")
1806                 ergo_format_byte("allocation request"),
1807                 word_size * HeapWordSize);
1808   if (expand(expand_bytes)) {
1809     _hrm.verify_optional();
1810     verify_region_sets_optional();
1811     return attempt_allocation_at_safepoint(word_size,
1812                                            context,
1813                                            false /* expect_null_mutator_alloc_region */);
1814   }
1815   return NULL;
1816 }
1817 
1818 bool G1CollectedHeap::expand(size_t expand_bytes) {
1819   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1820   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1821                                        HeapRegion::GrainBytes);
1822   ergo_verbose2(ErgoHeapSizing,
1823                 "expand the heap",
1824                 ergo_format_byte("requested expansion amount")
1825                 ergo_format_byte("attempted expansion amount"),
1826                 expand_bytes, aligned_expand_bytes);
1827 
1828   if (is_maximal_no_gc()) {
1829     ergo_verbose0(ErgoHeapSizing,
1830                       "did not expand the heap",
1831                       ergo_format_reason("heap already fully expanded"));
1832     return false;
1833   }
1834 
1835   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1836   assert(regions_to_expand > 0, "Must expand by at least one region");
1837 
1838   uint expanded_by = _hrm.expand_by(regions_to_expand);
1839 
1840   if (expanded_by > 0) {
1841     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1842     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1843     g1_policy()->record_new_heap_size(num_regions());
1844   } else {
1845     ergo_verbose0(ErgoHeapSizing,
1846                   "did not expand the heap",
1847                   ergo_format_reason("heap expansion operation failed"));
1848     // The expansion of the virtual storage space was unsuccessful.
1849     // Let's see if it was because we ran out of swap.
1850     if (G1ExitOnExpansionFailure &&
1851         _hrm.available() >= regions_to_expand) {
1852       // We had head room...
1853       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1854     }
1855   }
1856   return regions_to_expand > 0;
1857 }
1858 
1859 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1860   size_t aligned_shrink_bytes =
1861     ReservedSpace::page_align_size_down(shrink_bytes);
1862   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1863                                          HeapRegion::GrainBytes);
1864   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1865 
1866   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1867   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1868 
1869   ergo_verbose3(ErgoHeapSizing,
1870                 "shrink the heap",
1871                 ergo_format_byte("requested shrinking amount")
1872                 ergo_format_byte("aligned shrinking amount")
1873                 ergo_format_byte("attempted shrinking amount"),
1874                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1875   if (num_regions_removed > 0) {
1876     g1_policy()->record_new_heap_size(num_regions());
1877   } else {
1878     ergo_verbose0(ErgoHeapSizing,
1879                   "did not shrink the heap",
1880                   ergo_format_reason("heap shrinking operation failed"));
1881   }
1882 }
1883 
1884 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1885   verify_region_sets_optional();
1886 
1887   // We should only reach here at the end of a Full GC which means we
1888   // should not not be holding to any GC alloc regions. The method
1889   // below will make sure of that and do any remaining clean up.
1890   _allocator->abandon_gc_alloc_regions();
1891 
1892   // Instead of tearing down / rebuilding the free lists here, we
1893   // could instead use the remove_all_pending() method on free_list to
1894   // remove only the ones that we need to remove.
1895   tear_down_region_sets(true /* free_list_only */);
1896   shrink_helper(shrink_bytes);
1897   rebuild_region_sets(true /* free_list_only */);
1898 
1899   _hrm.verify_optional();
1900   verify_region_sets_optional();
1901 }
1902 
1903 // Public methods.
1904 
1905 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1906 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1907 #endif // _MSC_VER
1908 
1909 
1910 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1911   CollectedHeap(),
1912   _g1_policy(policy_),
1913   _dirty_card_queue_set(false),
1914   _into_cset_dirty_card_queue_set(false),
1915   _is_alive_closure_cm(this),
1916   _is_alive_closure_stw(this),
1917   _ref_processor_cm(NULL),
1918   _ref_processor_stw(NULL),
1919   _bot_shared(NULL),
1920   _evac_failure_scan_stack(NULL),
1921   _cg1r(NULL),
1922   _g1mm(NULL),
1923   _refine_cte_cl(NULL),
1924   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1925   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1926   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1927   _humongous_reclaim_candidates(),
1928   _has_humongous_reclaim_candidates(false),
1929   _archive_allocator(NULL),
1930   _free_regions_coming(false),
1931   _young_list(new YoungList(this)),
1932   _gc_time_stamp(0),
1933   _summary_bytes_used(0),
1934   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1935   _old_plab_stats(OldPLABSize, PLABWeight),
1936   _expand_heap_after_alloc_failure(true),
1937   _surviving_young_words(NULL),
1938   _old_marking_cycles_started(0),
1939   _old_marking_cycles_completed(0),
1940   _heap_summary_sent(false),
1941   _in_cset_fast_test(),
1942   _dirty_cards_region_list(NULL),
1943   _worker_cset_start_region(NULL),
1944   _worker_cset_start_region_time_stamp(NULL),
1945   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1946   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1947   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1948   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1949 
1950   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1951                           /* are_GC_task_threads */true,
1952                           /* are_ConcurrentGC_threads */false);
1953   _workers->initialize_workers();
1954 
1955   _allocator = G1Allocator::create_allocator(this);
1956   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1957 
1958   // Override the default _filler_array_max_size so that no humongous filler
1959   // objects are created.
1960   _filler_array_max_size = _humongous_object_threshold_in_words;
1961 
1962   uint n_queues = ParallelGCThreads;
1963   _task_queues = new RefToScanQueueSet(n_queues);
1964 
1965   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1966   assert(n_rem_sets > 0, "Invariant.");
1967 
1968   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1969   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1970   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1971 
1972   for (uint i = 0; i < n_queues; i++) {
1973     RefToScanQueue* q = new RefToScanQueue();
1974     q->initialize();
1975     _task_queues->register_queue(i, q);
1976     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1977   }
1978   clear_cset_start_regions();
1979 
1980   // Initialize the G1EvacuationFailureALot counters and flags.
1981   NOT_PRODUCT(reset_evacuation_should_fail();)
1982 
1983   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1984 }
1985 
1986 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1987                                                                  size_t size,
1988                                                                  size_t translation_factor) {
1989   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1990   // Allocate a new reserved space, preferring to use large pages.
1991   ReservedSpace rs(size, preferred_page_size);
1992   G1RegionToSpaceMapper* result  =
1993     G1RegionToSpaceMapper::create_mapper(rs,
1994                                          size,
1995                                          rs.alignment(),
1996                                          HeapRegion::GrainBytes,
1997                                          translation_factor,
1998                                          mtGC);
1999   if (TracePageSizes) {
2000     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2001                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2002   }
2003   return result;
2004 }
2005 
2006 jint G1CollectedHeap::initialize() {
2007   CollectedHeap::pre_initialize();
2008   os::enable_vtime();
2009 
2010   G1Log::init();
2011 
2012   // Necessary to satisfy locking discipline assertions.
2013 
2014   MutexLocker x(Heap_lock);
2015 
2016   // We have to initialize the printer before committing the heap, as
2017   // it will be used then.
2018   _hr_printer.set_active(G1PrintHeapRegions);
2019 
2020   // While there are no constraints in the GC code that HeapWordSize
2021   // be any particular value, there are multiple other areas in the
2022   // system which believe this to be true (e.g. oop->object_size in some
2023   // cases incorrectly returns the size in wordSize units rather than
2024   // HeapWordSize).
2025   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2026 
2027   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2028   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2029   size_t heap_alignment = collector_policy()->heap_alignment();
2030 
2031   // Ensure that the sizes are properly aligned.
2032   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2033   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2034   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2035 
2036   _refine_cte_cl = new RefineCardTableEntryClosure();
2037 
2038   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2039 
2040   // Reserve the maximum.
2041 
2042   // When compressed oops are enabled, the preferred heap base
2043   // is calculated by subtracting the requested size from the
2044   // 32Gb boundary and using the result as the base address for
2045   // heap reservation. If the requested size is not aligned to
2046   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2047   // into the ReservedHeapSpace constructor) then the actual
2048   // base of the reserved heap may end up differing from the
2049   // address that was requested (i.e. the preferred heap base).
2050   // If this happens then we could end up using a non-optimal
2051   // compressed oops mode.
2052 
2053   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2054                                                  heap_alignment);
2055 
2056   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2057 
2058   // Create the barrier set for the entire reserved region.
2059   G1SATBCardTableLoggingModRefBS* bs
2060     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2061   bs->initialize();
2062   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2063   set_barrier_set(bs);
2064 
2065   // Also create a G1 rem set.
2066   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2067 
2068   // Carve out the G1 part of the heap.
2069 
2070   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2071   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2072   G1RegionToSpaceMapper* heap_storage =
2073     G1RegionToSpaceMapper::create_mapper(g1_rs,
2074                                          g1_rs.size(),
2075                                          page_size,
2076                                          HeapRegion::GrainBytes,
2077                                          1,
2078                                          mtJavaHeap);
2079   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2080                        max_byte_size, page_size,
2081                        heap_rs.base(),
2082                        heap_rs.size());
2083   heap_storage->set_mapping_changed_listener(&_listener);
2084 
2085   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2086   G1RegionToSpaceMapper* bot_storage =
2087     create_aux_memory_mapper("Block offset table",
2088                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2089                              G1BlockOffsetSharedArray::heap_map_factor());
2090 
2091   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2092   G1RegionToSpaceMapper* cardtable_storage =
2093     create_aux_memory_mapper("Card table",
2094                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2095                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2096 
2097   G1RegionToSpaceMapper* card_counts_storage =
2098     create_aux_memory_mapper("Card counts table",
2099                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2100                              G1CardCounts::heap_map_factor());
2101 
2102   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2103   G1RegionToSpaceMapper* prev_bitmap_storage =
2104     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2105   G1RegionToSpaceMapper* next_bitmap_storage =
2106     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2107 
2108   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2109   g1_barrier_set()->initialize(cardtable_storage);
2110    // Do later initialization work for concurrent refinement.
2111   _cg1r->init(card_counts_storage);
2112 
2113   // 6843694 - ensure that the maximum region index can fit
2114   // in the remembered set structures.
2115   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2116   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2117 
2118   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2119   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2120   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2121             "too many cards per region");
2122 
2123   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2124 
2125   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2126 
2127   {
2128     HeapWord* start = _hrm.reserved().start();
2129     HeapWord* end = _hrm.reserved().end();
2130     size_t granularity = HeapRegion::GrainBytes;
2131 
2132     _in_cset_fast_test.initialize(start, end, granularity);
2133     _humongous_reclaim_candidates.initialize(start, end, granularity);
2134   }
2135 
2136   // Create the ConcurrentMark data structure and thread.
2137   // (Must do this late, so that "max_regions" is defined.)
2138   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2139   if (_cm == NULL || !_cm->completed_initialization()) {
2140     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2141     return JNI_ENOMEM;
2142   }
2143   _cmThread = _cm->cmThread();
2144 
2145   // Initialize the from_card cache structure of HeapRegionRemSet.
2146   HeapRegionRemSet::init_heap(max_regions());
2147 
2148   // Now expand into the initial heap size.
2149   if (!expand(init_byte_size)) {
2150     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2151     return JNI_ENOMEM;
2152   }
2153 
2154   // Perform any initialization actions delegated to the policy.
2155   g1_policy()->init();
2156 
2157   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2158                                                SATB_Q_FL_lock,
2159                                                G1SATBProcessCompletedThreshold,
2160                                                Shared_SATB_Q_lock);
2161 
2162   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2163                                                 DirtyCardQ_CBL_mon,
2164                                                 DirtyCardQ_FL_lock,
2165                                                 concurrent_g1_refine()->yellow_zone(),
2166                                                 concurrent_g1_refine()->red_zone(),
2167                                                 Shared_DirtyCardQ_lock);
2168 
2169   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2170                                     DirtyCardQ_CBL_mon,
2171                                     DirtyCardQ_FL_lock,
2172                                     -1, // never trigger processing
2173                                     -1, // no limit on length
2174                                     Shared_DirtyCardQ_lock,
2175                                     &JavaThread::dirty_card_queue_set());
2176 
2177   // Initialize the card queue set used to hold cards containing
2178   // references into the collection set.
2179   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2180                                              DirtyCardQ_CBL_mon,
2181                                              DirtyCardQ_FL_lock,
2182                                              -1, // never trigger processing
2183                                              -1, // no limit on length
2184                                              Shared_DirtyCardQ_lock,
2185                                              &JavaThread::dirty_card_queue_set());
2186 
2187   // Here we allocate the dummy HeapRegion that is required by the
2188   // G1AllocRegion class.
2189   HeapRegion* dummy_region = _hrm.get_dummy_region();
2190 
2191   // We'll re-use the same region whether the alloc region will
2192   // require BOT updates or not and, if it doesn't, then a non-young
2193   // region will complain that it cannot support allocations without
2194   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2195   dummy_region->set_eden();
2196   // Make sure it's full.
2197   dummy_region->set_top(dummy_region->end());
2198   G1AllocRegion::setup(this, dummy_region);
2199 
2200   _allocator->init_mutator_alloc_region();
2201 
2202   // Do create of the monitoring and management support so that
2203   // values in the heap have been properly initialized.
2204   _g1mm = new G1MonitoringSupport(this);
2205 
2206   G1StringDedup::initialize();
2207 
2208   return JNI_OK;
2209 }
2210 
2211 void G1CollectedHeap::stop() {
2212   // Stop all concurrent threads. We do this to make sure these threads
2213   // do not continue to execute and access resources (e.g. gclog_or_tty)
2214   // that are destroyed during shutdown.
2215   _cg1r->stop();
2216   _cmThread->stop();
2217   if (G1StringDedup::is_enabled()) {
2218     G1StringDedup::stop();
2219   }
2220 }
2221 
2222 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2223   return HeapRegion::max_region_size();
2224 }
2225 
2226 void G1CollectedHeap::post_initialize() {
2227   CollectedHeap::post_initialize();
2228   ref_processing_init();
2229 }
2230 
2231 void G1CollectedHeap::ref_processing_init() {
2232   // Reference processing in G1 currently works as follows:
2233   //
2234   // * There are two reference processor instances. One is
2235   //   used to record and process discovered references
2236   //   during concurrent marking; the other is used to
2237   //   record and process references during STW pauses
2238   //   (both full and incremental).
2239   // * Both ref processors need to 'span' the entire heap as
2240   //   the regions in the collection set may be dotted around.
2241   //
2242   // * For the concurrent marking ref processor:
2243   //   * Reference discovery is enabled at initial marking.
2244   //   * Reference discovery is disabled and the discovered
2245   //     references processed etc during remarking.
2246   //   * Reference discovery is MT (see below).
2247   //   * Reference discovery requires a barrier (see below).
2248   //   * Reference processing may or may not be MT
2249   //     (depending on the value of ParallelRefProcEnabled
2250   //     and ParallelGCThreads).
2251   //   * A full GC disables reference discovery by the CM
2252   //     ref processor and abandons any entries on it's
2253   //     discovered lists.
2254   //
2255   // * For the STW processor:
2256   //   * Non MT discovery is enabled at the start of a full GC.
2257   //   * Processing and enqueueing during a full GC is non-MT.
2258   //   * During a full GC, references are processed after marking.
2259   //
2260   //   * Discovery (may or may not be MT) is enabled at the start
2261   //     of an incremental evacuation pause.
2262   //   * References are processed near the end of a STW evacuation pause.
2263   //   * For both types of GC:
2264   //     * Discovery is atomic - i.e. not concurrent.
2265   //     * Reference discovery will not need a barrier.
2266 
2267   MemRegion mr = reserved_region();
2268 
2269   // Concurrent Mark ref processor
2270   _ref_processor_cm =
2271     new ReferenceProcessor(mr,    // span
2272                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2273                                 // mt processing
2274                            ParallelGCThreads,
2275                                 // degree of mt processing
2276                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2277                                 // mt discovery
2278                            MAX2(ParallelGCThreads, ConcGCThreads),
2279                                 // degree of mt discovery
2280                            false,
2281                                 // Reference discovery is not atomic
2282                            &_is_alive_closure_cm);
2283                                 // is alive closure
2284                                 // (for efficiency/performance)
2285 
2286   // STW ref processor
2287   _ref_processor_stw =
2288     new ReferenceProcessor(mr,    // span
2289                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2290                                 // mt processing
2291                            ParallelGCThreads,
2292                                 // degree of mt processing
2293                            (ParallelGCThreads > 1),
2294                                 // mt discovery
2295                            ParallelGCThreads,
2296                                 // degree of mt discovery
2297                            true,
2298                                 // Reference discovery is atomic
2299                            &_is_alive_closure_stw);
2300                                 // is alive closure
2301                                 // (for efficiency/performance)
2302 }
2303 
2304 size_t G1CollectedHeap::capacity() const {
2305   return _hrm.length() * HeapRegion::GrainBytes;
2306 }
2307 
2308 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2309   assert(!hr->is_continues_humongous(), "pre-condition");
2310   hr->reset_gc_time_stamp();
2311   if (hr->is_starts_humongous()) {
2312     uint first_index = hr->hrm_index() + 1;
2313     uint last_index = hr->last_hc_index();
2314     for (uint i = first_index; i < last_index; i += 1) {
2315       HeapRegion* chr = region_at(i);
2316       assert(chr->is_continues_humongous(), "sanity");
2317       chr->reset_gc_time_stamp();
2318     }
2319   }
2320 }
2321 
2322 #ifndef PRODUCT
2323 
2324 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2325 private:
2326   unsigned _gc_time_stamp;
2327   bool _failures;
2328 
2329 public:
2330   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2331     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2332 
2333   virtual bool doHeapRegion(HeapRegion* hr) {
2334     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2335     if (_gc_time_stamp != region_gc_time_stamp) {
2336       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2337                              "expected %d", HR_FORMAT_PARAMS(hr),
2338                              region_gc_time_stamp, _gc_time_stamp);
2339       _failures = true;
2340     }
2341     return false;
2342   }
2343 
2344   bool failures() { return _failures; }
2345 };
2346 
2347 void G1CollectedHeap::check_gc_time_stamps() {
2348   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2349   heap_region_iterate(&cl);
2350   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2351 }
2352 #endif // PRODUCT
2353 
2354 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2355                                                  DirtyCardQueue* into_cset_dcq,
2356                                                  bool concurrent,
2357                                                  uint worker_i) {
2358   // Clean cards in the hot card cache
2359   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2360   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2361 
2362   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2363   size_t n_completed_buffers = 0;
2364   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2365     n_completed_buffers++;
2366   }
2367   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2368   dcqs.clear_n_completed_buffers();
2369   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2370 }
2371 
2372 
2373 // Computes the sum of the storage used by the various regions.
2374 size_t G1CollectedHeap::used() const {
2375   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2376   if (_archive_allocator != NULL) {
2377     result += _archive_allocator->used();
2378   }
2379   return result;
2380 }
2381 
2382 size_t G1CollectedHeap::used_unlocked() const {
2383   return _summary_bytes_used;
2384 }
2385 
2386 class SumUsedClosure: public HeapRegionClosure {
2387   size_t _used;
2388 public:
2389   SumUsedClosure() : _used(0) {}
2390   bool doHeapRegion(HeapRegion* r) {
2391     if (!r->is_continues_humongous()) {
2392       _used += r->used();
2393     }
2394     return false;
2395   }
2396   size_t result() { return _used; }
2397 };
2398 
2399 size_t G1CollectedHeap::recalculate_used() const {
2400   double recalculate_used_start = os::elapsedTime();
2401 
2402   SumUsedClosure blk;
2403   heap_region_iterate(&blk);
2404 
2405   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2406   return blk.result();
2407 }
2408 
2409 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2410   switch (cause) {
2411     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2412     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2413     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2414     case GCCause::_g1_humongous_allocation: return true;
2415     case GCCause::_update_allocation_context_stats_inc: return true;
2416     case GCCause::_wb_conc_mark:            return true;
2417     default:                                return false;
2418   }
2419 }
2420 
2421 #ifndef PRODUCT
2422 void G1CollectedHeap::allocate_dummy_regions() {
2423   // Let's fill up most of the region
2424   size_t word_size = HeapRegion::GrainWords - 1024;
2425   // And as a result the region we'll allocate will be humongous.
2426   guarantee(is_humongous(word_size), "sanity");
2427 
2428   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2429     // Let's use the existing mechanism for the allocation
2430     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2431                                                  AllocationContext::system());
2432     if (dummy_obj != NULL) {
2433       MemRegion mr(dummy_obj, word_size);
2434       CollectedHeap::fill_with_object(mr);
2435     } else {
2436       // If we can't allocate once, we probably cannot allocate
2437       // again. Let's get out of the loop.
2438       break;
2439     }
2440   }
2441 }
2442 #endif // !PRODUCT
2443 
2444 void G1CollectedHeap::increment_old_marking_cycles_started() {
2445   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2446     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2447     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2448     _old_marking_cycles_started, _old_marking_cycles_completed));
2449 
2450   _old_marking_cycles_started++;
2451 }
2452 
2453 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2454   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2455 
2456   // We assume that if concurrent == true, then the caller is a
2457   // concurrent thread that was joined the Suspendible Thread
2458   // Set. If there's ever a cheap way to check this, we should add an
2459   // assert here.
2460 
2461   // Given that this method is called at the end of a Full GC or of a
2462   // concurrent cycle, and those can be nested (i.e., a Full GC can
2463   // interrupt a concurrent cycle), the number of full collections
2464   // completed should be either one (in the case where there was no
2465   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2466   // behind the number of full collections started.
2467 
2468   // This is the case for the inner caller, i.e. a Full GC.
2469   assert(concurrent ||
2470          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2471          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2472          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2473                  "is inconsistent with _old_marking_cycles_completed = %u",
2474                  _old_marking_cycles_started, _old_marking_cycles_completed));
2475 
2476   // This is the case for the outer caller, i.e. the concurrent cycle.
2477   assert(!concurrent ||
2478          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2479          err_msg("for outer caller (concurrent cycle): "
2480                  "_old_marking_cycles_started = %u "
2481                  "is inconsistent with _old_marking_cycles_completed = %u",
2482                  _old_marking_cycles_started, _old_marking_cycles_completed));
2483 
2484   _old_marking_cycles_completed += 1;
2485 
2486   // We need to clear the "in_progress" flag in the CM thread before
2487   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2488   // is set) so that if a waiter requests another System.gc() it doesn't
2489   // incorrectly see that a marking cycle is still in progress.
2490   if (concurrent) {
2491     _cmThread->set_idle();
2492   }
2493 
2494   // This notify_all() will ensure that a thread that called
2495   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2496   // and it's waiting for a full GC to finish will be woken up. It is
2497   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2498   FullGCCount_lock->notify_all();
2499 }
2500 
2501 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2502   collector_state()->set_concurrent_cycle_started(true);
2503   _gc_timer_cm->register_gc_start(start_time);
2504 
2505   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2506   trace_heap_before_gc(_gc_tracer_cm);
2507 }
2508 
2509 void G1CollectedHeap::register_concurrent_cycle_end() {
2510   if (collector_state()->concurrent_cycle_started()) {
2511     if (_cm->has_aborted()) {
2512       _gc_tracer_cm->report_concurrent_mode_failure();
2513     }
2514 
2515     _gc_timer_cm->register_gc_end();
2516     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2517 
2518     // Clear state variables to prepare for the next concurrent cycle.
2519      collector_state()->set_concurrent_cycle_started(false);
2520     _heap_summary_sent = false;
2521   }
2522 }
2523 
2524 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2525   if (collector_state()->concurrent_cycle_started()) {
2526     // This function can be called when:
2527     //  the cleanup pause is run
2528     //  the concurrent cycle is aborted before the cleanup pause.
2529     //  the concurrent cycle is aborted after the cleanup pause,
2530     //   but before the concurrent cycle end has been registered.
2531     // Make sure that we only send the heap information once.
2532     if (!_heap_summary_sent) {
2533       trace_heap_after_gc(_gc_tracer_cm);
2534       _heap_summary_sent = true;
2535     }
2536   }
2537 }
2538 
2539 void G1CollectedHeap::collect(GCCause::Cause cause) {
2540   assert_heap_not_locked();
2541 
2542   uint gc_count_before;
2543   uint old_marking_count_before;
2544   uint full_gc_count_before;
2545   bool retry_gc;
2546 
2547   do {
2548     retry_gc = false;
2549 
2550     {
2551       MutexLocker ml(Heap_lock);
2552 
2553       // Read the GC count while holding the Heap_lock
2554       gc_count_before = total_collections();
2555       full_gc_count_before = total_full_collections();
2556       old_marking_count_before = _old_marking_cycles_started;
2557     }
2558 
2559     if (should_do_concurrent_full_gc(cause)) {
2560       // Schedule an initial-mark evacuation pause that will start a
2561       // concurrent cycle. We're setting word_size to 0 which means that
2562       // we are not requesting a post-GC allocation.
2563       VM_G1IncCollectionPause op(gc_count_before,
2564                                  0,     /* word_size */
2565                                  true,  /* should_initiate_conc_mark */
2566                                  g1_policy()->max_pause_time_ms(),
2567                                  cause);
2568       op.set_allocation_context(AllocationContext::current());
2569 
2570       VMThread::execute(&op);
2571       if (!op.pause_succeeded()) {
2572         if (old_marking_count_before == _old_marking_cycles_started) {
2573           retry_gc = op.should_retry_gc();
2574         } else {
2575           // A Full GC happened while we were trying to schedule the
2576           // initial-mark GC. No point in starting a new cycle given
2577           // that the whole heap was collected anyway.
2578         }
2579 
2580         if (retry_gc) {
2581           if (GC_locker::is_active_and_needs_gc()) {
2582             GC_locker::stall_until_clear();
2583           }
2584         }
2585       }
2586     } else {
2587       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2588           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2589 
2590         // Schedule a standard evacuation pause. We're setting word_size
2591         // to 0 which means that we are not requesting a post-GC allocation.
2592         VM_G1IncCollectionPause op(gc_count_before,
2593                                    0,     /* word_size */
2594                                    false, /* should_initiate_conc_mark */
2595                                    g1_policy()->max_pause_time_ms(),
2596                                    cause);
2597         VMThread::execute(&op);
2598       } else {
2599         // Schedule a Full GC.
2600         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2601         VMThread::execute(&op);
2602       }
2603     }
2604   } while (retry_gc);
2605 }
2606 
2607 bool G1CollectedHeap::is_in(const void* p) const {
2608   if (_hrm.reserved().contains(p)) {
2609     // Given that we know that p is in the reserved space,
2610     // heap_region_containing_raw() should successfully
2611     // return the containing region.
2612     HeapRegion* hr = heap_region_containing_raw(p);
2613     return hr->is_in(p);
2614   } else {
2615     return false;
2616   }
2617 }
2618 
2619 #ifdef ASSERT
2620 bool G1CollectedHeap::is_in_exact(const void* p) const {
2621   bool contains = reserved_region().contains(p);
2622   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2623   if (contains && available) {
2624     return true;
2625   } else {
2626     return false;
2627   }
2628 }
2629 #endif
2630 
2631 // Iteration functions.
2632 
2633 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2634 
2635 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2636   ExtendedOopClosure* _cl;
2637 public:
2638   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2639   bool doHeapRegion(HeapRegion* r) {
2640     if (!r->is_continues_humongous()) {
2641       r->oop_iterate(_cl);
2642     }
2643     return false;
2644   }
2645 };
2646 
2647 // Iterates an ObjectClosure over all objects within a HeapRegion.
2648 
2649 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2650   ObjectClosure* _cl;
2651 public:
2652   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2653   bool doHeapRegion(HeapRegion* r) {
2654     if (!r->is_continues_humongous()) {
2655       r->object_iterate(_cl);
2656     }
2657     return false;
2658   }
2659 };
2660 
2661 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2662   IterateObjectClosureRegionClosure blk(cl);
2663   heap_region_iterate(&blk);
2664 }
2665 
2666 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2667   _hrm.iterate(cl);
2668 }
2669 
2670 void
2671 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2672                                          uint worker_id,
2673                                          HeapRegionClaimer *hrclaimer,
2674                                          bool concurrent) const {
2675   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2676 }
2677 
2678 // Clear the cached CSet starting regions and (more importantly)
2679 // the time stamps. Called when we reset the GC time stamp.
2680 void G1CollectedHeap::clear_cset_start_regions() {
2681   assert(_worker_cset_start_region != NULL, "sanity");
2682   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2683 
2684   for (uint i = 0; i < ParallelGCThreads; i++) {
2685     _worker_cset_start_region[i] = NULL;
2686     _worker_cset_start_region_time_stamp[i] = 0;
2687   }
2688 }
2689 
2690 // Given the id of a worker, obtain or calculate a suitable
2691 // starting region for iterating over the current collection set.
2692 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2693   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2694 
2695   HeapRegion* result = NULL;
2696   unsigned gc_time_stamp = get_gc_time_stamp();
2697 
2698   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2699     // Cached starting region for current worker was set
2700     // during the current pause - so it's valid.
2701     // Note: the cached starting heap region may be NULL
2702     // (when the collection set is empty).
2703     result = _worker_cset_start_region[worker_i];
2704     assert(result == NULL || result->in_collection_set(), "sanity");
2705     return result;
2706   }
2707 
2708   // The cached entry was not valid so let's calculate
2709   // a suitable starting heap region for this worker.
2710 
2711   // We want the parallel threads to start their collection
2712   // set iteration at different collection set regions to
2713   // avoid contention.
2714   // If we have:
2715   //          n collection set regions
2716   //          p threads
2717   // Then thread t will start at region floor ((t * n) / p)
2718 
2719   result = g1_policy()->collection_set();
2720   uint cs_size = g1_policy()->cset_region_length();
2721   uint active_workers = workers()->active_workers();
2722 
2723   uint end_ind   = (cs_size * worker_i) / active_workers;
2724   uint start_ind = 0;
2725 
2726   if (worker_i > 0 &&
2727       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2728     // Previous workers starting region is valid
2729     // so let's iterate from there
2730     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2731     result = _worker_cset_start_region[worker_i - 1];
2732   }
2733 
2734   for (uint i = start_ind; i < end_ind; i++) {
2735     result = result->next_in_collection_set();
2736   }
2737 
2738   // Note: the calculated starting heap region may be NULL
2739   // (when the collection set is empty).
2740   assert(result == NULL || result->in_collection_set(), "sanity");
2741   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2742          "should be updated only once per pause");
2743   _worker_cset_start_region[worker_i] = result;
2744   OrderAccess::storestore();
2745   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2746   return result;
2747 }
2748 
2749 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2750   HeapRegion* r = g1_policy()->collection_set();
2751   while (r != NULL) {
2752     HeapRegion* next = r->next_in_collection_set();
2753     if (cl->doHeapRegion(r)) {
2754       cl->incomplete();
2755       return;
2756     }
2757     r = next;
2758   }
2759 }
2760 
2761 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2762                                                   HeapRegionClosure *cl) {
2763   if (r == NULL) {
2764     // The CSet is empty so there's nothing to do.
2765     return;
2766   }
2767 
2768   assert(r->in_collection_set(),
2769          "Start region must be a member of the collection set.");
2770   HeapRegion* cur = r;
2771   while (cur != NULL) {
2772     HeapRegion* next = cur->next_in_collection_set();
2773     if (cl->doHeapRegion(cur) && false) {
2774       cl->incomplete();
2775       return;
2776     }
2777     cur = next;
2778   }
2779   cur = g1_policy()->collection_set();
2780   while (cur != r) {
2781     HeapRegion* next = cur->next_in_collection_set();
2782     if (cl->doHeapRegion(cur) && false) {
2783       cl->incomplete();
2784       return;
2785     }
2786     cur = next;
2787   }
2788 }
2789 
2790 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2791   HeapRegion* result = _hrm.next_region_in_heap(from);
2792   while (result != NULL && result->is_pinned()) {
2793     result = _hrm.next_region_in_heap(result);
2794   }
2795   return result;
2796 }
2797 
2798 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2799   HeapRegion* hr = heap_region_containing(addr);
2800   return hr->block_start(addr);
2801 }
2802 
2803 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2804   HeapRegion* hr = heap_region_containing(addr);
2805   return hr->block_size(addr);
2806 }
2807 
2808 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2809   HeapRegion* hr = heap_region_containing(addr);
2810   return hr->block_is_obj(addr);
2811 }
2812 
2813 bool G1CollectedHeap::supports_tlab_allocation() const {
2814   return true;
2815 }
2816 
2817 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2818   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2819 }
2820 
2821 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2822   return young_list()->eden_used_bytes();
2823 }
2824 
2825 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2826 // must be smaller than the humongous object limit.
2827 size_t G1CollectedHeap::max_tlab_size() const {
2828   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2829 }
2830 
2831 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2832   // Return the remaining space in the cur alloc region, but not less than
2833   // the min TLAB size.
2834 
2835   // Also, this value can be at most the humongous object threshold,
2836   // since we can't allow tlabs to grow big enough to accommodate
2837   // humongous objects.
2838 
2839   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2840   size_t max_tlab = max_tlab_size() * wordSize;
2841   if (hr == NULL) {
2842     return max_tlab;
2843   } else {
2844     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2845   }
2846 }
2847 
2848 size_t G1CollectedHeap::max_capacity() const {
2849   return _hrm.reserved().byte_size();
2850 }
2851 
2852 jlong G1CollectedHeap::millis_since_last_gc() {
2853   // assert(false, "NYI");
2854   return 0;
2855 }
2856 
2857 void G1CollectedHeap::prepare_for_verify() {
2858   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2859     ensure_parsability(false);
2860   }
2861   g1_rem_set()->prepare_for_verify();
2862 }
2863 
2864 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2865                                               VerifyOption vo) {
2866   switch (vo) {
2867   case VerifyOption_G1UsePrevMarking:
2868     return hr->obj_allocated_since_prev_marking(obj);
2869   case VerifyOption_G1UseNextMarking:
2870     return hr->obj_allocated_since_next_marking(obj);
2871   case VerifyOption_G1UseMarkWord:
2872     return false;
2873   default:
2874     ShouldNotReachHere();
2875   }
2876   return false; // keep some compilers happy
2877 }
2878 
2879 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2880   switch (vo) {
2881   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2882   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2883   case VerifyOption_G1UseMarkWord:    return NULL;
2884   default:                            ShouldNotReachHere();
2885   }
2886   return NULL; // keep some compilers happy
2887 }
2888 
2889 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2890   switch (vo) {
2891   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2892   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2893   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2894   default:                            ShouldNotReachHere();
2895   }
2896   return false; // keep some compilers happy
2897 }
2898 
2899 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2900   switch (vo) {
2901   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2902   case VerifyOption_G1UseNextMarking: return "NTAMS";
2903   case VerifyOption_G1UseMarkWord:    return "NONE";
2904   default:                            ShouldNotReachHere();
2905   }
2906   return NULL; // keep some compilers happy
2907 }
2908 
2909 class VerifyRootsClosure: public OopClosure {
2910 private:
2911   G1CollectedHeap* _g1h;
2912   VerifyOption     _vo;
2913   bool             _failures;
2914 public:
2915   // _vo == UsePrevMarking -> use "prev" marking information,
2916   // _vo == UseNextMarking -> use "next" marking information,
2917   // _vo == UseMarkWord    -> use mark word from object header.
2918   VerifyRootsClosure(VerifyOption vo) :
2919     _g1h(G1CollectedHeap::heap()),
2920     _vo(vo),
2921     _failures(false) { }
2922 
2923   bool failures() { return _failures; }
2924 
2925   template <class T> void do_oop_nv(T* p) {
2926     T heap_oop = oopDesc::load_heap_oop(p);
2927     if (!oopDesc::is_null(heap_oop)) {
2928       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2929       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2930         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2931                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2932         if (_vo == VerifyOption_G1UseMarkWord) {
2933           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2934         }
2935         obj->print_on(gclog_or_tty);
2936         _failures = true;
2937       }
2938     }
2939   }
2940 
2941   void do_oop(oop* p)       { do_oop_nv(p); }
2942   void do_oop(narrowOop* p) { do_oop_nv(p); }
2943 };
2944 
2945 class G1VerifyCodeRootOopClosure: public OopClosure {
2946   G1CollectedHeap* _g1h;
2947   OopClosure* _root_cl;
2948   nmethod* _nm;
2949   VerifyOption _vo;
2950   bool _failures;
2951 
2952   template <class T> void do_oop_work(T* p) {
2953     // First verify that this root is live
2954     _root_cl->do_oop(p);
2955 
2956     if (!G1VerifyHeapRegionCodeRoots) {
2957       // We're not verifying the code roots attached to heap region.
2958       return;
2959     }
2960 
2961     // Don't check the code roots during marking verification in a full GC
2962     if (_vo == VerifyOption_G1UseMarkWord) {
2963       return;
2964     }
2965 
2966     // Now verify that the current nmethod (which contains p) is
2967     // in the code root list of the heap region containing the
2968     // object referenced by p.
2969 
2970     T heap_oop = oopDesc::load_heap_oop(p);
2971     if (!oopDesc::is_null(heap_oop)) {
2972       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2973 
2974       // Now fetch the region containing the object
2975       HeapRegion* hr = _g1h->heap_region_containing(obj);
2976       HeapRegionRemSet* hrrs = hr->rem_set();
2977       // Verify that the strong code root list for this region
2978       // contains the nmethod
2979       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2980         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2981                                "from nmethod " PTR_FORMAT " not in strong "
2982                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2983                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2984         _failures = true;
2985       }
2986     }
2987   }
2988 
2989 public:
2990   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2991     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2992 
2993   void do_oop(oop* p) { do_oop_work(p); }
2994   void do_oop(narrowOop* p) { do_oop_work(p); }
2995 
2996   void set_nmethod(nmethod* nm) { _nm = nm; }
2997   bool failures() { return _failures; }
2998 };
2999 
3000 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3001   G1VerifyCodeRootOopClosure* _oop_cl;
3002 
3003 public:
3004   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3005     _oop_cl(oop_cl) {}
3006 
3007   void do_code_blob(CodeBlob* cb) {
3008     nmethod* nm = cb->as_nmethod_or_null();
3009     if (nm != NULL) {
3010       _oop_cl->set_nmethod(nm);
3011       nm->oops_do(_oop_cl);
3012     }
3013   }
3014 };
3015 
3016 class YoungRefCounterClosure : public OopClosure {
3017   G1CollectedHeap* _g1h;
3018   int              _count;
3019  public:
3020   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3021   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3022   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3023 
3024   int count() { return _count; }
3025   void reset_count() { _count = 0; };
3026 };
3027 
3028 class VerifyKlassClosure: public KlassClosure {
3029   YoungRefCounterClosure _young_ref_counter_closure;
3030   OopClosure *_oop_closure;
3031  public:
3032   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3033   void do_klass(Klass* k) {
3034     k->oops_do(_oop_closure);
3035 
3036     _young_ref_counter_closure.reset_count();
3037     k->oops_do(&_young_ref_counter_closure);
3038     if (_young_ref_counter_closure.count() > 0) {
3039       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3040     }
3041   }
3042 };
3043 
3044 class VerifyLivenessOopClosure: public OopClosure {
3045   G1CollectedHeap* _g1h;
3046   VerifyOption _vo;
3047 public:
3048   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3049     _g1h(g1h), _vo(vo)
3050   { }
3051   void do_oop(narrowOop *p) { do_oop_work(p); }
3052   void do_oop(      oop *p) { do_oop_work(p); }
3053 
3054   template <class T> void do_oop_work(T *p) {
3055     oop obj = oopDesc::load_decode_heap_oop(p);
3056     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3057               "Dead object referenced by a not dead object");
3058   }
3059 };
3060 
3061 class VerifyObjsInRegionClosure: public ObjectClosure {
3062 private:
3063   G1CollectedHeap* _g1h;
3064   size_t _live_bytes;
3065   HeapRegion *_hr;
3066   VerifyOption _vo;
3067 public:
3068   // _vo == UsePrevMarking -> use "prev" marking information,
3069   // _vo == UseNextMarking -> use "next" marking information,
3070   // _vo == UseMarkWord    -> use mark word from object header.
3071   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3072     : _live_bytes(0), _hr(hr), _vo(vo) {
3073     _g1h = G1CollectedHeap::heap();
3074   }
3075   void do_object(oop o) {
3076     VerifyLivenessOopClosure isLive(_g1h, _vo);
3077     assert(o != NULL, "Huh?");
3078     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3079       // If the object is alive according to the mark word,
3080       // then verify that the marking information agrees.
3081       // Note we can't verify the contra-positive of the
3082       // above: if the object is dead (according to the mark
3083       // word), it may not be marked, or may have been marked
3084       // but has since became dead, or may have been allocated
3085       // since the last marking.
3086       if (_vo == VerifyOption_G1UseMarkWord) {
3087         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3088       }
3089 
3090       o->oop_iterate_no_header(&isLive);
3091       if (!_hr->obj_allocated_since_prev_marking(o)) {
3092         size_t obj_size = o->size();    // Make sure we don't overflow
3093         _live_bytes += (obj_size * HeapWordSize);
3094       }
3095     }
3096   }
3097   size_t live_bytes() { return _live_bytes; }
3098 };
3099 
3100 class VerifyArchiveOopClosure: public OopClosure {
3101 public:
3102   VerifyArchiveOopClosure(HeapRegion *hr) { }
3103   void do_oop(narrowOop *p) { do_oop_work(p); }
3104   void do_oop(      oop *p) { do_oop_work(p); }
3105 
3106   template <class T> void do_oop_work(T *p) {
3107     oop obj = oopDesc::load_decode_heap_oop(p);
3108     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3109               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3110                       p2i(p), p2i(obj)));
3111   }
3112 };
3113 
3114 class VerifyArchiveRegionClosure: public ObjectClosure {
3115 public:
3116   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3117   // Verify that all object pointers are to archive regions.
3118   void do_object(oop o) {
3119     VerifyArchiveOopClosure checkOop(NULL);
3120     assert(o != NULL, "Should not be here for NULL oops");
3121     o->oop_iterate_no_header(&checkOop);
3122   }
3123 };
3124 
3125 class VerifyRegionClosure: public HeapRegionClosure {
3126 private:
3127   bool             _par;
3128   VerifyOption     _vo;
3129   bool             _failures;
3130 public:
3131   // _vo == UsePrevMarking -> use "prev" marking information,
3132   // _vo == UseNextMarking -> use "next" marking information,
3133   // _vo == UseMarkWord    -> use mark word from object header.
3134   VerifyRegionClosure(bool par, VerifyOption vo)
3135     : _par(par),
3136       _vo(vo),
3137       _failures(false) {}
3138 
3139   bool failures() {
3140     return _failures;
3141   }
3142 
3143   bool doHeapRegion(HeapRegion* r) {
3144     // For archive regions, verify there are no heap pointers to
3145     // non-pinned regions. For all others, verify liveness info.
3146     if (r->is_archive()) {
3147       VerifyArchiveRegionClosure verify_oop_pointers(r);
3148       r->object_iterate(&verify_oop_pointers);
3149       return true;
3150     }
3151     if (!r->is_continues_humongous()) {
3152       bool failures = false;
3153       r->verify(_vo, &failures);
3154       if (failures) {
3155         _failures = true;
3156       } else {
3157         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3158         r->object_iterate(&not_dead_yet_cl);
3159         if (_vo != VerifyOption_G1UseNextMarking) {
3160           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3161             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3162                                    "max_live_bytes " SIZE_FORMAT " "
3163                                    "< calculated " SIZE_FORMAT,
3164                                    p2i(r->bottom()), p2i(r->end()),
3165                                    r->max_live_bytes(),
3166                                  not_dead_yet_cl.live_bytes());
3167             _failures = true;
3168           }
3169         } else {
3170           // When vo == UseNextMarking we cannot currently do a sanity
3171           // check on the live bytes as the calculation has not been
3172           // finalized yet.
3173         }
3174       }
3175     }
3176     return false; // stop the region iteration if we hit a failure
3177   }
3178 };
3179 
3180 // This is the task used for parallel verification of the heap regions
3181 
3182 class G1ParVerifyTask: public AbstractGangTask {
3183 private:
3184   G1CollectedHeap*  _g1h;
3185   VerifyOption      _vo;
3186   bool              _failures;
3187   HeapRegionClaimer _hrclaimer;
3188 
3189 public:
3190   // _vo == UsePrevMarking -> use "prev" marking information,
3191   // _vo == UseNextMarking -> use "next" marking information,
3192   // _vo == UseMarkWord    -> use mark word from object header.
3193   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3194       AbstractGangTask("Parallel verify task"),
3195       _g1h(g1h),
3196       _vo(vo),
3197       _failures(false),
3198       _hrclaimer(g1h->workers()->active_workers()) {}
3199 
3200   bool failures() {
3201     return _failures;
3202   }
3203 
3204   void work(uint worker_id) {
3205     HandleMark hm;
3206     VerifyRegionClosure blk(true, _vo);
3207     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3208     if (blk.failures()) {
3209       _failures = true;
3210     }
3211   }
3212 };
3213 
3214 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3215   if (SafepointSynchronize::is_at_safepoint()) {
3216     assert(Thread::current()->is_VM_thread(),
3217            "Expected to be executed serially by the VM thread at this point");
3218 
3219     if (!silent) { gclog_or_tty->print("Roots "); }
3220     VerifyRootsClosure rootsCl(vo);
3221     VerifyKlassClosure klassCl(this, &rootsCl);
3222     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3223 
3224     // We apply the relevant closures to all the oops in the
3225     // system dictionary, class loader data graph, the string table
3226     // and the nmethods in the code cache.
3227     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3228     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3229 
3230     {
3231       G1RootProcessor root_processor(this, 1);
3232       root_processor.process_all_roots(&rootsCl,
3233                                        &cldCl,
3234                                        &blobsCl);
3235     }
3236 
3237     bool failures = rootsCl.failures() || codeRootsCl.failures();
3238 
3239     if (vo != VerifyOption_G1UseMarkWord) {
3240       // If we're verifying during a full GC then the region sets
3241       // will have been torn down at the start of the GC. Therefore
3242       // verifying the region sets will fail. So we only verify
3243       // the region sets when not in a full GC.
3244       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3245       verify_region_sets();
3246     }
3247 
3248     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3249     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3250 
3251       G1ParVerifyTask task(this, vo);
3252       workers()->run_task(&task);
3253       if (task.failures()) {
3254         failures = true;
3255       }
3256 
3257     } else {
3258       VerifyRegionClosure blk(false, vo);
3259       heap_region_iterate(&blk);
3260       if (blk.failures()) {
3261         failures = true;
3262       }
3263     }
3264 
3265     if (G1StringDedup::is_enabled()) {
3266       if (!silent) gclog_or_tty->print("StrDedup ");
3267       G1StringDedup::verify();
3268     }
3269 
3270     if (failures) {
3271       gclog_or_tty->print_cr("Heap:");
3272       // It helps to have the per-region information in the output to
3273       // help us track down what went wrong. This is why we call
3274       // print_extended_on() instead of print_on().
3275       print_extended_on(gclog_or_tty);
3276       gclog_or_tty->cr();
3277       gclog_or_tty->flush();
3278     }
3279     guarantee(!failures, "there should not have been any failures");
3280   } else {
3281     if (!silent) {
3282       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3283       if (G1StringDedup::is_enabled()) {
3284         gclog_or_tty->print(", StrDedup");
3285       }
3286       gclog_or_tty->print(") ");
3287     }
3288   }
3289 }
3290 
3291 void G1CollectedHeap::verify(bool silent) {
3292   verify(silent, VerifyOption_G1UsePrevMarking);
3293 }
3294 
3295 double G1CollectedHeap::verify(bool guard, const char* msg) {
3296   double verify_time_ms = 0.0;
3297 
3298   if (guard && total_collections() >= VerifyGCStartAt) {
3299     double verify_start = os::elapsedTime();
3300     HandleMark hm;  // Discard invalid handles created during verification
3301     prepare_for_verify();
3302     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3303     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3304   }
3305 
3306   return verify_time_ms;
3307 }
3308 
3309 void G1CollectedHeap::verify_before_gc() {
3310   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3311   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3312 }
3313 
3314 void G1CollectedHeap::verify_after_gc() {
3315   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3316   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3317 }
3318 
3319 class PrintRegionClosure: public HeapRegionClosure {
3320   outputStream* _st;
3321 public:
3322   PrintRegionClosure(outputStream* st) : _st(st) {}
3323   bool doHeapRegion(HeapRegion* r) {
3324     r->print_on(_st);
3325     return false;
3326   }
3327 };
3328 
3329 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3330                                        const HeapRegion* hr,
3331                                        const VerifyOption vo) const {
3332   switch (vo) {
3333   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3334   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3335   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3336   default:                            ShouldNotReachHere();
3337   }
3338   return false; // keep some compilers happy
3339 }
3340 
3341 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3342                                        const VerifyOption vo) const {
3343   switch (vo) {
3344   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3345   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3346   case VerifyOption_G1UseMarkWord: {
3347     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3348     return !obj->is_gc_marked() && !hr->is_archive();
3349   }
3350   default:                            ShouldNotReachHere();
3351   }
3352   return false; // keep some compilers happy
3353 }
3354 
3355 void G1CollectedHeap::print_on(outputStream* st) const {
3356   st->print(" %-20s", "garbage-first heap");
3357   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3358             capacity()/K, used_unlocked()/K);
3359   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3360             p2i(_hrm.reserved().start()),
3361             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3362             p2i(_hrm.reserved().end()));
3363   st->cr();
3364   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3365   uint young_regions = _young_list->length();
3366   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3367             (size_t) young_regions * HeapRegion::GrainBytes / K);
3368   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3369   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3370             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3371   st->cr();
3372   MetaspaceAux::print_on(st);
3373 }
3374 
3375 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3376   print_on(st);
3377 
3378   // Print the per-region information.
3379   st->cr();
3380   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3381                "HS=humongous(starts), HC=humongous(continues), "
3382                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3383                "PTAMS=previous top-at-mark-start, "
3384                "NTAMS=next top-at-mark-start)");
3385   PrintRegionClosure blk(st);
3386   heap_region_iterate(&blk);
3387 }
3388 
3389 void G1CollectedHeap::print_on_error(outputStream* st) const {
3390   this->CollectedHeap::print_on_error(st);
3391 
3392   if (_cm != NULL) {
3393     st->cr();
3394     _cm->print_on_error(st);
3395   }
3396 }
3397 
3398 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3399   workers()->print_worker_threads_on(st);
3400   _cmThread->print_on(st);
3401   st->cr();
3402   _cm->print_worker_threads_on(st);
3403   _cg1r->print_worker_threads_on(st);
3404   if (G1StringDedup::is_enabled()) {
3405     G1StringDedup::print_worker_threads_on(st);
3406   }
3407 }
3408 
3409 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3410   workers()->threads_do(tc);
3411   tc->do_thread(_cmThread);
3412   _cg1r->threads_do(tc);
3413   if (G1StringDedup::is_enabled()) {
3414     G1StringDedup::threads_do(tc);
3415   }
3416 }
3417 
3418 void G1CollectedHeap::print_tracing_info() const {
3419   // We'll overload this to mean "trace GC pause statistics."
3420   if (TraceYoungGenTime || TraceOldGenTime) {
3421     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3422     // to that.
3423     g1_policy()->print_tracing_info();
3424   }
3425   if (G1SummarizeRSetStats) {
3426     g1_rem_set()->print_summary_info();
3427   }
3428   if (G1SummarizeConcMark) {
3429     concurrent_mark()->print_summary_info();
3430   }
3431   g1_policy()->print_yg_surv_rate_info();
3432 }
3433 
3434 #ifndef PRODUCT
3435 // Helpful for debugging RSet issues.
3436 
3437 class PrintRSetsClosure : public HeapRegionClosure {
3438 private:
3439   const char* _msg;
3440   size_t _occupied_sum;
3441 
3442 public:
3443   bool doHeapRegion(HeapRegion* r) {
3444     HeapRegionRemSet* hrrs = r->rem_set();
3445     size_t occupied = hrrs->occupied();
3446     _occupied_sum += occupied;
3447 
3448     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3449                            HR_FORMAT_PARAMS(r));
3450     if (occupied == 0) {
3451       gclog_or_tty->print_cr("  RSet is empty");
3452     } else {
3453       hrrs->print();
3454     }
3455     gclog_or_tty->print_cr("----------");
3456     return false;
3457   }
3458 
3459   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3460     gclog_or_tty->cr();
3461     gclog_or_tty->print_cr("========================================");
3462     gclog_or_tty->print_cr("%s", msg);
3463     gclog_or_tty->cr();
3464   }
3465 
3466   ~PrintRSetsClosure() {
3467     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3468     gclog_or_tty->print_cr("========================================");
3469     gclog_or_tty->cr();
3470   }
3471 };
3472 
3473 void G1CollectedHeap::print_cset_rsets() {
3474   PrintRSetsClosure cl("Printing CSet RSets");
3475   collection_set_iterate(&cl);
3476 }
3477 
3478 void G1CollectedHeap::print_all_rsets() {
3479   PrintRSetsClosure cl("Printing All RSets");;
3480   heap_region_iterate(&cl);
3481 }
3482 #endif // PRODUCT
3483 
3484 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3485   YoungList* young_list = heap()->young_list();
3486 
3487   size_t eden_used_bytes = young_list->eden_used_bytes();
3488   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3489 
3490   size_t eden_capacity_bytes =
3491     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3492 
3493   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3494   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3495 }
3496 
3497 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3498   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3499   gc_tracer->report_gc_heap_summary(when, heap_summary);
3500 
3501   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3502   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3503 }
3504 
3505 
3506 G1CollectedHeap* G1CollectedHeap::heap() {
3507   CollectedHeap* heap = Universe::heap();
3508   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3509   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3510   return (G1CollectedHeap*)heap;
3511 }
3512 
3513 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3514   // always_do_update_barrier = false;
3515   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3516   // Fill TLAB's and such
3517   accumulate_statistics_all_tlabs();
3518   ensure_parsability(true);
3519 
3520   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3521       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3522     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3523   }
3524 }
3525 
3526 void G1CollectedHeap::gc_epilogue(bool full) {
3527 
3528   if (G1SummarizeRSetStats &&
3529       (G1SummarizeRSetStatsPeriod > 0) &&
3530       // we are at the end of the GC. Total collections has already been increased.
3531       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3532     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3533   }
3534 
3535   // FIXME: what is this about?
3536   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3537   // is set.
3538   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3539                         "derived pointer present"));
3540   // always_do_update_barrier = true;
3541 
3542   resize_all_tlabs();
3543   allocation_context_stats().update(full);
3544 
3545   // We have just completed a GC. Update the soft reference
3546   // policy with the new heap occupancy
3547   Universe::update_heap_info_at_gc();
3548 }
3549 
3550 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3551                                                uint gc_count_before,
3552                                                bool* succeeded,
3553                                                GCCause::Cause gc_cause) {
3554   assert_heap_not_locked_and_not_at_safepoint();
3555   g1_policy()->record_stop_world_start();
3556   VM_G1IncCollectionPause op(gc_count_before,
3557                              word_size,
3558                              false, /* should_initiate_conc_mark */
3559                              g1_policy()->max_pause_time_ms(),
3560                              gc_cause);
3561 
3562   op.set_allocation_context(AllocationContext::current());
3563   VMThread::execute(&op);
3564 
3565   HeapWord* result = op.result();
3566   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3567   assert(result == NULL || ret_succeeded,
3568          "the result should be NULL if the VM did not succeed");
3569   *succeeded = ret_succeeded;
3570 
3571   assert_heap_not_locked();
3572   return result;
3573 }
3574 
3575 void
3576 G1CollectedHeap::doConcurrentMark() {
3577   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3578   if (!_cmThread->in_progress()) {
3579     _cmThread->set_started();
3580     CGC_lock->notify();
3581   }
3582 }
3583 
3584 size_t G1CollectedHeap::pending_card_num() {
3585   size_t extra_cards = 0;
3586   JavaThread *curr = Threads::first();
3587   while (curr != NULL) {
3588     DirtyCardQueue& dcq = curr->dirty_card_queue();
3589     extra_cards += dcq.size();
3590     curr = curr->next();
3591   }
3592   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3593   size_t buffer_size = dcqs.buffer_size();
3594   size_t buffer_num = dcqs.completed_buffers_num();
3595 
3596   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3597   // in bytes - not the number of 'entries'. We need to convert
3598   // into a number of cards.
3599   return (buffer_size * buffer_num + extra_cards) / oopSize;
3600 }
3601 
3602 size_t G1CollectedHeap::cards_scanned() {
3603   return g1_rem_set()->cardsScanned();
3604 }
3605 
3606 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3607  private:
3608   size_t _total_humongous;
3609   size_t _candidate_humongous;
3610 
3611   DirtyCardQueue _dcq;
3612 
3613   // We don't nominate objects with many remembered set entries, on
3614   // the assumption that such objects are likely still live.
3615   bool is_remset_small(HeapRegion* region) const {
3616     HeapRegionRemSet* const rset = region->rem_set();
3617     return G1EagerReclaimHumongousObjectsWithStaleRefs
3618       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3619       : rset->is_empty();
3620   }
3621 
3622   bool is_typeArray_region(HeapRegion* region) const {
3623     return oop(region->bottom())->is_typeArray();
3624   }
3625 
3626   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3627     assert(region->is_starts_humongous(), "Must start a humongous object");
3628 
3629     // Candidate selection must satisfy the following constraints
3630     // while concurrent marking is in progress:
3631     //
3632     // * In order to maintain SATB invariants, an object must not be
3633     // reclaimed if it was allocated before the start of marking and
3634     // has not had its references scanned.  Such an object must have
3635     // its references (including type metadata) scanned to ensure no
3636     // live objects are missed by the marking process.  Objects
3637     // allocated after the start of concurrent marking don't need to
3638     // be scanned.
3639     //
3640     // * An object must not be reclaimed if it is on the concurrent
3641     // mark stack.  Objects allocated after the start of concurrent
3642     // marking are never pushed on the mark stack.
3643     //
3644     // Nominating only objects allocated after the start of concurrent
3645     // marking is sufficient to meet both constraints.  This may miss
3646     // some objects that satisfy the constraints, but the marking data
3647     // structures don't support efficiently performing the needed
3648     // additional tests or scrubbing of the mark stack.
3649     //
3650     // However, we presently only nominate is_typeArray() objects.
3651     // A humongous object containing references induces remembered
3652     // set entries on other regions.  In order to reclaim such an
3653     // object, those remembered sets would need to be cleaned up.
3654     //
3655     // We also treat is_typeArray() objects specially, allowing them
3656     // to be reclaimed even if allocated before the start of
3657     // concurrent mark.  For this we rely on mark stack insertion to
3658     // exclude is_typeArray() objects, preventing reclaiming an object
3659     // that is in the mark stack.  We also rely on the metadata for
3660     // such objects to be built-in and so ensured to be kept live.
3661     // Frequent allocation and drop of large binary blobs is an
3662     // important use case for eager reclaim, and this special handling
3663     // may reduce needed headroom.
3664 
3665     return is_typeArray_region(region) && is_remset_small(region);
3666   }
3667 
3668  public:
3669   RegisterHumongousWithInCSetFastTestClosure()
3670   : _total_humongous(0),
3671     _candidate_humongous(0),
3672     _dcq(&JavaThread::dirty_card_queue_set()) {
3673   }
3674 
3675   virtual bool doHeapRegion(HeapRegion* r) {
3676     if (!r->is_starts_humongous()) {
3677       return false;
3678     }
3679     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3680 
3681     bool is_candidate = humongous_region_is_candidate(g1h, r);
3682     uint rindex = r->hrm_index();
3683     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3684     if (is_candidate) {
3685       _candidate_humongous++;
3686       g1h->register_humongous_region_with_cset(rindex);
3687       // Is_candidate already filters out humongous object with large remembered sets.
3688       // If we have a humongous object with a few remembered sets, we simply flush these
3689       // remembered set entries into the DCQS. That will result in automatic
3690       // re-evaluation of their remembered set entries during the following evacuation
3691       // phase.
3692       if (!r->rem_set()->is_empty()) {
3693         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3694                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3695         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3696         HeapRegionRemSetIterator hrrs(r->rem_set());
3697         size_t card_index;
3698         while (hrrs.has_next(card_index)) {
3699           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3700           // The remembered set might contain references to already freed
3701           // regions. Filter out such entries to avoid failing card table
3702           // verification.
3703           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3704             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3705               *card_ptr = CardTableModRefBS::dirty_card_val();
3706               _dcq.enqueue(card_ptr);
3707             }
3708           }
3709         }
3710         r->rem_set()->clear_locked();
3711       }
3712       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3713     }
3714     _total_humongous++;
3715 
3716     return false;
3717   }
3718 
3719   size_t total_humongous() const { return _total_humongous; }
3720   size_t candidate_humongous() const { return _candidate_humongous; }
3721 
3722   void flush_rem_set_entries() { _dcq.flush(); }
3723 };
3724 
3725 void G1CollectedHeap::register_humongous_regions_with_cset() {
3726   if (!G1EagerReclaimHumongousObjects) {
3727     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3728     return;
3729   }
3730   double time = os::elapsed_counter();
3731 
3732   // Collect reclaim candidate information and register candidates with cset.
3733   RegisterHumongousWithInCSetFastTestClosure cl;
3734   heap_region_iterate(&cl);
3735 
3736   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3737   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3738                                                                   cl.total_humongous(),
3739                                                                   cl.candidate_humongous());
3740   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3741 
3742   // Finally flush all remembered set entries to re-check into the global DCQS.
3743   cl.flush_rem_set_entries();
3744 }
3745 
3746 void
3747 G1CollectedHeap::setup_surviving_young_words() {
3748   assert(_surviving_young_words == NULL, "pre-condition");
3749   uint array_length = g1_policy()->young_cset_region_length();
3750   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3751   if (_surviving_young_words == NULL) {
3752     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3753                           "Not enough space for young surv words summary.");
3754   }
3755   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3756 #ifdef ASSERT
3757   for (uint i = 0;  i < array_length; ++i) {
3758     assert( _surviving_young_words[i] == 0, "memset above" );
3759   }
3760 #endif // !ASSERT
3761 }
3762 
3763 void
3764 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3765   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3766   uint array_length = g1_policy()->young_cset_region_length();
3767   for (uint i = 0; i < array_length; ++i) {
3768     _surviving_young_words[i] += surv_young_words[i];
3769   }
3770 }
3771 
3772 void
3773 G1CollectedHeap::cleanup_surviving_young_words() {
3774   guarantee( _surviving_young_words != NULL, "pre-condition" );
3775   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3776   _surviving_young_words = NULL;
3777 }
3778 
3779 #ifdef ASSERT
3780 class VerifyCSetClosure: public HeapRegionClosure {
3781 public:
3782   bool doHeapRegion(HeapRegion* hr) {
3783     // Here we check that the CSet region's RSet is ready for parallel
3784     // iteration. The fields that we'll verify are only manipulated
3785     // when the region is part of a CSet and is collected. Afterwards,
3786     // we reset these fields when we clear the region's RSet (when the
3787     // region is freed) so they are ready when the region is
3788     // re-allocated. The only exception to this is if there's an
3789     // evacuation failure and instead of freeing the region we leave
3790     // it in the heap. In that case, we reset these fields during
3791     // evacuation failure handling.
3792     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3793 
3794     // Here's a good place to add any other checks we'd like to
3795     // perform on CSet regions.
3796     return false;
3797   }
3798 };
3799 #endif // ASSERT
3800 
3801 uint G1CollectedHeap::num_task_queues() const {
3802   return _task_queues->size();
3803 }
3804 
3805 #if TASKQUEUE_STATS
3806 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3807   st->print_raw_cr("GC Task Stats");
3808   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3809   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3810 }
3811 
3812 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3813   print_taskqueue_stats_hdr(st);
3814 
3815   TaskQueueStats totals;
3816   const uint n = num_task_queues();
3817   for (uint i = 0; i < n; ++i) {
3818     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3819     totals += task_queue(i)->stats;
3820   }
3821   st->print_raw("tot "); totals.print(st); st->cr();
3822 
3823   DEBUG_ONLY(totals.verify());
3824 }
3825 
3826 void G1CollectedHeap::reset_taskqueue_stats() {
3827   const uint n = num_task_queues();
3828   for (uint i = 0; i < n; ++i) {
3829     task_queue(i)->stats.reset();
3830   }
3831 }
3832 #endif // TASKQUEUE_STATS
3833 
3834 void G1CollectedHeap::log_gc_header() {
3835   if (!G1Log::fine()) {
3836     return;
3837   }
3838 
3839   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3840 
3841   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3842     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3843     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3844 
3845   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3846 }
3847 
3848 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3849   if (!G1Log::fine()) {
3850     return;
3851   }
3852 
3853   if (G1Log::finer()) {
3854     if (evacuation_failed()) {
3855       gclog_or_tty->print(" (to-space exhausted)");
3856     }
3857     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3858     g1_policy()->phase_times()->note_gc_end();
3859     g1_policy()->phase_times()->print(pause_time_sec);
3860     g1_policy()->print_detailed_heap_transition();
3861   } else {
3862     if (evacuation_failed()) {
3863       gclog_or_tty->print("--");
3864     }
3865     g1_policy()->print_heap_transition();
3866     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3867   }
3868   gclog_or_tty->flush();
3869 }
3870 
3871 void G1CollectedHeap::wait_for_root_region_scanning() {
3872   double scan_wait_start = os::elapsedTime();
3873   // We have to wait until the CM threads finish scanning the
3874   // root regions as it's the only way to ensure that all the
3875   // objects on them have been correctly scanned before we start
3876   // moving them during the GC.
3877   bool waited = _cm->root_regions()->wait_until_scan_finished();
3878   double wait_time_ms = 0.0;
3879   if (waited) {
3880     double scan_wait_end = os::elapsedTime();
3881     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3882   }
3883   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3884 }
3885 
3886 bool
3887 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3888   assert_at_safepoint(true /* should_be_vm_thread */);
3889   guarantee(!is_gc_active(), "collection is not reentrant");
3890 
3891   if (GC_locker::check_active_before_gc()) {
3892     return false;
3893   }
3894 
3895   _gc_timer_stw->register_gc_start();
3896 
3897   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3898 
3899   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3900   ResourceMark rm;
3901 
3902   wait_for_root_region_scanning();
3903 
3904   G1Log::update_level();
3905   print_heap_before_gc();
3906   trace_heap_before_gc(_gc_tracer_stw);
3907 
3908   verify_region_sets_optional();
3909   verify_dirty_young_regions();
3910 
3911   // This call will decide whether this pause is an initial-mark
3912   // pause. If it is, during_initial_mark_pause() will return true
3913   // for the duration of this pause.
3914   g1_policy()->decide_on_conc_mark_initiation();
3915 
3916   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3917   assert(!collector_state()->during_initial_mark_pause() ||
3918           collector_state()->gcs_are_young(), "sanity");
3919 
3920   // We also do not allow mixed GCs during marking.
3921   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3922 
3923   // Record whether this pause is an initial mark. When the current
3924   // thread has completed its logging output and it's safe to signal
3925   // the CM thread, the flag's value in the policy has been reset.
3926   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3927 
3928   // Inner scope for scope based logging, timers, and stats collection
3929   {
3930     EvacuationInfo evacuation_info;
3931 
3932     if (collector_state()->during_initial_mark_pause()) {
3933       // We are about to start a marking cycle, so we increment the
3934       // full collection counter.
3935       increment_old_marking_cycles_started();
3936       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3937     }
3938 
3939     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3940 
3941     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3942 
3943     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3944                                                                   workers()->active_workers(),
3945                                                                   Threads::number_of_non_daemon_threads());
3946     workers()->set_active_workers(active_workers);
3947 
3948     double pause_start_sec = os::elapsedTime();
3949     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
3950     log_gc_header();
3951 
3952     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3953     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3954 
3955     // If the secondary_free_list is not empty, append it to the
3956     // free_list. No need to wait for the cleanup operation to finish;
3957     // the region allocation code will check the secondary_free_list
3958     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3959     // set, skip this step so that the region allocation code has to
3960     // get entries from the secondary_free_list.
3961     if (!G1StressConcRegionFreeing) {
3962       append_secondary_free_list_if_not_empty_with_lock();
3963     }
3964 
3965     assert(check_young_list_well_formed(), "young list should be well formed");
3966 
3967     // Don't dynamically change the number of GC threads this early.  A value of
3968     // 0 is used to indicate serial work.  When parallel work is done,
3969     // it will be set.
3970 
3971     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3972       IsGCActiveMark x;
3973 
3974       gc_prologue(false);
3975       increment_total_collections(false /* full gc */);
3976       increment_gc_time_stamp();
3977 
3978       verify_before_gc();
3979 
3980       check_bitmaps("GC Start");
3981 
3982       COMPILER2_PRESENT(DerivedPointerTable::clear());
3983 
3984       // Please see comment in g1CollectedHeap.hpp and
3985       // G1CollectedHeap::ref_processing_init() to see how
3986       // reference processing currently works in G1.
3987 
3988       // Enable discovery in the STW reference processor
3989       ref_processor_stw()->enable_discovery();
3990 
3991       {
3992         // We want to temporarily turn off discovery by the
3993         // CM ref processor, if necessary, and turn it back on
3994         // on again later if we do. Using a scoped
3995         // NoRefDiscovery object will do this.
3996         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3997 
3998         // Forget the current alloc region (we might even choose it to be part
3999         // of the collection set!).
4000         _allocator->release_mutator_alloc_region();
4001 
4002         // We should call this after we retire the mutator alloc
4003         // region(s) so that all the ALLOC / RETIRE events are generated
4004         // before the start GC event.
4005         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4006 
4007         // This timing is only used by the ergonomics to handle our pause target.
4008         // It is unclear why this should not include the full pause. We will
4009         // investigate this in CR 7178365.
4010         //
4011         // Preserving the old comment here if that helps the investigation:
4012         //
4013         // The elapsed time induced by the start time below deliberately elides
4014         // the possible verification above.
4015         double sample_start_time_sec = os::elapsedTime();
4016 
4017 #if YOUNG_LIST_VERBOSE
4018         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4019         _young_list->print();
4020         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4021 #endif // YOUNG_LIST_VERBOSE
4022 
4023         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4024 
4025 #if YOUNG_LIST_VERBOSE
4026         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4027         _young_list->print();
4028 #endif // YOUNG_LIST_VERBOSE
4029 
4030         if (collector_state()->during_initial_mark_pause()) {
4031           concurrent_mark()->checkpointRootsInitialPre();
4032         }
4033 
4034 #if YOUNG_LIST_VERBOSE
4035         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4036         _young_list->print();
4037         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4038 #endif // YOUNG_LIST_VERBOSE
4039 
4040         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4041 
4042         register_humongous_regions_with_cset();
4043 
4044         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4045 
4046         _cm->note_start_of_gc();
4047         // We call this after finalize_cset() to
4048         // ensure that the CSet has been finalized.
4049         _cm->verify_no_cset_oops();
4050 
4051         if (_hr_printer.is_active()) {
4052           HeapRegion* hr = g1_policy()->collection_set();
4053           while (hr != NULL) {
4054             _hr_printer.cset(hr);
4055             hr = hr->next_in_collection_set();
4056           }
4057         }
4058 
4059 #ifdef ASSERT
4060         VerifyCSetClosure cl;
4061         collection_set_iterate(&cl);
4062 #endif // ASSERT
4063 
4064         setup_surviving_young_words();
4065 
4066         // Initialize the GC alloc regions.
4067         _allocator->init_gc_alloc_regions(evacuation_info);
4068 
4069         // Actually do the work...
4070         evacuate_collection_set(evacuation_info);
4071 
4072         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4073 
4074         eagerly_reclaim_humongous_regions();
4075 
4076         g1_policy()->clear_collection_set();
4077 
4078         cleanup_surviving_young_words();
4079 
4080         // Start a new incremental collection set for the next pause.
4081         g1_policy()->start_incremental_cset_building();
4082 
4083         clear_cset_fast_test();
4084 
4085         _young_list->reset_sampled_info();
4086 
4087         // Don't check the whole heap at this point as the
4088         // GC alloc regions from this pause have been tagged
4089         // as survivors and moved on to the survivor list.
4090         // Survivor regions will fail the !is_young() check.
4091         assert(check_young_list_empty(false /* check_heap */),
4092           "young list should be empty");
4093 
4094 #if YOUNG_LIST_VERBOSE
4095         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4096         _young_list->print();
4097 #endif // YOUNG_LIST_VERBOSE
4098 
4099         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4100                                              _young_list->first_survivor_region(),
4101                                              _young_list->last_survivor_region());
4102 
4103         _young_list->reset_auxilary_lists();
4104 
4105         if (evacuation_failed()) {
4106           set_used(recalculate_used());
4107           if (_archive_allocator != NULL) {
4108             _archive_allocator->clear_used();
4109           }
4110           for (uint i = 0; i < ParallelGCThreads; i++) {
4111             if (_evacuation_failed_info_array[i].has_failed()) {
4112               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4113             }
4114           }
4115         } else {
4116           // The "used" of the the collection set have already been subtracted
4117           // when they were freed.  Add in the bytes evacuated.
4118           increase_used(g1_policy()->bytes_copied_during_gc());
4119         }
4120 
4121         if (collector_state()->during_initial_mark_pause()) {
4122           // We have to do this before we notify the CM threads that
4123           // they can start working to make sure that all the
4124           // appropriate initialization is done on the CM object.
4125           concurrent_mark()->checkpointRootsInitialPost();
4126           collector_state()->set_mark_in_progress(true);
4127           // Note that we don't actually trigger the CM thread at
4128           // this point. We do that later when we're sure that
4129           // the current thread has completed its logging output.
4130         }
4131 
4132         allocate_dummy_regions();
4133 
4134 #if YOUNG_LIST_VERBOSE
4135         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4136         _young_list->print();
4137         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4138 #endif // YOUNG_LIST_VERBOSE
4139 
4140         _allocator->init_mutator_alloc_region();
4141 
4142         {
4143           size_t expand_bytes = g1_policy()->expansion_amount();
4144           if (expand_bytes > 0) {
4145             size_t bytes_before = capacity();
4146             // No need for an ergo verbose message here,
4147             // expansion_amount() does this when it returns a value > 0.
4148             if (!expand(expand_bytes)) {
4149               // We failed to expand the heap. Cannot do anything about it.
4150             }
4151           }
4152         }
4153 
4154         // We redo the verification but now wrt to the new CSet which
4155         // has just got initialized after the previous CSet was freed.
4156         _cm->verify_no_cset_oops();
4157         _cm->note_end_of_gc();
4158 
4159         // This timing is only used by the ergonomics to handle our pause target.
4160         // It is unclear why this should not include the full pause. We will
4161         // investigate this in CR 7178365.
4162         double sample_end_time_sec = os::elapsedTime();
4163         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4164         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4165 
4166         MemoryService::track_memory_usage();
4167 
4168         // In prepare_for_verify() below we'll need to scan the deferred
4169         // update buffers to bring the RSets up-to-date if
4170         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4171         // the update buffers we'll probably need to scan cards on the
4172         // regions we just allocated to (i.e., the GC alloc
4173         // regions). However, during the last GC we called
4174         // set_saved_mark() on all the GC alloc regions, so card
4175         // scanning might skip the [saved_mark_word()...top()] area of
4176         // those regions (i.e., the area we allocated objects into
4177         // during the last GC). But it shouldn't. Given that
4178         // saved_mark_word() is conditional on whether the GC time stamp
4179         // on the region is current or not, by incrementing the GC time
4180         // stamp here we invalidate all the GC time stamps on all the
4181         // regions and saved_mark_word() will simply return top() for
4182         // all the regions. This is a nicer way of ensuring this rather
4183         // than iterating over the regions and fixing them. In fact, the
4184         // GC time stamp increment here also ensures that
4185         // saved_mark_word() will return top() between pauses, i.e.,
4186         // during concurrent refinement. So we don't need the
4187         // is_gc_active() check to decided which top to use when
4188         // scanning cards (see CR 7039627).
4189         increment_gc_time_stamp();
4190 
4191         verify_after_gc();
4192         check_bitmaps("GC End");
4193 
4194         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4195         ref_processor_stw()->verify_no_references_recorded();
4196 
4197         // CM reference discovery will be re-enabled if necessary.
4198       }
4199 
4200       // We should do this after we potentially expand the heap so
4201       // that all the COMMIT events are generated before the end GC
4202       // event, and after we retire the GC alloc regions so that all
4203       // RETIRE events are generated before the end GC event.
4204       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4205 
4206 #ifdef TRACESPINNING
4207       ParallelTaskTerminator::print_termination_counts();
4208 #endif
4209 
4210       gc_epilogue(false);
4211     }
4212 
4213     // Print the remainder of the GC log output.
4214     log_gc_footer(os::elapsedTime() - pause_start_sec);
4215 
4216     // It is not yet to safe to tell the concurrent mark to
4217     // start as we have some optional output below. We don't want the
4218     // output from the concurrent mark thread interfering with this
4219     // logging output either.
4220 
4221     _hrm.verify_optional();
4222     verify_region_sets_optional();
4223 
4224     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4225     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4226 
4227     print_heap_after_gc();
4228     trace_heap_after_gc(_gc_tracer_stw);
4229 
4230     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4231     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4232     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4233     // before any GC notifications are raised.
4234     g1mm()->update_sizes();
4235 
4236     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4237     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4238     _gc_timer_stw->register_gc_end();
4239     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4240   }
4241   // It should now be safe to tell the concurrent mark thread to start
4242   // without its logging output interfering with the logging output
4243   // that came from the pause.
4244 
4245   if (should_start_conc_mark) {
4246     // CAUTION: after the doConcurrentMark() call below,
4247     // the concurrent marking thread(s) could be running
4248     // concurrently with us. Make sure that anything after
4249     // this point does not assume that we are the only GC thread
4250     // running. Note: of course, the actual marking work will
4251     // not start until the safepoint itself is released in
4252     // SuspendibleThreadSet::desynchronize().
4253     doConcurrentMark();
4254   }
4255 
4256   return true;
4257 }
4258 
4259 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4260   _drain_in_progress = false;
4261   set_evac_failure_closure(cl);
4262   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4263 }
4264 
4265 void G1CollectedHeap::finalize_for_evac_failure() {
4266   assert(_evac_failure_scan_stack != NULL &&
4267          _evac_failure_scan_stack->length() == 0,
4268          "Postcondition");
4269   assert(!_drain_in_progress, "Postcondition");
4270   delete _evac_failure_scan_stack;
4271   _evac_failure_scan_stack = NULL;
4272 }
4273 
4274 void G1CollectedHeap::remove_self_forwarding_pointers() {
4275   double remove_self_forwards_start = os::elapsedTime();
4276 
4277   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4278   workers()->run_task(&rsfp_task);
4279 
4280   // Now restore saved marks, if any.
4281   assert(_objs_with_preserved_marks.size() ==
4282             _preserved_marks_of_objs.size(), "Both or none.");
4283   while (!_objs_with_preserved_marks.is_empty()) {
4284     oop obj = _objs_with_preserved_marks.pop();
4285     markOop m = _preserved_marks_of_objs.pop();
4286     obj->set_mark(m);
4287   }
4288   _objs_with_preserved_marks.clear(true);
4289   _preserved_marks_of_objs.clear(true);
4290 
4291   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4292 }
4293 
4294 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4295   _evac_failure_scan_stack->push(obj);
4296 }
4297 
4298 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4299   assert(_evac_failure_scan_stack != NULL, "precondition");
4300 
4301   while (_evac_failure_scan_stack->length() > 0) {
4302      oop obj = _evac_failure_scan_stack->pop();
4303      _evac_failure_closure->set_region(heap_region_containing(obj));
4304      obj->oop_iterate_backwards(_evac_failure_closure);
4305   }
4306 }
4307 
4308 oop
4309 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4310                                                oop old) {
4311   assert(obj_in_cs(old),
4312          err_msg("obj: " PTR_FORMAT " should still be in the CSet",
4313                  p2i(old)));
4314   markOop m = old->mark();
4315   oop forward_ptr = old->forward_to_atomic(old);
4316   if (forward_ptr == NULL) {
4317     // Forward-to-self succeeded.
4318     assert(_par_scan_state != NULL, "par scan state");
4319     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4320     uint queue_num = _par_scan_state->queue_num();
4321 
4322     _evacuation_failed = true;
4323     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4324     if (_evac_failure_closure != cl) {
4325       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4326       assert(!_drain_in_progress,
4327              "Should only be true while someone holds the lock.");
4328       // Set the global evac-failure closure to the current thread's.
4329       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4330       set_evac_failure_closure(cl);
4331       // Now do the common part.
4332       handle_evacuation_failure_common(old, m);
4333       // Reset to NULL.
4334       set_evac_failure_closure(NULL);
4335     } else {
4336       // The lock is already held, and this is recursive.
4337       assert(_drain_in_progress, "This should only be the recursive case.");
4338       handle_evacuation_failure_common(old, m);
4339     }
4340     return old;
4341   } else {
4342     // Forward-to-self failed. Either someone else managed to allocate
4343     // space for this object (old != forward_ptr) or they beat us in
4344     // self-forwarding it (old == forward_ptr).
4345     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4346            err_msg("obj: " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
4347                    "should not be in the CSet",
4348                    p2i(old), p2i(forward_ptr)));
4349     return forward_ptr;
4350   }
4351 }
4352 
4353 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4354   preserve_mark_if_necessary(old, m);
4355 
4356   HeapRegion* r = heap_region_containing(old);
4357   if (!r->evacuation_failed()) {
4358     r->set_evacuation_failed(true);
4359     _hr_printer.evac_failure(r);
4360   }
4361 
4362   push_on_evac_failure_scan_stack(old);
4363 
4364   if (!_drain_in_progress) {
4365     // prevent recursion in copy_to_survivor_space()
4366     _drain_in_progress = true;
4367     drain_evac_failure_scan_stack();
4368     _drain_in_progress = false;
4369   }
4370 }
4371 
4372 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4373   assert(evacuation_failed(), "Oversaving!");
4374   // We want to call the "for_promotion_failure" version only in the
4375   // case of a promotion failure.
4376   if (m->must_be_preserved_for_promotion_failure(obj)) {
4377     _objs_with_preserved_marks.push(obj);
4378     _preserved_marks_of_objs.push(m);
4379   }
4380 }
4381 
4382 void G1ParCopyHelper::mark_object(oop obj) {
4383   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4384 
4385   // We know that the object is not moving so it's safe to read its size.
4386   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4387 }
4388 
4389 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4390   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4391   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4392   assert(from_obj != to_obj, "should not be self-forwarded");
4393 
4394   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4395   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4396 
4397   // The object might be in the process of being copied by another
4398   // worker so we cannot trust that its to-space image is
4399   // well-formed. So we have to read its size from its from-space
4400   // image which we know should not be changing.
4401   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4402 }
4403 
4404 template <class T>
4405 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4406   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4407     _scanned_klass->record_modified_oops();
4408   }
4409 }
4410 
4411 template <G1Barrier barrier, G1Mark do_mark_object>
4412 template <class T>
4413 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4414   T heap_oop = oopDesc::load_heap_oop(p);
4415 
4416   if (oopDesc::is_null(heap_oop)) {
4417     return;
4418   }
4419 
4420   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4421 
4422   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4423 
4424   const InCSetState state = _g1->in_cset_state(obj);
4425   if (state.is_in_cset()) {
4426     oop forwardee;
4427     markOop m = obj->mark();
4428     if (m->is_marked()) {
4429       forwardee = (oop) m->decode_pointer();
4430     } else {
4431       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4432     }
4433     assert(forwardee != NULL, "forwardee should not be NULL");
4434     oopDesc::encode_store_heap_oop(p, forwardee);
4435     if (do_mark_object != G1MarkNone && forwardee != obj) {
4436       // If the object is self-forwarded we don't need to explicitly
4437       // mark it, the evacuation failure protocol will do so.
4438       mark_forwarded_object(obj, forwardee);
4439     }
4440 
4441     if (barrier == G1BarrierKlass) {
4442       do_klass_barrier(p, forwardee);
4443     }
4444   } else {
4445     if (state.is_humongous()) {
4446       _g1->set_humongous_is_live(obj);
4447     }
4448     // The object is not in collection set. If we're a root scanning
4449     // closure during an initial mark pause then attempt to mark the object.
4450     if (do_mark_object == G1MarkFromRoot) {
4451       mark_object(obj);
4452     }
4453   }
4454 
4455   if (barrier == G1BarrierEvac) {
4456     _par_scan_state->update_rs(_from, p, _worker_id);
4457   }
4458 }
4459 
4460 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4461 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4462 
4463 class G1ParEvacuateFollowersClosure : public VoidClosure {
4464 protected:
4465   G1CollectedHeap*              _g1h;
4466   G1ParScanThreadState*         _par_scan_state;
4467   RefToScanQueueSet*            _queues;
4468   ParallelTaskTerminator*       _terminator;
4469 
4470   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4471   RefToScanQueueSet*      queues()         { return _queues; }
4472   ParallelTaskTerminator* terminator()     { return _terminator; }
4473 
4474 public:
4475   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4476                                 G1ParScanThreadState* par_scan_state,
4477                                 RefToScanQueueSet* queues,
4478                                 ParallelTaskTerminator* terminator)
4479     : _g1h(g1h), _par_scan_state(par_scan_state),
4480       _queues(queues), _terminator(terminator) {}
4481 
4482   void do_void();
4483 
4484 private:
4485   inline bool offer_termination();
4486 };
4487 
4488 bool G1ParEvacuateFollowersClosure::offer_termination() {
4489   G1ParScanThreadState* const pss = par_scan_state();
4490   pss->start_term_time();
4491   const bool res = terminator()->offer_termination();
4492   pss->end_term_time();
4493   return res;
4494 }
4495 
4496 void G1ParEvacuateFollowersClosure::do_void() {
4497   G1ParScanThreadState* const pss = par_scan_state();
4498   pss->trim_queue();
4499   do {
4500     pss->steal_and_trim_queue(queues());
4501   } while (!offer_termination());
4502 }
4503 
4504 class G1KlassScanClosure : public KlassClosure {
4505  G1ParCopyHelper* _closure;
4506  bool             _process_only_dirty;
4507  int              _count;
4508  public:
4509   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4510       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4511   void do_klass(Klass* klass) {
4512     // If the klass has not been dirtied we know that there's
4513     // no references into  the young gen and we can skip it.
4514    if (!_process_only_dirty || klass->has_modified_oops()) {
4515       // Clean the klass since we're going to scavenge all the metadata.
4516       klass->clear_modified_oops();
4517 
4518       // Tell the closure that this klass is the Klass to scavenge
4519       // and is the one to dirty if oops are left pointing into the young gen.
4520       _closure->set_scanned_klass(klass);
4521 
4522       klass->oops_do(_closure);
4523 
4524       _closure->set_scanned_klass(NULL);
4525     }
4526     _count++;
4527   }
4528 };
4529 
4530 class G1ParTask : public AbstractGangTask {
4531 protected:
4532   G1CollectedHeap*       _g1h;
4533   RefToScanQueueSet      *_queues;
4534   G1RootProcessor*       _root_processor;
4535   ParallelTaskTerminator _terminator;
4536   uint _n_workers;
4537 
4538   Mutex _stats_lock;
4539   Mutex* stats_lock() { return &_stats_lock; }
4540 
4541 public:
4542   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4543     : AbstractGangTask("G1 collection"),
4544       _g1h(g1h),
4545       _queues(task_queues),
4546       _root_processor(root_processor),
4547       _terminator(n_workers, _queues),
4548       _n_workers(n_workers),
4549       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4550   {}
4551 
4552   RefToScanQueueSet* queues() { return _queues; }
4553 
4554   RefToScanQueue *work_queue(int i) {
4555     return queues()->queue(i);
4556   }
4557 
4558   ParallelTaskTerminator* terminator() { return &_terminator; }
4559 
4560   // Helps out with CLD processing.
4561   //
4562   // During InitialMark we need to:
4563   // 1) Scavenge all CLDs for the young GC.
4564   // 2) Mark all objects directly reachable from strong CLDs.
4565   template <G1Mark do_mark_object>
4566   class G1CLDClosure : public CLDClosure {
4567     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4568     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4569     G1KlassScanClosure                                _klass_in_cld_closure;
4570     bool                                              _claim;
4571 
4572    public:
4573     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4574                  bool only_young, bool claim)
4575         : _oop_closure(oop_closure),
4576           _oop_in_klass_closure(oop_closure->g1(),
4577                                 oop_closure->pss(),
4578                                 oop_closure->rp()),
4579           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4580           _claim(claim) {
4581 
4582     }
4583 
4584     void do_cld(ClassLoaderData* cld) {
4585       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4586     }
4587   };
4588 
4589   void work(uint worker_id) {
4590     if (worker_id >= _n_workers) return;  // no work needed this round
4591 
4592     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4593 
4594     {
4595       ResourceMark rm;
4596       HandleMark   hm;
4597 
4598       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4599 
4600       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4601       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4602 
4603       pss.set_evac_failure_closure(&evac_failure_cl);
4604 
4605       bool only_young = _g1h->collector_state()->gcs_are_young();
4606 
4607       // Non-IM young GC.
4608       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4609       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4610                                                                                only_young, // Only process dirty klasses.
4611                                                                                false);     // No need to claim CLDs.
4612       // IM young GC.
4613       //    Strong roots closures.
4614       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4615       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4616                                                                                false, // Process all klasses.
4617                                                                                true); // Need to claim CLDs.
4618       //    Weak roots closures.
4619       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4620       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4621                                                                                     false, // Process all klasses.
4622                                                                                     true); // Need to claim CLDs.
4623 
4624       OopClosure* strong_root_cl;
4625       OopClosure* weak_root_cl;
4626       CLDClosure* strong_cld_cl;
4627       CLDClosure* weak_cld_cl;
4628 
4629       bool trace_metadata = false;
4630 
4631       if (_g1h->collector_state()->during_initial_mark_pause()) {
4632         // We also need to mark copied objects.
4633         strong_root_cl = &scan_mark_root_cl;
4634         strong_cld_cl  = &scan_mark_cld_cl;
4635         if (ClassUnloadingWithConcurrentMark) {
4636           weak_root_cl = &scan_mark_weak_root_cl;
4637           weak_cld_cl  = &scan_mark_weak_cld_cl;
4638           trace_metadata = true;
4639         } else {
4640           weak_root_cl = &scan_mark_root_cl;
4641           weak_cld_cl  = &scan_mark_cld_cl;
4642         }
4643       } else {
4644         strong_root_cl = &scan_only_root_cl;
4645         weak_root_cl   = &scan_only_root_cl;
4646         strong_cld_cl  = &scan_only_cld_cl;
4647         weak_cld_cl    = &scan_only_cld_cl;
4648       }
4649 
4650       pss.start_strong_roots();
4651 
4652       _root_processor->evacuate_roots(strong_root_cl,
4653                                       weak_root_cl,
4654                                       strong_cld_cl,
4655                                       weak_cld_cl,
4656                                       trace_metadata,
4657                                       worker_id);
4658 
4659       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4660       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4661                                             weak_root_cl,
4662                                             worker_id);
4663       pss.end_strong_roots();
4664 
4665       {
4666         double start = os::elapsedTime();
4667         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4668         evac.do_void();
4669         double elapsed_sec = os::elapsedTime() - start;
4670         double term_sec = pss.term_time();
4671         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4672         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4673         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4674       }
4675       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4676       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4677 
4678       if (PrintTerminationStats) {
4679         MutexLocker x(stats_lock());
4680         pss.print_termination_stats(worker_id);
4681       }
4682 
4683       assert(pss.queue_is_empty(), "should be empty");
4684 
4685       // Close the inner scope so that the ResourceMark and HandleMark
4686       // destructors are executed here and are included as part of the
4687       // "GC Worker Time".
4688     }
4689     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4690   }
4691 };
4692 
4693 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4694 private:
4695   BoolObjectClosure* _is_alive;
4696   int _initial_string_table_size;
4697   int _initial_symbol_table_size;
4698 
4699   bool  _process_strings;
4700   int _strings_processed;
4701   int _strings_removed;
4702 
4703   bool  _process_symbols;
4704   int _symbols_processed;
4705   int _symbols_removed;
4706 
4707 public:
4708   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4709     AbstractGangTask("String/Symbol Unlinking"),
4710     _is_alive(is_alive),
4711     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4712     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4713 
4714     _initial_string_table_size = StringTable::the_table()->table_size();
4715     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4716     if (process_strings) {
4717       StringTable::clear_parallel_claimed_index();
4718     }
4719     if (process_symbols) {
4720       SymbolTable::clear_parallel_claimed_index();
4721     }
4722   }
4723 
4724   ~G1StringSymbolTableUnlinkTask() {
4725     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4726               err_msg("claim value %d after unlink less than initial string table size %d",
4727                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4728     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4729               err_msg("claim value %d after unlink less than initial symbol table size %d",
4730                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4731 
4732     if (G1TraceStringSymbolTableScrubbing) {
4733       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4734                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4735                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4736                              strings_processed(), strings_removed(),
4737                              symbols_processed(), symbols_removed());
4738     }
4739   }
4740 
4741   void work(uint worker_id) {
4742     int strings_processed = 0;
4743     int strings_removed = 0;
4744     int symbols_processed = 0;
4745     int symbols_removed = 0;
4746     if (_process_strings) {
4747       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4748       Atomic::add(strings_processed, &_strings_processed);
4749       Atomic::add(strings_removed, &_strings_removed);
4750     }
4751     if (_process_symbols) {
4752       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4753       Atomic::add(symbols_processed, &_symbols_processed);
4754       Atomic::add(symbols_removed, &_symbols_removed);
4755     }
4756   }
4757 
4758   size_t strings_processed() const { return (size_t)_strings_processed; }
4759   size_t strings_removed()   const { return (size_t)_strings_removed; }
4760 
4761   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4762   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4763 };
4764 
4765 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4766 private:
4767   static Monitor* _lock;
4768 
4769   BoolObjectClosure* const _is_alive;
4770   const bool               _unloading_occurred;
4771   const uint               _num_workers;
4772 
4773   // Variables used to claim nmethods.
4774   nmethod* _first_nmethod;
4775   volatile nmethod* _claimed_nmethod;
4776 
4777   // The list of nmethods that need to be processed by the second pass.
4778   volatile nmethod* _postponed_list;
4779   volatile uint     _num_entered_barrier;
4780 
4781  public:
4782   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4783       _is_alive(is_alive),
4784       _unloading_occurred(unloading_occurred),
4785       _num_workers(num_workers),
4786       _first_nmethod(NULL),
4787       _claimed_nmethod(NULL),
4788       _postponed_list(NULL),
4789       _num_entered_barrier(0)
4790   {
4791     nmethod::increase_unloading_clock();
4792     // Get first alive nmethod
4793     NMethodIterator iter = NMethodIterator();
4794     if(iter.next_alive()) {
4795       _first_nmethod = iter.method();
4796     }
4797     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4798   }
4799 
4800   ~G1CodeCacheUnloadingTask() {
4801     CodeCache::verify_clean_inline_caches();
4802 
4803     CodeCache::set_needs_cache_clean(false);
4804     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4805 
4806     CodeCache::verify_icholder_relocations();
4807   }
4808 
4809  private:
4810   void add_to_postponed_list(nmethod* nm) {
4811       nmethod* old;
4812       do {
4813         old = (nmethod*)_postponed_list;
4814         nm->set_unloading_next(old);
4815       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4816   }
4817 
4818   void clean_nmethod(nmethod* nm) {
4819     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4820 
4821     if (postponed) {
4822       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4823       add_to_postponed_list(nm);
4824     }
4825 
4826     // Mark that this thread has been cleaned/unloaded.
4827     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4828     nm->set_unloading_clock(nmethod::global_unloading_clock());
4829   }
4830 
4831   void clean_nmethod_postponed(nmethod* nm) {
4832     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4833   }
4834 
4835   static const int MaxClaimNmethods = 16;
4836 
4837   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4838     nmethod* first;
4839     NMethodIterator last;
4840 
4841     do {
4842       *num_claimed_nmethods = 0;
4843 
4844       first = (nmethod*)_claimed_nmethod;
4845       last = NMethodIterator(first);
4846 
4847       if (first != NULL) {
4848 
4849         for (int i = 0; i < MaxClaimNmethods; i++) {
4850           if (!last.next_alive()) {
4851             break;
4852           }
4853           claimed_nmethods[i] = last.method();
4854           (*num_claimed_nmethods)++;
4855         }
4856       }
4857 
4858     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4859   }
4860 
4861   nmethod* claim_postponed_nmethod() {
4862     nmethod* claim;
4863     nmethod* next;
4864 
4865     do {
4866       claim = (nmethod*)_postponed_list;
4867       if (claim == NULL) {
4868         return NULL;
4869       }
4870 
4871       next = claim->unloading_next();
4872 
4873     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4874 
4875     return claim;
4876   }
4877 
4878  public:
4879   // Mark that we're done with the first pass of nmethod cleaning.
4880   void barrier_mark(uint worker_id) {
4881     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4882     _num_entered_barrier++;
4883     if (_num_entered_barrier == _num_workers) {
4884       ml.notify_all();
4885     }
4886   }
4887 
4888   // See if we have to wait for the other workers to
4889   // finish their first-pass nmethod cleaning work.
4890   void barrier_wait(uint worker_id) {
4891     if (_num_entered_barrier < _num_workers) {
4892       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4893       while (_num_entered_barrier < _num_workers) {
4894           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4895       }
4896     }
4897   }
4898 
4899   // Cleaning and unloading of nmethods. Some work has to be postponed
4900   // to the second pass, when we know which nmethods survive.
4901   void work_first_pass(uint worker_id) {
4902     // The first nmethods is claimed by the first worker.
4903     if (worker_id == 0 && _first_nmethod != NULL) {
4904       clean_nmethod(_first_nmethod);
4905       _first_nmethod = NULL;
4906     }
4907 
4908     int num_claimed_nmethods;
4909     nmethod* claimed_nmethods[MaxClaimNmethods];
4910 
4911     while (true) {
4912       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4913 
4914       if (num_claimed_nmethods == 0) {
4915         break;
4916       }
4917 
4918       for (int i = 0; i < num_claimed_nmethods; i++) {
4919         clean_nmethod(claimed_nmethods[i]);
4920       }
4921     }
4922   }
4923 
4924   void work_second_pass(uint worker_id) {
4925     nmethod* nm;
4926     // Take care of postponed nmethods.
4927     while ((nm = claim_postponed_nmethod()) != NULL) {
4928       clean_nmethod_postponed(nm);
4929     }
4930   }
4931 };
4932 
4933 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4934 
4935 class G1KlassCleaningTask : public StackObj {
4936   BoolObjectClosure*                      _is_alive;
4937   volatile jint                           _clean_klass_tree_claimed;
4938   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4939 
4940  public:
4941   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4942       _is_alive(is_alive),
4943       _clean_klass_tree_claimed(0),
4944       _klass_iterator() {
4945   }
4946 
4947  private:
4948   bool claim_clean_klass_tree_task() {
4949     if (_clean_klass_tree_claimed) {
4950       return false;
4951     }
4952 
4953     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4954   }
4955 
4956   InstanceKlass* claim_next_klass() {
4957     Klass* klass;
4958     do {
4959       klass =_klass_iterator.next_klass();
4960     } while (klass != NULL && !klass->oop_is_instance());
4961 
4962     return (InstanceKlass*)klass;
4963   }
4964 
4965 public:
4966 
4967   void clean_klass(InstanceKlass* ik) {
4968     ik->clean_implementors_list(_is_alive);
4969     ik->clean_method_data(_is_alive);
4970 
4971     // G1 specific cleanup work that has
4972     // been moved here to be done in parallel.
4973     ik->clean_dependent_nmethods();
4974   }
4975 
4976   void work() {
4977     ResourceMark rm;
4978 
4979     // One worker will clean the subklass/sibling klass tree.
4980     if (claim_clean_klass_tree_task()) {
4981       Klass::clean_subklass_tree(_is_alive);
4982     }
4983 
4984     // All workers will help cleaning the classes,
4985     InstanceKlass* klass;
4986     while ((klass = claim_next_klass()) != NULL) {
4987       clean_klass(klass);
4988     }
4989   }
4990 };
4991 
4992 // To minimize the remark pause times, the tasks below are done in parallel.
4993 class G1ParallelCleaningTask : public AbstractGangTask {
4994 private:
4995   G1StringSymbolTableUnlinkTask _string_symbol_task;
4996   G1CodeCacheUnloadingTask      _code_cache_task;
4997   G1KlassCleaningTask           _klass_cleaning_task;
4998 
4999 public:
5000   // The constructor is run in the VMThread.
5001   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5002       AbstractGangTask("Parallel Cleaning"),
5003       _string_symbol_task(is_alive, process_strings, process_symbols),
5004       _code_cache_task(num_workers, is_alive, unloading_occurred),
5005       _klass_cleaning_task(is_alive) {
5006   }
5007 
5008   // The parallel work done by all worker threads.
5009   void work(uint worker_id) {
5010     // Do first pass of code cache cleaning.
5011     _code_cache_task.work_first_pass(worker_id);
5012 
5013     // Let the threads mark that the first pass is done.
5014     _code_cache_task.barrier_mark(worker_id);
5015 
5016     // Clean the Strings and Symbols.
5017     _string_symbol_task.work(worker_id);
5018 
5019     // Wait for all workers to finish the first code cache cleaning pass.
5020     _code_cache_task.barrier_wait(worker_id);
5021 
5022     // Do the second code cache cleaning work, which realize on
5023     // the liveness information gathered during the first pass.
5024     _code_cache_task.work_second_pass(worker_id);
5025 
5026     // Clean all klasses that were not unloaded.
5027     _klass_cleaning_task.work();
5028   }
5029 };
5030 
5031 
5032 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5033                                         bool process_strings,
5034                                         bool process_symbols,
5035                                         bool class_unloading_occurred) {
5036   uint n_workers = workers()->active_workers();
5037 
5038   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5039                                         n_workers, class_unloading_occurred);
5040   workers()->run_task(&g1_unlink_task);
5041 }
5042 
5043 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5044                                                      bool process_strings, bool process_symbols) {
5045   {
5046     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5047     workers()->run_task(&g1_unlink_task);
5048   }
5049 
5050   if (G1StringDedup::is_enabled()) {
5051     G1StringDedup::unlink(is_alive);
5052   }
5053 }
5054 
5055 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5056  private:
5057   DirtyCardQueueSet* _queue;
5058  public:
5059   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5060 
5061   virtual void work(uint worker_id) {
5062     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5063     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5064 
5065     RedirtyLoggedCardTableEntryClosure cl;
5066     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5067 
5068     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5069   }
5070 };
5071 
5072 void G1CollectedHeap::redirty_logged_cards() {
5073   double redirty_logged_cards_start = os::elapsedTime();
5074 
5075   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5076   dirty_card_queue_set().reset_for_par_iteration();
5077   workers()->run_task(&redirty_task);
5078 
5079   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5080   dcq.merge_bufferlists(&dirty_card_queue_set());
5081   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5082 
5083   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5084 }
5085 
5086 // Weak Reference Processing support
5087 
5088 // An always "is_alive" closure that is used to preserve referents.
5089 // If the object is non-null then it's alive.  Used in the preservation
5090 // of referent objects that are pointed to by reference objects
5091 // discovered by the CM ref processor.
5092 class G1AlwaysAliveClosure: public BoolObjectClosure {
5093   G1CollectedHeap* _g1;
5094 public:
5095   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5096   bool do_object_b(oop p) {
5097     if (p != NULL) {
5098       return true;
5099     }
5100     return false;
5101   }
5102 };
5103 
5104 bool G1STWIsAliveClosure::do_object_b(oop p) {
5105   // An object is reachable if it is outside the collection set,
5106   // or is inside and copied.
5107   return !_g1->obj_in_cs(p) || p->is_forwarded();
5108 }
5109 
5110 // Non Copying Keep Alive closure
5111 class G1KeepAliveClosure: public OopClosure {
5112   G1CollectedHeap* _g1;
5113 public:
5114   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5115   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5116   void do_oop(oop* p) {
5117     oop obj = *p;
5118     assert(obj != NULL, "the caller should have filtered out NULL values");
5119 
5120     const InCSetState cset_state = _g1->in_cset_state(obj);
5121     if (!cset_state.is_in_cset_or_humongous()) {
5122       return;
5123     }
5124     if (cset_state.is_in_cset()) {
5125       assert( obj->is_forwarded(), "invariant" );
5126       *p = obj->forwardee();
5127     } else {
5128       assert(!obj->is_forwarded(), "invariant" );
5129       assert(cset_state.is_humongous(),
5130              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5131       _g1->set_humongous_is_live(obj);
5132     }
5133   }
5134 };
5135 
5136 // Copying Keep Alive closure - can be called from both
5137 // serial and parallel code as long as different worker
5138 // threads utilize different G1ParScanThreadState instances
5139 // and different queues.
5140 
5141 class G1CopyingKeepAliveClosure: public OopClosure {
5142   G1CollectedHeap*         _g1h;
5143   OopClosure*              _copy_non_heap_obj_cl;
5144   G1ParScanThreadState*    _par_scan_state;
5145 
5146 public:
5147   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5148                             OopClosure* non_heap_obj_cl,
5149                             G1ParScanThreadState* pss):
5150     _g1h(g1h),
5151     _copy_non_heap_obj_cl(non_heap_obj_cl),
5152     _par_scan_state(pss)
5153   {}
5154 
5155   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5156   virtual void do_oop(      oop* p) { do_oop_work(p); }
5157 
5158   template <class T> void do_oop_work(T* p) {
5159     oop obj = oopDesc::load_decode_heap_oop(p);
5160 
5161     if (_g1h->is_in_cset_or_humongous(obj)) {
5162       // If the referent object has been forwarded (either copied
5163       // to a new location or to itself in the event of an
5164       // evacuation failure) then we need to update the reference
5165       // field and, if both reference and referent are in the G1
5166       // heap, update the RSet for the referent.
5167       //
5168       // If the referent has not been forwarded then we have to keep
5169       // it alive by policy. Therefore we have copy the referent.
5170       //
5171       // If the reference field is in the G1 heap then we can push
5172       // on the PSS queue. When the queue is drained (after each
5173       // phase of reference processing) the object and it's followers
5174       // will be copied, the reference field set to point to the
5175       // new location, and the RSet updated. Otherwise we need to
5176       // use the the non-heap or metadata closures directly to copy
5177       // the referent object and update the pointer, while avoiding
5178       // updating the RSet.
5179 
5180       if (_g1h->is_in_g1_reserved(p)) {
5181         _par_scan_state->push_on_queue(p);
5182       } else {
5183         assert(!Metaspace::contains((const void*)p),
5184                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5185         _copy_non_heap_obj_cl->do_oop(p);
5186       }
5187     }
5188   }
5189 };
5190 
5191 // Serial drain queue closure. Called as the 'complete_gc'
5192 // closure for each discovered list in some of the
5193 // reference processing phases.
5194 
5195 class G1STWDrainQueueClosure: public VoidClosure {
5196 protected:
5197   G1CollectedHeap* _g1h;
5198   G1ParScanThreadState* _par_scan_state;
5199 
5200   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5201 
5202 public:
5203   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5204     _g1h(g1h),
5205     _par_scan_state(pss)
5206   { }
5207 
5208   void do_void() {
5209     G1ParScanThreadState* const pss = par_scan_state();
5210     pss->trim_queue();
5211   }
5212 };
5213 
5214 // Parallel Reference Processing closures
5215 
5216 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5217 // processing during G1 evacuation pauses.
5218 
5219 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5220 private:
5221   G1CollectedHeap*   _g1h;
5222   RefToScanQueueSet* _queues;
5223   FlexibleWorkGang*  _workers;
5224   uint               _active_workers;
5225 
5226 public:
5227   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5228                            FlexibleWorkGang* workers,
5229                            RefToScanQueueSet *task_queues,
5230                            uint n_workers) :
5231     _g1h(g1h),
5232     _queues(task_queues),
5233     _workers(workers),
5234     _active_workers(n_workers)
5235   {
5236     assert(n_workers > 0, "shouldn't call this otherwise");
5237   }
5238 
5239   // Executes the given task using concurrent marking worker threads.
5240   virtual void execute(ProcessTask& task);
5241   virtual void execute(EnqueueTask& task);
5242 };
5243 
5244 // Gang task for possibly parallel reference processing
5245 
5246 class G1STWRefProcTaskProxy: public AbstractGangTask {
5247   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5248   ProcessTask&     _proc_task;
5249   G1CollectedHeap* _g1h;
5250   RefToScanQueueSet *_task_queues;
5251   ParallelTaskTerminator* _terminator;
5252 
5253 public:
5254   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5255                      G1CollectedHeap* g1h,
5256                      RefToScanQueueSet *task_queues,
5257                      ParallelTaskTerminator* terminator) :
5258     AbstractGangTask("Process reference objects in parallel"),
5259     _proc_task(proc_task),
5260     _g1h(g1h),
5261     _task_queues(task_queues),
5262     _terminator(terminator)
5263   {}
5264 
5265   virtual void work(uint worker_id) {
5266     // The reference processing task executed by a single worker.
5267     ResourceMark rm;
5268     HandleMark   hm;
5269 
5270     G1STWIsAliveClosure is_alive(_g1h);
5271 
5272     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5273     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5274 
5275     pss.set_evac_failure_closure(&evac_failure_cl);
5276 
5277     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5278 
5279     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5280 
5281     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5282 
5283     if (_g1h->collector_state()->during_initial_mark_pause()) {
5284       // We also need to mark copied objects.
5285       copy_non_heap_cl = &copy_mark_non_heap_cl;
5286     }
5287 
5288     // Keep alive closure.
5289     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5290 
5291     // Complete GC closure
5292     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5293 
5294     // Call the reference processing task's work routine.
5295     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5296 
5297     // Note we cannot assert that the refs array is empty here as not all
5298     // of the processing tasks (specifically phase2 - pp2_work) execute
5299     // the complete_gc closure (which ordinarily would drain the queue) so
5300     // the queue may not be empty.
5301   }
5302 };
5303 
5304 // Driver routine for parallel reference processing.
5305 // Creates an instance of the ref processing gang
5306 // task and has the worker threads execute it.
5307 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5308   assert(_workers != NULL, "Need parallel worker threads.");
5309 
5310   ParallelTaskTerminator terminator(_active_workers, _queues);
5311   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5312 
5313   _workers->run_task(&proc_task_proxy);
5314 }
5315 
5316 // Gang task for parallel reference enqueueing.
5317 
5318 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5319   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5320   EnqueueTask& _enq_task;
5321 
5322 public:
5323   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5324     AbstractGangTask("Enqueue reference objects in parallel"),
5325     _enq_task(enq_task)
5326   { }
5327 
5328   virtual void work(uint worker_id) {
5329     _enq_task.work(worker_id);
5330   }
5331 };
5332 
5333 // Driver routine for parallel reference enqueueing.
5334 // Creates an instance of the ref enqueueing gang
5335 // task and has the worker threads execute it.
5336 
5337 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5338   assert(_workers != NULL, "Need parallel worker threads.");
5339 
5340   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5341 
5342   _workers->run_task(&enq_task_proxy);
5343 }
5344 
5345 // End of weak reference support closures
5346 
5347 // Abstract task used to preserve (i.e. copy) any referent objects
5348 // that are in the collection set and are pointed to by reference
5349 // objects discovered by the CM ref processor.
5350 
5351 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5352 protected:
5353   G1CollectedHeap* _g1h;
5354   RefToScanQueueSet      *_queues;
5355   ParallelTaskTerminator _terminator;
5356   uint _n_workers;
5357 
5358 public:
5359   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5360     AbstractGangTask("ParPreserveCMReferents"),
5361     _g1h(g1h),
5362     _queues(task_queues),
5363     _terminator(workers, _queues),
5364     _n_workers(workers)
5365   { }
5366 
5367   void work(uint worker_id) {
5368     ResourceMark rm;
5369     HandleMark   hm;
5370 
5371     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5372     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5373 
5374     pss.set_evac_failure_closure(&evac_failure_cl);
5375 
5376     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5377 
5378     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5379 
5380     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5381 
5382     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5383 
5384     if (_g1h->collector_state()->during_initial_mark_pause()) {
5385       // We also need to mark copied objects.
5386       copy_non_heap_cl = &copy_mark_non_heap_cl;
5387     }
5388 
5389     // Is alive closure
5390     G1AlwaysAliveClosure always_alive(_g1h);
5391 
5392     // Copying keep alive closure. Applied to referent objects that need
5393     // to be copied.
5394     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5395 
5396     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5397 
5398     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5399     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5400 
5401     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5402     // So this must be true - but assert just in case someone decides to
5403     // change the worker ids.
5404     assert(worker_id < limit, "sanity");
5405     assert(!rp->discovery_is_atomic(), "check this code");
5406 
5407     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5408     for (uint idx = worker_id; idx < limit; idx += stride) {
5409       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5410 
5411       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5412       while (iter.has_next()) {
5413         // Since discovery is not atomic for the CM ref processor, we
5414         // can see some null referent objects.
5415         iter.load_ptrs(DEBUG_ONLY(true));
5416         oop ref = iter.obj();
5417 
5418         // This will filter nulls.
5419         if (iter.is_referent_alive()) {
5420           iter.make_referent_alive();
5421         }
5422         iter.move_to_next();
5423       }
5424     }
5425 
5426     // Drain the queue - which may cause stealing
5427     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5428     drain_queue.do_void();
5429     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5430     assert(pss.queue_is_empty(), "should be");
5431   }
5432 };
5433 
5434 // Weak Reference processing during an evacuation pause (part 1).
5435 void G1CollectedHeap::process_discovered_references() {
5436   double ref_proc_start = os::elapsedTime();
5437 
5438   ReferenceProcessor* rp = _ref_processor_stw;
5439   assert(rp->discovery_enabled(), "should have been enabled");
5440 
5441   // Any reference objects, in the collection set, that were 'discovered'
5442   // by the CM ref processor should have already been copied (either by
5443   // applying the external root copy closure to the discovered lists, or
5444   // by following an RSet entry).
5445   //
5446   // But some of the referents, that are in the collection set, that these
5447   // reference objects point to may not have been copied: the STW ref
5448   // processor would have seen that the reference object had already
5449   // been 'discovered' and would have skipped discovering the reference,
5450   // but would not have treated the reference object as a regular oop.
5451   // As a result the copy closure would not have been applied to the
5452   // referent object.
5453   //
5454   // We need to explicitly copy these referent objects - the references
5455   // will be processed at the end of remarking.
5456   //
5457   // We also need to do this copying before we process the reference
5458   // objects discovered by the STW ref processor in case one of these
5459   // referents points to another object which is also referenced by an
5460   // object discovered by the STW ref processor.
5461 
5462   uint no_of_gc_workers = workers()->active_workers();
5463 
5464   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5465                                                  no_of_gc_workers,
5466                                                  _task_queues);
5467 
5468   workers()->run_task(&keep_cm_referents);
5469 
5470   // Closure to test whether a referent is alive.
5471   G1STWIsAliveClosure is_alive(this);
5472 
5473   // Even when parallel reference processing is enabled, the processing
5474   // of JNI refs is serial and performed serially by the current thread
5475   // rather than by a worker. The following PSS will be used for processing
5476   // JNI refs.
5477 
5478   // Use only a single queue for this PSS.
5479   G1ParScanThreadState            pss(this, 0, NULL);
5480 
5481   // We do not embed a reference processor in the copying/scanning
5482   // closures while we're actually processing the discovered
5483   // reference objects.
5484   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5485 
5486   pss.set_evac_failure_closure(&evac_failure_cl);
5487 
5488   assert(pss.queue_is_empty(), "pre-condition");
5489 
5490   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5491 
5492   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5493 
5494   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5495 
5496   if (collector_state()->during_initial_mark_pause()) {
5497     // We also need to mark copied objects.
5498     copy_non_heap_cl = &copy_mark_non_heap_cl;
5499   }
5500 
5501   // Keep alive closure.
5502   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5503 
5504   // Serial Complete GC closure
5505   G1STWDrainQueueClosure drain_queue(this, &pss);
5506 
5507   // Setup the soft refs policy...
5508   rp->setup_policy(false);
5509 
5510   ReferenceProcessorStats stats;
5511   if (!rp->processing_is_mt()) {
5512     // Serial reference processing...
5513     stats = rp->process_discovered_references(&is_alive,
5514                                               &keep_alive,
5515                                               &drain_queue,
5516                                               NULL,
5517                                               _gc_timer_stw,
5518                                               _gc_tracer_stw->gc_id());
5519   } else {
5520     // Parallel reference processing
5521     assert(rp->num_q() == no_of_gc_workers, "sanity");
5522     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5523 
5524     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5525     stats = rp->process_discovered_references(&is_alive,
5526                                               &keep_alive,
5527                                               &drain_queue,
5528                                               &par_task_executor,
5529                                               _gc_timer_stw,
5530                                               _gc_tracer_stw->gc_id());
5531   }
5532 
5533   _gc_tracer_stw->report_gc_reference_stats(stats);
5534 
5535   // We have completed copying any necessary live referent objects.
5536   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5537 
5538   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5539   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5540 }
5541 
5542 // Weak Reference processing during an evacuation pause (part 2).
5543 void G1CollectedHeap::enqueue_discovered_references() {
5544   double ref_enq_start = os::elapsedTime();
5545 
5546   ReferenceProcessor* rp = _ref_processor_stw;
5547   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5548 
5549   // Now enqueue any remaining on the discovered lists on to
5550   // the pending list.
5551   if (!rp->processing_is_mt()) {
5552     // Serial reference processing...
5553     rp->enqueue_discovered_references();
5554   } else {
5555     // Parallel reference enqueueing
5556 
5557     uint n_workers = workers()->active_workers();
5558 
5559     assert(rp->num_q() == n_workers, "sanity");
5560     assert(n_workers <= rp->max_num_q(), "sanity");
5561 
5562     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5563     rp->enqueue_discovered_references(&par_task_executor);
5564   }
5565 
5566   rp->verify_no_references_recorded();
5567   assert(!rp->discovery_enabled(), "should have been disabled");
5568 
5569   // FIXME
5570   // CM's reference processing also cleans up the string and symbol tables.
5571   // Should we do that here also? We could, but it is a serial operation
5572   // and could significantly increase the pause time.
5573 
5574   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5575   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5576 }
5577 
5578 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5579   _expand_heap_after_alloc_failure = true;
5580   _evacuation_failed = false;
5581 
5582   // Should G1EvacuationFailureALot be in effect for this GC?
5583   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5584 
5585   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5586 
5587   // Disable the hot card cache.
5588   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5589   hot_card_cache->reset_hot_cache_claimed_index();
5590   hot_card_cache->set_use_cache(false);
5591 
5592   const uint n_workers = workers()->active_workers();
5593 
5594   init_for_evac_failure(NULL);
5595 
5596   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5597   double start_par_time_sec = os::elapsedTime();
5598   double end_par_time_sec;
5599 
5600   {
5601     G1RootProcessor root_processor(this, n_workers);
5602     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5603     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5604     if (collector_state()->during_initial_mark_pause()) {
5605       ClassLoaderDataGraph::clear_claimed_marks();
5606     }
5607 
5608     // The individual threads will set their evac-failure closures.
5609     if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5610 
5611     workers()->run_task(&g1_par_task);
5612     end_par_time_sec = os::elapsedTime();
5613 
5614     // Closing the inner scope will execute the destructor
5615     // for the G1RootProcessor object. We record the current
5616     // elapsed time before closing the scope so that time
5617     // taken for the destructor is NOT included in the
5618     // reported parallel time.
5619   }
5620 
5621   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5622 
5623   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5624   phase_times->record_par_time(par_time_ms);
5625 
5626   double code_root_fixup_time_ms =
5627         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5628   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5629 
5630   // Process any discovered reference objects - we have
5631   // to do this _before_ we retire the GC alloc regions
5632   // as we may have to copy some 'reachable' referent
5633   // objects (and their reachable sub-graphs) that were
5634   // not copied during the pause.
5635   process_discovered_references();
5636 
5637   if (G1StringDedup::is_enabled()) {
5638     double fixup_start = os::elapsedTime();
5639 
5640     G1STWIsAliveClosure is_alive(this);
5641     G1KeepAliveClosure keep_alive(this);
5642     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5643 
5644     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5645     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5646   }
5647 
5648   _allocator->release_gc_alloc_regions(evacuation_info);
5649   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5650 
5651   // Reset and re-enable the hot card cache.
5652   // Note the counts for the cards in the regions in the
5653   // collection set are reset when the collection set is freed.
5654   hot_card_cache->reset_hot_cache();
5655   hot_card_cache->set_use_cache(true);
5656 
5657   purge_code_root_memory();
5658 
5659   finalize_for_evac_failure();
5660 
5661   if (evacuation_failed()) {
5662     remove_self_forwarding_pointers();
5663 
5664     // Reset the G1EvacuationFailureALot counters and flags
5665     // Note: the values are reset only when an actual
5666     // evacuation failure occurs.
5667     NOT_PRODUCT(reset_evacuation_should_fail();)
5668   }
5669 
5670   // Enqueue any remaining references remaining on the STW
5671   // reference processor's discovered lists. We need to do
5672   // this after the card table is cleaned (and verified) as
5673   // the act of enqueueing entries on to the pending list
5674   // will log these updates (and dirty their associated
5675   // cards). We need these updates logged to update any
5676   // RSets.
5677   enqueue_discovered_references();
5678 
5679   redirty_logged_cards();
5680   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5681 }
5682 
5683 void G1CollectedHeap::free_region(HeapRegion* hr,
5684                                   FreeRegionList* free_list,
5685                                   bool par,
5686                                   bool locked) {
5687   assert(!hr->is_free(), "the region should not be free");
5688   assert(!hr->is_empty(), "the region should not be empty");
5689   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5690   assert(free_list != NULL, "pre-condition");
5691 
5692   if (G1VerifyBitmaps) {
5693     MemRegion mr(hr->bottom(), hr->end());
5694     concurrent_mark()->clearRangePrevBitmap(mr);
5695   }
5696 
5697   // Clear the card counts for this region.
5698   // Note: we only need to do this if the region is not young
5699   // (since we don't refine cards in young regions).
5700   if (!hr->is_young()) {
5701     _cg1r->hot_card_cache()->reset_card_counts(hr);
5702   }
5703   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5704   free_list->add_ordered(hr);
5705 }
5706 
5707 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5708                                      FreeRegionList* free_list,
5709                                      bool par) {
5710   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5711   assert(free_list != NULL, "pre-condition");
5712 
5713   size_t hr_capacity = hr->capacity();
5714   // We need to read this before we make the region non-humongous,
5715   // otherwise the information will be gone.
5716   uint last_index = hr->last_hc_index();
5717   hr->clear_humongous();
5718   free_region(hr, free_list, par);
5719 
5720   uint i = hr->hrm_index() + 1;
5721   while (i < last_index) {
5722     HeapRegion* curr_hr = region_at(i);
5723     assert(curr_hr->is_continues_humongous(), "invariant");
5724     curr_hr->clear_humongous();
5725     free_region(curr_hr, free_list, par);
5726     i += 1;
5727   }
5728 }
5729 
5730 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5731                                        const HeapRegionSetCount& humongous_regions_removed) {
5732   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5733     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5734     _old_set.bulk_remove(old_regions_removed);
5735     _humongous_set.bulk_remove(humongous_regions_removed);
5736   }
5737 
5738 }
5739 
5740 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5741   assert(list != NULL, "list can't be null");
5742   if (!list->is_empty()) {
5743     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5744     _hrm.insert_list_into_free_list(list);
5745   }
5746 }
5747 
5748 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5749   decrease_used(bytes);
5750 }
5751 
5752 class G1ParCleanupCTTask : public AbstractGangTask {
5753   G1SATBCardTableModRefBS* _ct_bs;
5754   G1CollectedHeap* _g1h;
5755   HeapRegion* volatile _su_head;
5756 public:
5757   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5758                      G1CollectedHeap* g1h) :
5759     AbstractGangTask("G1 Par Cleanup CT Task"),
5760     _ct_bs(ct_bs), _g1h(g1h) { }
5761 
5762   void work(uint worker_id) {
5763     HeapRegion* r;
5764     while (r = _g1h->pop_dirty_cards_region()) {
5765       clear_cards(r);
5766     }
5767   }
5768 
5769   void clear_cards(HeapRegion* r) {
5770     // Cards of the survivors should have already been dirtied.
5771     if (!r->is_survivor()) {
5772       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5773     }
5774   }
5775 };
5776 
5777 #ifndef PRODUCT
5778 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5779   G1CollectedHeap* _g1h;
5780   G1SATBCardTableModRefBS* _ct_bs;
5781 public:
5782   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5783     : _g1h(g1h), _ct_bs(ct_bs) { }
5784   virtual bool doHeapRegion(HeapRegion* r) {
5785     if (r->is_survivor()) {
5786       _g1h->verify_dirty_region(r);
5787     } else {
5788       _g1h->verify_not_dirty_region(r);
5789     }
5790     return false;
5791   }
5792 };
5793 
5794 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5795   // All of the region should be clean.
5796   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5797   MemRegion mr(hr->bottom(), hr->end());
5798   ct_bs->verify_not_dirty_region(mr);
5799 }
5800 
5801 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5802   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5803   // dirty allocated blocks as they allocate them. The thread that
5804   // retires each region and replaces it with a new one will do a
5805   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5806   // not dirty that area (one less thing to have to do while holding
5807   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5808   // is dirty.
5809   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5810   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5811   if (hr->is_young()) {
5812     ct_bs->verify_g1_young_region(mr);
5813   } else {
5814     ct_bs->verify_dirty_region(mr);
5815   }
5816 }
5817 
5818 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5819   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5820   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5821     verify_dirty_region(hr);
5822   }
5823 }
5824 
5825 void G1CollectedHeap::verify_dirty_young_regions() {
5826   verify_dirty_young_list(_young_list->first_region());
5827 }
5828 
5829 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5830                                                HeapWord* tams, HeapWord* end) {
5831   guarantee(tams <= end,
5832             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5833   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5834   if (result < end) {
5835     gclog_or_tty->cr();
5836     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5837                            bitmap_name, p2i(result));
5838     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5839                            bitmap_name, p2i(tams), p2i(end));
5840     return false;
5841   }
5842   return true;
5843 }
5844 
5845 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5846   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5847   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5848 
5849   HeapWord* bottom = hr->bottom();
5850   HeapWord* ptams  = hr->prev_top_at_mark_start();
5851   HeapWord* ntams  = hr->next_top_at_mark_start();
5852   HeapWord* end    = hr->end();
5853 
5854   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5855 
5856   bool res_n = true;
5857   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5858   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5859   // if we happen to be in that state.
5860   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5861     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5862   }
5863   if (!res_p || !res_n) {
5864     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5865                            HR_FORMAT_PARAMS(hr));
5866     gclog_or_tty->print_cr("#### Caller: %s", caller);
5867     return false;
5868   }
5869   return true;
5870 }
5871 
5872 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5873   if (!G1VerifyBitmaps) return;
5874 
5875   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5876 }
5877 
5878 class G1VerifyBitmapClosure : public HeapRegionClosure {
5879 private:
5880   const char* _caller;
5881   G1CollectedHeap* _g1h;
5882   bool _failures;
5883 
5884 public:
5885   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5886     _caller(caller), _g1h(g1h), _failures(false) { }
5887 
5888   bool failures() { return _failures; }
5889 
5890   virtual bool doHeapRegion(HeapRegion* hr) {
5891     if (hr->is_continues_humongous()) return false;
5892 
5893     bool result = _g1h->verify_bitmaps(_caller, hr);
5894     if (!result) {
5895       _failures = true;
5896     }
5897     return false;
5898   }
5899 };
5900 
5901 void G1CollectedHeap::check_bitmaps(const char* caller) {
5902   if (!G1VerifyBitmaps) return;
5903 
5904   G1VerifyBitmapClosure cl(caller, this);
5905   heap_region_iterate(&cl);
5906   guarantee(!cl.failures(), "bitmap verification");
5907 }
5908 
5909 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5910  private:
5911   bool _failures;
5912  public:
5913   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5914 
5915   virtual bool doHeapRegion(HeapRegion* hr) {
5916     uint i = hr->hrm_index();
5917     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5918     if (hr->is_humongous()) {
5919       if (hr->in_collection_set()) {
5920         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5921         _failures = true;
5922         return true;
5923       }
5924       if (cset_state.is_in_cset()) {
5925         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5926         _failures = true;
5927         return true;
5928       }
5929       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5930         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5931         _failures = true;
5932         return true;
5933       }
5934     } else {
5935       if (cset_state.is_humongous()) {
5936         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5937         _failures = true;
5938         return true;
5939       }
5940       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5941         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5942                                hr->in_collection_set(), cset_state.value(), i);
5943         _failures = true;
5944         return true;
5945       }
5946       if (cset_state.is_in_cset()) {
5947         if (hr->is_young() != (cset_state.is_young())) {
5948           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5949                                  hr->is_young(), cset_state.value(), i);
5950           _failures = true;
5951           return true;
5952         }
5953         if (hr->is_old() != (cset_state.is_old())) {
5954           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5955                                  hr->is_old(), cset_state.value(), i);
5956           _failures = true;
5957           return true;
5958         }
5959       }
5960     }
5961     return false;
5962   }
5963 
5964   bool failures() const { return _failures; }
5965 };
5966 
5967 bool G1CollectedHeap::check_cset_fast_test() {
5968   G1CheckCSetFastTableClosure cl;
5969   _hrm.iterate(&cl);
5970   return !cl.failures();
5971 }
5972 #endif // PRODUCT
5973 
5974 void G1CollectedHeap::cleanUpCardTable() {
5975   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5976   double start = os::elapsedTime();
5977 
5978   {
5979     // Iterate over the dirty cards region list.
5980     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5981 
5982     workers()->run_task(&cleanup_task);
5983 #ifndef PRODUCT
5984     if (G1VerifyCTCleanup || VerifyAfterGC) {
5985       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5986       heap_region_iterate(&cleanup_verifier);
5987     }
5988 #endif
5989   }
5990 
5991   double elapsed = os::elapsedTime() - start;
5992   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5993 }
5994 
5995 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5996   size_t pre_used = 0;
5997   FreeRegionList local_free_list("Local List for CSet Freeing");
5998 
5999   double young_time_ms     = 0.0;
6000   double non_young_time_ms = 0.0;
6001 
6002   // Since the collection set is a superset of the the young list,
6003   // all we need to do to clear the young list is clear its
6004   // head and length, and unlink any young regions in the code below
6005   _young_list->clear();
6006 
6007   G1CollectorPolicy* policy = g1_policy();
6008 
6009   double start_sec = os::elapsedTime();
6010   bool non_young = true;
6011 
6012   HeapRegion* cur = cs_head;
6013   int age_bound = -1;
6014   size_t rs_lengths = 0;
6015 
6016   while (cur != NULL) {
6017     assert(!is_on_master_free_list(cur), "sanity");
6018     if (non_young) {
6019       if (cur->is_young()) {
6020         double end_sec = os::elapsedTime();
6021         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6022         non_young_time_ms += elapsed_ms;
6023 
6024         start_sec = os::elapsedTime();
6025         non_young = false;
6026       }
6027     } else {
6028       if (!cur->is_young()) {
6029         double end_sec = os::elapsedTime();
6030         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6031         young_time_ms += elapsed_ms;
6032 
6033         start_sec = os::elapsedTime();
6034         non_young = true;
6035       }
6036     }
6037 
6038     rs_lengths += cur->rem_set()->occupied_locked();
6039 
6040     HeapRegion* next = cur->next_in_collection_set();
6041     assert(cur->in_collection_set(), "bad CS");
6042     cur->set_next_in_collection_set(NULL);
6043     clear_in_cset(cur);
6044 
6045     if (cur->is_young()) {
6046       int index = cur->young_index_in_cset();
6047       assert(index != -1, "invariant");
6048       assert((uint) index < policy->young_cset_region_length(), "invariant");
6049       size_t words_survived = _surviving_young_words[index];
6050       cur->record_surv_words_in_group(words_survived);
6051 
6052       // At this point the we have 'popped' cur from the collection set
6053       // (linked via next_in_collection_set()) but it is still in the
6054       // young list (linked via next_young_region()). Clear the
6055       // _next_young_region field.
6056       cur->set_next_young_region(NULL);
6057     } else {
6058       int index = cur->young_index_in_cset();
6059       assert(index == -1, "invariant");
6060     }
6061 
6062     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6063             (!cur->is_young() && cur->young_index_in_cset() == -1),
6064             "invariant" );
6065 
6066     if (!cur->evacuation_failed()) {
6067       MemRegion used_mr = cur->used_region();
6068 
6069       // And the region is empty.
6070       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6071       pre_used += cur->used();
6072       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6073     } else {
6074       cur->uninstall_surv_rate_group();
6075       if (cur->is_young()) {
6076         cur->set_young_index_in_cset(-1);
6077       }
6078       cur->set_evacuation_failed(false);
6079       // The region is now considered to be old.
6080       cur->set_old();
6081       _old_set.add(cur);
6082       evacuation_info.increment_collectionset_used_after(cur->used());
6083     }
6084     cur = next;
6085   }
6086 
6087   evacuation_info.set_regions_freed(local_free_list.length());
6088   policy->record_max_rs_lengths(rs_lengths);
6089   policy->cset_regions_freed();
6090 
6091   double end_sec = os::elapsedTime();
6092   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6093 
6094   if (non_young) {
6095     non_young_time_ms += elapsed_ms;
6096   } else {
6097     young_time_ms += elapsed_ms;
6098   }
6099 
6100   prepend_to_freelist(&local_free_list);
6101   decrement_summary_bytes(pre_used);
6102   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6103   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6104 }
6105 
6106 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6107  private:
6108   FreeRegionList* _free_region_list;
6109   HeapRegionSet* _proxy_set;
6110   HeapRegionSetCount _humongous_regions_removed;
6111   size_t _freed_bytes;
6112  public:
6113 
6114   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6115     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6116   }
6117 
6118   virtual bool doHeapRegion(HeapRegion* r) {
6119     if (!r->is_starts_humongous()) {
6120       return false;
6121     }
6122 
6123     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6124 
6125     oop obj = (oop)r->bottom();
6126     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6127 
6128     // The following checks whether the humongous object is live are sufficient.
6129     // The main additional check (in addition to having a reference from the roots
6130     // or the young gen) is whether the humongous object has a remembered set entry.
6131     //
6132     // A humongous object cannot be live if there is no remembered set for it
6133     // because:
6134     // - there can be no references from within humongous starts regions referencing
6135     // the object because we never allocate other objects into them.
6136     // (I.e. there are no intra-region references that may be missed by the
6137     // remembered set)
6138     // - as soon there is a remembered set entry to the humongous starts region
6139     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6140     // until the end of a concurrent mark.
6141     //
6142     // It is not required to check whether the object has been found dead by marking
6143     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6144     // all objects allocated during that time are considered live.
6145     // SATB marking is even more conservative than the remembered set.
6146     // So if at this point in the collection there is no remembered set entry,
6147     // nobody has a reference to it.
6148     // At the start of collection we flush all refinement logs, and remembered sets
6149     // are completely up-to-date wrt to references to the humongous object.
6150     //
6151     // Other implementation considerations:
6152     // - never consider object arrays at this time because they would pose
6153     // considerable effort for cleaning up the the remembered sets. This is
6154     // required because stale remembered sets might reference locations that
6155     // are currently allocated into.
6156     uint region_idx = r->hrm_index();
6157     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6158         !r->rem_set()->is_empty()) {
6159 
6160       if (G1TraceEagerReclaimHumongousObjects) {
6161         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6162                                region_idx,
6163                                (size_t)obj->size() * HeapWordSize,
6164                                p2i(r->bottom()),
6165                                r->region_num(),
6166                                r->rem_set()->occupied(),
6167                                r->rem_set()->strong_code_roots_list_length(),
6168                                next_bitmap->isMarked(r->bottom()),
6169                                g1h->is_humongous_reclaim_candidate(region_idx),
6170                                obj->is_typeArray()
6171                               );
6172       }
6173 
6174       return false;
6175     }
6176 
6177     guarantee(obj->is_typeArray(),
6178               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6179                       PTR_FORMAT " is not.",
6180                       p2i(r->bottom())));
6181 
6182     if (G1TraceEagerReclaimHumongousObjects) {
6183       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6184                              region_idx,
6185                              (size_t)obj->size() * HeapWordSize,
6186                              p2i(r->bottom()),
6187                              r->region_num(),
6188                              r->rem_set()->occupied(),
6189                              r->rem_set()->strong_code_roots_list_length(),
6190                              next_bitmap->isMarked(r->bottom()),
6191                              g1h->is_humongous_reclaim_candidate(region_idx),
6192                              obj->is_typeArray()
6193                             );
6194     }
6195     // Need to clear mark bit of the humongous object if already set.
6196     if (next_bitmap->isMarked(r->bottom())) {
6197       next_bitmap->clear(r->bottom());
6198     }
6199     _freed_bytes += r->used();
6200     r->set_containing_set(NULL);
6201     _humongous_regions_removed.increment(1u, r->capacity());
6202     g1h->free_humongous_region(r, _free_region_list, false);
6203 
6204     return false;
6205   }
6206 
6207   HeapRegionSetCount& humongous_free_count() {
6208     return _humongous_regions_removed;
6209   }
6210 
6211   size_t bytes_freed() const {
6212     return _freed_bytes;
6213   }
6214 
6215   size_t humongous_reclaimed() const {
6216     return _humongous_regions_removed.length();
6217   }
6218 };
6219 
6220 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6221   assert_at_safepoint(true);
6222 
6223   if (!G1EagerReclaimHumongousObjects ||
6224       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6225     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6226     return;
6227   }
6228 
6229   double start_time = os::elapsedTime();
6230 
6231   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6232 
6233   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6234   heap_region_iterate(&cl);
6235 
6236   HeapRegionSetCount empty_set;
6237   remove_from_old_sets(empty_set, cl.humongous_free_count());
6238 
6239   G1HRPrinter* hrp = hr_printer();
6240   if (hrp->is_active()) {
6241     FreeRegionListIterator iter(&local_cleanup_list);
6242     while (iter.more_available()) {
6243       HeapRegion* hr = iter.get_next();
6244       hrp->cleanup(hr);
6245     }
6246   }
6247 
6248   prepend_to_freelist(&local_cleanup_list);
6249   decrement_summary_bytes(cl.bytes_freed());
6250 
6251   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6252                                                                     cl.humongous_reclaimed());
6253 }
6254 
6255 // This routine is similar to the above but does not record
6256 // any policy statistics or update free lists; we are abandoning
6257 // the current incremental collection set in preparation of a
6258 // full collection. After the full GC we will start to build up
6259 // the incremental collection set again.
6260 // This is only called when we're doing a full collection
6261 // and is immediately followed by the tearing down of the young list.
6262 
6263 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6264   HeapRegion* cur = cs_head;
6265 
6266   while (cur != NULL) {
6267     HeapRegion* next = cur->next_in_collection_set();
6268     assert(cur->in_collection_set(), "bad CS");
6269     cur->set_next_in_collection_set(NULL);
6270     clear_in_cset(cur);
6271     cur->set_young_index_in_cset(-1);
6272     cur = next;
6273   }
6274 }
6275 
6276 void G1CollectedHeap::set_free_regions_coming() {
6277   if (G1ConcRegionFreeingVerbose) {
6278     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6279                            "setting free regions coming");
6280   }
6281 
6282   assert(!free_regions_coming(), "pre-condition");
6283   _free_regions_coming = true;
6284 }
6285 
6286 void G1CollectedHeap::reset_free_regions_coming() {
6287   assert(free_regions_coming(), "pre-condition");
6288 
6289   {
6290     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6291     _free_regions_coming = false;
6292     SecondaryFreeList_lock->notify_all();
6293   }
6294 
6295   if (G1ConcRegionFreeingVerbose) {
6296     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6297                            "reset free regions coming");
6298   }
6299 }
6300 
6301 void G1CollectedHeap::wait_while_free_regions_coming() {
6302   // Most of the time we won't have to wait, so let's do a quick test
6303   // first before we take the lock.
6304   if (!free_regions_coming()) {
6305     return;
6306   }
6307 
6308   if (G1ConcRegionFreeingVerbose) {
6309     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6310                            "waiting for free regions");
6311   }
6312 
6313   {
6314     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6315     while (free_regions_coming()) {
6316       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6317     }
6318   }
6319 
6320   if (G1ConcRegionFreeingVerbose) {
6321     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6322                            "done waiting for free regions");
6323   }
6324 }
6325 
6326 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6327   _young_list->push_region(hr);
6328 }
6329 
6330 class NoYoungRegionsClosure: public HeapRegionClosure {
6331 private:
6332   bool _success;
6333 public:
6334   NoYoungRegionsClosure() : _success(true) { }
6335   bool doHeapRegion(HeapRegion* r) {
6336     if (r->is_young()) {
6337       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6338                              p2i(r->bottom()), p2i(r->end()));
6339       _success = false;
6340     }
6341     return false;
6342   }
6343   bool success() { return _success; }
6344 };
6345 
6346 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6347   bool ret = _young_list->check_list_empty(check_sample);
6348 
6349   if (check_heap) {
6350     NoYoungRegionsClosure closure;
6351     heap_region_iterate(&closure);
6352     ret = ret && closure.success();
6353   }
6354 
6355   return ret;
6356 }
6357 
6358 class TearDownRegionSetsClosure : public HeapRegionClosure {
6359 private:
6360   HeapRegionSet *_old_set;
6361 
6362 public:
6363   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6364 
6365   bool doHeapRegion(HeapRegion* r) {
6366     if (r->is_old()) {
6367       _old_set->remove(r);
6368     } else {
6369       // We ignore free regions, we'll empty the free list afterwards.
6370       // We ignore young regions, we'll empty the young list afterwards.
6371       // We ignore humongous regions, we're not tearing down the
6372       // humongous regions set.
6373       assert(r->is_free() || r->is_young() || r->is_humongous(),
6374              "it cannot be another type");
6375     }
6376     return false;
6377   }
6378 
6379   ~TearDownRegionSetsClosure() {
6380     assert(_old_set->is_empty(), "post-condition");
6381   }
6382 };
6383 
6384 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6385   assert_at_safepoint(true /* should_be_vm_thread */);
6386 
6387   if (!free_list_only) {
6388     TearDownRegionSetsClosure cl(&_old_set);
6389     heap_region_iterate(&cl);
6390 
6391     // Note that emptying the _young_list is postponed and instead done as
6392     // the first step when rebuilding the regions sets again. The reason for
6393     // this is that during a full GC string deduplication needs to know if
6394     // a collected region was young or old when the full GC was initiated.
6395   }
6396   _hrm.remove_all_free_regions();
6397 }
6398 
6399 void G1CollectedHeap::increase_used(size_t bytes) {
6400   _summary_bytes_used += bytes;
6401 }
6402 
6403 void G1CollectedHeap::decrease_used(size_t bytes) {
6404   assert(_summary_bytes_used >= bytes,
6405          err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6406                  _summary_bytes_used, bytes));
6407   _summary_bytes_used -= bytes;
6408 }
6409 
6410 void G1CollectedHeap::set_used(size_t bytes) {
6411   _summary_bytes_used = bytes;
6412 }
6413 
6414 class RebuildRegionSetsClosure : public HeapRegionClosure {
6415 private:
6416   bool            _free_list_only;
6417   HeapRegionSet*   _old_set;
6418   HeapRegionManager*   _hrm;
6419   size_t          _total_used;
6420 
6421 public:
6422   RebuildRegionSetsClosure(bool free_list_only,
6423                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6424     _free_list_only(free_list_only),
6425     _old_set(old_set), _hrm(hrm), _total_used(0) {
6426     assert(_hrm->num_free_regions() == 0, "pre-condition");
6427     if (!free_list_only) {
6428       assert(_old_set->is_empty(), "pre-condition");
6429     }
6430   }
6431 
6432   bool doHeapRegion(HeapRegion* r) {
6433     if (r->is_continues_humongous()) {
6434       return false;
6435     }
6436 
6437     if (r->is_empty()) {
6438       // Add free regions to the free list
6439       r->set_free();
6440       r->set_allocation_context(AllocationContext::system());
6441       _hrm->insert_into_free_list(r);
6442     } else if (!_free_list_only) {
6443       assert(!r->is_young(), "we should not come across young regions");
6444 
6445       if (r->is_humongous()) {
6446         // We ignore humongous regions. We left the humongous set unchanged.
6447       } else {
6448         // Objects that were compacted would have ended up on regions
6449         // that were previously old or free.  Archive regions (which are
6450         // old) will not have been touched.
6451         assert(r->is_free() || r->is_old(), "invariant");
6452         // We now consider them old, so register as such. Leave
6453         // archive regions set that way, however, while still adding
6454         // them to the old set.
6455         if (!r->is_archive()) {
6456           r->set_old();
6457         }
6458         _old_set->add(r);
6459       }
6460       _total_used += r->used();
6461     }
6462 
6463     return false;
6464   }
6465 
6466   size_t total_used() {
6467     return _total_used;
6468   }
6469 };
6470 
6471 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6472   assert_at_safepoint(true /* should_be_vm_thread */);
6473 
6474   if (!free_list_only) {
6475     _young_list->empty_list();
6476   }
6477 
6478   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6479   heap_region_iterate(&cl);
6480 
6481   if (!free_list_only) {
6482     set_used(cl.total_used());
6483     if (_archive_allocator != NULL) {
6484       _archive_allocator->clear_used();
6485     }
6486   }
6487   assert(used_unlocked() == recalculate_used(),
6488          err_msg("inconsistent used_unlocked(), "
6489                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6490                  used_unlocked(), recalculate_used()));
6491 }
6492 
6493 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6494   _refine_cte_cl->set_concurrent(concurrent);
6495 }
6496 
6497 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6498   HeapRegion* hr = heap_region_containing(p);
6499   return hr->is_in(p);
6500 }
6501 
6502 // Methods for the mutator alloc region
6503 
6504 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6505                                                       bool force) {
6506   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6507   assert(!force || g1_policy()->can_expand_young_list(),
6508          "if force is true we should be able to expand the young list");
6509   bool young_list_full = g1_policy()->is_young_list_full();
6510   if (force || !young_list_full) {
6511     HeapRegion* new_alloc_region = new_region(word_size,
6512                                               false /* is_old */,
6513                                               false /* do_expand */);
6514     if (new_alloc_region != NULL) {
6515       set_region_short_lived_locked(new_alloc_region);
6516       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6517       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6518       return new_alloc_region;
6519     }
6520   }
6521   return NULL;
6522 }
6523 
6524 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6525                                                   size_t allocated_bytes) {
6526   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6527   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6528 
6529   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6530   increase_used(allocated_bytes);
6531   _hr_printer.retire(alloc_region);
6532   // We update the eden sizes here, when the region is retired,
6533   // instead of when it's allocated, since this is the point that its
6534   // used space has been recored in _summary_bytes_used.
6535   g1mm()->update_eden_size();
6536 }
6537 
6538 // Methods for the GC alloc regions
6539 
6540 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6541                                                  uint count,
6542                                                  InCSetState dest) {
6543   assert(FreeList_lock->owned_by_self(), "pre-condition");
6544 
6545   if (count < g1_policy()->max_regions(dest)) {
6546     const bool is_survivor = (dest.is_young());
6547     HeapRegion* new_alloc_region = new_region(word_size,
6548                                               !is_survivor,
6549                                               true /* do_expand */);
6550     if (new_alloc_region != NULL) {
6551       // We really only need to do this for old regions given that we
6552       // should never scan survivors. But it doesn't hurt to do it
6553       // for survivors too.
6554       new_alloc_region->record_timestamp();
6555       if (is_survivor) {
6556         new_alloc_region->set_survivor();
6557         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6558         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6559       } else {
6560         new_alloc_region->set_old();
6561         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6562         check_bitmaps("Old Region Allocation", new_alloc_region);
6563       }
6564       bool during_im = collector_state()->during_initial_mark_pause();
6565       new_alloc_region->note_start_of_copying(during_im);
6566       return new_alloc_region;
6567     }
6568   }
6569   return NULL;
6570 }
6571 
6572 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6573                                              size_t allocated_bytes,
6574                                              InCSetState dest) {
6575   bool during_im = collector_state()->during_initial_mark_pause();
6576   alloc_region->note_end_of_copying(during_im);
6577   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6578   if (dest.is_young()) {
6579     young_list()->add_survivor_region(alloc_region);
6580   } else {
6581     _old_set.add(alloc_region);
6582   }
6583   _hr_printer.retire(alloc_region);
6584 }
6585 
6586 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6587   bool expanded = false;
6588   uint index = _hrm.find_highest_free(&expanded);
6589 
6590   if (index != G1_NO_HRM_INDEX) {
6591     if (expanded) {
6592       ergo_verbose1(ErgoHeapSizing,
6593                     "attempt heap expansion",
6594                     ergo_format_reason("requested address range outside heap bounds")
6595                     ergo_format_byte("region size"),
6596                     HeapRegion::GrainWords * HeapWordSize);
6597     }
6598     _hrm.allocate_free_regions_starting_at(index, 1);
6599     return region_at(index);
6600   }
6601   return NULL;
6602 }
6603 
6604 
6605 // Heap region set verification
6606 
6607 class VerifyRegionListsClosure : public HeapRegionClosure {
6608 private:
6609   HeapRegionSet*   _old_set;
6610   HeapRegionSet*   _humongous_set;
6611   HeapRegionManager*   _hrm;
6612 
6613 public:
6614   HeapRegionSetCount _old_count;
6615   HeapRegionSetCount _humongous_count;
6616   HeapRegionSetCount _free_count;
6617 
6618   VerifyRegionListsClosure(HeapRegionSet* old_set,
6619                            HeapRegionSet* humongous_set,
6620                            HeapRegionManager* hrm) :
6621     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6622     _old_count(), _humongous_count(), _free_count(){ }
6623 
6624   bool doHeapRegion(HeapRegion* hr) {
6625     if (hr->is_continues_humongous()) {
6626       return false;
6627     }
6628 
6629     if (hr->is_young()) {
6630       // TODO
6631     } else if (hr->is_starts_humongous()) {
6632       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6633       _humongous_count.increment(1u, hr->capacity());
6634     } else if (hr->is_empty()) {
6635       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6636       _free_count.increment(1u, hr->capacity());
6637     } else if (hr->is_old()) {
6638       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6639       _old_count.increment(1u, hr->capacity());
6640     } else {
6641       // There are no other valid region types. Check for one invalid
6642       // one we can identify: pinned without old or humongous set.
6643       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6644       ShouldNotReachHere();
6645     }
6646     return false;
6647   }
6648 
6649   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6650     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6651     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6652         old_set->total_capacity_bytes(), _old_count.capacity()));
6653 
6654     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6655     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6656         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6657 
6658     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6659     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6660         free_list->total_capacity_bytes(), _free_count.capacity()));
6661   }
6662 };
6663 
6664 void G1CollectedHeap::verify_region_sets() {
6665   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6666 
6667   // First, check the explicit lists.
6668   _hrm.verify();
6669   {
6670     // Given that a concurrent operation might be adding regions to
6671     // the secondary free list we have to take the lock before
6672     // verifying it.
6673     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6674     _secondary_free_list.verify_list();
6675   }
6676 
6677   // If a concurrent region freeing operation is in progress it will
6678   // be difficult to correctly attributed any free regions we come
6679   // across to the correct free list given that they might belong to
6680   // one of several (free_list, secondary_free_list, any local lists,
6681   // etc.). So, if that's the case we will skip the rest of the
6682   // verification operation. Alternatively, waiting for the concurrent
6683   // operation to complete will have a non-trivial effect on the GC's
6684   // operation (no concurrent operation will last longer than the
6685   // interval between two calls to verification) and it might hide
6686   // any issues that we would like to catch during testing.
6687   if (free_regions_coming()) {
6688     return;
6689   }
6690 
6691   // Make sure we append the secondary_free_list on the free_list so
6692   // that all free regions we will come across can be safely
6693   // attributed to the free_list.
6694   append_secondary_free_list_if_not_empty_with_lock();
6695 
6696   // Finally, make sure that the region accounting in the lists is
6697   // consistent with what we see in the heap.
6698 
6699   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6700   heap_region_iterate(&cl);
6701   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6702 }
6703 
6704 // Optimized nmethod scanning
6705 
6706 class RegisterNMethodOopClosure: public OopClosure {
6707   G1CollectedHeap* _g1h;
6708   nmethod* _nm;
6709 
6710   template <class T> void do_oop_work(T* p) {
6711     T heap_oop = oopDesc::load_heap_oop(p);
6712     if (!oopDesc::is_null(heap_oop)) {
6713       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6714       HeapRegion* hr = _g1h->heap_region_containing(obj);
6715       assert(!hr->is_continues_humongous(),
6716              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6717                      " starting at " HR_FORMAT,
6718                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6719 
6720       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6721       hr->add_strong_code_root_locked(_nm);
6722     }
6723   }
6724 
6725 public:
6726   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6727     _g1h(g1h), _nm(nm) {}
6728 
6729   void do_oop(oop* p)       { do_oop_work(p); }
6730   void do_oop(narrowOop* p) { do_oop_work(p); }
6731 };
6732 
6733 class UnregisterNMethodOopClosure: public OopClosure {
6734   G1CollectedHeap* _g1h;
6735   nmethod* _nm;
6736 
6737   template <class T> void do_oop_work(T* p) {
6738     T heap_oop = oopDesc::load_heap_oop(p);
6739     if (!oopDesc::is_null(heap_oop)) {
6740       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6741       HeapRegion* hr = _g1h->heap_region_containing(obj);
6742       assert(!hr->is_continues_humongous(),
6743              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6744                      " starting at " HR_FORMAT,
6745                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6746 
6747       hr->remove_strong_code_root(_nm);
6748     }
6749   }
6750 
6751 public:
6752   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6753     _g1h(g1h), _nm(nm) {}
6754 
6755   void do_oop(oop* p)       { do_oop_work(p); }
6756   void do_oop(narrowOop* p) { do_oop_work(p); }
6757 };
6758 
6759 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6760   CollectedHeap::register_nmethod(nm);
6761 
6762   guarantee(nm != NULL, "sanity");
6763   RegisterNMethodOopClosure reg_cl(this, nm);
6764   nm->oops_do(&reg_cl);
6765 }
6766 
6767 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6768   CollectedHeap::unregister_nmethod(nm);
6769 
6770   guarantee(nm != NULL, "sanity");
6771   UnregisterNMethodOopClosure reg_cl(this, nm);
6772   nm->oops_do(&reg_cl, true);
6773 }
6774 
6775 void G1CollectedHeap::purge_code_root_memory() {
6776   double purge_start = os::elapsedTime();
6777   G1CodeRootSet::purge();
6778   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6779   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6780 }
6781 
6782 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6783   G1CollectedHeap* _g1h;
6784 
6785 public:
6786   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6787     _g1h(g1h) {}
6788 
6789   void do_code_blob(CodeBlob* cb) {
6790     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6791     if (nm == NULL) {
6792       return;
6793     }
6794 
6795     if (ScavengeRootsInCode) {
6796       _g1h->register_nmethod(nm);
6797     }
6798   }
6799 };
6800 
6801 void G1CollectedHeap::rebuild_strong_code_roots() {
6802   RebuildStrongCodeRootClosure blob_cl(this);
6803   CodeCache::blobs_do(&blob_cl);
6804 }