1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc/g1/collectionSetChooser.hpp"
  29 #include "gc/g1/g1CollectorState.hpp"
  30 #include "gc/g1/g1GCPhaseTimes.hpp"
  31 #include "gc/g1/g1InCSetState.hpp"
  32 #include "gc/g1/g1MMUTracker.hpp"
  33 #include "gc/g1/g1Predictions.hpp"
  34 #include "gc/shared/collectorPolicy.hpp"
  35 
  36 // A G1CollectorPolicy makes policy decisions that determine the
  37 // characteristics of the collector.  Examples include:
  38 //   * choice of collection set.
  39 //   * when to collect.
  40 
  41 class HeapRegion;
  42 class CollectionSetChooser;
  43 class G1IHOPControl;
  44 
  45 // TraceYoungGenTime collects data on _both_ young and mixed evacuation pauses
  46 // (the latter may contain non-young regions - i.e. regions that are
  47 // technically in old) while TraceOldGenTime collects data about full GCs.
  48 class TraceYoungGenTimeData : public CHeapObj<mtGC> {
  49  private:
  50   unsigned  _young_pause_num;
  51   unsigned  _mixed_pause_num;
  52 
  53   NumberSeq _all_stop_world_times_ms;
  54   NumberSeq _all_yield_times_ms;
  55 
  56   NumberSeq _total;
  57   NumberSeq _other;
  58   NumberSeq _root_region_scan_wait;
  59   NumberSeq _parallel;
  60   NumberSeq _ext_root_scan;
  61   NumberSeq _satb_filtering;
  62   NumberSeq _update_rs;
  63   NumberSeq _scan_rs;
  64   NumberSeq _obj_copy;
  65   NumberSeq _termination;
  66   NumberSeq _parallel_other;
  67   NumberSeq _clear_ct;
  68 
  69   void print_summary(const char* str, const NumberSeq* seq) const;
  70   void print_summary_sd(const char* str, const NumberSeq* seq) const;
  71 
  72 public:
  73    TraceYoungGenTimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  74   void record_start_collection(double time_to_stop_the_world_ms);
  75   void record_yield_time(double yield_time_ms);
  76   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
  77   void increment_young_collection_count();
  78   void increment_mixed_collection_count();
  79   void print() const;
  80 };
  81 
  82 class TraceOldGenTimeData : public CHeapObj<mtGC> {
  83  private:
  84   NumberSeq _all_full_gc_times;
  85 
  86  public:
  87   void record_full_collection(double full_gc_time_ms);
  88   void print() const;
  89 };
  90 
  91 // There are three command line options related to the young gen size:
  92 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  93 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  94 // heuristics to calculate the actual young gen size, so these options
  95 // basically only limit the range within which G1 can pick a young gen
  96 // size. Also, these are general options taking byte sizes. G1 will
  97 // internally work with a number of regions instead. So, some rounding
  98 // will occur.
  99 //
 100 // If nothing related to the the young gen size is set on the command
 101 // line we should allow the young gen to be between G1NewSizePercent
 102 // and G1MaxNewSizePercent of the heap size. This means that every time
 103 // the heap size changes, the limits for the young gen size will be
 104 // recalculated.
 105 //
 106 // If only -XX:NewSize is set we should use the specified value as the
 107 // minimum size for young gen. Still using G1MaxNewSizePercent of the
 108 // heap as maximum.
 109 //
 110 // If only -XX:MaxNewSize is set we should use the specified value as the
 111 // maximum size for young gen. Still using G1NewSizePercent of the heap
 112 // as minimum.
 113 //
 114 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 115 // No updates when the heap size changes. There is a special case when
 116 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 117 // different heuristic for calculating the collection set when we do mixed
 118 // collection.
 119 //
 120 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 121 // as both min and max. This will be interpreted as "fixed" just like the
 122 // NewSize==MaxNewSize case above. But we will update the min and max
 123 // every time the heap size changes.
 124 //
 125 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 126 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 127 class G1YoungGenSizer : public CHeapObj<mtGC> {
 128 private:
 129   enum SizerKind {
 130     SizerDefaults,
 131     SizerNewSizeOnly,
 132     SizerMaxNewSizeOnly,
 133     SizerMaxAndNewSize,
 134     SizerNewRatio
 135   };
 136   SizerKind _sizer_kind;
 137   uint _min_desired_young_length;
 138   uint _max_desired_young_length;
 139   bool _adaptive_size;
 140   uint calculate_default_min_length(uint new_number_of_heap_regions);
 141   uint calculate_default_max_length(uint new_number_of_heap_regions);
 142 
 143   // Update the given values for minimum and maximum young gen length in regions
 144   // given the number of heap regions depending on the kind of sizing algorithm.
 145   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
 146 
 147 public:
 148   G1YoungGenSizer();
 149   // Calculate the maximum length of the young gen given the number of regions
 150   // depending on the sizing algorithm.
 151   uint max_young_length(uint number_of_heap_regions);
 152 
 153   void heap_size_changed(uint new_number_of_heap_regions);
 154   uint min_desired_young_length() {
 155     return _min_desired_young_length;
 156   }
 157   uint max_desired_young_length() {
 158     return _max_desired_young_length;
 159   }
 160   bool adaptive_young_list_length() const {
 161     return _adaptive_size;
 162   }
 163 };
 164 
 165 class G1CollectorPolicy: public CollectorPolicy {
 166  private:
 167   G1IHOPControl* _ihop_control;
 168 
 169   G1IHOPControl* create_ihop_control() const;
 170   void update_ihop_statistics(double marking_to_mixed_time,
 171                               double mutator_time_s,
 172                               size_t mutator_alloc_bytes,
 173                               size_t young_gen_size);
 174   void report_ihop_statistics();
 175 
 176   G1Predictions _predictor;
 177 
 178   double get_new_prediction(TruncatedSeq const* seq) const;
 179 
 180   // either equal to the number of parallel threads, if ParallelGCThreads
 181   // has been set, or 1 otherwise
 182   int _parallel_gc_threads;
 183 
 184   // The number of GC threads currently active.
 185   uintx _no_of_gc_threads;
 186 
 187   G1MMUTracker* _mmu_tracker;
 188 
 189   void initialize_alignments();
 190   void initialize_flags();
 191 
 192   CollectionSetChooser* _collectionSetChooser;
 193 
 194   double _full_collection_start_sec;
 195   uint   _cur_collection_pause_used_regions_at_start;
 196 
 197   // These exclude marking times.
 198   TruncatedSeq* _recent_gc_times_ms;
 199 
 200   TruncatedSeq* _concurrent_mark_remark_times_ms;
 201   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 202 
 203   TraceYoungGenTimeData _trace_young_gen_time_data;
 204   TraceOldGenTimeData   _trace_old_gen_time_data;
 205 
 206   double _stop_world_start;
 207 
 208   uint _young_list_target_length;
 209   uint _young_list_fixed_length;
 210 
 211   // The max number of regions we can extend the eden by while the GC
 212   // locker is active. This should be >= _young_list_target_length;
 213   uint _young_list_max_length;
 214 
 215   SurvRateGroup* _short_lived_surv_rate_group;
 216   SurvRateGroup* _survivor_surv_rate_group;
 217   // add here any more surv rate groups
 218 
 219   double _gc_overhead_perc;
 220 
 221   double _reserve_factor;
 222   uint   _reserve_regions;
 223 
 224   enum PredictionConstants {
 225     TruncatedSeqLength = 10,
 226     NumPrevPausesForHeuristics = 10
 227   };
 228 
 229   TruncatedSeq* _alloc_rate_ms_seq;
 230   double        _prev_collection_pause_end_ms;
 231 
 232   TruncatedSeq* _rs_length_diff_seq;
 233   TruncatedSeq* _cost_per_card_ms_seq;
 234   TruncatedSeq* _cost_scan_hcc_seq;
 235   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 236   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 237   TruncatedSeq* _cost_per_entry_ms_seq;
 238   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 239   TruncatedSeq* _cost_per_byte_ms_seq;
 240   TruncatedSeq* _constant_other_time_ms_seq;
 241   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 242   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 243 
 244   TruncatedSeq* _pending_cards_seq;
 245   TruncatedSeq* _rs_lengths_seq;
 246 
 247   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 248 
 249   G1YoungGenSizer* _young_gen_sizer;
 250 
 251   uint _eden_cset_region_length;
 252   uint _survivor_cset_region_length;
 253   uint _old_cset_region_length;
 254 
 255   void init_cset_region_lengths(uint eden_cset_region_length,
 256                                 uint survivor_cset_region_length);
 257 
 258   uint eden_cset_region_length() const     { return _eden_cset_region_length;     }
 259   uint survivor_cset_region_length() const { return _survivor_cset_region_length; }
 260   uint old_cset_region_length() const      { return _old_cset_region_length;      }
 261 
 262   uint _free_regions_at_end_of_collection;
 263 
 264   size_t _recorded_rs_lengths;
 265   size_t _max_rs_lengths;
 266 
 267   size_t _rs_lengths_prediction;
 268 
 269 #ifndef PRODUCT
 270   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 271 #endif // PRODUCT
 272 
 273   void adjust_concurrent_refinement(double update_rs_time,
 274                                     double update_rs_processed_buffers,
 275                                     double goal_ms);
 276 
 277   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 278   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 279 
 280   double _pause_time_target_ms;
 281 
 282   size_t _pending_cards;
 283 
 284   // The amount of allocated bytes in old gen during the last mutator and the following
 285   // young GC phase.
 286   size_t _last_old_allocated_bytes;
 287 
 288   // Used to track time from the end of initial mark to the first mixed GC.
 289   class InitialMarkToMixedTimeTracker {
 290    private:
 291     bool _active;
 292     double _initial_mark_end_time;
 293     double _mixed_start_time;
 294     double _total_pause_time;
 295 
 296     double wall_time() const {
 297       return _mixed_start_time - _initial_mark_end_time;
 298     }
 299    public:
 300     InitialMarkToMixedTimeTracker() { reset(); }
 301 
 302     void record_initial_mark_end(double end_time) {
 303       assert(!_active, "Initial mark out of order.");
 304       _initial_mark_end_time = end_time;
 305       _active = true;
 306     }
 307 
 308     void record_mixed_gc_start(double start_time) {
 309       if (_active) {
 310         _mixed_start_time = start_time;
 311         _active = false;
 312       }
 313     }
 314 
 315     double last_marking_time() {
 316       assert(has_result(), "Do not have all measurements yet.");
 317       double result = (_mixed_start_time - _initial_mark_end_time) - _total_pause_time;
 318       reset();
 319       return result;
 320     }
 321 
 322     void reset() {
 323       _active = false;
 324       _total_pause_time = 0.0;
 325       _initial_mark_end_time = -1.0;
 326       _mixed_start_time = -1.0;
 327     }
 328 
 329     void add_pause(double time) {
 330       if (_active) {
 331         _total_pause_time += time;
 332       }
 333     }
 334 
 335     bool has_result() const { return _mixed_start_time > 0.0 && _initial_mark_end_time > 0.0; }
 336   };
 337 
 338   InitialMarkToMixedTimeTracker _initial_mark_to_mixed;
 339 public:
 340   G1Predictions& predictor() { return _predictor; }
 341 
 342   // Add the given number of bytes to the total number of allocated bytes in the old gen.
 343   void add_last_old_allocated_bytes(size_t bytes) { _last_old_allocated_bytes += bytes; }
 344 
 345   // Accessors
 346 
 347   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 348     hr->set_eden();
 349     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 350     hr->set_young_index_in_cset(young_index_in_cset);
 351   }
 352 
 353   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 354     assert(hr->is_survivor(), "pre-condition");
 355     hr->install_surv_rate_group(_survivor_surv_rate_group);
 356     hr->set_young_index_in_cset(young_index_in_cset);
 357   }
 358 
 359 #ifndef PRODUCT
 360   bool verify_young_ages();
 361 #endif // PRODUCT
 362 
 363   void record_max_rs_lengths(size_t rs_lengths) {
 364     _max_rs_lengths = rs_lengths;
 365   }
 366 
 367   size_t predict_rs_length_diff() const;
 368 
 369   double predict_alloc_rate_ms() const;
 370 
 371   double predict_cost_per_card_ms() const;
 372 
 373   double predict_scan_hcc_ms() const;
 374 
 375   double predict_rs_update_time_ms(size_t pending_cards) const;
 376 
 377   double predict_young_cards_per_entry_ratio() const;
 378 
 379   double predict_mixed_cards_per_entry_ratio() const;
 380 
 381   size_t predict_young_card_num(size_t rs_length) const;
 382 
 383   size_t predict_non_young_card_num(size_t rs_length) const;
 384 
 385   double predict_rs_scan_time_ms(size_t card_num) const;
 386 
 387   double predict_mixed_rs_scan_time_ms(size_t card_num) const;
 388 
 389   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const;
 390 
 391   double predict_object_copy_time_ms(size_t bytes_to_copy) const;
 392 
 393   double predict_constant_other_time_ms() const;
 394 
 395   double predict_young_other_time_ms(size_t young_num) const;
 396 
 397   double predict_non_young_other_time_ms(size_t non_young_num) const;
 398 
 399   double predict_base_elapsed_time_ms(size_t pending_cards) const;
 400   double predict_base_elapsed_time_ms(size_t pending_cards,
 401                                       size_t scanned_cards) const;
 402   size_t predict_bytes_to_copy(HeapRegion* hr) const;
 403   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const;
 404 
 405   void set_recorded_rs_lengths(size_t rs_lengths);
 406 
 407   uint cset_region_length() const       { return young_cset_region_length() +
 408                                            old_cset_region_length(); }
 409   uint young_cset_region_length() const { return eden_cset_region_length() +
 410                                            survivor_cset_region_length(); }
 411 
 412   double predict_survivor_regions_evac_time() const;
 413 
 414   bool should_update_surv_rate_group_predictors() {
 415     return collector_state()->last_gc_was_young() && !collector_state()->in_marking_window();
 416   }
 417 
 418   void cset_regions_freed() {
 419     bool update = should_update_surv_rate_group_predictors();
 420 
 421     _short_lived_surv_rate_group->all_surviving_words_recorded(update);
 422     _survivor_surv_rate_group->all_surviving_words_recorded(update);
 423   }
 424 
 425   G1MMUTracker* mmu_tracker() {
 426     return _mmu_tracker;
 427   }
 428 
 429   const G1MMUTracker* mmu_tracker() const {
 430     return _mmu_tracker;
 431   }
 432 
 433   double max_pause_time_ms() const {
 434     return _mmu_tracker->max_gc_time() * 1000.0;
 435   }
 436 
 437   double predict_remark_time_ms() const;
 438 
 439   double predict_cleanup_time_ms() const;
 440 
 441   // Returns an estimate of the survival rate of the region at yg-age
 442   // "yg_age".
 443   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const;
 444 
 445   double predict_yg_surv_rate(int age) const;
 446 
 447   double accum_yg_surv_rate_pred(int age) const;
 448 
 449 protected:
 450   virtual double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const;
 451   virtual double other_time_ms(double pause_time_ms) const;
 452 
 453   double young_other_time_ms() const;
 454   double non_young_other_time_ms() const;
 455   double constant_other_time_ms(double pause_time_ms) const;
 456 
 457 private:
 458   // Statistics kept per GC stoppage, pause or full.
 459   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 460 
 461   // Add a new GC of the given duration and end time to the record.
 462   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 463 
 464   // The head of the list (via "next_in_collection_set()") representing the
 465   // current collection set. Set from the incrementally built collection
 466   // set at the start of the pause.
 467   HeapRegion* _collection_set;
 468 
 469   // The number of bytes in the collection set before the pause. Set from
 470   // the incrementally built collection set at the start of an evacuation
 471   // pause, and incremented in finalize_old_cset_part() when adding old regions
 472   // (if any) to the collection set.
 473   size_t _collection_set_bytes_used_before;
 474 
 475   // The number of bytes copied during the GC.
 476   size_t _bytes_copied_during_gc;
 477 
 478   // The associated information that is maintained while the incremental
 479   // collection set is being built with young regions. Used to populate
 480   // the recorded info for the evacuation pause.
 481 
 482   enum CSetBuildType {
 483     Active,             // We are actively building the collection set
 484     Inactive            // We are not actively building the collection set
 485   };
 486 
 487   CSetBuildType _inc_cset_build_state;
 488 
 489   // The head of the incrementally built collection set.
 490   HeapRegion* _inc_cset_head;
 491 
 492   // The tail of the incrementally built collection set.
 493   HeapRegion* _inc_cset_tail;
 494 
 495   // The number of bytes in the incrementally built collection set.
 496   // Used to set _collection_set_bytes_used_before at the start of
 497   // an evacuation pause.
 498   size_t _inc_cset_bytes_used_before;
 499 
 500   // Used to record the highest end of heap region in collection set
 501   HeapWord* _inc_cset_max_finger;
 502 
 503   // The RSet lengths recorded for regions in the CSet. It is updated
 504   // by the thread that adds a new region to the CSet. We assume that
 505   // only one thread can be allocating a new CSet region (currently,
 506   // it does so after taking the Heap_lock) hence no need to
 507   // synchronize updates to this field.
 508   size_t _inc_cset_recorded_rs_lengths;
 509 
 510   // A concurrent refinement thread periodically samples the young
 511   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 512   // the RSets grow. Instead of having to synchronize updates to that
 513   // field we accumulate them in this field and add it to
 514   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 515   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 516 
 517   // The predicted elapsed time it will take to collect the regions in
 518   // the CSet. This is updated by the thread that adds a new region to
 519   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 520   // MT-safety assumptions.
 521   double _inc_cset_predicted_elapsed_time_ms;
 522 
 523   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 524   double _inc_cset_predicted_elapsed_time_ms_diffs;
 525 
 526   // Stash a pointer to the g1 heap.
 527   G1CollectedHeap* _g1;
 528 
 529   G1GCPhaseTimes* _phase_times;
 530 
 531   // The ratio of gc time to elapsed time, computed over recent pauses.
 532   double _recent_avg_pause_time_ratio;
 533 
 534   double recent_avg_pause_time_ratio() const {
 535     return _recent_avg_pause_time_ratio;
 536   }
 537 
 538   // This set of variables tracks the collector efficiency, in order to
 539   // determine whether we should initiate a new marking.
 540   double _cur_mark_stop_world_time_ms;
 541   double _mark_remark_start_sec;
 542   double _mark_cleanup_start_sec;
 543 
 544   void update_young_list_max_and_target_length(size_t* unbounded_target_length = NULL);
 545   void update_young_list_max_and_target_length(size_t rs_lengths, size_t* unbounded_target_length = NULL);
 546 
 547   // Update the young list target length either by setting it to the
 548   // desired fixed value or by calculating it using G1's pause
 549   // prediction model. If no rs_lengths parameter is passed, predict
 550   // the RS lengths using the prediction model, otherwise use the
 551   // given rs_lengths as the prediction.
 552   void update_young_list_target_length();
 553   void update_young_list_target_length(size_t rs_lengths, size_t* unbounded_target_length = NULL);
 554 
 555   // Calculate and return the minimum desired young list target
 556   // length. This is the minimum desired young list length according
 557   // to the user's inputs.
 558   uint calculate_young_list_desired_min_length(uint base_min_length) const;
 559 
 560   // Calculate and return the maximum desired young list target
 561   // length. This is the maximum desired young list length according
 562   // to the user's inputs.
 563   uint calculate_young_list_desired_max_length() const;
 564 
 565   // Calculate and return the maximum young list target length that
 566   // can fit into the pause time goal. The parameters are: rs_lengths
 567   // represent the prediction of how large the young RSet lengths will
 568   // be, base_min_length is the already existing number of regions in
 569   // the young list, min_length and max_length are the desired min and
 570   // max young list length according to the user's inputs.
 571   uint calculate_young_list_target_length(size_t rs_lengths,
 572                                           uint base_min_length,
 573                                           uint desired_min_length,
 574                                           uint desired_max_length) const;
 575 
 576   uint bounded_young_list_target_length(size_t rs_lengths, size_t* unbounded_target_length = NULL) const;
 577 
 578   void update_rs_lengths_prediction();
 579   void update_rs_lengths_prediction(size_t prediction);
 580 
 581   // Calculate and return chunk size (in number of regions) for parallel
 582   // concurrent mark cleanup.
 583   uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const;
 584 
 585   // Check whether a given young length (young_length) fits into the
 586   // given target pause time and whether the prediction for the amount
 587   // of objects to be copied for the given length will fit into the
 588   // given free space (expressed by base_free_regions).  It is used by
 589   // calculate_young_list_target_length().
 590   bool predict_will_fit(uint young_length, double base_time_ms,
 591                         uint base_free_regions, double target_pause_time_ms) const;
 592 
 593   // Calculate the minimum number of old regions we'll add to the CSet
 594   // during a mixed GC.
 595   uint calc_min_old_cset_length() const;
 596 
 597   // Calculate the maximum number of old regions we'll add to the CSet
 598   // during a mixed GC.
 599   uint calc_max_old_cset_length() const;
 600 
 601   // Returns the given amount of uncollected reclaimable space
 602   // as a percentage of the current heap capacity.
 603   double reclaimable_bytes_perc(size_t reclaimable_bytes) const;
 604 
 605   // Sets up marking if proper conditions are met.
 606   void maybe_start_marking();
 607 
 608   // The kind of STW pause.
 609   enum PauseKind {
 610     FullGC,
 611     YoungOnlyGC,
 612     MixedGC,
 613     LastYoungGC,
 614     InitialMarkGC,
 615     Cleanup,
 616     Remark
 617   };
 618 
 619   // Calculate PauseKind from internal state.
 620   PauseKind young_gc_pause_kind() const;
 621   // Record the given STW pause with the given start and end times (in s).
 622   void record_pause(PauseKind kind, double start, double end);
 623   // Indicate that we aborted marking before doing any mixed GCs.
 624   void abort_time_to_mixed_tracking();
 625 public:
 626 
 627   G1CollectorPolicy();
 628 
 629   virtual ~G1CollectorPolicy();
 630 
 631   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 632 
 633   G1CollectorState* collector_state() const;
 634 
 635   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 636 
 637   // Check the current value of the young list RSet lengths and
 638   // compare it against the last prediction. If the current value is
 639   // higher, recalculate the young list target length prediction.
 640   void revise_young_list_target_length_if_necessary();
 641 
 642   // This should be called after the heap is resized.
 643   void record_new_heap_size(uint new_number_of_regions);
 644 
 645   void init();
 646 
 647   virtual void note_gc_start(uint num_active_workers);
 648 
 649   // Create jstat counters for the policy.
 650   virtual void initialize_gc_policy_counters();
 651 
 652   virtual HeapWord* mem_allocate_work(size_t size,
 653                                       bool is_tlab,
 654                                       bool* gc_overhead_limit_was_exceeded);
 655 
 656   // This method controls how a collector handles one or more
 657   // of its generations being fully allocated.
 658   virtual HeapWord* satisfy_failed_allocation(size_t size,
 659                                               bool is_tlab);
 660 
 661   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 662 
 663   bool about_to_start_mixed_phase() const;
 664 
 665   // Record the start and end of an evacuation pause.
 666   void record_collection_pause_start(double start_time_sec);
 667   void record_collection_pause_end(double pause_time_ms, size_t cards_scanned);
 668 
 669   // Record the start and end of a full collection.
 670   void record_full_collection_start();
 671   void record_full_collection_end();
 672 
 673   // Must currently be called while the world is stopped.
 674   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 675 
 676   // Record start and end of remark.
 677   void record_concurrent_mark_remark_start();
 678   void record_concurrent_mark_remark_end();
 679 
 680   // Record start, end, and completion of cleanup.
 681   void record_concurrent_mark_cleanup_start();
 682   void record_concurrent_mark_cleanup_end();
 683   void record_concurrent_mark_cleanup_completed();
 684 
 685   // Records the information about the heap size for reporting in
 686   // print_detailed_heap_transition
 687   void record_heap_size_info_at_start(bool full);
 688 
 689   // Print heap sizing transition (with less and more detail).
 690 
 691   void print_heap_transition(size_t bytes_before) const;
 692   void print_heap_transition() const;
 693   void print_detailed_heap_transition(bool full = false) const;
 694 
 695   virtual void print_phases(double pause_time_sec);
 696 
 697   void record_stop_world_start();
 698   void record_concurrent_pause();
 699 
 700   // Record how much space we copied during a GC. This is typically
 701   // called when a GC alloc region is being retired.
 702   void record_bytes_copied_during_gc(size_t bytes) {
 703     _bytes_copied_during_gc += bytes;
 704   }
 705 
 706   // The amount of space we copied during a GC.
 707   size_t bytes_copied_during_gc() const {
 708     return _bytes_copied_during_gc;
 709   }
 710 
 711   size_t collection_set_bytes_used_before() const {
 712     return _collection_set_bytes_used_before;
 713   }
 714 
 715   // Determine whether there are candidate regions so that the
 716   // next GC should be mixed. The two action strings are used
 717   // in the ergo output when the method returns true or false.
 718   bool next_gc_should_be_mixed(const char* true_action_str,
 719                                const char* false_action_str) const;
 720 
 721   // Choose a new collection set.  Marks the chosen regions as being
 722   // "in_collection_set", and links them together.  The head and number of
 723   // the collection set are available via access methods.
 724   double finalize_young_cset_part(double target_pause_time_ms);
 725   virtual void finalize_old_cset_part(double time_remaining_ms);
 726 
 727   // The head of the list (via "next_in_collection_set()") representing the
 728   // current collection set.
 729   HeapRegion* collection_set() { return _collection_set; }
 730 
 731   void clear_collection_set() { _collection_set = NULL; }
 732 
 733   // Add old region "hr" to the CSet.
 734   void add_old_region_to_cset(HeapRegion* hr);
 735 
 736   // Incremental CSet Support
 737 
 738   // The head of the incrementally built collection set.
 739   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 740 
 741   // The tail of the incrementally built collection set.
 742   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 743 
 744   // Initialize incremental collection set info.
 745   void start_incremental_cset_building();
 746 
 747   // Perform any final calculations on the incremental CSet fields
 748   // before we can use them.
 749   void finalize_incremental_cset_building();
 750 
 751   void clear_incremental_cset() {
 752     _inc_cset_head = NULL;
 753     _inc_cset_tail = NULL;
 754   }
 755 
 756   // Stop adding regions to the incremental collection set
 757   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 758 
 759   // Add information about hr to the aggregated information for the
 760   // incrementally built collection set.
 761   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 762 
 763   // Update information about hr in the aggregated information for
 764   // the incrementally built collection set.
 765   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 766 
 767 private:
 768   // Update the incremental cset information when adding a region
 769   // (should not be called directly).
 770   void add_region_to_incremental_cset_common(HeapRegion* hr);
 771 
 772 public:
 773   // Add hr to the LHS of the incremental collection set.
 774   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 775 
 776   // Add hr to the RHS of the incremental collection set.
 777   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 778 
 779 #ifndef PRODUCT
 780   void print_collection_set(HeapRegion* list_head, outputStream* st);
 781 #endif // !PRODUCT
 782 
 783   // This sets the initiate_conc_mark_if_possible() flag to start a
 784   // new cycle, as long as we are not already in one. It's best if it
 785   // is called during a safepoint when the test whether a cycle is in
 786   // progress or not is stable.
 787   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 788 
 789   // This is called at the very beginning of an evacuation pause (it
 790   // has to be the first thing that the pause does). If
 791   // initiate_conc_mark_if_possible() is true, and the concurrent
 792   // marking thread has completed its work during the previous cycle,
 793   // it will set during_initial_mark_pause() to so that the pause does
 794   // the initial-mark work and start a marking cycle.
 795   void decide_on_conc_mark_initiation();
 796 
 797   // If an expansion would be appropriate, because recent GC overhead had
 798   // exceeded the desired limit, return an amount to expand by.
 799   virtual size_t expansion_amount() const;
 800 
 801   // Print tracing information.
 802   void print_tracing_info() const;
 803 
 804   // Print stats on young survival ratio
 805   void print_yg_surv_rate_info() const;
 806 
 807   void finished_recalculating_age_indexes(bool is_survivors) {
 808     if (is_survivors) {
 809       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 810     } else {
 811       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 812     }
 813     // do that for any other surv rate groups
 814   }
 815 
 816   size_t young_list_target_length() const { return _young_list_target_length; }
 817 
 818   bool is_young_list_full() const;
 819 
 820   bool can_expand_young_list() const;
 821 
 822   uint young_list_max_length() const {
 823     return _young_list_max_length;
 824   }
 825 
 826   bool adaptive_young_list_length() const {
 827     return _young_gen_sizer->adaptive_young_list_length();
 828   }
 829 
 830 private:
 831   //
 832   // Survivor regions policy.
 833   //
 834 
 835   // Current tenuring threshold, set to 0 if the collector reaches the
 836   // maximum amount of survivors regions.
 837   uint _tenuring_threshold;
 838 
 839   // The limit on the number of regions allocated for survivors.
 840   uint _max_survivor_regions;
 841 
 842   // For reporting purposes.
 843   // The value of _heap_bytes_before_gc is also used to calculate
 844   // the cost of copying.
 845 
 846   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
 847   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
 848   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
 849   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
 850 
 851   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
 852   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
 853 
 854   // The amount of survivor regions after a collection.
 855   uint _recorded_survivor_regions;
 856   // List of survivor regions.
 857   HeapRegion* _recorded_survivor_head;
 858   HeapRegion* _recorded_survivor_tail;
 859 
 860   ageTable _survivors_age_table;
 861 
 862 public:
 863   uint tenuring_threshold() const { return _tenuring_threshold; }
 864 
 865   static const uint REGIONS_UNLIMITED = (uint) -1;
 866 
 867   uint max_regions(InCSetState dest) const {
 868     switch (dest.value()) {
 869       case InCSetState::Young:
 870         return _max_survivor_regions;
 871       case InCSetState::Old:
 872         return REGIONS_UNLIMITED;
 873       default:
 874         assert(false, "Unknown dest state: " CSETSTATE_FORMAT, dest.value());
 875         break;
 876     }
 877     // keep some compilers happy
 878     return 0;
 879   }
 880 
 881   void note_start_adding_survivor_regions() {
 882     _survivor_surv_rate_group->start_adding_regions();
 883   }
 884 
 885   void note_stop_adding_survivor_regions() {
 886     _survivor_surv_rate_group->stop_adding_regions();
 887   }
 888 
 889   void record_survivor_regions(uint regions,
 890                                HeapRegion* head,
 891                                HeapRegion* tail) {
 892     _recorded_survivor_regions = regions;
 893     _recorded_survivor_head    = head;
 894     _recorded_survivor_tail    = tail;
 895   }
 896 
 897   uint recorded_survivor_regions() const {
 898     return _recorded_survivor_regions;
 899   }
 900 
 901   void record_age_table(ageTable* age_table) {
 902     _survivors_age_table.merge(age_table);
 903   }
 904 
 905   void update_max_gc_locker_expansion();
 906 
 907   // Calculates survivor space parameters.
 908   void update_survivors_policy();
 909 
 910   virtual void post_heap_initialize();
 911 };
 912 
 913 #endif // SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP