1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/concurrentMark.hpp"
  29 #include "gc/g1/evacuationInfo.hpp"
  30 #include "gc/g1/g1AllocationContext.hpp"
  31 #include "gc/g1/g1BiasedArray.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1HRPrinter.hpp"
  34 #include "gc/g1/g1InCSetState.hpp"
  35 #include "gc/g1/g1MonitoringSupport.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/g1YCTypes.hpp"
  39 #include "gc/g1/hSpaceCounters.hpp"
  40 #include "gc/g1/heapRegionManager.hpp"
  41 #include "gc/g1/heapRegionSet.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "gc/shared/plab.hpp"
  45 #include "memory/memRegion.hpp"
  46 #include "utilities/stack.hpp"
  47 
  48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  49 // It uses the "Garbage First" heap organization and algorithm, which
  50 // may combine concurrent marking with parallel, incremental compaction of
  51 // heap subsets that will yield large amounts of garbage.
  52 
  53 // Forward declarations
  54 class HeapRegion;
  55 class HRRSCleanupTask;
  56 class GenerationSpec;
  57 class OopsInHeapRegionClosure;
  58 class G1KlassScanClosure;
  59 class G1ParScanThreadState;
  60 class ObjectClosure;
  61 class SpaceClosure;
  62 class CompactibleSpaceClosure;
  63 class Space;
  64 class G1CollectorPolicy;
  65 class GenRemSet;
  66 class G1RemSet;
  67 class HeapRegionRemSetIterator;
  68 class ConcurrentMark;
  69 class ConcurrentMarkThread;
  70 class ConcurrentG1Refine;
  71 class ConcurrentGCTimer;
  72 class GenerationCounters;
  73 class STWGCTimer;
  74 class G1NewTracer;
  75 class G1OldTracer;
  76 class EvacuationFailedInfo;
  77 class nmethod;
  78 class Ticks;
  79 class FlexibleWorkGang;
  80 class G1Allocator;
  81 class G1ArchiveAllocator;
  82 
  83 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  84 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  85 
  86 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  87 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  88 
  89 class YoungList : public CHeapObj<mtGC> {
  90 private:
  91   G1CollectedHeap* _g1h;
  92 
  93   HeapRegion* _head;
  94 
  95   HeapRegion* _survivor_head;
  96   HeapRegion* _survivor_tail;
  97 
  98   HeapRegion* _curr;
  99 
 100   uint        _length;
 101   uint        _survivor_length;
 102 
 103   size_t      _last_sampled_rs_lengths;
 104   size_t      _sampled_rs_lengths;
 105 
 106   void         empty_list(HeapRegion* list);
 107 
 108 public:
 109   YoungList(G1CollectedHeap* g1h);
 110 
 111   void         push_region(HeapRegion* hr);
 112   void         add_survivor_region(HeapRegion* hr);
 113 
 114   void         empty_list();
 115   bool         is_empty() { return _length == 0; }
 116   uint         length() { return _length; }
 117   uint         eden_length() { return length() - survivor_length(); }
 118   uint         survivor_length() { return _survivor_length; }
 119 
 120   // Currently we do not keep track of the used byte sum for the
 121   // young list and the survivors and it'd be quite a lot of work to
 122   // do so. When we'll eventually replace the young list with
 123   // instances of HeapRegionLinkedList we'll get that for free. So,
 124   // we'll report the more accurate information then.
 125   size_t       eden_used_bytes() {
 126     assert(length() >= survivor_length(), "invariant");
 127     return (size_t) eden_length() * HeapRegion::GrainBytes;
 128   }
 129   size_t       survivor_used_bytes() {
 130     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 131   }
 132 
 133   void rs_length_sampling_init();
 134   bool rs_length_sampling_more();
 135   void rs_length_sampling_next();
 136 
 137   void reset_sampled_info() {
 138     _last_sampled_rs_lengths =   0;
 139   }
 140   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 141 
 142   // for development purposes
 143   void reset_auxilary_lists();
 144   void clear() { _head = NULL; _length = 0; }
 145 
 146   void clear_survivors() {
 147     _survivor_head    = NULL;
 148     _survivor_tail    = NULL;
 149     _survivor_length  = 0;
 150   }
 151 
 152   HeapRegion* first_region() { return _head; }
 153   HeapRegion* first_survivor_region() { return _survivor_head; }
 154   HeapRegion* last_survivor_region() { return _survivor_tail; }
 155 
 156   // debugging
 157   bool          check_list_well_formed();
 158   bool          check_list_empty(bool check_sample = true);
 159   void          print();
 160 };
 161 
 162 // The G1 STW is alive closure.
 163 // An instance is embedded into the G1CH and used as the
 164 // (optional) _is_alive_non_header closure in the STW
 165 // reference processor. It is also extensively used during
 166 // reference processing during STW evacuation pauses.
 167 class G1STWIsAliveClosure: public BoolObjectClosure {
 168   G1CollectedHeap* _g1;
 169 public:
 170   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 171   bool do_object_b(oop p);
 172 };
 173 
 174 class RefineCardTableEntryClosure;
 175 
 176 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 177  private:
 178   void reset_from_card_cache(uint start_idx, size_t num_regions);
 179  public:
 180   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 181 };
 182 
 183 class G1CollectedHeap : public CollectedHeap {
 184   friend class VM_CollectForMetadataAllocation;
 185   friend class VM_G1CollectForAllocation;
 186   friend class VM_G1CollectFull;
 187   friend class VM_G1IncCollectionPause;
 188   friend class VMStructs;
 189   friend class MutatorAllocRegion;
 190   friend class G1GCAllocRegion;
 191 
 192   // Closures used in implementation.
 193   friend class G1ParScanThreadState;
 194   friend class G1ParTask;
 195   friend class G1PLABAllocator;
 196   friend class G1PrepareCompactClosure;
 197 
 198   // Other related classes.
 199   friend class HeapRegionClaimer;
 200 
 201   // Testing classes.
 202   friend class G1CheckCSetFastTableClosure;
 203 
 204 private:
 205   FlexibleWorkGang* _workers;
 206 
 207   static size_t _humongous_object_threshold_in_words;
 208 
 209   // The secondary free list which contains regions that have been
 210   // freed up during the cleanup process. This will be appended to
 211   // the master free list when appropriate.
 212   FreeRegionList _secondary_free_list;
 213 
 214   // It keeps track of the old regions.
 215   HeapRegionSet _old_set;
 216 
 217   // It keeps track of the humongous regions.
 218   HeapRegionSet _humongous_set;
 219 
 220   void eagerly_reclaim_humongous_regions();
 221 
 222   // The number of regions we could create by expansion.
 223   uint _expansion_regions;
 224 
 225   // The block offset table for the G1 heap.
 226   G1BlockOffsetSharedArray* _bot_shared;
 227 
 228   // Tears down the region sets / lists so that they are empty and the
 229   // regions on the heap do not belong to a region set / list. The
 230   // only exception is the humongous set which we leave unaltered. If
 231   // free_list_only is true, it will only tear down the master free
 232   // list. It is called before a Full GC (free_list_only == false) or
 233   // before heap shrinking (free_list_only == true).
 234   void tear_down_region_sets(bool free_list_only);
 235 
 236   // Rebuilds the region sets / lists so that they are repopulated to
 237   // reflect the contents of the heap. The only exception is the
 238   // humongous set which was not torn down in the first place. If
 239   // free_list_only is true, it will only rebuild the master free
 240   // list. It is called after a Full GC (free_list_only == false) or
 241   // after heap shrinking (free_list_only == true).
 242   void rebuild_region_sets(bool free_list_only);
 243 
 244   // Callback for region mapping changed events.
 245   G1RegionMappingChangedListener _listener;
 246 
 247   // The sequence of all heap regions in the heap.
 248   HeapRegionManager _hrm;
 249 
 250   // Manages all allocations with regions except humongous object allocations.
 251   G1Allocator* _allocator;
 252 
 253   // Outside of GC pauses, the number of bytes used in all regions other
 254   // than the current allocation region(s).
 255   size_t _summary_bytes_used;
 256 
 257   void increase_used(size_t bytes);
 258   void decrease_used(size_t bytes);
 259 
 260   void set_used(size_t bytes);
 261 
 262   // Class that handles archive allocation ranges.
 263   G1ArchiveAllocator* _archive_allocator;
 264 
 265   // Statistics for each allocation context
 266   AllocationContextStats _allocation_context_stats;
 267 
 268   // GC allocation statistics policy for survivors.
 269   G1EvacStats _survivor_evac_stats;
 270 
 271   // GC allocation statistics policy for tenured objects.
 272   G1EvacStats _old_evac_stats;
 273 
 274   // It specifies whether we should attempt to expand the heap after a
 275   // region allocation failure. If heap expansion fails we set this to
 276   // false so that we don't re-attempt the heap expansion (it's likely
 277   // that subsequent expansion attempts will also fail if one fails).
 278   // Currently, it is only consulted during GC and it's reset at the
 279   // start of each GC.
 280   bool _expand_heap_after_alloc_failure;
 281 
 282   // Helper for monitoring and management support.
 283   G1MonitoringSupport* _g1mm;
 284 
 285   // Records whether the region at the given index is (still) a
 286   // candidate for eager reclaim.  Only valid for humongous start
 287   // regions; other regions have unspecified values.  Humongous start
 288   // regions are initialized at start of collection pause, with
 289   // candidates removed from the set as they are found reachable from
 290   // roots or the young generation.
 291   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 292    protected:
 293     bool default_value() const { return false; }
 294    public:
 295     void clear() { G1BiasedMappedArray<bool>::clear(); }
 296     void set_candidate(uint region, bool value) {
 297       set_by_index(region, value);
 298     }
 299     bool is_candidate(uint region) {
 300       return get_by_index(region);
 301     }
 302   };
 303 
 304   HumongousReclaimCandidates _humongous_reclaim_candidates;
 305   // Stores whether during humongous object registration we found candidate regions.
 306   // If not, we can skip a few steps.
 307   bool _has_humongous_reclaim_candidates;
 308 
 309   volatile unsigned _gc_time_stamp;
 310 
 311   size_t* _surviving_young_words;
 312 
 313   G1HRPrinter _hr_printer;
 314 
 315   void setup_surviving_young_words();
 316   void update_surviving_young_words(size_t* surv_young_words);
 317   void cleanup_surviving_young_words();
 318 
 319   // It decides whether an explicit GC should start a concurrent cycle
 320   // instead of doing a STW GC. Currently, a concurrent cycle is
 321   // explicitly started if:
 322   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 323   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 324   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 325   // (d) cause == _g1_humongous_allocation
 326   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 327 
 328   // indicates whether we are in young or mixed GC mode
 329   G1CollectorState _collector_state;
 330 
 331   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 332   // concurrent cycles) we have started.
 333   volatile uint _old_marking_cycles_started;
 334 
 335   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 336   // concurrent cycles) we have completed.
 337   volatile uint _old_marking_cycles_completed;
 338 
 339   bool _heap_summary_sent;
 340 
 341   // This is a non-product method that is helpful for testing. It is
 342   // called at the end of a GC and artificially expands the heap by
 343   // allocating a number of dead regions. This way we can induce very
 344   // frequent marking cycles and stress the cleanup / concurrent
 345   // cleanup code more (as all the regions that will be allocated by
 346   // this method will be found dead by the marking cycle).
 347   void allocate_dummy_regions() PRODUCT_RETURN;
 348 
 349   // Clear RSets after a compaction. It also resets the GC time stamps.
 350   void clear_rsets_post_compaction();
 351 
 352   // If the HR printer is active, dump the state of the regions in the
 353   // heap after a compaction.
 354   void print_hrm_post_compaction();
 355 
 356   // Create a memory mapper for auxiliary data structures of the given size and
 357   // translation factor.
 358   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 359                                                          size_t size,
 360                                                          size_t translation_factor);
 361 
 362   double verify(bool guard, const char* msg);
 363   void verify_before_gc();
 364   void verify_after_gc();
 365 
 366   void log_gc_header();
 367   void log_gc_footer(double pause_time_sec);
 368 
 369   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 370 
 371   // These are macros so that, if the assert fires, we get the correct
 372   // line number, file, etc.
 373 
 374 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 375   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 376           (_extra_message_),                                                  \
 377           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 378           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 379           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 380 
 381 #define assert_heap_locked()                                                  \
 382   do {                                                                        \
 383     assert(Heap_lock->owned_by_self(),                                        \
 384            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 385   } while (0)
 386 
 387 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 388   do {                                                                        \
 389     assert(Heap_lock->owned_by_self() ||                                      \
 390            (SafepointSynchronize::is_at_safepoint() &&                        \
 391              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 392            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 393                                         "should be at a safepoint"));         \
 394   } while (0)
 395 
 396 #define assert_heap_locked_and_not_at_safepoint()                             \
 397   do {                                                                        \
 398     assert(Heap_lock->owned_by_self() &&                                      \
 399                                     !SafepointSynchronize::is_at_safepoint(), \
 400           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 401                                        "should not be at a safepoint"));      \
 402   } while (0)
 403 
 404 #define assert_heap_not_locked()                                              \
 405   do {                                                                        \
 406     assert(!Heap_lock->owned_by_self(),                                       \
 407         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 408   } while (0)
 409 
 410 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 411   do {                                                                        \
 412     assert(!Heap_lock->owned_by_self() &&                                     \
 413                                     !SafepointSynchronize::is_at_safepoint(), \
 414       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 415                                    "should not be at a safepoint"));          \
 416   } while (0)
 417 
 418 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 419   do {                                                                        \
 420     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 421               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 422            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 423   } while (0)
 424 
 425 #define assert_not_at_safepoint()                                             \
 426   do {                                                                        \
 427     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 428            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 429   } while (0)
 430 
 431 protected:
 432 
 433   // The young region list.
 434   YoungList*  _young_list;
 435 
 436   // The current policy object for the collector.
 437   G1CollectorPolicy* _g1_policy;
 438 
 439   // This is the second level of trying to allocate a new region. If
 440   // new_region() didn't find a region on the free_list, this call will
 441   // check whether there's anything available on the
 442   // secondary_free_list and/or wait for more regions to appear on
 443   // that list, if _free_regions_coming is set.
 444   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 445 
 446   // Try to allocate a single non-humongous HeapRegion sufficient for
 447   // an allocation of the given word_size. If do_expand is true,
 448   // attempt to expand the heap if necessary to satisfy the allocation
 449   // request. If the region is to be used as an old region or for a
 450   // humongous object, set is_old to true. If not, to false.
 451   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 452 
 453   // Initialize a contiguous set of free regions of length num_regions
 454   // and starting at index first so that they appear as a single
 455   // humongous region.
 456   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 457                                                       uint num_regions,
 458                                                       size_t word_size,
 459                                                       AllocationContext_t context);
 460 
 461   // Attempt to allocate a humongous object of the given size. Return
 462   // NULL if unsuccessful.
 463   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 464 
 465   // The following two methods, allocate_new_tlab() and
 466   // mem_allocate(), are the two main entry points from the runtime
 467   // into the G1's allocation routines. They have the following
 468   // assumptions:
 469   //
 470   // * They should both be called outside safepoints.
 471   //
 472   // * They should both be called without holding the Heap_lock.
 473   //
 474   // * All allocation requests for new TLABs should go to
 475   //   allocate_new_tlab().
 476   //
 477   // * All non-TLAB allocation requests should go to mem_allocate().
 478   //
 479   // * If either call cannot satisfy the allocation request using the
 480   //   current allocating region, they will try to get a new one. If
 481   //   this fails, they will attempt to do an evacuation pause and
 482   //   retry the allocation.
 483   //
 484   // * If all allocation attempts fail, even after trying to schedule
 485   //   an evacuation pause, allocate_new_tlab() will return NULL,
 486   //   whereas mem_allocate() will attempt a heap expansion and/or
 487   //   schedule a Full GC.
 488   //
 489   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 490   //   should never be called with word_size being humongous. All
 491   //   humongous allocation requests should go to mem_allocate() which
 492   //   will satisfy them with a special path.
 493 
 494   virtual HeapWord* allocate_new_tlab(size_t word_size);
 495 
 496   virtual HeapWord* mem_allocate(size_t word_size,
 497                                  bool*  gc_overhead_limit_was_exceeded);
 498 
 499   // The following three methods take a gc_count_before_ret
 500   // parameter which is used to return the GC count if the method
 501   // returns NULL. Given that we are required to read the GC count
 502   // while holding the Heap_lock, and these paths will take the
 503   // Heap_lock at some point, it's easier to get them to read the GC
 504   // count while holding the Heap_lock before they return NULL instead
 505   // of the caller (namely: mem_allocate()) having to also take the
 506   // Heap_lock just to read the GC count.
 507 
 508   // First-level mutator allocation attempt: try to allocate out of
 509   // the mutator alloc region without taking the Heap_lock. This
 510   // should only be used for non-humongous allocations.
 511   inline HeapWord* attempt_allocation(size_t word_size,
 512                                       uint* gc_count_before_ret,
 513                                       uint* gclocker_retry_count_ret);
 514 
 515   // Second-level mutator allocation attempt: take the Heap_lock and
 516   // retry the allocation attempt, potentially scheduling a GC
 517   // pause. This should only be used for non-humongous allocations.
 518   HeapWord* attempt_allocation_slow(size_t word_size,
 519                                     AllocationContext_t context,
 520                                     uint* gc_count_before_ret,
 521                                     uint* gclocker_retry_count_ret);
 522 
 523   // Takes the Heap_lock and attempts a humongous allocation. It can
 524   // potentially schedule a GC pause.
 525   HeapWord* attempt_allocation_humongous(size_t word_size,
 526                                          uint* gc_count_before_ret,
 527                                          uint* gclocker_retry_count_ret);
 528 
 529   // Allocation attempt that should be called during safepoints (e.g.,
 530   // at the end of a successful GC). expect_null_mutator_alloc_region
 531   // specifies whether the mutator alloc region is expected to be NULL
 532   // or not.
 533   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 534                                             AllocationContext_t context,
 535                                             bool expect_null_mutator_alloc_region);
 536 
 537   // These methods are the "callbacks" from the G1AllocRegion class.
 538 
 539   // For mutator alloc regions.
 540   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 541   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 542                                    size_t allocated_bytes);
 543 
 544   // For GC alloc regions.
 545   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 546                                   InCSetState dest);
 547   void retire_gc_alloc_region(HeapRegion* alloc_region,
 548                               size_t allocated_bytes, InCSetState dest);
 549 
 550   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 551   //   inspection request and should collect the entire heap
 552   // - if clear_all_soft_refs is true, all soft references should be
 553   //   cleared during the GC
 554   // - if explicit_gc is false, word_size describes the allocation that
 555   //   the GC should attempt (at least) to satisfy
 556   // - it returns false if it is unable to do the collection due to the
 557   //   GC locker being active, true otherwise
 558   bool do_collection(bool explicit_gc,
 559                      bool clear_all_soft_refs,
 560                      size_t word_size);
 561 
 562   // Callback from VM_G1CollectFull operation.
 563   // Perform a full collection.
 564   virtual void do_full_collection(bool clear_all_soft_refs);
 565 
 566   // Resize the heap if necessary after a full collection.  If this is
 567   // after a collect-for allocation, "word_size" is the allocation size,
 568   // and will be considered part of the used portion of the heap.
 569   void resize_if_necessary_after_full_collection(size_t word_size);
 570 
 571   // Callback from VM_G1CollectForAllocation operation.
 572   // This function does everything necessary/possible to satisfy a
 573   // failed allocation request (including collection, expansion, etc.)
 574   HeapWord* satisfy_failed_allocation(size_t word_size,
 575                                       AllocationContext_t context,
 576                                       bool* succeeded);
 577 
 578   // Attempting to expand the heap sufficiently
 579   // to support an allocation of the given "word_size".  If
 580   // successful, perform the allocation and return the address of the
 581   // allocated block, or else "NULL".
 582   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 583 
 584   // Process any reference objects discovered during
 585   // an incremental evacuation pause.
 586   void process_discovered_references();
 587 
 588   // Enqueue any remaining discovered references
 589   // after processing.
 590   void enqueue_discovered_references();
 591 
 592 public:
 593   FlexibleWorkGang* workers() const { return _workers; }
 594 
 595   G1Allocator* allocator() {
 596     return _allocator;
 597   }
 598 
 599   G1MonitoringSupport* g1mm() {
 600     assert(_g1mm != NULL, "should have been initialized");
 601     return _g1mm;
 602   }
 603 
 604   // Expand the garbage-first heap by at least the given size (in bytes!).
 605   // Returns true if the heap was expanded by the requested amount;
 606   // false otherwise.
 607   // (Rounds up to a HeapRegion boundary.)
 608   bool expand(size_t expand_bytes);
 609 
 610   // Returns the PLAB statistics for a given destination.
 611   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 612 
 613   // Determines PLAB size for a given destination.
 614   inline size_t desired_plab_sz(InCSetState dest);
 615 
 616   inline AllocationContextStats& allocation_context_stats();
 617 
 618   // Do anything common to GC's.
 619   void gc_prologue(bool full);
 620   void gc_epilogue(bool full);
 621 
 622   // Modify the reclaim candidate set and test for presence.
 623   // These are only valid for starts_humongous regions.
 624   inline void set_humongous_reclaim_candidate(uint region, bool value);
 625   inline bool is_humongous_reclaim_candidate(uint region);
 626 
 627   // Remove from the reclaim candidate set.  Also remove from the
 628   // collection set so that later encounters avoid the slow path.
 629   inline void set_humongous_is_live(oop obj);
 630 
 631   // Register the given region to be part of the collection set.
 632   inline void register_humongous_region_with_cset(uint index);
 633   // Register regions with humongous objects (actually on the start region) in
 634   // the in_cset_fast_test table.
 635   void register_humongous_regions_with_cset();
 636   // We register a region with the fast "in collection set" test. We
 637   // simply set to true the array slot corresponding to this region.
 638   void register_young_region_with_cset(HeapRegion* r) {
 639     _in_cset_fast_test.set_in_young(r->hrm_index());
 640   }
 641   void register_old_region_with_cset(HeapRegion* r) {
 642     _in_cset_fast_test.set_in_old(r->hrm_index());
 643   }
 644   void clear_in_cset(const HeapRegion* hr) {
 645     _in_cset_fast_test.clear(hr);
 646   }
 647 
 648   void clear_cset_fast_test() {
 649     _in_cset_fast_test.clear();
 650   }
 651 
 652   // This is called at the start of either a concurrent cycle or a Full
 653   // GC to update the number of old marking cycles started.
 654   void increment_old_marking_cycles_started();
 655 
 656   // This is called at the end of either a concurrent cycle or a Full
 657   // GC to update the number of old marking cycles completed. Those two
 658   // can happen in a nested fashion, i.e., we start a concurrent
 659   // cycle, a Full GC happens half-way through it which ends first,
 660   // and then the cycle notices that a Full GC happened and ends
 661   // too. The concurrent parameter is a boolean to help us do a bit
 662   // tighter consistency checking in the method. If concurrent is
 663   // false, the caller is the inner caller in the nesting (i.e., the
 664   // Full GC). If concurrent is true, the caller is the outer caller
 665   // in this nesting (i.e., the concurrent cycle). Further nesting is
 666   // not currently supported. The end of this call also notifies
 667   // the FullGCCount_lock in case a Java thread is waiting for a full
 668   // GC to happen (e.g., it called System.gc() with
 669   // +ExplicitGCInvokesConcurrent).
 670   void increment_old_marking_cycles_completed(bool concurrent);
 671 
 672   uint old_marking_cycles_completed() {
 673     return _old_marking_cycles_completed;
 674   }
 675 
 676   void register_concurrent_cycle_start(const Ticks& start_time);
 677   void register_concurrent_cycle_end();
 678   void trace_heap_after_concurrent_cycle();
 679 
 680   G1HRPrinter* hr_printer() { return &_hr_printer; }
 681 
 682   // Allocates a new heap region instance.
 683   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 684 
 685   // Allocate the highest free region in the reserved heap. This will commit
 686   // regions as necessary.
 687   HeapRegion* alloc_highest_free_region();
 688 
 689   // Frees a non-humongous region by initializing its contents and
 690   // adding it to the free list that's passed as a parameter (this is
 691   // usually a local list which will be appended to the master free
 692   // list later). The used bytes of freed regions are accumulated in
 693   // pre_used. If par is true, the region's RSet will not be freed
 694   // up. The assumption is that this will be done later.
 695   // The locked parameter indicates if the caller has already taken
 696   // care of proper synchronization. This may allow some optimizations.
 697   void free_region(HeapRegion* hr,
 698                    FreeRegionList* free_list,
 699                    bool par,
 700                    bool locked = false);
 701 
 702   // It dirties the cards that cover the block so that the post
 703   // write barrier never queues anything when updating objects on this
 704   // block. It is assumed (and in fact we assert) that the block
 705   // belongs to a young region.
 706   inline void dirty_young_block(HeapWord* start, size_t word_size);
 707 
 708   // Frees a humongous region by collapsing it into individual regions
 709   // and calling free_region() for each of them. The freed regions
 710   // will be added to the free list that's passed as a parameter (this
 711   // is usually a local list which will be appended to the master free
 712   // list later). The used bytes of freed regions are accumulated in
 713   // pre_used. If par is true, the region's RSet will not be freed
 714   // up. The assumption is that this will be done later.
 715   void free_humongous_region(HeapRegion* hr,
 716                              FreeRegionList* free_list,
 717                              bool par);
 718 
 719   // Facility for allocating in 'archive' regions in high heap memory and
 720   // recording the allocated ranges. These should all be called from the
 721   // VM thread at safepoints, without the heap lock held. They can be used
 722   // to create and archive a set of heap regions which can be mapped at the
 723   // same fixed addresses in a subsequent JVM invocation.
 724   void begin_archive_alloc_range();
 725 
 726   // Check if the requested size would be too large for an archive allocation.
 727   bool is_archive_alloc_too_large(size_t word_size);
 728 
 729   // Allocate memory of the requested size from the archive region. This will
 730   // return NULL if the size is too large or if no memory is available. It
 731   // does not trigger a garbage collection.
 732   HeapWord* archive_mem_allocate(size_t word_size);
 733 
 734   // Optionally aligns the end address and returns the allocated ranges in
 735   // an array of MemRegions in order of ascending addresses.
 736   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 737                                size_t end_alignment_in_bytes = 0);
 738 
 739   // Facility for allocating a fixed range within the heap and marking
 740   // the containing regions as 'archive'. For use at JVM init time, when the
 741   // caller may mmap archived heap data at the specified range(s).
 742   // Verify that the MemRegions specified in the argument array are within the
 743   // reserved heap.
 744   bool check_archive_addresses(MemRegion* range, size_t count);
 745 
 746   // Commit the appropriate G1 regions containing the specified MemRegions
 747   // and mark them as 'archive' regions. The regions in the array must be
 748   // non-overlapping and in order of ascending address.
 749   bool alloc_archive_regions(MemRegion* range, size_t count);
 750 
 751   // Insert any required filler objects in the G1 regions around the specified
 752   // ranges to make the regions parseable. This must be called after
 753   // alloc_archive_regions, and after class loading has occurred.
 754   void fill_archive_regions(MemRegion* range, size_t count);
 755 
 756 protected:
 757 
 758   // Shrink the garbage-first heap by at most the given size (in bytes!).
 759   // (Rounds down to a HeapRegion boundary.)
 760   virtual void shrink(size_t expand_bytes);
 761   void shrink_helper(size_t expand_bytes);
 762 
 763   #if TASKQUEUE_STATS
 764   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 765   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 766   void reset_taskqueue_stats();
 767   #endif // TASKQUEUE_STATS
 768 
 769   // Schedule the VM operation that will do an evacuation pause to
 770   // satisfy an allocation request of word_size. *succeeded will
 771   // return whether the VM operation was successful (it did do an
 772   // evacuation pause) or not (another thread beat us to it or the GC
 773   // locker was active). Given that we should not be holding the
 774   // Heap_lock when we enter this method, we will pass the
 775   // gc_count_before (i.e., total_collections()) as a parameter since
 776   // it has to be read while holding the Heap_lock. Currently, both
 777   // methods that call do_collection_pause() release the Heap_lock
 778   // before the call, so it's easy to read gc_count_before just before.
 779   HeapWord* do_collection_pause(size_t         word_size,
 780                                 uint           gc_count_before,
 781                                 bool*          succeeded,
 782                                 GCCause::Cause gc_cause);
 783 
 784   void wait_for_root_region_scanning();
 785 
 786   // The guts of the incremental collection pause, executed by the vm
 787   // thread. It returns false if it is unable to do the collection due
 788   // to the GC locker being active, true otherwise
 789   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 790 
 791   // Actually do the work of evacuating the collection set.
 792   void evacuate_collection_set(EvacuationInfo& evacuation_info);
 793 
 794   // Update object copying statistics.
 795   void record_obj_copy_mem_stats();
 796   
 797   // The g1 remembered set of the heap.
 798   G1RemSet* _g1_rem_set;
 799 
 800   // A set of cards that cover the objects for which the Rsets should be updated
 801   // concurrently after the collection.
 802   DirtyCardQueueSet _dirty_card_queue_set;
 803 
 804   // The closure used to refine a single card.
 805   RefineCardTableEntryClosure* _refine_cte_cl;
 806 
 807   // A DirtyCardQueueSet that is used to hold cards that contain
 808   // references into the current collection set. This is used to
 809   // update the remembered sets of the regions in the collection
 810   // set in the event of an evacuation failure.
 811   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 812 
 813   // After a collection pause, make the regions in the CS into free
 814   // regions.
 815   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info);
 816 
 817   // Abandon the current collection set without recording policy
 818   // statistics or updating free lists.
 819   void abandon_collection_set(HeapRegion* cs_head);
 820 
 821   // The concurrent marker (and the thread it runs in.)
 822   ConcurrentMark* _cm;
 823   ConcurrentMarkThread* _cmThread;
 824 
 825   // The concurrent refiner.
 826   ConcurrentG1Refine* _cg1r;
 827 
 828   // The parallel task queues
 829   RefToScanQueueSet *_task_queues;
 830 
 831   // True iff a evacuation has failed in the current collection.
 832   bool _evacuation_failed;
 833 
 834   EvacuationFailedInfo* _evacuation_failed_info_array;
 835 
 836   // Failed evacuations cause some logical from-space objects to have
 837   // forwarding pointers to themselves.  Reset them.
 838   void remove_self_forwarding_pointers();
 839 
 840   struct OopAndMarkOop {
 841    private:
 842     oop _o;
 843     markOop _m;
 844    public:
 845     OopAndMarkOop(oop obj, markOop m) : _o(obj), _m(m) {
 846     }
 847 
 848     void set_mark() {
 849       _o->set_mark(_m);
 850     }
 851   };
 852 
 853   typedef Stack<OopAndMarkOop,mtGC> OopAndMarkOopStack;
 854   // Stores marks with the corresponding oop that we need to preserve during evacuation
 855   // failure.
 856   OopAndMarkOopStack*  _preserved_objs;
 857 
 858   // Preserve the mark of "obj", if necessary, in preparation for its mark
 859   // word being overwritten with a self-forwarding-pointer.
 860   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 861 
 862 #ifndef PRODUCT
 863   // Support for forcing evacuation failures. Analogous to
 864   // PromotionFailureALot for the other collectors.
 865 
 866   // Records whether G1EvacuationFailureALot should be in effect
 867   // for the current GC
 868   bool _evacuation_failure_alot_for_current_gc;
 869 
 870   // Used to record the GC number for interval checking when
 871   // determining whether G1EvaucationFailureALot is in effect
 872   // for the current GC.
 873   size_t _evacuation_failure_alot_gc_number;
 874 
 875   // Count of the number of evacuations between failures.
 876   volatile size_t _evacuation_failure_alot_count;
 877 
 878   // Set whether G1EvacuationFailureALot should be in effect
 879   // for the current GC (based upon the type of GC and which
 880   // command line flags are set);
 881   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 882                                                   bool during_initial_mark,
 883                                                   bool during_marking);
 884 
 885   inline void set_evacuation_failure_alot_for_current_gc();
 886 
 887   // Return true if it's time to cause an evacuation failure.
 888   inline bool evacuation_should_fail();
 889 
 890   // Reset the G1EvacuationFailureALot counters.  Should be called at
 891   // the end of an evacuation pause in which an evacuation failure occurred.
 892   inline void reset_evacuation_should_fail();
 893 #endif // !PRODUCT
 894 
 895   // ("Weak") Reference processing support.
 896   //
 897   // G1 has 2 instances of the reference processor class. One
 898   // (_ref_processor_cm) handles reference object discovery
 899   // and subsequent processing during concurrent marking cycles.
 900   //
 901   // The other (_ref_processor_stw) handles reference object
 902   // discovery and processing during full GCs and incremental
 903   // evacuation pauses.
 904   //
 905   // During an incremental pause, reference discovery will be
 906   // temporarily disabled for _ref_processor_cm and will be
 907   // enabled for _ref_processor_stw. At the end of the evacuation
 908   // pause references discovered by _ref_processor_stw will be
 909   // processed and discovery will be disabled. The previous
 910   // setting for reference object discovery for _ref_processor_cm
 911   // will be re-instated.
 912   //
 913   // At the start of marking:
 914   //  * Discovery by the CM ref processor is verified to be inactive
 915   //    and it's discovered lists are empty.
 916   //  * Discovery by the CM ref processor is then enabled.
 917   //
 918   // At the end of marking:
 919   //  * Any references on the CM ref processor's discovered
 920   //    lists are processed (possibly MT).
 921   //
 922   // At the start of full GC we:
 923   //  * Disable discovery by the CM ref processor and
 924   //    empty CM ref processor's discovered lists
 925   //    (without processing any entries).
 926   //  * Verify that the STW ref processor is inactive and it's
 927   //    discovered lists are empty.
 928   //  * Temporarily set STW ref processor discovery as single threaded.
 929   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 930   //    field.
 931   //  * Finally enable discovery by the STW ref processor.
 932   //
 933   // The STW ref processor is used to record any discovered
 934   // references during the full GC.
 935   //
 936   // At the end of a full GC we:
 937   //  * Enqueue any reference objects discovered by the STW ref processor
 938   //    that have non-live referents. This has the side-effect of
 939   //    making the STW ref processor inactive by disabling discovery.
 940   //  * Verify that the CM ref processor is still inactive
 941   //    and no references have been placed on it's discovered
 942   //    lists (also checked as a precondition during initial marking).
 943 
 944   // The (stw) reference processor...
 945   ReferenceProcessor* _ref_processor_stw;
 946 
 947   STWGCTimer* _gc_timer_stw;
 948   ConcurrentGCTimer* _gc_timer_cm;
 949 
 950   G1OldTracer* _gc_tracer_cm;
 951   G1NewTracer* _gc_tracer_stw;
 952 
 953   // During reference object discovery, the _is_alive_non_header
 954   // closure (if non-null) is applied to the referent object to
 955   // determine whether the referent is live. If so then the
 956   // reference object does not need to be 'discovered' and can
 957   // be treated as a regular oop. This has the benefit of reducing
 958   // the number of 'discovered' reference objects that need to
 959   // be processed.
 960   //
 961   // Instance of the is_alive closure for embedding into the
 962   // STW reference processor as the _is_alive_non_header field.
 963   // Supplying a value for the _is_alive_non_header field is
 964   // optional but doing so prevents unnecessary additions to
 965   // the discovered lists during reference discovery.
 966   G1STWIsAliveClosure _is_alive_closure_stw;
 967 
 968   // The (concurrent marking) reference processor...
 969   ReferenceProcessor* _ref_processor_cm;
 970 
 971   // Instance of the concurrent mark is_alive closure for embedding
 972   // into the Concurrent Marking reference processor as the
 973   // _is_alive_non_header field. Supplying a value for the
 974   // _is_alive_non_header field is optional but doing so prevents
 975   // unnecessary additions to the discovered lists during reference
 976   // discovery.
 977   G1CMIsAliveClosure _is_alive_closure_cm;
 978 
 979   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 980   HeapRegion** _worker_cset_start_region;
 981 
 982   // Time stamp to validate the regions recorded in the cache
 983   // used by G1CollectedHeap::start_cset_region_for_worker().
 984   // The heap region entry for a given worker is valid iff
 985   // the associated time stamp value matches the current value
 986   // of G1CollectedHeap::_gc_time_stamp.
 987   uint* _worker_cset_start_region_time_stamp;
 988 
 989   volatile bool _free_regions_coming;
 990 
 991 public:
 992 
 993   void set_refine_cte_cl_concurrency(bool concurrent);
 994 
 995   RefToScanQueue *task_queue(uint i) const;
 996 
 997   uint num_task_queues() const;
 998 
 999   // A set of cards where updates happened during the GC
1000   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1001 
1002   // A DirtyCardQueueSet that is used to hold cards that contain
1003   // references into the current collection set. This is used to
1004   // update the remembered sets of the regions in the collection
1005   // set in the event of an evacuation failure.
1006   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1007         { return _into_cset_dirty_card_queue_set; }
1008 
1009   // Create a G1CollectedHeap with the specified policy.
1010   // Must call the initialize method afterwards.
1011   // May not return if something goes wrong.
1012   G1CollectedHeap(G1CollectorPolicy* policy);
1013 
1014   // Initialize the G1CollectedHeap to have the initial and
1015   // maximum sizes and remembered and barrier sets
1016   // specified by the policy object.
1017   jint initialize();
1018 
1019   virtual void stop();
1020 
1021   // Return the (conservative) maximum heap alignment for any G1 heap
1022   static size_t conservative_max_heap_alignment();
1023 
1024   // Does operations required after initialization has been done.
1025   void post_initialize();
1026 
1027   // Initialize weak reference processing.
1028   void ref_processing_init();
1029 
1030   virtual Name kind() const {
1031     return CollectedHeap::G1CollectedHeap;
1032   }
1033 
1034   G1CollectorState* collector_state() { return &_collector_state; }
1035 
1036   // The current policy object for the collector.
1037   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1038 
1039   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1040 
1041   // Adaptive size policy.  No such thing for g1.
1042   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1043 
1044   // The rem set and barrier set.
1045   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1046 
1047   unsigned get_gc_time_stamp() {
1048     return _gc_time_stamp;
1049   }
1050 
1051   inline void reset_gc_time_stamp();
1052 
1053   void check_gc_time_stamps() PRODUCT_RETURN;
1054 
1055   inline void increment_gc_time_stamp();
1056 
1057   // Reset the given region's GC timestamp. If it's starts humongous,
1058   // also reset the GC timestamp of its corresponding
1059   // continues humongous regions too.
1060   void reset_gc_time_stamps(HeapRegion* hr);
1061 
1062   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1063                                   DirtyCardQueue* into_cset_dcq,
1064                                   bool concurrent, uint worker_i);
1065 
1066   // The shared block offset table array.
1067   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1068 
1069   // Reference Processing accessors
1070 
1071   // The STW reference processor....
1072   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1073 
1074   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1075 
1076   // The Concurrent Marking reference processor...
1077   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1078 
1079   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1080   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1081 
1082   virtual size_t capacity() const;
1083   virtual size_t used() const;
1084   // This should be called when we're not holding the heap lock. The
1085   // result might be a bit inaccurate.
1086   size_t used_unlocked() const;
1087   size_t recalculate_used() const;
1088 
1089   // These virtual functions do the actual allocation.
1090   // Some heaps may offer a contiguous region for shared non-blocking
1091   // allocation, via inlined code (by exporting the address of the top and
1092   // end fields defining the extent of the contiguous allocation region.)
1093   // But G1CollectedHeap doesn't yet support this.
1094 
1095   virtual bool is_maximal_no_gc() const {
1096     return _hrm.available() == 0;
1097   }
1098 
1099   // The current number of regions in the heap.
1100   uint num_regions() const { return _hrm.length(); }
1101 
1102   // The max number of regions in the heap.
1103   uint max_regions() const { return _hrm.max_length(); }
1104 
1105   // The number of regions that are completely free.
1106   uint num_free_regions() const { return _hrm.num_free_regions(); }
1107 
1108   MemoryUsage get_auxiliary_data_memory_usage() const {
1109     return _hrm.get_auxiliary_data_memory_usage();
1110   }
1111 
1112   // The number of regions that are not completely free.
1113   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1114 
1115   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1116   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1117   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1118   void verify_dirty_young_regions() PRODUCT_RETURN;
1119 
1120 #ifndef PRODUCT
1121   // Make sure that the given bitmap has no marked objects in the
1122   // range [from,limit). If it does, print an error message and return
1123   // false. Otherwise, just return true. bitmap_name should be "prev"
1124   // or "next".
1125   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1126                                 HeapWord* from, HeapWord* limit);
1127 
1128   // Verify that the prev / next bitmap range [tams,end) for the given
1129   // region has no marks. Return true if all is well, false if errors
1130   // are detected.
1131   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1132 #endif // PRODUCT
1133 
1134   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1135   // the given region do not have any spurious marks. If errors are
1136   // detected, print appropriate error messages and crash.
1137   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1138 
1139   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1140   // have any spurious marks. If errors are detected, print
1141   // appropriate error messages and crash.
1142   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1143 
1144   // Do sanity check on the contents of the in-cset fast test table.
1145   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1146 
1147   // verify_region_sets() performs verification over the region
1148   // lists. It will be compiled in the product code to be used when
1149   // necessary (i.e., during heap verification).
1150   void verify_region_sets();
1151 
1152   // verify_region_sets_optional() is planted in the code for
1153   // list verification in non-product builds (and it can be enabled in
1154   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1155 #if HEAP_REGION_SET_FORCE_VERIFY
1156   void verify_region_sets_optional() {
1157     verify_region_sets();
1158   }
1159 #else // HEAP_REGION_SET_FORCE_VERIFY
1160   void verify_region_sets_optional() { }
1161 #endif // HEAP_REGION_SET_FORCE_VERIFY
1162 
1163 #ifdef ASSERT
1164   bool is_on_master_free_list(HeapRegion* hr) {
1165     return _hrm.is_free(hr);
1166   }
1167 #endif // ASSERT
1168 
1169   // Wrapper for the region list operations that can be called from
1170   // methods outside this class.
1171 
1172   void secondary_free_list_add(FreeRegionList* list) {
1173     _secondary_free_list.add_ordered(list);
1174   }
1175 
1176   void append_secondary_free_list() {
1177     _hrm.insert_list_into_free_list(&_secondary_free_list);
1178   }
1179 
1180   void append_secondary_free_list_if_not_empty_with_lock() {
1181     // If the secondary free list looks empty there's no reason to
1182     // take the lock and then try to append it.
1183     if (!_secondary_free_list.is_empty()) {
1184       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1185       append_secondary_free_list();
1186     }
1187   }
1188 
1189   inline void old_set_add(HeapRegion* hr);
1190   inline void old_set_remove(HeapRegion* hr);
1191 
1192   size_t non_young_capacity_bytes() {
1193     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1194   }
1195 
1196   void set_free_regions_coming();
1197   void reset_free_regions_coming();
1198   bool free_regions_coming() { return _free_regions_coming; }
1199   void wait_while_free_regions_coming();
1200 
1201   // Determine whether the given region is one that we are using as an
1202   // old GC alloc region.
1203   bool is_old_gc_alloc_region(HeapRegion* hr);
1204 
1205   // Perform a collection of the heap; intended for use in implementing
1206   // "System.gc".  This probably implies as full a collection as the
1207   // "CollectedHeap" supports.
1208   virtual void collect(GCCause::Cause cause);
1209 
1210   // The same as above but assume that the caller holds the Heap_lock.
1211   void collect_locked(GCCause::Cause cause);
1212 
1213   virtual bool copy_allocation_context_stats(const jint* contexts,
1214                                              jlong* totals,
1215                                              jbyte* accuracy,
1216                                              jint len);
1217 
1218   // True iff an evacuation has failed in the most-recent collection.
1219   bool evacuation_failed() { return _evacuation_failed; }
1220 
1221   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1222   void prepend_to_freelist(FreeRegionList* list);
1223   void decrement_summary_bytes(size_t bytes);
1224 
1225   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1226   virtual bool is_in(const void* p) const;
1227 #ifdef ASSERT
1228   // Returns whether p is in one of the available areas of the heap. Slow but
1229   // extensive version.
1230   bool is_in_exact(const void* p) const;
1231 #endif
1232 
1233   // Return "TRUE" iff the given object address is within the collection
1234   // set. Slow implementation.
1235   bool obj_in_cs(oop obj);
1236 
1237   inline bool is_in_cset(const HeapRegion *hr);
1238   inline bool is_in_cset(oop obj);
1239 
1240   inline bool is_in_cset_or_humongous(const oop obj);
1241 
1242  private:
1243   // This array is used for a quick test on whether a reference points into
1244   // the collection set or not. Each of the array's elements denotes whether the
1245   // corresponding region is in the collection set or not.
1246   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1247 
1248  public:
1249 
1250   inline InCSetState in_cset_state(const oop obj);
1251 
1252   // Return "TRUE" iff the given object address is in the reserved
1253   // region of g1.
1254   bool is_in_g1_reserved(const void* p) const {
1255     return _hrm.reserved().contains(p);
1256   }
1257 
1258   // Returns a MemRegion that corresponds to the space that has been
1259   // reserved for the heap
1260   MemRegion g1_reserved() const {
1261     return _hrm.reserved();
1262   }
1263 
1264   virtual bool is_in_closed_subset(const void* p) const;
1265 
1266   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1267     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1268   }
1269 
1270   // This resets the card table to all zeros.  It is used after
1271   // a collection pause which used the card table to claim cards.
1272   void cleanUpCardTable();
1273 
1274   // Iteration functions.
1275 
1276   // Iterate over all objects, calling "cl.do_object" on each.
1277   virtual void object_iterate(ObjectClosure* cl);
1278 
1279   virtual void safe_object_iterate(ObjectClosure* cl) {
1280     object_iterate(cl);
1281   }
1282 
1283   // Iterate over heap regions, in address order, terminating the
1284   // iteration early if the "doHeapRegion" method returns "true".
1285   void heap_region_iterate(HeapRegionClosure* blk) const;
1286 
1287   // Return the region with the given index. It assumes the index is valid.
1288   inline HeapRegion* region_at(uint index) const;
1289 
1290   // Calculate the region index of the given address. Given address must be
1291   // within the heap.
1292   inline uint addr_to_region(HeapWord* addr) const;
1293 
1294   inline HeapWord* bottom_addr_for_region(uint index) const;
1295 
1296   // Iterate over the heap regions in parallel. Assumes that this will be called
1297   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1298   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1299   // to each of the regions, by attempting to claim the region using the
1300   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1301   // region. The concurrent argument should be set to true if iteration is
1302   // performed concurrently, during which no assumptions are made for consistent
1303   // attributes of the heap regions (as they might be modified while iterating).
1304   void heap_region_par_iterate(HeapRegionClosure* cl,
1305                                uint worker_id,
1306                                HeapRegionClaimer* hrclaimer,
1307                                bool concurrent = false) const;
1308 
1309   // Clear the cached cset start regions and (more importantly)
1310   // the time stamps. Called when we reset the GC time stamp.
1311   void clear_cset_start_regions();
1312 
1313   // Given the id of a worker, obtain or calculate a suitable
1314   // starting region for iterating over the current collection set.
1315   HeapRegion* start_cset_region_for_worker(uint worker_i);
1316 
1317   // Iterate over the regions (if any) in the current collection set.
1318   void collection_set_iterate(HeapRegionClosure* blk);
1319 
1320   // As above but starting from region r
1321   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1322 
1323   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1324 
1325   // Returns the HeapRegion that contains addr. addr must not be NULL.
1326   template <class T>
1327   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1328 
1329   // Returns the HeapRegion that contains addr. addr must not be NULL.
1330   // If addr is within a humongous continues region, it returns its humongous start region.
1331   template <class T>
1332   inline HeapRegion* heap_region_containing(const T addr) const;
1333 
1334   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1335   // each address in the (reserved) heap is a member of exactly
1336   // one block.  The defining characteristic of a block is that it is
1337   // possible to find its size, and thus to progress forward to the next
1338   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1339   // represent Java objects, or they might be free blocks in a
1340   // free-list-based heap (or subheap), as long as the two kinds are
1341   // distinguishable and the size of each is determinable.
1342 
1343   // Returns the address of the start of the "block" that contains the
1344   // address "addr".  We say "blocks" instead of "object" since some heaps
1345   // may not pack objects densely; a chunk may either be an object or a
1346   // non-object.
1347   virtual HeapWord* block_start(const void* addr) const;
1348 
1349   // Requires "addr" to be the start of a chunk, and returns its size.
1350   // "addr + size" is required to be the start of a new chunk, or the end
1351   // of the active area of the heap.
1352   virtual size_t block_size(const HeapWord* addr) const;
1353 
1354   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1355   // the block is an object.
1356   virtual bool block_is_obj(const HeapWord* addr) const;
1357 
1358   // Section on thread-local allocation buffers (TLABs)
1359   // See CollectedHeap for semantics.
1360 
1361   bool supports_tlab_allocation() const;
1362   size_t tlab_capacity(Thread* ignored) const;
1363   size_t tlab_used(Thread* ignored) const;
1364   size_t max_tlab_size() const;
1365   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1366 
1367   // Can a compiler initialize a new object without store barriers?
1368   // This permission only extends from the creation of a new object
1369   // via a TLAB up to the first subsequent safepoint. If such permission
1370   // is granted for this heap type, the compiler promises to call
1371   // defer_store_barrier() below on any slow path allocation of
1372   // a new object for which such initializing store barriers will
1373   // have been elided. G1, like CMS, allows this, but should be
1374   // ready to provide a compensating write barrier as necessary
1375   // if that storage came out of a non-young region. The efficiency
1376   // of this implementation depends crucially on being able to
1377   // answer very efficiently in constant time whether a piece of
1378   // storage in the heap comes from a young region or not.
1379   // See ReduceInitialCardMarks.
1380   virtual bool can_elide_tlab_store_barriers() const {
1381     return true;
1382   }
1383 
1384   virtual bool card_mark_must_follow_store() const {
1385     return true;
1386   }
1387 
1388   inline bool is_in_young(const oop obj);
1389 
1390   virtual bool is_scavengable(const void* addr);
1391 
1392   // We don't need barriers for initializing stores to objects
1393   // in the young gen: for the SATB pre-barrier, there is no
1394   // pre-value that needs to be remembered; for the remembered-set
1395   // update logging post-barrier, we don't maintain remembered set
1396   // information for young gen objects.
1397   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1398 
1399   // Returns "true" iff the given word_size is "very large".
1400   static bool is_humongous(size_t word_size) {
1401     // Note this has to be strictly greater-than as the TLABs
1402     // are capped at the humongous threshold and we want to
1403     // ensure that we don't try to allocate a TLAB as
1404     // humongous and that we don't allocate a humongous
1405     // object in a TLAB.
1406     return word_size > _humongous_object_threshold_in_words;
1407   }
1408 
1409   // Returns the humongous threshold for a specific region size
1410   static size_t humongous_threshold_for(size_t region_size) {
1411     return (region_size / 2);
1412   }
1413 
1414   // Update mod union table with the set of dirty cards.
1415   void updateModUnion();
1416 
1417   // Set the mod union bits corresponding to the given memRegion.  Note
1418   // that this is always a safe operation, since it doesn't clear any
1419   // bits.
1420   void markModUnionRange(MemRegion mr);
1421 
1422   // Print the maximum heap capacity.
1423   virtual size_t max_capacity() const;
1424 
1425   virtual jlong millis_since_last_gc();
1426 
1427 
1428   // Convenience function to be used in situations where the heap type can be
1429   // asserted to be this type.
1430   static G1CollectedHeap* heap();
1431 
1432   void set_region_short_lived_locked(HeapRegion* hr);
1433   // add appropriate methods for any other surv rate groups
1434 
1435   YoungList* young_list() const { return _young_list; }
1436 
1437   // debugging
1438   bool check_young_list_well_formed() {
1439     return _young_list->check_list_well_formed();
1440   }
1441 
1442   bool check_young_list_empty(bool check_heap,
1443                               bool check_sample = true);
1444 
1445   // *** Stuff related to concurrent marking.  It's not clear to me that so
1446   // many of these need to be public.
1447 
1448   // The functions below are helper functions that a subclass of
1449   // "CollectedHeap" can use in the implementation of its virtual
1450   // functions.
1451   // This performs a concurrent marking of the live objects in a
1452   // bitmap off to the side.
1453   void doConcurrentMark();
1454 
1455   bool isMarkedPrev(oop obj) const;
1456   bool isMarkedNext(oop obj) const;
1457 
1458   // Determine if an object is dead, given the object and also
1459   // the region to which the object belongs. An object is dead
1460   // iff a) it was not allocated since the last mark, b) it
1461   // is not marked, and c) it is not in an archive region.
1462   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1463     return
1464       !hr->obj_allocated_since_prev_marking(obj) &&
1465       !isMarkedPrev(obj) &&
1466       !hr->is_archive();
1467   }
1468 
1469   // This function returns true when an object has been
1470   // around since the previous marking and hasn't yet
1471   // been marked during this marking, and is not in an archive region.
1472   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1473     return
1474       !hr->obj_allocated_since_next_marking(obj) &&
1475       !isMarkedNext(obj) &&
1476       !hr->is_archive();
1477   }
1478 
1479   // Determine if an object is dead, given only the object itself.
1480   // This will find the region to which the object belongs and
1481   // then call the region version of the same function.
1482 
1483   // Added if it is NULL it isn't dead.
1484 
1485   inline bool is_obj_dead(const oop obj) const;
1486 
1487   inline bool is_obj_ill(const oop obj) const;
1488 
1489   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1490   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1491   bool is_marked(oop obj, VerifyOption vo);
1492   const char* top_at_mark_start_str(VerifyOption vo);
1493 
1494   ConcurrentMark* concurrent_mark() const { return _cm; }
1495 
1496   // Refinement
1497 
1498   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1499 
1500   // The dirty cards region list is used to record a subset of regions
1501   // whose cards need clearing. The list if populated during the
1502   // remembered set scanning and drained during the card table
1503   // cleanup. Although the methods are reentrant, population/draining
1504   // phases must not overlap. For synchronization purposes the last
1505   // element on the list points to itself.
1506   HeapRegion* _dirty_cards_region_list;
1507   void push_dirty_cards_region(HeapRegion* hr);
1508   HeapRegion* pop_dirty_cards_region();
1509 
1510   // Optimized nmethod scanning support routines
1511 
1512   // Register the given nmethod with the G1 heap.
1513   virtual void register_nmethod(nmethod* nm);
1514 
1515   // Unregister the given nmethod from the G1 heap.
1516   virtual void unregister_nmethod(nmethod* nm);
1517 
1518   // Free up superfluous code root memory.
1519   void purge_code_root_memory();
1520 
1521   // Rebuild the strong code root lists for each region
1522   // after a full GC.
1523   void rebuild_strong_code_roots();
1524 
1525   // Delete entries for dead interned string and clean up unreferenced symbols
1526   // in symbol table, possibly in parallel.
1527   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1528 
1529   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1530   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1531 
1532   // Redirty logged cards in the refinement queue.
1533   void redirty_logged_cards();
1534   // Verification
1535 
1536   // Perform any cleanup actions necessary before allowing a verification.
1537   virtual void prepare_for_verify();
1538 
1539   // Perform verification.
1540 
1541   // vo == UsePrevMarking  -> use "prev" marking information,
1542   // vo == UseNextMarking -> use "next" marking information
1543   // vo == UseMarkWord    -> use the mark word in the object header
1544   //
1545   // NOTE: Only the "prev" marking information is guaranteed to be
1546   // consistent most of the time, so most calls to this should use
1547   // vo == UsePrevMarking.
1548   // Currently, there is only one case where this is called with
1549   // vo == UseNextMarking, which is to verify the "next" marking
1550   // information at the end of remark.
1551   // Currently there is only one place where this is called with
1552   // vo == UseMarkWord, which is to verify the marking during a
1553   // full GC.
1554   void verify(bool silent, VerifyOption vo);
1555 
1556   // Override; it uses the "prev" marking information
1557   virtual void verify(bool silent);
1558 
1559   // The methods below are here for convenience and dispatch the
1560   // appropriate method depending on value of the given VerifyOption
1561   // parameter. The values for that parameter, and their meanings,
1562   // are the same as those above.
1563 
1564   bool is_obj_dead_cond(const oop obj,
1565                         const HeapRegion* hr,
1566                         const VerifyOption vo) const;
1567 
1568   bool is_obj_dead_cond(const oop obj,
1569                         const VerifyOption vo) const;
1570 
1571   G1HeapSummary create_g1_heap_summary();
1572   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1573 
1574   // Printing
1575 
1576   virtual void print_on(outputStream* st) const;
1577   virtual void print_extended_on(outputStream* st) const;
1578   virtual void print_on_error(outputStream* st) const;
1579 
1580   virtual void print_gc_threads_on(outputStream* st) const;
1581   virtual void gc_threads_do(ThreadClosure* tc) const;
1582 
1583   // Override
1584   void print_tracing_info() const;
1585 
1586   // The following two methods are helpful for debugging RSet issues.
1587   void print_cset_rsets() PRODUCT_RETURN;
1588   void print_all_rsets() PRODUCT_RETURN;
1589 
1590 public:
1591   size_t pending_card_num();
1592   size_t cards_scanned();
1593 
1594 protected:
1595   size_t _max_heap_capacity;
1596 };
1597 
1598 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP