1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;
 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // We will set up the first region as "starts humongous". This
 342   // will also update the BOT covering all the regions to reflect
 343   // that there is a single object that starts at the bottom of the
 344   // first region.
 345   first_hr->set_starts_humongous(obj_top);
 346   first_hr->set_allocation_context(context);
 347   // Then, if there are any, we will set up the "continues
 348   // humongous" regions.
 349   HeapRegion* hr = NULL;
 350   for (uint i = first + 1; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_continues_humongous(first_hr);
 353     hr->set_allocation_context(context);
 354   }
 355 
 356   // Up to this point no concurrent thread would have been able to
 357   // do any scanning on any region in this series. All the top
 358   // fields still point to bottom, so the intersection between
 359   // [bottom,top] and [card_start,card_end] will be empty. Before we
 360   // update the top fields, we'll do a storestore to make sure that
 361   // no thread sees the update to top before the zeroing of the
 362   // object header and the BOT initialization.
 363   OrderAccess::storestore();
 364 
 365   // Now that the BOT and the object header have been initialized,
 366   // we can update top of the "starts humongous" region.
 367   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 368   if (_hr_printer.is_active()) {
 369     _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->top());
 370   }
 371 
 372   // Now, we will update the top fields of the "continues humongous"
 373   // regions.
 374   hr = NULL;
 375   for (uint i = first + 1; i < last; ++i) {
 376     hr = region_at(i);
 377     if ((i + 1) == last) {
 378       // last continues humongous region
 379       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 380              "new_top should fall on this region");
 381       hr->set_top(obj_top);
 382       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 383     } else {
 384       // not last one
 385       assert(obj_top > hr->end(), "obj_top should be above this region");
 386       hr->set_top(hr->end());
 387       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 388     }
 389   }
 390   // If we have continues humongous regions (hr != NULL), its top should
 391   // match obj_top.
 392   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 393   check_bitmaps("Humongous Region Allocation", first_hr);
 394 
 395   increase_used(word_size * HeapWordSize);
 396 
 397   for (uint i = first; i < last; ++i) {
 398     _humongous_set.add(region_at(i));
 399   }
 400 
 401   return new_obj;
 402 }
 403 
 404 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 405   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);  
 406   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 407 }
 408 
 409 // If could fit into free regions w/o expansion, try.
 410 // Otherwise, if can expand, do so.
 411 // Otherwise, if using ex regions might help, try with ex given back.
 412 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 413   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 414 
 415   verify_region_sets_optional();
 416 
 417   uint first = G1_NO_HRM_INDEX;
 418   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 419 
 420   if (obj_regions == 1) {
 421     // Only one region to allocate, try to use a fast path by directly allocating
 422     // from the free lists. Do not try to expand here, we will potentially do that
 423     // later.
 424     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 425     if (hr != NULL) {
 426       first = hr->hrm_index();
 427     }
 428   } else {
 429     // We can't allocate humongous regions spanning more than one region while
 430     // cleanupComplete() is running, since some of the regions we find to be
 431     // empty might not yet be added to the free list. It is not straightforward
 432     // to know in which list they are on so that we can remove them. We only
 433     // need to do this if we need to allocate more than one region to satisfy the
 434     // current humongous allocation request. If we are only allocating one region
 435     // we use the one-region region allocation code (see above), that already
 436     // potentially waits for regions from the secondary free list.
 437     wait_while_free_regions_coming();
 438     append_secondary_free_list_if_not_empty_with_lock();
 439 
 440     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 441     // are lucky enough to find some.
 442     first = _hrm.find_contiguous_only_empty(obj_regions);
 443     if (first != G1_NO_HRM_INDEX) {
 444       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 445     }
 446   }
 447 
 448   if (first == G1_NO_HRM_INDEX) {
 449     // Policy: We could not find enough regions for the humongous object in the
 450     // free list. Look through the heap to find a mix of free and uncommitted regions.
 451     // If so, try expansion.
 452     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 453     if (first != G1_NO_HRM_INDEX) {
 454       // We found something. Make sure these regions are committed, i.e. expand
 455       // the heap. Alternatively we could do a defragmentation GC.
 456       ergo_verbose1(ErgoHeapSizing,
 457                     "attempt heap expansion",
 458                     ergo_format_reason("humongous allocation request failed")
 459                     ergo_format_byte("allocation request"),
 460                     word_size * HeapWordSize);
 461 
 462       _hrm.expand_at(first, obj_regions);
 463       g1_policy()->record_new_heap_size(num_regions());
 464 
 465 #ifdef ASSERT
 466       for (uint i = first; i < first + obj_regions; ++i) {
 467         HeapRegion* hr = region_at(i);
 468         assert(hr->is_free(), "sanity");
 469         assert(hr->is_empty(), "sanity");
 470         assert(is_on_master_free_list(hr), "sanity");
 471       }
 472 #endif
 473       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 474     } else {
 475       // Policy: Potentially trigger a defragmentation GC.
 476     }
 477   }
 478 
 479   HeapWord* result = NULL;
 480   if (first != G1_NO_HRM_INDEX) {
 481     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 482                                                        word_size, context);
 483     assert(result != NULL, "it should always return a valid result");
 484 
 485     // A successful humongous object allocation changes the used space
 486     // information of the old generation so we need to recalculate the
 487     // sizes and update the jstat counters here.
 488     g1mm()->update_sizes();
 489   }
 490 
 491   verify_region_sets_optional();
 492 
 493   return result;
 494 }
 495 
 496 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 497   assert_heap_not_locked_and_not_at_safepoint();
 498   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 499 
 500   uint dummy_gc_count_before;
 501   uint dummy_gclocker_retry_count = 0;
 502   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 503 }
 504 
 505 HeapWord*
 506 G1CollectedHeap::mem_allocate(size_t word_size,
 507                               bool*  gc_overhead_limit_was_exceeded) {
 508   assert_heap_not_locked_and_not_at_safepoint();
 509 
 510   // Loop until the allocation is satisfied, or unsatisfied after GC.
 511   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 512     uint gc_count_before;
 513 
 514     HeapWord* result = NULL;
 515     if (!is_humongous(word_size)) {
 516       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 517     } else {
 518       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 519     }
 520     if (result != NULL) {
 521       return result;
 522     }
 523 
 524     // Create the garbage collection operation...
 525     VM_G1CollectForAllocation op(gc_count_before, word_size);
 526     op.set_allocation_context(AllocationContext::current());
 527 
 528     // ...and get the VM thread to execute it.
 529     VMThread::execute(&op);
 530 
 531     if (op.prologue_succeeded() && op.pause_succeeded()) {
 532       // If the operation was successful we'll return the result even
 533       // if it is NULL. If the allocation attempt failed immediately
 534       // after a Full GC, it's unlikely we'll be able to allocate now.
 535       HeapWord* result = op.result();
 536       if (result != NULL && !is_humongous(word_size)) {
 537         // Allocations that take place on VM operations do not do any
 538         // card dirtying and we have to do it here. We only have to do
 539         // this for non-humongous allocations, though.
 540         dirty_young_block(result, word_size);
 541       }
 542       return result;
 543     } else {
 544       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 545         return NULL;
 546       }
 547       assert(op.result() == NULL,
 548              "the result should be NULL if the VM op did not succeed");
 549     }
 550 
 551     // Give a warning if we seem to be looping forever.
 552     if ((QueuedAllocationWarningCount > 0) &&
 553         (try_count % QueuedAllocationWarningCount == 0)) {
 554       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 555     }
 556   }
 557 
 558   ShouldNotReachHere();
 559   return NULL;
 560 }
 561 
 562 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 563                                                    AllocationContext_t context,
 564                                                    uint* gc_count_before_ret,
 565                                                    uint* gclocker_retry_count_ret) {
 566   // Make sure you read the note in attempt_allocation_humongous().
 567 
 568   assert_heap_not_locked_and_not_at_safepoint();
 569   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 570          "be called for humongous allocation requests");
 571 
 572   // We should only get here after the first-level allocation attempt
 573   // (attempt_allocation()) failed to allocate.
 574 
 575   // We will loop until a) we manage to successfully perform the
 576   // allocation or b) we successfully schedule a collection which
 577   // fails to perform the allocation. b) is the only case when we'll
 578   // return NULL.
 579   HeapWord* result = NULL;
 580   for (int try_count = 1; /* we'll return */; try_count += 1) {
 581     bool should_try_gc;
 582     uint gc_count_before;
 583 
 584     {
 585       MutexLockerEx x(Heap_lock);
 586       result = _allocator->attempt_allocation_locked(word_size, context);
 587       if (result != NULL) {
 588         return result;
 589       }
 590 
 591       if (GC_locker::is_active_and_needs_gc()) {
 592         if (g1_policy()->can_expand_young_list()) {
 593           // No need for an ergo verbose message here,
 594           // can_expand_young_list() does this when it returns true.
 595           result = _allocator->attempt_allocation_force(word_size, context);
 596           if (result != NULL) {
 597             return result;
 598           }
 599         }
 600         should_try_gc = false;
 601       } else {
 602         // The GCLocker may not be active but the GCLocker initiated
 603         // GC may not yet have been performed (GCLocker::needs_gc()
 604         // returns true). In this case we do not try this GC and
 605         // wait until the GCLocker initiated GC is performed, and
 606         // then retry the allocation.
 607         if (GC_locker::needs_gc()) {
 608           should_try_gc = false;
 609         } else {
 610           // Read the GC count while still holding the Heap_lock.
 611           gc_count_before = total_collections();
 612           should_try_gc = true;
 613         }
 614       }
 615     }
 616 
 617     if (should_try_gc) {
 618       bool succeeded;
 619       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 620                                    GCCause::_g1_inc_collection_pause);
 621       if (result != NULL) {
 622         assert(succeeded, "only way to get back a non-NULL result");
 623         return result;
 624       }
 625 
 626       if (succeeded) {
 627         // If we get here we successfully scheduled a collection which
 628         // failed to allocate. No point in trying to allocate
 629         // further. We'll just return NULL.
 630         MutexLockerEx x(Heap_lock);
 631         *gc_count_before_ret = total_collections();
 632         return NULL;
 633       }
 634     } else {
 635       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 636         MutexLockerEx x(Heap_lock);
 637         *gc_count_before_ret = total_collections();
 638         return NULL;
 639       }
 640       // The GCLocker is either active or the GCLocker initiated
 641       // GC has not yet been performed. Stall until it is and
 642       // then retry the allocation.
 643       GC_locker::stall_until_clear();
 644       (*gclocker_retry_count_ret) += 1;
 645     }
 646 
 647     // We can reach here if we were unsuccessful in scheduling a
 648     // collection (because another thread beat us to it) or if we were
 649     // stalled due to the GC locker. In either can we should retry the
 650     // allocation attempt in case another thread successfully
 651     // performed a collection and reclaimed enough space. We do the
 652     // first attempt (without holding the Heap_lock) here and the
 653     // follow-on attempt will be at the start of the next loop
 654     // iteration (after taking the Heap_lock).
 655     result = _allocator->attempt_allocation(word_size, context);
 656     if (result != NULL) {
 657       return result;
 658     }
 659 
 660     // Give a warning if we seem to be looping forever.
 661     if ((QueuedAllocationWarningCount > 0) &&
 662         (try_count % QueuedAllocationWarningCount == 0)) {
 663       warning("G1CollectedHeap::attempt_allocation_slow() "
 664               "retries %d times", try_count);
 665     }
 666   }
 667 
 668   ShouldNotReachHere();
 669   return NULL;
 670 }
 671 
 672 void G1CollectedHeap::begin_archive_alloc_range() {
 673   assert_at_safepoint(true /* should_be_vm_thread */);
 674   if (_archive_allocator == NULL) {
 675     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 676   }
 677 }
 678 
 679 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 680   // Allocations in archive regions cannot be of a size that would be considered
 681   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 682   // may be different at archive-restore time.
 683   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 684 }
 685 
 686 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 687   assert_at_safepoint(true /* should_be_vm_thread */);
 688   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 689   if (is_archive_alloc_too_large(word_size)) {
 690     return NULL;
 691   }
 692   return _archive_allocator->archive_mem_allocate(word_size);
 693 }
 694 
 695 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 696                                               size_t end_alignment_in_bytes) {
 697   assert_at_safepoint(true /* should_be_vm_thread */);
 698   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 699 
 700   // Call complete_archive to do the real work, filling in the MemRegion
 701   // array with the archive regions.
 702   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 703   delete _archive_allocator;
 704   _archive_allocator = NULL;
 705 }
 706 
 707 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 708   assert(ranges != NULL, "MemRegion array NULL");
 709   assert(count != 0, "No MemRegions provided");
 710   MemRegion reserved = _hrm.reserved();
 711   for (size_t i = 0; i < count; i++) {
 712     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 713       return false;
 714     }
 715   }
 716   return true;
 717 }
 718 
 719 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 720   assert(!is_init_completed(), "Expect to be called at JVM init time");
 721   assert(ranges != NULL, "MemRegion array NULL");
 722   assert(count != 0, "No MemRegions provided");
 723   MutexLockerEx x(Heap_lock);
 724 
 725   MemRegion reserved = _hrm.reserved();
 726   HeapWord* prev_last_addr = NULL;
 727   HeapRegion* prev_last_region = NULL;
 728 
 729   // Temporarily disable pretouching of heap pages. This interface is used
 730   // when mmap'ing archived heap data in, so pre-touching is wasted.
 731   FlagSetting fs(AlwaysPreTouch, false);
 732 
 733   // Enable archive object checking in G1MarkSweep. We have to let it know
 734   // about each archive range, so that objects in those ranges aren't marked.
 735   G1MarkSweep::enable_archive_object_check();
 736 
 737   // For each specified MemRegion range, allocate the corresponding G1
 738   // regions and mark them as archive regions. We expect the ranges in
 739   // ascending starting address order, without overlap.
 740   for (size_t i = 0; i < count; i++) {
 741     MemRegion curr_range = ranges[i];
 742     HeapWord* start_address = curr_range.start();
 743     size_t word_size = curr_range.word_size();
 744     HeapWord* last_address = curr_range.last();
 745     size_t commits = 0;
 746 
 747     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 748               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 749               p2i(start_address), p2i(last_address));
 750     guarantee(start_address > prev_last_addr,
 751               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 752               p2i(start_address), p2i(prev_last_addr));
 753     prev_last_addr = last_address;
 754 
 755     // Check for ranges that start in the same G1 region in which the previous
 756     // range ended, and adjust the start address so we don't try to allocate
 757     // the same region again. If the current range is entirely within that
 758     // region, skip it, just adjusting the recorded top.
 759     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 760     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 761       start_address = start_region->end();
 762       if (start_address > last_address) {
 763         increase_used(word_size * HeapWordSize);
 764         start_region->set_top(last_address + 1);
 765         continue;
 766       }
 767       start_region->set_top(start_address);
 768       curr_range = MemRegion(start_address, last_address + 1);
 769       start_region = _hrm.addr_to_region(start_address);
 770     }
 771 
 772     // Perform the actual region allocation, exiting if it fails.
 773     // Then note how much new space we have allocated.
 774     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 775       return false;
 776     }
 777     increase_used(word_size * HeapWordSize);
 778     if (commits != 0) {
 779       ergo_verbose1(ErgoHeapSizing,
 780                     "attempt heap expansion",
 781                     ergo_format_reason("allocate archive regions")
 782                     ergo_format_byte("total size"),
 783                     HeapRegion::GrainWords * HeapWordSize * commits);
 784     }
 785 
 786     // Mark each G1 region touched by the range as archive, add it to the old set,
 787     // and set the allocation context and top.
 788     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 789     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 790     prev_last_region = last_region;
 791 
 792     while (curr_region != NULL) {
 793       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 794              "Region already in use (index %u)", curr_region->hrm_index());
 795       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 796       curr_region->set_allocation_context(AllocationContext::system());
 797       curr_region->set_archive();
 798       _old_set.add(curr_region);
 799       if (curr_region != last_region) {
 800         curr_region->set_top(curr_region->end());
 801         curr_region = _hrm.next_region_in_heap(curr_region);
 802       } else {
 803         curr_region->set_top(last_address + 1);
 804         curr_region = NULL;
 805       }
 806     }
 807 
 808     // Notify mark-sweep of the archive range.
 809     G1MarkSweep::set_range_archive(curr_range, true);
 810   }
 811   return true;
 812 }
 813 
 814 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 815   assert(!is_init_completed(), "Expect to be called at JVM init time");
 816   assert(ranges != NULL, "MemRegion array NULL");
 817   assert(count != 0, "No MemRegions provided");
 818   MemRegion reserved = _hrm.reserved();
 819   HeapWord *prev_last_addr = NULL;
 820   HeapRegion* prev_last_region = NULL;
 821 
 822   // For each MemRegion, create filler objects, if needed, in the G1 regions
 823   // that contain the address range. The address range actually within the
 824   // MemRegion will not be modified. That is assumed to have been initialized
 825   // elsewhere, probably via an mmap of archived heap data.
 826   MutexLockerEx x(Heap_lock);
 827   for (size_t i = 0; i < count; i++) {
 828     HeapWord* start_address = ranges[i].start();
 829     HeapWord* last_address = ranges[i].last();
 830 
 831     assert(reserved.contains(start_address) && reserved.contains(last_address),
 832            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 833            p2i(start_address), p2i(last_address));
 834     assert(start_address > prev_last_addr,
 835            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 836            p2i(start_address), p2i(prev_last_addr));
 837 
 838     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 839     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 840     HeapWord* bottom_address = start_region->bottom();
 841 
 842     // Check for a range beginning in the same region in which the
 843     // previous one ended.
 844     if (start_region == prev_last_region) {
 845       bottom_address = prev_last_addr + 1;
 846     }
 847 
 848     // Verify that the regions were all marked as archive regions by
 849     // alloc_archive_regions.
 850     HeapRegion* curr_region = start_region;
 851     while (curr_region != NULL) {
 852       guarantee(curr_region->is_archive(),
 853                 "Expected archive region at index %u", curr_region->hrm_index());
 854       if (curr_region != last_region) {
 855         curr_region = _hrm.next_region_in_heap(curr_region);
 856       } else {
 857         curr_region = NULL;
 858       }
 859     }
 860 
 861     prev_last_addr = last_address;
 862     prev_last_region = last_region;
 863 
 864     // Fill the memory below the allocated range with dummy object(s),
 865     // if the region bottom does not match the range start, or if the previous
 866     // range ended within the same G1 region, and there is a gap.
 867     if (start_address != bottom_address) {
 868       size_t fill_size = pointer_delta(start_address, bottom_address);
 869       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 870       increase_used(fill_size * HeapWordSize);
 871     }
 872   }
 873 }
 874 
 875 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 876                                                      uint* gc_count_before_ret,
 877                                                      uint* gclocker_retry_count_ret) {
 878   assert_heap_not_locked_and_not_at_safepoint();
 879   assert(!is_humongous(word_size), "attempt_allocation() should not "
 880          "be called for humongous allocation requests");
 881 
 882   AllocationContext_t context = AllocationContext::current();
 883   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 884 
 885   if (result == NULL) {
 886     result = attempt_allocation_slow(word_size,
 887                                      context,
 888                                      gc_count_before_ret,
 889                                      gclocker_retry_count_ret);
 890   }
 891   assert_heap_not_locked();
 892   if (result != NULL) {
 893     dirty_young_block(result, word_size);
 894   }
 895   return result;
 896 }
 897 
 898 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 899   assert(!is_init_completed(), "Expect to be called at JVM init time");
 900   assert(ranges != NULL, "MemRegion array NULL");
 901   assert(count != 0, "No MemRegions provided");
 902   MemRegion reserved = _hrm.reserved();
 903   HeapWord* prev_last_addr = NULL;
 904   HeapRegion* prev_last_region = NULL;
 905   size_t size_used = 0;
 906   size_t uncommitted_regions = 0;
 907 
 908   // For each Memregion, free the G1 regions that constitute it, and
 909   // notify mark-sweep that the range is no longer to be considered 'archive.'
 910   MutexLockerEx x(Heap_lock);
 911   for (size_t i = 0; i < count; i++) {
 912     HeapWord* start_address = ranges[i].start();
 913     HeapWord* last_address = ranges[i].last();
 914 
 915     assert(reserved.contains(start_address) && reserved.contains(last_address),
 916            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 917            p2i(start_address), p2i(last_address));
 918     assert(start_address > prev_last_addr,
 919            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 920            p2i(start_address), p2i(prev_last_addr));
 921     size_used += ranges[i].byte_size();
 922     prev_last_addr = last_address;
 923 
 924     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 925     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 926 
 927     // Check for ranges that start in the same G1 region in which the previous
 928     // range ended, and adjust the start address so we don't try to free
 929     // the same region again. If the current range is entirely within that
 930     // region, skip it.
 931     if (start_region == prev_last_region) {
 932       start_address = start_region->end();
 933       if (start_address > last_address) {
 934         continue;
 935       }
 936       start_region = _hrm.addr_to_region(start_address);
 937     }
 938     prev_last_region = last_region;
 939 
 940     // After verifying that each region was marked as an archive region by
 941     // alloc_archive_regions, set it free and empty and uncommit it.
 942     HeapRegion* curr_region = start_region;
 943     while (curr_region != NULL) {
 944       guarantee(curr_region->is_archive(),
 945                 "Expected archive region at index %u", curr_region->hrm_index());
 946       uint curr_index = curr_region->hrm_index();
 947       _old_set.remove(curr_region);
 948       curr_region->set_free();
 949       curr_region->set_top(curr_region->bottom());
 950       if (curr_region != last_region) {
 951         curr_region = _hrm.next_region_in_heap(curr_region);
 952       } else {
 953         curr_region = NULL;
 954       }
 955       _hrm.shrink_at(curr_index, 1);
 956       uncommitted_regions++;
 957     }
 958 
 959     // Notify mark-sweep that this is no longer an archive range.
 960     G1MarkSweep::set_range_archive(ranges[i], false);
 961   }
 962 
 963   if (uncommitted_regions != 0) {
 964     ergo_verbose1(ErgoHeapSizing,
 965                   "attempt heap shrinking",
 966                   ergo_format_reason("uncommitted archive regions")
 967                   ergo_format_byte("total size"),
 968                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 969   }
 970   decrease_used(size_used);
 971 }
 972 
 973 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 974                                                         uint* gc_count_before_ret,
 975                                                         uint* gclocker_retry_count_ret) {
 976   // The structure of this method has a lot of similarities to
 977   // attempt_allocation_slow(). The reason these two were not merged
 978   // into a single one is that such a method would require several "if
 979   // allocation is not humongous do this, otherwise do that"
 980   // conditional paths which would obscure its flow. In fact, an early
 981   // version of this code did use a unified method which was harder to
 982   // follow and, as a result, it had subtle bugs that were hard to
 983   // track down. So keeping these two methods separate allows each to
 984   // be more readable. It will be good to keep these two in sync as
 985   // much as possible.
 986 
 987   assert_heap_not_locked_and_not_at_safepoint();
 988   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 989          "should only be called for humongous allocations");
 990 
 991   // Humongous objects can exhaust the heap quickly, so we should check if we
 992   // need to start a marking cycle at each humongous object allocation. We do
 993   // the check before we do the actual allocation. The reason for doing it
 994   // before the allocation is that we avoid having to keep track of the newly
 995   // allocated memory while we do a GC.
 996   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 997                                            word_size)) {
 998     collect(GCCause::_g1_humongous_allocation);
 999   }
1000 
1001   // We will loop until a) we manage to successfully perform the
1002   // allocation or b) we successfully schedule a collection which
1003   // fails to perform the allocation. b) is the only case when we'll
1004   // return NULL.
1005   HeapWord* result = NULL;
1006   for (int try_count = 1; /* we'll return */; try_count += 1) {
1007     bool should_try_gc;
1008     uint gc_count_before;
1009 
1010     {
1011       MutexLockerEx x(Heap_lock);
1012 
1013       // Given that humongous objects are not allocated in young
1014       // regions, we'll first try to do the allocation without doing a
1015       // collection hoping that there's enough space in the heap.
1016       result = humongous_obj_allocate(word_size, AllocationContext::current());
1017       if (result != NULL) {
1018         g1_policy()->add_last_old_allocated_bytes(humongous_obj_size_in_regions(word_size) * HeapRegion::GrainBytes);
1019         return result;
1020       }
1021 
1022       if (GC_locker::is_active_and_needs_gc()) {
1023         should_try_gc = false;
1024       } else {
1025          // The GCLocker may not be active but the GCLocker initiated
1026         // GC may not yet have been performed (GCLocker::needs_gc()
1027         // returns true). In this case we do not try this GC and
1028         // wait until the GCLocker initiated GC is performed, and
1029         // then retry the allocation.
1030         if (GC_locker::needs_gc()) {
1031           should_try_gc = false;
1032         } else {
1033           // Read the GC count while still holding the Heap_lock.
1034           gc_count_before = total_collections();
1035           should_try_gc = true;
1036         }
1037       }
1038     }
1039 
1040     if (should_try_gc) {
1041       // If we failed to allocate the humongous object, we should try to
1042       // do a collection pause (if we're allowed) in case it reclaims
1043       // enough space for the allocation to succeed after the pause.
1044 
1045       bool succeeded;
1046       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1047                                    GCCause::_g1_humongous_allocation);
1048       if (result != NULL) {
1049         assert(succeeded, "only way to get back a non-NULL result");
1050         return result;
1051       }
1052 
1053       if (succeeded) {
1054         // If we get here we successfully scheduled a collection which
1055         // failed to allocate. No point in trying to allocate
1056         // further. We'll just return NULL.
1057         MutexLockerEx x(Heap_lock);
1058         *gc_count_before_ret = total_collections();
1059         return NULL;
1060       }
1061     } else {
1062       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1063         MutexLockerEx x(Heap_lock);
1064         *gc_count_before_ret = total_collections();
1065         return NULL;
1066       }
1067       // The GCLocker is either active or the GCLocker initiated
1068       // GC has not yet been performed. Stall until it is and
1069       // then retry the allocation.
1070       GC_locker::stall_until_clear();
1071       (*gclocker_retry_count_ret) += 1;
1072     }
1073 
1074     // We can reach here if we were unsuccessful in scheduling a
1075     // collection (because another thread beat us to it) or if we were
1076     // stalled due to the GC locker. In either can we should retry the
1077     // allocation attempt in case another thread successfully
1078     // performed a collection and reclaimed enough space.  Give a
1079     // warning if we seem to be looping forever.
1080 
1081     if ((QueuedAllocationWarningCount > 0) &&
1082         (try_count % QueuedAllocationWarningCount == 0)) {
1083       warning("G1CollectedHeap::attempt_allocation_humongous() "
1084               "retries %d times", try_count);
1085     }
1086   }
1087 
1088   ShouldNotReachHere();
1089   return NULL;
1090 }
1091 
1092 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1093                                                            AllocationContext_t context,
1094                                                            bool expect_null_mutator_alloc_region) {
1095   assert_at_safepoint(true /* should_be_vm_thread */);
1096   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1097          "the current alloc region was unexpectedly found to be non-NULL");
1098 
1099   if (!is_humongous(word_size)) {
1100     return _allocator->attempt_allocation_locked(word_size, context);
1101   } else {
1102     HeapWord* result = humongous_obj_allocate(word_size, context);
1103     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1104       collector_state()->set_initiate_conc_mark_if_possible(true);
1105     }
1106     return result;
1107   }
1108 
1109   ShouldNotReachHere();
1110 }
1111 
1112 class PostMCRemSetClearClosure: public HeapRegionClosure {
1113   G1CollectedHeap* _g1h;
1114   ModRefBarrierSet* _mr_bs;
1115 public:
1116   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1117     _g1h(g1h), _mr_bs(mr_bs) {}
1118 
1119   bool doHeapRegion(HeapRegion* r) {
1120     HeapRegionRemSet* hrrs = r->rem_set();
1121 
1122     _g1h->reset_gc_time_stamps(r);
1123 
1124     if (r->is_continues_humongous()) {
1125       // We'll assert that the strong code root list and RSet is empty
1126       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1127       assert(hrrs->occupied() == 0, "RSet should be empty");
1128     } else {
1129       hrrs->clear();
1130     }
1131     // You might think here that we could clear just the cards
1132     // corresponding to the used region.  But no: if we leave a dirty card
1133     // in a region we might allocate into, then it would prevent that card
1134     // from being enqueued, and cause it to be missed.
1135     // Re: the performance cost: we shouldn't be doing full GC anyway!
1136     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1137 
1138     return false;
1139   }
1140 };
1141 
1142 void G1CollectedHeap::clear_rsets_post_compaction() {
1143   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1144   heap_region_iterate(&rs_clear);
1145 }
1146 
1147 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1148   G1CollectedHeap*   _g1h;
1149   UpdateRSOopClosure _cl;
1150 public:
1151   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1152     _cl(g1->g1_rem_set(), worker_i),
1153     _g1h(g1)
1154   { }
1155 
1156   bool doHeapRegion(HeapRegion* r) {
1157     if (!r->is_continues_humongous()) {
1158       _cl.set_from(r);
1159       r->oop_iterate(&_cl);
1160     }
1161     return false;
1162   }
1163 };
1164 
1165 class ParRebuildRSTask: public AbstractGangTask {
1166   G1CollectedHeap* _g1;
1167   HeapRegionClaimer _hrclaimer;
1168 
1169 public:
1170   ParRebuildRSTask(G1CollectedHeap* g1) :
1171       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1172 
1173   void work(uint worker_id) {
1174     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1175     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1176   }
1177 };
1178 
1179 class PostCompactionPrinterClosure: public HeapRegionClosure {
1180 private:
1181   G1HRPrinter* _hr_printer;
1182 public:
1183   bool doHeapRegion(HeapRegion* hr) {
1184     assert(!hr->is_young(), "not expecting to find young regions");
1185     if (hr->is_free()) {
1186       // We only generate output for non-empty regions.
1187     } else if (hr->is_starts_humongous()) {
1188       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1189     } else if (hr->is_continues_humongous()) {
1190       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1191     } else if (hr->is_archive()) {
1192       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1193     } else if (hr->is_old()) {
1194       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1195     } else {
1196       ShouldNotReachHere();
1197     }
1198     return false;
1199   }
1200 
1201   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1202     : _hr_printer(hr_printer) { }
1203 };
1204 
1205 void G1CollectedHeap::print_hrm_post_compaction() {
1206   PostCompactionPrinterClosure cl(hr_printer());
1207   heap_region_iterate(&cl);
1208 }
1209 
1210 bool G1CollectedHeap::do_collection(bool explicit_gc,
1211                                     bool clear_all_soft_refs,
1212                                     size_t word_size) {
1213   assert_at_safepoint(true /* should_be_vm_thread */);
1214 
1215   if (GC_locker::check_active_before_gc()) {
1216     return false;
1217   }
1218 
1219   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1220   gc_timer->register_gc_start();
1221 
1222   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1223   GCIdMark gc_id_mark;
1224   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1225 
1226   SvcGCMarker sgcm(SvcGCMarker::FULL);
1227   ResourceMark rm;
1228 
1229   G1Log::update_level();
1230   print_heap_before_gc();
1231   trace_heap_before_gc(gc_tracer);
1232 
1233   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1234 
1235   verify_region_sets_optional();
1236 
1237   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1238                            collector_policy()->should_clear_all_soft_refs();
1239 
1240   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1241 
1242   {
1243     IsGCActiveMark x;
1244 
1245     // Timing
1246     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1247     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1248 
1249     {
1250       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1251       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1252       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1253 
1254       g1_policy()->record_full_collection_start();
1255 
1256       // Note: When we have a more flexible GC logging framework that
1257       // allows us to add optional attributes to a GC log record we
1258       // could consider timing and reporting how long we wait in the
1259       // following two methods.
1260       wait_while_free_regions_coming();
1261       // If we start the compaction before the CM threads finish
1262       // scanning the root regions we might trip them over as we'll
1263       // be moving objects / updating references. So let's wait until
1264       // they are done. By telling them to abort, they should complete
1265       // early.
1266       _cm->root_regions()->abort();
1267       _cm->root_regions()->wait_until_scan_finished();
1268       append_secondary_free_list_if_not_empty_with_lock();
1269 
1270       gc_prologue(true);
1271       increment_total_collections(true /* full gc */);
1272       increment_old_marking_cycles_started();
1273 
1274       assert(used() == recalculate_used(), "Should be equal");
1275 
1276       verify_before_gc();
1277 
1278       check_bitmaps("Full GC Start");
1279       pre_full_gc_dump(gc_timer);
1280 
1281 #if defined(COMPILER2) || INCLUDE_JVMCI
1282       DerivedPointerTable::clear();
1283 #endif
1284 
1285       // Disable discovery and empty the discovered lists
1286       // for the CM ref processor.
1287       ref_processor_cm()->disable_discovery();
1288       ref_processor_cm()->abandon_partial_discovery();
1289       ref_processor_cm()->verify_no_references_recorded();
1290 
1291       // Abandon current iterations of concurrent marking and concurrent
1292       // refinement, if any are in progress. We have to do this before
1293       // wait_until_scan_finished() below.
1294       concurrent_mark()->abort();
1295 
1296       // Make sure we'll choose a new allocation region afterwards.
1297       _allocator->release_mutator_alloc_region();
1298       _allocator->abandon_gc_alloc_regions();
1299       g1_rem_set()->cleanupHRRS();
1300 
1301       // We should call this after we retire any currently active alloc
1302       // regions so that all the ALLOC / RETIRE events are generated
1303       // before the start GC event.
1304       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1305 
1306       // We may have added regions to the current incremental collection
1307       // set between the last GC or pause and now. We need to clear the
1308       // incremental collection set and then start rebuilding it afresh
1309       // after this full GC.
1310       abandon_collection_set(g1_policy()->inc_cset_head());
1311       g1_policy()->clear_incremental_cset();
1312       g1_policy()->stop_incremental_cset_building();
1313 
1314       tear_down_region_sets(false /* free_list_only */);
1315       collector_state()->set_gcs_are_young(true);
1316 
1317       // See the comments in g1CollectedHeap.hpp and
1318       // G1CollectedHeap::ref_processing_init() about
1319       // how reference processing currently works in G1.
1320 
1321       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1322       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1323 
1324       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1325       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1326 
1327       ref_processor_stw()->enable_discovery();
1328       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1329 
1330       // Do collection work
1331       {
1332         HandleMark hm;  // Discard invalid handles created during gc
1333         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1334       }
1335 
1336       assert(num_free_regions() == 0, "we should not have added any free regions");
1337       rebuild_region_sets(false /* free_list_only */);
1338 
1339       // Enqueue any discovered reference objects that have
1340       // not been removed from the discovered lists.
1341       ref_processor_stw()->enqueue_discovered_references();
1342 
1343 #if defined(COMPILER2) || INCLUDE_JVMCI
1344       DerivedPointerTable::update_pointers();
1345 #endif
1346 
1347       MemoryService::track_memory_usage();
1348 
1349       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1350       ref_processor_stw()->verify_no_references_recorded();
1351 
1352       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1353       ClassLoaderDataGraph::purge();
1354       MetaspaceAux::verify_metrics();
1355 
1356       // Note: since we've just done a full GC, concurrent
1357       // marking is no longer active. Therefore we need not
1358       // re-enable reference discovery for the CM ref processor.
1359       // That will be done at the start of the next marking cycle.
1360       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1361       ref_processor_cm()->verify_no_references_recorded();
1362 
1363       reset_gc_time_stamp();
1364       // Since everything potentially moved, we will clear all remembered
1365       // sets, and clear all cards.  Later we will rebuild remembered
1366       // sets. We will also reset the GC time stamps of the regions.
1367       clear_rsets_post_compaction();
1368       check_gc_time_stamps();
1369 
1370       // Resize the heap if necessary.
1371       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1372 
1373       if (_hr_printer.is_active()) {
1374         // We should do this after we potentially resize the heap so
1375         // that all the COMMIT / UNCOMMIT events are generated before
1376         // the end GC event.
1377 
1378         print_hrm_post_compaction();
1379         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1380       }
1381 
1382       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1383       if (hot_card_cache->use_cache()) {
1384         hot_card_cache->reset_card_counts();
1385         hot_card_cache->reset_hot_cache();
1386       }
1387 
1388       // Rebuild remembered sets of all regions.
1389       uint n_workers =
1390         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1391                                                 workers()->active_workers(),
1392                                                 Threads::number_of_non_daemon_threads());
1393       workers()->set_active_workers(n_workers);
1394 
1395       ParRebuildRSTask rebuild_rs_task(this);
1396       workers()->run_task(&rebuild_rs_task);
1397 
1398       // Rebuild the strong code root lists for each region
1399       rebuild_strong_code_roots();
1400 
1401       if (true) { // FIXME
1402         MetaspaceGC::compute_new_size();
1403       }
1404 
1405 #ifdef TRACESPINNING
1406       ParallelTaskTerminator::print_termination_counts();
1407 #endif
1408 
1409       // Discard all rset updates
1410       JavaThread::dirty_card_queue_set().abandon_logs();
1411       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1412 
1413       _young_list->reset_sampled_info();
1414       // At this point there should be no regions in the
1415       // entire heap tagged as young.
1416       assert(check_young_list_empty(true /* check_heap */),
1417              "young list should be empty at this point");
1418 
1419       // Update the number of full collections that have been completed.
1420       increment_old_marking_cycles_completed(false /* concurrent */);
1421 
1422       _hrm.verify_optional();
1423       verify_region_sets_optional();
1424 
1425       verify_after_gc();
1426 
1427       // Clear the previous marking bitmap, if needed for bitmap verification.
1428       // Note we cannot do this when we clear the next marking bitmap in
1429       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1430       // objects marked during a full GC against the previous bitmap.
1431       // But we need to clear it before calling check_bitmaps below since
1432       // the full GC has compacted objects and updated TAMS but not updated
1433       // the prev bitmap.
1434       if (G1VerifyBitmaps) {
1435         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1436       }
1437       check_bitmaps("Full GC End");
1438 
1439       // Start a new incremental collection set for the next pause
1440       assert(g1_policy()->collection_set() == NULL, "must be");
1441       g1_policy()->start_incremental_cset_building();
1442 
1443       clear_cset_fast_test();
1444 
1445       _allocator->init_mutator_alloc_region();
1446 
1447       g1_policy()->record_full_collection_end();
1448 
1449       if (G1Log::fine()) {
1450         g1_policy()->print_heap_transition();
1451       }
1452 
1453       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1454       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1455       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1456       // before any GC notifications are raised.
1457       g1mm()->update_sizes();
1458 
1459       gc_epilogue(true);
1460     }
1461 
1462     if (G1Log::finer()) {
1463       g1_policy()->print_detailed_heap_transition(true /* full */);
1464     }
1465 
1466     print_heap_after_gc();
1467     trace_heap_after_gc(gc_tracer);
1468 
1469     post_full_gc_dump(gc_timer);
1470 
1471     gc_timer->register_gc_end();
1472     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1473   }
1474 
1475   return true;
1476 }
1477 
1478 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1479   // do_collection() will return whether it succeeded in performing
1480   // the GC. Currently, there is no facility on the
1481   // do_full_collection() API to notify the caller than the collection
1482   // did not succeed (e.g., because it was locked out by the GC
1483   // locker). So, right now, we'll ignore the return value.
1484   bool dummy = do_collection(true,                /* explicit_gc */
1485                              clear_all_soft_refs,
1486                              0                    /* word_size */);
1487 }
1488 
1489 // This code is mostly copied from TenuredGeneration.
1490 void
1491 G1CollectedHeap::
1492 resize_if_necessary_after_full_collection(size_t word_size) {
1493   // Include the current allocation, if any, and bytes that will be
1494   // pre-allocated to support collections, as "used".
1495   const size_t used_after_gc = used();
1496   const size_t capacity_after_gc = capacity();
1497   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1498 
1499   // This is enforced in arguments.cpp.
1500   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1501          "otherwise the code below doesn't make sense");
1502 
1503   // We don't have floating point command-line arguments
1504   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1505   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1506   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1507   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1508 
1509   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1510   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1511 
1512   // We have to be careful here as these two calculations can overflow
1513   // 32-bit size_t's.
1514   double used_after_gc_d = (double) used_after_gc;
1515   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1516   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1517 
1518   // Let's make sure that they are both under the max heap size, which
1519   // by default will make them fit into a size_t.
1520   double desired_capacity_upper_bound = (double) max_heap_size;
1521   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1522                                     desired_capacity_upper_bound);
1523   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1524                                     desired_capacity_upper_bound);
1525 
1526   // We can now safely turn them into size_t's.
1527   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1528   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1529 
1530   // This assert only makes sense here, before we adjust them
1531   // with respect to the min and max heap size.
1532   assert(minimum_desired_capacity <= maximum_desired_capacity,
1533          "minimum_desired_capacity = " SIZE_FORMAT ", "
1534          "maximum_desired_capacity = " SIZE_FORMAT,
1535          minimum_desired_capacity, maximum_desired_capacity);
1536 
1537   // Should not be greater than the heap max size. No need to adjust
1538   // it with respect to the heap min size as it's a lower bound (i.e.,
1539   // we'll try to make the capacity larger than it, not smaller).
1540   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1541   // Should not be less than the heap min size. No need to adjust it
1542   // with respect to the heap max size as it's an upper bound (i.e.,
1543   // we'll try to make the capacity smaller than it, not greater).
1544   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1545 
1546   if (capacity_after_gc < minimum_desired_capacity) {
1547     // Don't expand unless it's significant
1548     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1549     ergo_verbose4(ErgoHeapSizing,
1550                   "attempt heap expansion",
1551                   ergo_format_reason("capacity lower than "
1552                                      "min desired capacity after Full GC")
1553                   ergo_format_byte("capacity")
1554                   ergo_format_byte("occupancy")
1555                   ergo_format_byte_perc("min desired capacity"),
1556                   capacity_after_gc, used_after_gc,
1557                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1558     expand(expand_bytes);
1559 
1560     // No expansion, now see if we want to shrink
1561   } else if (capacity_after_gc > maximum_desired_capacity) {
1562     // Capacity too large, compute shrinking size
1563     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1564     ergo_verbose4(ErgoHeapSizing,
1565                   "attempt heap shrinking",
1566                   ergo_format_reason("capacity higher than "
1567                                      "max desired capacity after Full GC")
1568                   ergo_format_byte("capacity")
1569                   ergo_format_byte("occupancy")
1570                   ergo_format_byte_perc("max desired capacity"),
1571                   capacity_after_gc, used_after_gc,
1572                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1573     shrink(shrink_bytes);
1574   }
1575 }
1576 
1577 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1578                                                             AllocationContext_t context,
1579                                                             bool do_gc,
1580                                                             bool clear_all_soft_refs,
1581                                                             bool expect_null_mutator_alloc_region,
1582                                                             bool* gc_succeeded) {
1583   *gc_succeeded = true;
1584   // Let's attempt the allocation first.
1585   HeapWord* result =
1586     attempt_allocation_at_safepoint(word_size,
1587                                     context,
1588                                     expect_null_mutator_alloc_region);
1589   if (result != NULL) {
1590     assert(*gc_succeeded, "sanity");
1591     return result;
1592   }
1593 
1594   // In a G1 heap, we're supposed to keep allocation from failing by
1595   // incremental pauses.  Therefore, at least for now, we'll favor
1596   // expansion over collection.  (This might change in the future if we can
1597   // do something smarter than full collection to satisfy a failed alloc.)
1598   result = expand_and_allocate(word_size, context);
1599   if (result != NULL) {
1600     assert(*gc_succeeded, "sanity");
1601     return result;
1602   }
1603 
1604   if (do_gc) {
1605     // Expansion didn't work, we'll try to do a Full GC.
1606     *gc_succeeded = do_collection(false, /* explicit_gc */
1607                                   clear_all_soft_refs,
1608                                   word_size);
1609   }
1610 
1611   return NULL;
1612 }
1613 
1614 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1615                                                      AllocationContext_t context,
1616                                                      bool* succeeded) {
1617   assert_at_safepoint(true /* should_be_vm_thread */);
1618 
1619   // Attempts to allocate followed by Full GC.
1620   HeapWord* result =
1621     satisfy_failed_allocation_helper(word_size,
1622                                      context,
1623                                      true,  /* do_gc */
1624                                      false, /* clear_all_soft_refs */
1625                                      false, /* expect_null_mutator_alloc_region */
1626                                      succeeded);
1627 
1628   if (result != NULL || !*succeeded) {
1629     return result;
1630   }
1631 
1632   // Attempts to allocate followed by Full GC that will collect all soft references.
1633   result = satisfy_failed_allocation_helper(word_size,
1634                                             context,
1635                                             true, /* do_gc */
1636                                             true, /* clear_all_soft_refs */
1637                                             true, /* expect_null_mutator_alloc_region */
1638                                             succeeded);
1639 
1640   if (result != NULL || !*succeeded) {
1641     return result;
1642   }
1643 
1644   // Attempts to allocate, no GC
1645   result = satisfy_failed_allocation_helper(word_size,
1646                                             context,
1647                                             false, /* do_gc */
1648                                             false, /* clear_all_soft_refs */
1649                                             true,  /* expect_null_mutator_alloc_region */
1650                                             succeeded);
1651 
1652   if (result != NULL) {
1653     assert(*succeeded, "sanity");
1654     return result;
1655   }
1656 
1657   assert(!collector_policy()->should_clear_all_soft_refs(),
1658          "Flag should have been handled and cleared prior to this point");
1659 
1660   // What else?  We might try synchronous finalization later.  If the total
1661   // space available is large enough for the allocation, then a more
1662   // complete compaction phase than we've tried so far might be
1663   // appropriate.
1664   assert(*succeeded, "sanity");
1665   return NULL;
1666 }
1667 
1668 // Attempting to expand the heap sufficiently
1669 // to support an allocation of the given "word_size".  If
1670 // successful, perform the allocation and return the address of the
1671 // allocated block, or else "NULL".
1672 
1673 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1674   assert_at_safepoint(true /* should_be_vm_thread */);
1675 
1676   verify_region_sets_optional();
1677 
1678   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1679   ergo_verbose1(ErgoHeapSizing,
1680                 "attempt heap expansion",
1681                 ergo_format_reason("allocation request failed")
1682                 ergo_format_byte("allocation request"),
1683                 word_size * HeapWordSize);
1684   if (expand(expand_bytes)) {
1685     _hrm.verify_optional();
1686     verify_region_sets_optional();
1687     return attempt_allocation_at_safepoint(word_size,
1688                                            context,
1689                                            false /* expect_null_mutator_alloc_region */);
1690   }
1691   return NULL;
1692 }
1693 
1694 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1695   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1696   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1697                                        HeapRegion::GrainBytes);
1698   ergo_verbose2(ErgoHeapSizing,
1699                 "expand the heap",
1700                 ergo_format_byte("requested expansion amount")
1701                 ergo_format_byte("attempted expansion amount"),
1702                 expand_bytes, aligned_expand_bytes);
1703 
1704   if (is_maximal_no_gc()) {
1705     ergo_verbose0(ErgoHeapSizing,
1706                       "did not expand the heap",
1707                       ergo_format_reason("heap already fully expanded"));
1708     return false;
1709   }
1710 
1711   double expand_heap_start_time_sec = os::elapsedTime();
1712   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1713   assert(regions_to_expand > 0, "Must expand by at least one region");
1714 
1715   uint expanded_by = _hrm.expand_by(regions_to_expand);
1716   if (expand_time_ms != NULL) {
1717     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1718   }
1719 
1720   if (expanded_by > 0) {
1721     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1722     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1723     g1_policy()->record_new_heap_size(num_regions());
1724   } else {
1725     ergo_verbose0(ErgoHeapSizing,
1726                   "did not expand the heap",
1727                   ergo_format_reason("heap expansion operation failed"));
1728     // The expansion of the virtual storage space was unsuccessful.
1729     // Let's see if it was because we ran out of swap.
1730     if (G1ExitOnExpansionFailure &&
1731         _hrm.available() >= regions_to_expand) {
1732       // We had head room...
1733       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1734     }
1735   }
1736   return regions_to_expand > 0;
1737 }
1738 
1739 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1740   size_t aligned_shrink_bytes =
1741     ReservedSpace::page_align_size_down(shrink_bytes);
1742   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1743                                          HeapRegion::GrainBytes);
1744   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1745 
1746   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1747   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1748 
1749   ergo_verbose3(ErgoHeapSizing,
1750                 "shrink the heap",
1751                 ergo_format_byte("requested shrinking amount")
1752                 ergo_format_byte("aligned shrinking amount")
1753                 ergo_format_byte("attempted shrinking amount"),
1754                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1755   if (num_regions_removed > 0) {
1756     g1_policy()->record_new_heap_size(num_regions());
1757   } else {
1758     ergo_verbose0(ErgoHeapSizing,
1759                   "did not shrink the heap",
1760                   ergo_format_reason("heap shrinking operation failed"));
1761   }
1762 }
1763 
1764 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1765   verify_region_sets_optional();
1766 
1767   // We should only reach here at the end of a Full GC which means we
1768   // should not not be holding to any GC alloc regions. The method
1769   // below will make sure of that and do any remaining clean up.
1770   _allocator->abandon_gc_alloc_regions();
1771 
1772   // Instead of tearing down / rebuilding the free lists here, we
1773   // could instead use the remove_all_pending() method on free_list to
1774   // remove only the ones that we need to remove.
1775   tear_down_region_sets(true /* free_list_only */);
1776   shrink_helper(shrink_bytes);
1777   rebuild_region_sets(true /* free_list_only */);
1778 
1779   _hrm.verify_optional();
1780   verify_region_sets_optional();
1781 }
1782 
1783 // Public methods.
1784 
1785 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1786   CollectedHeap(),
1787   _g1_policy(policy_),
1788   _dirty_card_queue_set(false),
1789   _is_alive_closure_cm(this),
1790   _is_alive_closure_stw(this),
1791   _ref_processor_cm(NULL),
1792   _ref_processor_stw(NULL),
1793   _bot_shared(NULL),
1794   _cg1r(NULL),
1795   _g1mm(NULL),
1796   _refine_cte_cl(NULL),
1797   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1798   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1799   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1800   _humongous_reclaim_candidates(),
1801   _has_humongous_reclaim_candidates(false),
1802   _archive_allocator(NULL),
1803   _free_regions_coming(false),
1804   _young_list(new YoungList(this)),
1805   _gc_time_stamp(0),
1806   _summary_bytes_used(0),
1807   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1808   _old_evac_stats(OldPLABSize, PLABWeight),
1809   _expand_heap_after_alloc_failure(true),
1810   _old_marking_cycles_started(0),
1811   _old_marking_cycles_completed(0),
1812   _heap_summary_sent(false),
1813   _in_cset_fast_test(),
1814   _dirty_cards_region_list(NULL),
1815   _worker_cset_start_region(NULL),
1816   _worker_cset_start_region_time_stamp(NULL),
1817   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1818   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1819   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1820   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1821 
1822   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1823                           /* are_GC_task_threads */true,
1824                           /* are_ConcurrentGC_threads */false);
1825   _workers->initialize_workers();
1826 
1827   _allocator = G1Allocator::create_allocator(this);
1828   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1829 
1830   // Override the default _filler_array_max_size so that no humongous filler
1831   // objects are created.
1832   _filler_array_max_size = _humongous_object_threshold_in_words;
1833 
1834   uint n_queues = ParallelGCThreads;
1835   _task_queues = new RefToScanQueueSet(n_queues);
1836 
1837   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1838   assert(n_rem_sets > 0, "Invariant.");
1839 
1840   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1841   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1842   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1843 
1844   for (uint i = 0; i < n_queues; i++) {
1845     RefToScanQueue* q = new RefToScanQueue();
1846     q->initialize();
1847     _task_queues->register_queue(i, q);
1848     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1849   }
1850   clear_cset_start_regions();
1851 
1852   // Initialize the G1EvacuationFailureALot counters and flags.
1853   NOT_PRODUCT(reset_evacuation_should_fail();)
1854 
1855   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1856 }
1857 
1858 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1859                                                                  size_t size,
1860                                                                  size_t translation_factor) {
1861   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1862   // Allocate a new reserved space, preferring to use large pages.
1863   ReservedSpace rs(size, preferred_page_size);
1864   G1RegionToSpaceMapper* result  =
1865     G1RegionToSpaceMapper::create_mapper(rs,
1866                                          size,
1867                                          rs.alignment(),
1868                                          HeapRegion::GrainBytes,
1869                                          translation_factor,
1870                                          mtGC);
1871   if (TracePageSizes) {
1872     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1873                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1874   }
1875   return result;
1876 }
1877 
1878 jint G1CollectedHeap::initialize() {
1879   CollectedHeap::pre_initialize();
1880   os::enable_vtime();
1881 
1882   G1Log::init();
1883 
1884   // Necessary to satisfy locking discipline assertions.
1885 
1886   MutexLocker x(Heap_lock);
1887 
1888   // We have to initialize the printer before committing the heap, as
1889   // it will be used then.
1890   _hr_printer.set_active(G1PrintHeapRegions);
1891 
1892   // While there are no constraints in the GC code that HeapWordSize
1893   // be any particular value, there are multiple other areas in the
1894   // system which believe this to be true (e.g. oop->object_size in some
1895   // cases incorrectly returns the size in wordSize units rather than
1896   // HeapWordSize).
1897   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1898 
1899   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1900   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1901   size_t heap_alignment = collector_policy()->heap_alignment();
1902 
1903   // Ensure that the sizes are properly aligned.
1904   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1905   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1906   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1907 
1908   _refine_cte_cl = new RefineCardTableEntryClosure();
1909 
1910   jint ecode = JNI_OK;
1911   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1912   if (_cg1r == NULL) {
1913     return ecode;
1914   }
1915 
1916   // Reserve the maximum.
1917 
1918   // When compressed oops are enabled, the preferred heap base
1919   // is calculated by subtracting the requested size from the
1920   // 32Gb boundary and using the result as the base address for
1921   // heap reservation. If the requested size is not aligned to
1922   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1923   // into the ReservedHeapSpace constructor) then the actual
1924   // base of the reserved heap may end up differing from the
1925   // address that was requested (i.e. the preferred heap base).
1926   // If this happens then we could end up using a non-optimal
1927   // compressed oops mode.
1928 
1929   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1930                                                  heap_alignment);
1931 
1932   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1933 
1934   // Create the barrier set for the entire reserved region.
1935   G1SATBCardTableLoggingModRefBS* bs
1936     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1937   bs->initialize();
1938   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1939   set_barrier_set(bs);
1940 
1941   // Also create a G1 rem set.
1942   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1943 
1944   // Carve out the G1 part of the heap.
1945 
1946   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1947   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1948   G1RegionToSpaceMapper* heap_storage =
1949     G1RegionToSpaceMapper::create_mapper(g1_rs,
1950                                          g1_rs.size(),
1951                                          page_size,
1952                                          HeapRegion::GrainBytes,
1953                                          1,
1954                                          mtJavaHeap);
1955   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1956                        max_byte_size, page_size,
1957                        heap_rs.base(),
1958                        heap_rs.size());
1959   heap_storage->set_mapping_changed_listener(&_listener);
1960 
1961   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1962   G1RegionToSpaceMapper* bot_storage =
1963     create_aux_memory_mapper("Block offset table",
1964                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1965                              G1BlockOffsetSharedArray::heap_map_factor());
1966 
1967   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1968   G1RegionToSpaceMapper* cardtable_storage =
1969     create_aux_memory_mapper("Card table",
1970                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1971                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1972 
1973   G1RegionToSpaceMapper* card_counts_storage =
1974     create_aux_memory_mapper("Card counts table",
1975                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1976                              G1CardCounts::heap_map_factor());
1977 
1978   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1979   G1RegionToSpaceMapper* prev_bitmap_storage =
1980     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1981   G1RegionToSpaceMapper* next_bitmap_storage =
1982     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1983 
1984   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1985   g1_barrier_set()->initialize(cardtable_storage);
1986    // Do later initialization work for concurrent refinement.
1987   _cg1r->init(card_counts_storage);
1988 
1989   // 6843694 - ensure that the maximum region index can fit
1990   // in the remembered set structures.
1991   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1992   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1993 
1994   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1995   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1996   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1997             "too many cards per region");
1998 
1999   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2000 
2001   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2002 
2003   {
2004     HeapWord* start = _hrm.reserved().start();
2005     HeapWord* end = _hrm.reserved().end();
2006     size_t granularity = HeapRegion::GrainBytes;
2007 
2008     _in_cset_fast_test.initialize(start, end, granularity);
2009     _humongous_reclaim_candidates.initialize(start, end, granularity);
2010   }
2011 
2012   // Create the ConcurrentMark data structure and thread.
2013   // (Must do this late, so that "max_regions" is defined.)
2014   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2015   if (_cm == NULL || !_cm->completed_initialization()) {
2016     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2017     return JNI_ENOMEM;
2018   }
2019   _cmThread = _cm->cmThread();
2020 
2021   // Initialize the from_card cache structure of HeapRegionRemSet.
2022   HeapRegionRemSet::init_heap(max_regions());
2023 
2024   // Now expand into the initial heap size.
2025   if (!expand(init_byte_size)) {
2026     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2027     return JNI_ENOMEM;
2028   }
2029 
2030   // Perform any initialization actions delegated to the policy.
2031   g1_policy()->init();
2032 
2033   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2034                                                SATB_Q_FL_lock,
2035                                                G1SATBProcessCompletedThreshold,
2036                                                Shared_SATB_Q_lock);
2037 
2038   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2039                                                 DirtyCardQ_CBL_mon,
2040                                                 DirtyCardQ_FL_lock,
2041                                                 concurrent_g1_refine()->yellow_zone(),
2042                                                 concurrent_g1_refine()->red_zone(),
2043                                                 Shared_DirtyCardQ_lock);
2044 
2045   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2046                                     DirtyCardQ_CBL_mon,
2047                                     DirtyCardQ_FL_lock,
2048                                     -1, // never trigger processing
2049                                     -1, // no limit on length
2050                                     Shared_DirtyCardQ_lock,
2051                                     &JavaThread::dirty_card_queue_set());
2052 
2053   // Here we allocate the dummy HeapRegion that is required by the
2054   // G1AllocRegion class.
2055   HeapRegion* dummy_region = _hrm.get_dummy_region();
2056 
2057   // We'll re-use the same region whether the alloc region will
2058   // require BOT updates or not and, if it doesn't, then a non-young
2059   // region will complain that it cannot support allocations without
2060   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2061   dummy_region->set_eden();
2062   // Make sure it's full.
2063   dummy_region->set_top(dummy_region->end());
2064   G1AllocRegion::setup(this, dummy_region);
2065 
2066   _allocator->init_mutator_alloc_region();
2067 
2068   // Do create of the monitoring and management support so that
2069   // values in the heap have been properly initialized.
2070   _g1mm = new G1MonitoringSupport(this);
2071 
2072   G1StringDedup::initialize();
2073 
2074   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2075   for (uint i = 0; i < ParallelGCThreads; i++) {
2076     new (&_preserved_objs[i]) OopAndMarkOopStack();
2077   }
2078 
2079   return JNI_OK;
2080 }
2081 
2082 void G1CollectedHeap::stop() {
2083   // Stop all concurrent threads. We do this to make sure these threads
2084   // do not continue to execute and access resources (e.g. gclog_or_tty)
2085   // that are destroyed during shutdown.
2086   _cg1r->stop();
2087   _cmThread->stop();
2088   if (G1StringDedup::is_enabled()) {
2089     G1StringDedup::stop();
2090   }
2091 }
2092 
2093 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2094   return HeapRegion::max_region_size();
2095 }
2096 
2097 void G1CollectedHeap::post_initialize() {
2098   CollectedHeap::post_initialize();
2099   ref_processing_init();
2100 }
2101 
2102 void G1CollectedHeap::ref_processing_init() {
2103   // Reference processing in G1 currently works as follows:
2104   //
2105   // * There are two reference processor instances. One is
2106   //   used to record and process discovered references
2107   //   during concurrent marking; the other is used to
2108   //   record and process references during STW pauses
2109   //   (both full and incremental).
2110   // * Both ref processors need to 'span' the entire heap as
2111   //   the regions in the collection set may be dotted around.
2112   //
2113   // * For the concurrent marking ref processor:
2114   //   * Reference discovery is enabled at initial marking.
2115   //   * Reference discovery is disabled and the discovered
2116   //     references processed etc during remarking.
2117   //   * Reference discovery is MT (see below).
2118   //   * Reference discovery requires a barrier (see below).
2119   //   * Reference processing may or may not be MT
2120   //     (depending on the value of ParallelRefProcEnabled
2121   //     and ParallelGCThreads).
2122   //   * A full GC disables reference discovery by the CM
2123   //     ref processor and abandons any entries on it's
2124   //     discovered lists.
2125   //
2126   // * For the STW processor:
2127   //   * Non MT discovery is enabled at the start of a full GC.
2128   //   * Processing and enqueueing during a full GC is non-MT.
2129   //   * During a full GC, references are processed after marking.
2130   //
2131   //   * Discovery (may or may not be MT) is enabled at the start
2132   //     of an incremental evacuation pause.
2133   //   * References are processed near the end of a STW evacuation pause.
2134   //   * For both types of GC:
2135   //     * Discovery is atomic - i.e. not concurrent.
2136   //     * Reference discovery will not need a barrier.
2137 
2138   MemRegion mr = reserved_region();
2139 
2140   // Concurrent Mark ref processor
2141   _ref_processor_cm =
2142     new ReferenceProcessor(mr,    // span
2143                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2144                                 // mt processing
2145                            ParallelGCThreads,
2146                                 // degree of mt processing
2147                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2148                                 // mt discovery
2149                            MAX2(ParallelGCThreads, ConcGCThreads),
2150                                 // degree of mt discovery
2151                            false,
2152                                 // Reference discovery is not atomic
2153                            &_is_alive_closure_cm);
2154                                 // is alive closure
2155                                 // (for efficiency/performance)
2156 
2157   // STW ref processor
2158   _ref_processor_stw =
2159     new ReferenceProcessor(mr,    // span
2160                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2161                                 // mt processing
2162                            ParallelGCThreads,
2163                                 // degree of mt processing
2164                            (ParallelGCThreads > 1),
2165                                 // mt discovery
2166                            ParallelGCThreads,
2167                                 // degree of mt discovery
2168                            true,
2169                                 // Reference discovery is atomic
2170                            &_is_alive_closure_stw);
2171                                 // is alive closure
2172                                 // (for efficiency/performance)
2173 }
2174 
2175 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2176   return g1_policy();
2177 }
2178 
2179 size_t G1CollectedHeap::capacity() const {
2180   return _hrm.length() * HeapRegion::GrainBytes;
2181 }
2182 
2183 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2184   hr->reset_gc_time_stamp();
2185 }
2186 
2187 #ifndef PRODUCT
2188 
2189 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2190 private:
2191   unsigned _gc_time_stamp;
2192   bool _failures;
2193 
2194 public:
2195   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2196     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2197 
2198   virtual bool doHeapRegion(HeapRegion* hr) {
2199     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2200     if (_gc_time_stamp != region_gc_time_stamp) {
2201       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2202                              "expected %d", HR_FORMAT_PARAMS(hr),
2203                              region_gc_time_stamp, _gc_time_stamp);
2204       _failures = true;
2205     }
2206     return false;
2207   }
2208 
2209   bool failures() { return _failures; }
2210 };
2211 
2212 void G1CollectedHeap::check_gc_time_stamps() {
2213   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2214   heap_region_iterate(&cl);
2215   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2216 }
2217 #endif // PRODUCT
2218 
2219 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2220   _cg1r->hot_card_cache()->drain(cl, worker_i);
2221 }
2222 
2223 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2224   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2225   size_t n_completed_buffers = 0;
2226   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2227     n_completed_buffers++;
2228   }
2229   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2230   dcqs.clear_n_completed_buffers();
2231   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2232 }
2233 
2234 // Computes the sum of the storage used by the various regions.
2235 size_t G1CollectedHeap::used() const {
2236   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2237   if (_archive_allocator != NULL) {
2238     result += _archive_allocator->used();
2239   }
2240   return result;
2241 }
2242 
2243 size_t G1CollectedHeap::used_unlocked() const {
2244   return _summary_bytes_used;
2245 }
2246 
2247 class SumUsedClosure: public HeapRegionClosure {
2248   size_t _used;
2249 public:
2250   SumUsedClosure() : _used(0) {}
2251   bool doHeapRegion(HeapRegion* r) {
2252     _used += r->used();
2253     return false;
2254   }
2255   size_t result() { return _used; }
2256 };
2257 
2258 size_t G1CollectedHeap::recalculate_used() const {
2259   double recalculate_used_start = os::elapsedTime();
2260 
2261   SumUsedClosure blk;
2262   heap_region_iterate(&blk);
2263 
2264   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2265   return blk.result();
2266 }
2267 
2268 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2269   switch (cause) {
2270     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2271     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2272     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2273     case GCCause::_g1_humongous_allocation: return true;
2274     case GCCause::_update_allocation_context_stats_inc: return true;
2275     case GCCause::_wb_conc_mark:            return true;
2276     default:                                return false;
2277   }
2278 }
2279 
2280 #ifndef PRODUCT
2281 void G1CollectedHeap::allocate_dummy_regions() {
2282   // Let's fill up most of the region
2283   size_t word_size = HeapRegion::GrainWords - 1024;
2284   // And as a result the region we'll allocate will be humongous.
2285   guarantee(is_humongous(word_size), "sanity");
2286 
2287   // _filler_array_max_size is set to humongous object threshold
2288   // but temporarily change it to use CollectedHeap::fill_with_object().
2289   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2290 
2291   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2292     // Let's use the existing mechanism for the allocation
2293     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2294                                                  AllocationContext::system());
2295     if (dummy_obj != NULL) {
2296       MemRegion mr(dummy_obj, word_size);
2297       CollectedHeap::fill_with_object(mr);
2298     } else {
2299       // If we can't allocate once, we probably cannot allocate
2300       // again. Let's get out of the loop.
2301       break;
2302     }
2303   }
2304 }
2305 #endif // !PRODUCT
2306 
2307 void G1CollectedHeap::increment_old_marking_cycles_started() {
2308   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2309          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2310          "Wrong marking cycle count (started: %d, completed: %d)",
2311          _old_marking_cycles_started, _old_marking_cycles_completed);
2312 
2313   _old_marking_cycles_started++;
2314 }
2315 
2316 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2317   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2318 
2319   // We assume that if concurrent == true, then the caller is a
2320   // concurrent thread that was joined the Suspendible Thread
2321   // Set. If there's ever a cheap way to check this, we should add an
2322   // assert here.
2323 
2324   // Given that this method is called at the end of a Full GC or of a
2325   // concurrent cycle, and those can be nested (i.e., a Full GC can
2326   // interrupt a concurrent cycle), the number of full collections
2327   // completed should be either one (in the case where there was no
2328   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2329   // behind the number of full collections started.
2330 
2331   // This is the case for the inner caller, i.e. a Full GC.
2332   assert(concurrent ||
2333          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2334          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2335          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2336          "is inconsistent with _old_marking_cycles_completed = %u",
2337          _old_marking_cycles_started, _old_marking_cycles_completed);
2338 
2339   // This is the case for the outer caller, i.e. the concurrent cycle.
2340   assert(!concurrent ||
2341          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2342          "for outer caller (concurrent cycle): "
2343          "_old_marking_cycles_started = %u "
2344          "is inconsistent with _old_marking_cycles_completed = %u",
2345          _old_marking_cycles_started, _old_marking_cycles_completed);
2346 
2347   _old_marking_cycles_completed += 1;
2348 
2349   // We need to clear the "in_progress" flag in the CM thread before
2350   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2351   // is set) so that if a waiter requests another System.gc() it doesn't
2352   // incorrectly see that a marking cycle is still in progress.
2353   if (concurrent) {
2354     _cmThread->set_idle();
2355   }
2356 
2357   // This notify_all() will ensure that a thread that called
2358   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2359   // and it's waiting for a full GC to finish will be woken up. It is
2360   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2361   FullGCCount_lock->notify_all();
2362 }
2363 
2364 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2365   GCIdMarkAndRestore conc_gc_id_mark;
2366   collector_state()->set_concurrent_cycle_started(true);
2367   _gc_timer_cm->register_gc_start(start_time);
2368 
2369   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2370   trace_heap_before_gc(_gc_tracer_cm);
2371   _cmThread->set_gc_id(GCId::current());
2372 }
2373 
2374 void G1CollectedHeap::register_concurrent_cycle_end() {
2375   if (collector_state()->concurrent_cycle_started()) {
2376     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2377     if (_cm->has_aborted()) {
2378       _gc_tracer_cm->report_concurrent_mode_failure();
2379     }
2380 
2381     _gc_timer_cm->register_gc_end();
2382     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2383 
2384     // Clear state variables to prepare for the next concurrent cycle.
2385      collector_state()->set_concurrent_cycle_started(false);
2386     _heap_summary_sent = false;
2387   }
2388 }
2389 
2390 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2391   if (collector_state()->concurrent_cycle_started()) {
2392     // This function can be called when:
2393     //  the cleanup pause is run
2394     //  the concurrent cycle is aborted before the cleanup pause.
2395     //  the concurrent cycle is aborted after the cleanup pause,
2396     //   but before the concurrent cycle end has been registered.
2397     // Make sure that we only send the heap information once.
2398     if (!_heap_summary_sent) {
2399       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2400       trace_heap_after_gc(_gc_tracer_cm);
2401       _heap_summary_sent = true;
2402     }
2403   }
2404 }
2405 
2406 void G1CollectedHeap::collect(GCCause::Cause cause) {
2407   assert_heap_not_locked();
2408 
2409   uint gc_count_before;
2410   uint old_marking_count_before;
2411   uint full_gc_count_before;
2412   bool retry_gc;
2413 
2414   do {
2415     retry_gc = false;
2416 
2417     {
2418       MutexLocker ml(Heap_lock);
2419 
2420       // Read the GC count while holding the Heap_lock
2421       gc_count_before = total_collections();
2422       full_gc_count_before = total_full_collections();
2423       old_marking_count_before = _old_marking_cycles_started;
2424     }
2425 
2426     if (should_do_concurrent_full_gc(cause)) {
2427       // Schedule an initial-mark evacuation pause that will start a
2428       // concurrent cycle. We're setting word_size to 0 which means that
2429       // we are not requesting a post-GC allocation.
2430       VM_G1IncCollectionPause op(gc_count_before,
2431                                  0,     /* word_size */
2432                                  true,  /* should_initiate_conc_mark */
2433                                  g1_policy()->max_pause_time_ms(),
2434                                  cause);
2435       op.set_allocation_context(AllocationContext::current());
2436 
2437       VMThread::execute(&op);
2438       if (!op.pause_succeeded()) {
2439         if (old_marking_count_before == _old_marking_cycles_started) {
2440           retry_gc = op.should_retry_gc();
2441         } else {
2442           // A Full GC happened while we were trying to schedule the
2443           // initial-mark GC. No point in starting a new cycle given
2444           // that the whole heap was collected anyway.
2445         }
2446 
2447         if (retry_gc) {
2448           if (GC_locker::is_active_and_needs_gc()) {
2449             GC_locker::stall_until_clear();
2450           }
2451         }
2452       }
2453     } else {
2454       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2455           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2456 
2457         // Schedule a standard evacuation pause. We're setting word_size
2458         // to 0 which means that we are not requesting a post-GC allocation.
2459         VM_G1IncCollectionPause op(gc_count_before,
2460                                    0,     /* word_size */
2461                                    false, /* should_initiate_conc_mark */
2462                                    g1_policy()->max_pause_time_ms(),
2463                                    cause);
2464         VMThread::execute(&op);
2465       } else {
2466         // Schedule a Full GC.
2467         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2468         VMThread::execute(&op);
2469       }
2470     }
2471   } while (retry_gc);
2472 }
2473 
2474 bool G1CollectedHeap::is_in(const void* p) const {
2475   if (_hrm.reserved().contains(p)) {
2476     // Given that we know that p is in the reserved space,
2477     // heap_region_containing() should successfully
2478     // return the containing region.
2479     HeapRegion* hr = heap_region_containing(p);
2480     return hr->is_in(p);
2481   } else {
2482     return false;
2483   }
2484 }
2485 
2486 #ifdef ASSERT
2487 bool G1CollectedHeap::is_in_exact(const void* p) const {
2488   bool contains = reserved_region().contains(p);
2489   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2490   if (contains && available) {
2491     return true;
2492   } else {
2493     return false;
2494   }
2495 }
2496 #endif
2497 
2498 bool G1CollectedHeap::obj_in_cs(oop obj) {
2499   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2500   return r != NULL && r->in_collection_set();
2501 }
2502 
2503 // Iteration functions.
2504 
2505 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2506 
2507 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2508   ExtendedOopClosure* _cl;
2509 public:
2510   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2511   bool doHeapRegion(HeapRegion* r) {
2512     if (!r->is_continues_humongous()) {
2513       r->oop_iterate(_cl);
2514     }
2515     return false;
2516   }
2517 };
2518 
2519 // Iterates an ObjectClosure over all objects within a HeapRegion.
2520 
2521 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2522   ObjectClosure* _cl;
2523 public:
2524   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2525   bool doHeapRegion(HeapRegion* r) {
2526     if (!r->is_continues_humongous()) {
2527       r->object_iterate(_cl);
2528     }
2529     return false;
2530   }
2531 };
2532 
2533 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2534   IterateObjectClosureRegionClosure blk(cl);
2535   heap_region_iterate(&blk);
2536 }
2537 
2538 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2539   _hrm.iterate(cl);
2540 }
2541 
2542 void
2543 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2544                                          uint worker_id,
2545                                          HeapRegionClaimer *hrclaimer,
2546                                          bool concurrent) const {
2547   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2548 }
2549 
2550 // Clear the cached CSet starting regions and (more importantly)
2551 // the time stamps. Called when we reset the GC time stamp.
2552 void G1CollectedHeap::clear_cset_start_regions() {
2553   assert(_worker_cset_start_region != NULL, "sanity");
2554   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2555 
2556   for (uint i = 0; i < ParallelGCThreads; i++) {
2557     _worker_cset_start_region[i] = NULL;
2558     _worker_cset_start_region_time_stamp[i] = 0;
2559   }
2560 }
2561 
2562 // Given the id of a worker, obtain or calculate a suitable
2563 // starting region for iterating over the current collection set.
2564 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2565   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2566 
2567   HeapRegion* result = NULL;
2568   unsigned gc_time_stamp = get_gc_time_stamp();
2569 
2570   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2571     // Cached starting region for current worker was set
2572     // during the current pause - so it's valid.
2573     // Note: the cached starting heap region may be NULL
2574     // (when the collection set is empty).
2575     result = _worker_cset_start_region[worker_i];
2576     assert(result == NULL || result->in_collection_set(), "sanity");
2577     return result;
2578   }
2579 
2580   // The cached entry was not valid so let's calculate
2581   // a suitable starting heap region for this worker.
2582 
2583   // We want the parallel threads to start their collection
2584   // set iteration at different collection set regions to
2585   // avoid contention.
2586   // If we have:
2587   //          n collection set regions
2588   //          p threads
2589   // Then thread t will start at region floor ((t * n) / p)
2590 
2591   result = g1_policy()->collection_set();
2592   uint cs_size = g1_policy()->cset_region_length();
2593   uint active_workers = workers()->active_workers();
2594 
2595   uint end_ind   = (cs_size * worker_i) / active_workers;
2596   uint start_ind = 0;
2597 
2598   if (worker_i > 0 &&
2599       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2600     // Previous workers starting region is valid
2601     // so let's iterate from there
2602     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2603     result = _worker_cset_start_region[worker_i - 1];
2604   }
2605 
2606   for (uint i = start_ind; i < end_ind; i++) {
2607     result = result->next_in_collection_set();
2608   }
2609 
2610   // Note: the calculated starting heap region may be NULL
2611   // (when the collection set is empty).
2612   assert(result == NULL || result->in_collection_set(), "sanity");
2613   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2614          "should be updated only once per pause");
2615   _worker_cset_start_region[worker_i] = result;
2616   OrderAccess::storestore();
2617   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2618   return result;
2619 }
2620 
2621 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2622   HeapRegion* r = g1_policy()->collection_set();
2623   while (r != NULL) {
2624     HeapRegion* next = r->next_in_collection_set();
2625     if (cl->doHeapRegion(r)) {
2626       cl->incomplete();
2627       return;
2628     }
2629     r = next;
2630   }
2631 }
2632 
2633 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2634                                                   HeapRegionClosure *cl) {
2635   if (r == NULL) {
2636     // The CSet is empty so there's nothing to do.
2637     return;
2638   }
2639 
2640   assert(r->in_collection_set(),
2641          "Start region must be a member of the collection set.");
2642   HeapRegion* cur = r;
2643   while (cur != NULL) {
2644     HeapRegion* next = cur->next_in_collection_set();
2645     if (cl->doHeapRegion(cur) && false) {
2646       cl->incomplete();
2647       return;
2648     }
2649     cur = next;
2650   }
2651   cur = g1_policy()->collection_set();
2652   while (cur != r) {
2653     HeapRegion* next = cur->next_in_collection_set();
2654     if (cl->doHeapRegion(cur) && false) {
2655       cl->incomplete();
2656       return;
2657     }
2658     cur = next;
2659   }
2660 }
2661 
2662 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2663   HeapRegion* result = _hrm.next_region_in_heap(from);
2664   while (result != NULL && result->is_pinned()) {
2665     result = _hrm.next_region_in_heap(result);
2666   }
2667   return result;
2668 }
2669 
2670 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2671   HeapRegion* hr = heap_region_containing(addr);
2672   return hr->block_start(addr);
2673 }
2674 
2675 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2676   HeapRegion* hr = heap_region_containing(addr);
2677   return hr->block_size(addr);
2678 }
2679 
2680 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2681   HeapRegion* hr = heap_region_containing(addr);
2682   return hr->block_is_obj(addr);
2683 }
2684 
2685 bool G1CollectedHeap::supports_tlab_allocation() const {
2686   return true;
2687 }
2688 
2689 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2690   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2691 }
2692 
2693 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2694   return young_list()->eden_used_bytes();
2695 }
2696 
2697 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2698 // must be equal to the humongous object limit.
2699 size_t G1CollectedHeap::max_tlab_size() const {
2700   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2701 }
2702 
2703 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2704   AllocationContext_t context = AllocationContext::current();
2705   return _allocator->unsafe_max_tlab_alloc(context);
2706 }
2707 
2708 size_t G1CollectedHeap::max_capacity() const {
2709   return _hrm.reserved().byte_size();
2710 }
2711 
2712 jlong G1CollectedHeap::millis_since_last_gc() {
2713   // assert(false, "NYI");
2714   return 0;
2715 }
2716 
2717 void G1CollectedHeap::prepare_for_verify() {
2718   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2719     ensure_parsability(false);
2720   }
2721   g1_rem_set()->prepare_for_verify();
2722 }
2723 
2724 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2725                                               VerifyOption vo) {
2726   switch (vo) {
2727   case VerifyOption_G1UsePrevMarking:
2728     return hr->obj_allocated_since_prev_marking(obj);
2729   case VerifyOption_G1UseNextMarking:
2730     return hr->obj_allocated_since_next_marking(obj);
2731   case VerifyOption_G1UseMarkWord:
2732     return false;
2733   default:
2734     ShouldNotReachHere();
2735   }
2736   return false; // keep some compilers happy
2737 }
2738 
2739 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2740   switch (vo) {
2741   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2742   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2743   case VerifyOption_G1UseMarkWord:    return NULL;
2744   default:                            ShouldNotReachHere();
2745   }
2746   return NULL; // keep some compilers happy
2747 }
2748 
2749 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2750   switch (vo) {
2751   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2752   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2753   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2754   default:                            ShouldNotReachHere();
2755   }
2756   return false; // keep some compilers happy
2757 }
2758 
2759 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2760   switch (vo) {
2761   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2762   case VerifyOption_G1UseNextMarking: return "NTAMS";
2763   case VerifyOption_G1UseMarkWord:    return "NONE";
2764   default:                            ShouldNotReachHere();
2765   }
2766   return NULL; // keep some compilers happy
2767 }
2768 
2769 class VerifyRootsClosure: public OopClosure {
2770 private:
2771   G1CollectedHeap* _g1h;
2772   VerifyOption     _vo;
2773   bool             _failures;
2774 public:
2775   // _vo == UsePrevMarking -> use "prev" marking information,
2776   // _vo == UseNextMarking -> use "next" marking information,
2777   // _vo == UseMarkWord    -> use mark word from object header.
2778   VerifyRootsClosure(VerifyOption vo) :
2779     _g1h(G1CollectedHeap::heap()),
2780     _vo(vo),
2781     _failures(false) { }
2782 
2783   bool failures() { return _failures; }
2784 
2785   template <class T> void do_oop_nv(T* p) {
2786     T heap_oop = oopDesc::load_heap_oop(p);
2787     if (!oopDesc::is_null(heap_oop)) {
2788       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2789       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2790         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2791                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2792         if (_vo == VerifyOption_G1UseMarkWord) {
2793           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2794         }
2795         obj->print_on(gclog_or_tty);
2796         _failures = true;
2797       }
2798     }
2799   }
2800 
2801   void do_oop(oop* p)       { do_oop_nv(p); }
2802   void do_oop(narrowOop* p) { do_oop_nv(p); }
2803 };
2804 
2805 class G1VerifyCodeRootOopClosure: public OopClosure {
2806   G1CollectedHeap* _g1h;
2807   OopClosure* _root_cl;
2808   nmethod* _nm;
2809   VerifyOption _vo;
2810   bool _failures;
2811 
2812   template <class T> void do_oop_work(T* p) {
2813     // First verify that this root is live
2814     _root_cl->do_oop(p);
2815 
2816     if (!G1VerifyHeapRegionCodeRoots) {
2817       // We're not verifying the code roots attached to heap region.
2818       return;
2819     }
2820 
2821     // Don't check the code roots during marking verification in a full GC
2822     if (_vo == VerifyOption_G1UseMarkWord) {
2823       return;
2824     }
2825 
2826     // Now verify that the current nmethod (which contains p) is
2827     // in the code root list of the heap region containing the
2828     // object referenced by p.
2829 
2830     T heap_oop = oopDesc::load_heap_oop(p);
2831     if (!oopDesc::is_null(heap_oop)) {
2832       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2833 
2834       // Now fetch the region containing the object
2835       HeapRegion* hr = _g1h->heap_region_containing(obj);
2836       HeapRegionRemSet* hrrs = hr->rem_set();
2837       // Verify that the strong code root list for this region
2838       // contains the nmethod
2839       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2840         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2841                                "from nmethod " PTR_FORMAT " not in strong "
2842                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2843                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2844         _failures = true;
2845       }
2846     }
2847   }
2848 
2849 public:
2850   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2851     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2852 
2853   void do_oop(oop* p) { do_oop_work(p); }
2854   void do_oop(narrowOop* p) { do_oop_work(p); }
2855 
2856   void set_nmethod(nmethod* nm) { _nm = nm; }
2857   bool failures() { return _failures; }
2858 };
2859 
2860 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2861   G1VerifyCodeRootOopClosure* _oop_cl;
2862 
2863 public:
2864   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2865     _oop_cl(oop_cl) {}
2866 
2867   void do_code_blob(CodeBlob* cb) {
2868     nmethod* nm = cb->as_nmethod_or_null();
2869     if (nm != NULL) {
2870       _oop_cl->set_nmethod(nm);
2871       nm->oops_do(_oop_cl);
2872     }
2873   }
2874 };
2875 
2876 class YoungRefCounterClosure : public OopClosure {
2877   G1CollectedHeap* _g1h;
2878   int              _count;
2879  public:
2880   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2881   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2882   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2883 
2884   int count() { return _count; }
2885   void reset_count() { _count = 0; };
2886 };
2887 
2888 class VerifyKlassClosure: public KlassClosure {
2889   YoungRefCounterClosure _young_ref_counter_closure;
2890   OopClosure *_oop_closure;
2891  public:
2892   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2893   void do_klass(Klass* k) {
2894     k->oops_do(_oop_closure);
2895 
2896     _young_ref_counter_closure.reset_count();
2897     k->oops_do(&_young_ref_counter_closure);
2898     if (_young_ref_counter_closure.count() > 0) {
2899       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2900     }
2901   }
2902 };
2903 
2904 class VerifyLivenessOopClosure: public OopClosure {
2905   G1CollectedHeap* _g1h;
2906   VerifyOption _vo;
2907 public:
2908   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2909     _g1h(g1h), _vo(vo)
2910   { }
2911   void do_oop(narrowOop *p) { do_oop_work(p); }
2912   void do_oop(      oop *p) { do_oop_work(p); }
2913 
2914   template <class T> void do_oop_work(T *p) {
2915     oop obj = oopDesc::load_decode_heap_oop(p);
2916     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2917               "Dead object referenced by a not dead object");
2918   }
2919 };
2920 
2921 class VerifyObjsInRegionClosure: public ObjectClosure {
2922 private:
2923   G1CollectedHeap* _g1h;
2924   size_t _live_bytes;
2925   HeapRegion *_hr;
2926   VerifyOption _vo;
2927 public:
2928   // _vo == UsePrevMarking -> use "prev" marking information,
2929   // _vo == UseNextMarking -> use "next" marking information,
2930   // _vo == UseMarkWord    -> use mark word from object header.
2931   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2932     : _live_bytes(0), _hr(hr), _vo(vo) {
2933     _g1h = G1CollectedHeap::heap();
2934   }
2935   void do_object(oop o) {
2936     VerifyLivenessOopClosure isLive(_g1h, _vo);
2937     assert(o != NULL, "Huh?");
2938     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2939       // If the object is alive according to the mark word,
2940       // then verify that the marking information agrees.
2941       // Note we can't verify the contra-positive of the
2942       // above: if the object is dead (according to the mark
2943       // word), it may not be marked, or may have been marked
2944       // but has since became dead, or may have been allocated
2945       // since the last marking.
2946       if (_vo == VerifyOption_G1UseMarkWord) {
2947         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2948       }
2949 
2950       o->oop_iterate_no_header(&isLive);
2951       if (!_hr->obj_allocated_since_prev_marking(o)) {
2952         size_t obj_size = o->size();    // Make sure we don't overflow
2953         _live_bytes += (obj_size * HeapWordSize);
2954       }
2955     }
2956   }
2957   size_t live_bytes() { return _live_bytes; }
2958 };
2959 
2960 class VerifyArchiveOopClosure: public OopClosure {
2961 public:
2962   VerifyArchiveOopClosure(HeapRegion *hr) { }
2963   void do_oop(narrowOop *p) { do_oop_work(p); }
2964   void do_oop(      oop *p) { do_oop_work(p); }
2965 
2966   template <class T> void do_oop_work(T *p) {
2967     oop obj = oopDesc::load_decode_heap_oop(p);
2968     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2969               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2970               p2i(p), p2i(obj));
2971   }
2972 };
2973 
2974 class VerifyArchiveRegionClosure: public ObjectClosure {
2975 public:
2976   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2977   // Verify that all object pointers are to archive regions.
2978   void do_object(oop o) {
2979     VerifyArchiveOopClosure checkOop(NULL);
2980     assert(o != NULL, "Should not be here for NULL oops");
2981     o->oop_iterate_no_header(&checkOop);
2982   }
2983 };
2984 
2985 class VerifyRegionClosure: public HeapRegionClosure {
2986 private:
2987   bool             _par;
2988   VerifyOption     _vo;
2989   bool             _failures;
2990 public:
2991   // _vo == UsePrevMarking -> use "prev" marking information,
2992   // _vo == UseNextMarking -> use "next" marking information,
2993   // _vo == UseMarkWord    -> use mark word from object header.
2994   VerifyRegionClosure(bool par, VerifyOption vo)
2995     : _par(par),
2996       _vo(vo),
2997       _failures(false) {}
2998 
2999   bool failures() {
3000     return _failures;
3001   }
3002 
3003   bool doHeapRegion(HeapRegion* r) {
3004     // For archive regions, verify there are no heap pointers to
3005     // non-pinned regions. For all others, verify liveness info.
3006     if (r->is_archive()) {
3007       VerifyArchiveRegionClosure verify_oop_pointers(r);
3008       r->object_iterate(&verify_oop_pointers);
3009       return true;
3010     }
3011     if (!r->is_continues_humongous()) {
3012       bool failures = false;
3013       r->verify(_vo, &failures);
3014       if (failures) {
3015         _failures = true;
3016       } else if (!r->is_starts_humongous()) {
3017         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3018         r->object_iterate(&not_dead_yet_cl);
3019         if (_vo != VerifyOption_G1UseNextMarking) {
3020           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3021             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3022                                    "max_live_bytes " SIZE_FORMAT " "
3023                                    "< calculated " SIZE_FORMAT,
3024                                    p2i(r->bottom()), p2i(r->end()),
3025                                    r->max_live_bytes(),
3026                                  not_dead_yet_cl.live_bytes());
3027             _failures = true;
3028           }
3029         } else {
3030           // When vo == UseNextMarking we cannot currently do a sanity
3031           // check on the live bytes as the calculation has not been
3032           // finalized yet.
3033         }
3034       }
3035     }
3036     return false; // stop the region iteration if we hit a failure
3037   }
3038 };
3039 
3040 // This is the task used for parallel verification of the heap regions
3041 
3042 class G1ParVerifyTask: public AbstractGangTask {
3043 private:
3044   G1CollectedHeap*  _g1h;
3045   VerifyOption      _vo;
3046   bool              _failures;
3047   HeapRegionClaimer _hrclaimer;
3048 
3049 public:
3050   // _vo == UsePrevMarking -> use "prev" marking information,
3051   // _vo == UseNextMarking -> use "next" marking information,
3052   // _vo == UseMarkWord    -> use mark word from object header.
3053   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3054       AbstractGangTask("Parallel verify task"),
3055       _g1h(g1h),
3056       _vo(vo),
3057       _failures(false),
3058       _hrclaimer(g1h->workers()->active_workers()) {}
3059 
3060   bool failures() {
3061     return _failures;
3062   }
3063 
3064   void work(uint worker_id) {
3065     HandleMark hm;
3066     VerifyRegionClosure blk(true, _vo);
3067     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3068     if (blk.failures()) {
3069       _failures = true;
3070     }
3071   }
3072 };
3073 
3074 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3075   if (SafepointSynchronize::is_at_safepoint()) {
3076     assert(Thread::current()->is_VM_thread(),
3077            "Expected to be executed serially by the VM thread at this point");
3078 
3079     if (!silent) { gclog_or_tty->print("Roots "); }
3080     VerifyRootsClosure rootsCl(vo);
3081     VerifyKlassClosure klassCl(this, &rootsCl);
3082     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3083 
3084     // We apply the relevant closures to all the oops in the
3085     // system dictionary, class loader data graph, the string table
3086     // and the nmethods in the code cache.
3087     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3088     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3089 
3090     {
3091       G1RootProcessor root_processor(this, 1);
3092       root_processor.process_all_roots(&rootsCl,
3093                                        &cldCl,
3094                                        &blobsCl);
3095     }
3096 
3097     bool failures = rootsCl.failures() || codeRootsCl.failures();
3098 
3099     if (vo != VerifyOption_G1UseMarkWord) {
3100       // If we're verifying during a full GC then the region sets
3101       // will have been torn down at the start of the GC. Therefore
3102       // verifying the region sets will fail. So we only verify
3103       // the region sets when not in a full GC.
3104       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3105       verify_region_sets();
3106     }
3107 
3108     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3109     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3110 
3111       G1ParVerifyTask task(this, vo);
3112       workers()->run_task(&task);
3113       if (task.failures()) {
3114         failures = true;
3115       }
3116 
3117     } else {
3118       VerifyRegionClosure blk(false, vo);
3119       heap_region_iterate(&blk);
3120       if (blk.failures()) {
3121         failures = true;
3122       }
3123     }
3124 
3125     if (G1StringDedup::is_enabled()) {
3126       if (!silent) gclog_or_tty->print("StrDedup ");
3127       G1StringDedup::verify();
3128     }
3129 
3130     if (failures) {
3131       gclog_or_tty->print_cr("Heap:");
3132       // It helps to have the per-region information in the output to
3133       // help us track down what went wrong. This is why we call
3134       // print_extended_on() instead of print_on().
3135       print_extended_on(gclog_or_tty);
3136       gclog_or_tty->cr();
3137       gclog_or_tty->flush();
3138     }
3139     guarantee(!failures, "there should not have been any failures");
3140   } else {
3141     if (!silent) {
3142       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3143       if (G1StringDedup::is_enabled()) {
3144         gclog_or_tty->print(", StrDedup");
3145       }
3146       gclog_or_tty->print(") ");
3147     }
3148   }
3149 }
3150 
3151 void G1CollectedHeap::verify(bool silent) {
3152   verify(silent, VerifyOption_G1UsePrevMarking);
3153 }
3154 
3155 double G1CollectedHeap::verify(bool guard, const char* msg) {
3156   double verify_time_ms = 0.0;
3157 
3158   if (guard && total_collections() >= VerifyGCStartAt) {
3159     double verify_start = os::elapsedTime();
3160     HandleMark hm;  // Discard invalid handles created during verification
3161     prepare_for_verify();
3162     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3163     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3164   }
3165 
3166   return verify_time_ms;
3167 }
3168 
3169 void G1CollectedHeap::verify_before_gc() {
3170   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3171   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3172 }
3173 
3174 void G1CollectedHeap::verify_after_gc() {
3175   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3176   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3177 }
3178 
3179 class PrintRegionClosure: public HeapRegionClosure {
3180   outputStream* _st;
3181 public:
3182   PrintRegionClosure(outputStream* st) : _st(st) {}
3183   bool doHeapRegion(HeapRegion* r) {
3184     r->print_on(_st);
3185     return false;
3186   }
3187 };
3188 
3189 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3190                                        const HeapRegion* hr,
3191                                        const VerifyOption vo) const {
3192   switch (vo) {
3193   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3194   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3195   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3196   default:                            ShouldNotReachHere();
3197   }
3198   return false; // keep some compilers happy
3199 }
3200 
3201 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3202                                        const VerifyOption vo) const {
3203   switch (vo) {
3204   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3205   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3206   case VerifyOption_G1UseMarkWord: {
3207     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3208     return !obj->is_gc_marked() && !hr->is_archive();
3209   }
3210   default:                            ShouldNotReachHere();
3211   }
3212   return false; // keep some compilers happy
3213 }
3214 
3215 void G1CollectedHeap::print_on(outputStream* st) const {
3216   st->print(" %-20s", "garbage-first heap");
3217   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3218             capacity()/K, used_unlocked()/K);
3219   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3220             p2i(_hrm.reserved().start()),
3221             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3222             p2i(_hrm.reserved().end()));
3223   st->cr();
3224   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3225   uint young_regions = _young_list->length();
3226   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3227             (size_t) young_regions * HeapRegion::GrainBytes / K);
3228   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3229   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3230             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3231   st->cr();
3232   MetaspaceAux::print_on(st);
3233 }
3234 
3235 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3236   print_on(st);
3237 
3238   // Print the per-region information.
3239   st->cr();
3240   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3241                "HS=humongous(starts), HC=humongous(continues), "
3242                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3243                "PTAMS=previous top-at-mark-start, "
3244                "NTAMS=next top-at-mark-start)");
3245   PrintRegionClosure blk(st);
3246   heap_region_iterate(&blk);
3247 }
3248 
3249 void G1CollectedHeap::print_on_error(outputStream* st) const {
3250   this->CollectedHeap::print_on_error(st);
3251 
3252   if (_cm != NULL) {
3253     st->cr();
3254     _cm->print_on_error(st);
3255   }
3256 }
3257 
3258 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3259   workers()->print_worker_threads_on(st);
3260   _cmThread->print_on(st);
3261   st->cr();
3262   _cm->print_worker_threads_on(st);
3263   _cg1r->print_worker_threads_on(st);
3264   if (G1StringDedup::is_enabled()) {
3265     G1StringDedup::print_worker_threads_on(st);
3266   }
3267 }
3268 
3269 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3270   workers()->threads_do(tc);
3271   tc->do_thread(_cmThread);
3272   _cg1r->threads_do(tc);
3273   if (G1StringDedup::is_enabled()) {
3274     G1StringDedup::threads_do(tc);
3275   }
3276 }
3277 
3278 void G1CollectedHeap::print_tracing_info() const {
3279   // We'll overload this to mean "trace GC pause statistics."
3280   if (TraceYoungGenTime || TraceOldGenTime) {
3281     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3282     // to that.
3283     g1_policy()->print_tracing_info();
3284   }
3285   if (G1SummarizeRSetStats) {
3286     g1_rem_set()->print_summary_info();
3287   }
3288   if (G1SummarizeConcMark) {
3289     concurrent_mark()->print_summary_info();
3290   }
3291   g1_policy()->print_yg_surv_rate_info();
3292 }
3293 
3294 #ifndef PRODUCT
3295 // Helpful for debugging RSet issues.
3296 
3297 class PrintRSetsClosure : public HeapRegionClosure {
3298 private:
3299   const char* _msg;
3300   size_t _occupied_sum;
3301 
3302 public:
3303   bool doHeapRegion(HeapRegion* r) {
3304     HeapRegionRemSet* hrrs = r->rem_set();
3305     size_t occupied = hrrs->occupied();
3306     _occupied_sum += occupied;
3307 
3308     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3309                            HR_FORMAT_PARAMS(r));
3310     if (occupied == 0) {
3311       gclog_or_tty->print_cr("  RSet is empty");
3312     } else {
3313       hrrs->print();
3314     }
3315     gclog_or_tty->print_cr("----------");
3316     return false;
3317   }
3318 
3319   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3320     gclog_or_tty->cr();
3321     gclog_or_tty->print_cr("========================================");
3322     gclog_or_tty->print_cr("%s", msg);
3323     gclog_or_tty->cr();
3324   }
3325 
3326   ~PrintRSetsClosure() {
3327     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3328     gclog_or_tty->print_cr("========================================");
3329     gclog_or_tty->cr();
3330   }
3331 };
3332 
3333 void G1CollectedHeap::print_cset_rsets() {
3334   PrintRSetsClosure cl("Printing CSet RSets");
3335   collection_set_iterate(&cl);
3336 }
3337 
3338 void G1CollectedHeap::print_all_rsets() {
3339   PrintRSetsClosure cl("Printing All RSets");;
3340   heap_region_iterate(&cl);
3341 }
3342 #endif // PRODUCT
3343 
3344 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3345   YoungList* young_list = heap()->young_list();
3346 
3347   size_t eden_used_bytes = young_list->eden_used_bytes();
3348   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3349 
3350   size_t eden_capacity_bytes =
3351     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3352 
3353   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3354   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3355 }
3356 
3357 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3358   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3359                        stats->unused(), stats->used(), stats->region_end_waste(),
3360                        stats->regions_filled(), stats->direct_allocated(),
3361                        stats->failure_used(), stats->failure_waste());
3362 }
3363 
3364 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3365   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3366   gc_tracer->report_gc_heap_summary(when, heap_summary);
3367 
3368   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3369   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3370 }
3371 
3372 
3373 G1CollectedHeap* G1CollectedHeap::heap() {
3374   CollectedHeap* heap = Universe::heap();
3375   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3376   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3377   return (G1CollectedHeap*)heap;
3378 }
3379 
3380 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3381   // always_do_update_barrier = false;
3382   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3383   // Fill TLAB's and such
3384   accumulate_statistics_all_tlabs();
3385   ensure_parsability(true);
3386 
3387   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3388       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3389     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3390   }
3391 }
3392 
3393 void G1CollectedHeap::gc_epilogue(bool full) {
3394 
3395   if (G1SummarizeRSetStats &&
3396       (G1SummarizeRSetStatsPeriod > 0) &&
3397       // we are at the end of the GC. Total collections has already been increased.
3398       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3399     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3400   }
3401 
3402   // FIXME: what is this about?
3403   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3404   // is set.
3405 #if defined(COMPILER2) || INCLUDE_JVMCI
3406   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3407 #endif
3408   // always_do_update_barrier = true;
3409 
3410   resize_all_tlabs();
3411   allocation_context_stats().update(full);
3412 
3413   // We have just completed a GC. Update the soft reference
3414   // policy with the new heap occupancy
3415   Universe::update_heap_info_at_gc();
3416 }
3417 
3418 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3419                                                uint gc_count_before,
3420                                                bool* succeeded,
3421                                                GCCause::Cause gc_cause) {
3422   assert_heap_not_locked_and_not_at_safepoint();
3423   g1_policy()->record_stop_world_start();
3424   VM_G1IncCollectionPause op(gc_count_before,
3425                              word_size,
3426                              false, /* should_initiate_conc_mark */
3427                              g1_policy()->max_pause_time_ms(),
3428                              gc_cause);
3429 
3430   op.set_allocation_context(AllocationContext::current());
3431   VMThread::execute(&op);
3432 
3433   HeapWord* result = op.result();
3434   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3435   assert(result == NULL || ret_succeeded,
3436          "the result should be NULL if the VM did not succeed");
3437   *succeeded = ret_succeeded;
3438 
3439   assert_heap_not_locked();
3440   return result;
3441 }
3442 
3443 void
3444 G1CollectedHeap::doConcurrentMark() {
3445   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3446   if (!_cmThread->in_progress()) {
3447     _cmThread->set_started();
3448     CGC_lock->notify();
3449   }
3450 }
3451 
3452 size_t G1CollectedHeap::pending_card_num() {
3453   size_t extra_cards = 0;
3454   JavaThread *curr = Threads::first();
3455   while (curr != NULL) {
3456     DirtyCardQueue& dcq = curr->dirty_card_queue();
3457     extra_cards += dcq.size();
3458     curr = curr->next();
3459   }
3460   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3461   size_t buffer_size = dcqs.buffer_size();
3462   size_t buffer_num = dcqs.completed_buffers_num();
3463 
3464   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3465   // in bytes - not the number of 'entries'. We need to convert
3466   // into a number of cards.
3467   return (buffer_size * buffer_num + extra_cards) / oopSize;
3468 }
3469 
3470 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3471  private:
3472   size_t _total_humongous;
3473   size_t _candidate_humongous;
3474 
3475   DirtyCardQueue _dcq;
3476 
3477   // We don't nominate objects with many remembered set entries, on
3478   // the assumption that such objects are likely still live.
3479   bool is_remset_small(HeapRegion* region) const {
3480     HeapRegionRemSet* const rset = region->rem_set();
3481     return G1EagerReclaimHumongousObjectsWithStaleRefs
3482       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3483       : rset->is_empty();
3484   }
3485 
3486   bool is_typeArray_region(HeapRegion* region) const {
3487     return oop(region->bottom())->is_typeArray();
3488   }
3489 
3490   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3491     assert(region->is_starts_humongous(), "Must start a humongous object");
3492 
3493     // Candidate selection must satisfy the following constraints
3494     // while concurrent marking is in progress:
3495     //
3496     // * In order to maintain SATB invariants, an object must not be
3497     // reclaimed if it was allocated before the start of marking and
3498     // has not had its references scanned.  Such an object must have
3499     // its references (including type metadata) scanned to ensure no
3500     // live objects are missed by the marking process.  Objects
3501     // allocated after the start of concurrent marking don't need to
3502     // be scanned.
3503     //
3504     // * An object must not be reclaimed if it is on the concurrent
3505     // mark stack.  Objects allocated after the start of concurrent
3506     // marking are never pushed on the mark stack.
3507     //
3508     // Nominating only objects allocated after the start of concurrent
3509     // marking is sufficient to meet both constraints.  This may miss
3510     // some objects that satisfy the constraints, but the marking data
3511     // structures don't support efficiently performing the needed
3512     // additional tests or scrubbing of the mark stack.
3513     //
3514     // However, we presently only nominate is_typeArray() objects.
3515     // A humongous object containing references induces remembered
3516     // set entries on other regions.  In order to reclaim such an
3517     // object, those remembered sets would need to be cleaned up.
3518     //
3519     // We also treat is_typeArray() objects specially, allowing them
3520     // to be reclaimed even if allocated before the start of
3521     // concurrent mark.  For this we rely on mark stack insertion to
3522     // exclude is_typeArray() objects, preventing reclaiming an object
3523     // that is in the mark stack.  We also rely on the metadata for
3524     // such objects to be built-in and so ensured to be kept live.
3525     // Frequent allocation and drop of large binary blobs is an
3526     // important use case for eager reclaim, and this special handling
3527     // may reduce needed headroom.
3528 
3529     return is_typeArray_region(region) && is_remset_small(region);
3530   }
3531 
3532  public:
3533   RegisterHumongousWithInCSetFastTestClosure()
3534   : _total_humongous(0),
3535     _candidate_humongous(0),
3536     _dcq(&JavaThread::dirty_card_queue_set()) {
3537   }
3538 
3539   virtual bool doHeapRegion(HeapRegion* r) {
3540     if (!r->is_starts_humongous()) {
3541       return false;
3542     }
3543     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3544 
3545     bool is_candidate = humongous_region_is_candidate(g1h, r);
3546     uint rindex = r->hrm_index();
3547     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3548     if (is_candidate) {
3549       _candidate_humongous++;
3550       g1h->register_humongous_region_with_cset(rindex);
3551       // Is_candidate already filters out humongous object with large remembered sets.
3552       // If we have a humongous object with a few remembered sets, we simply flush these
3553       // remembered set entries into the DCQS. That will result in automatic
3554       // re-evaluation of their remembered set entries during the following evacuation
3555       // phase.
3556       if (!r->rem_set()->is_empty()) {
3557         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3558                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3559         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3560         HeapRegionRemSetIterator hrrs(r->rem_set());
3561         size_t card_index;
3562         while (hrrs.has_next(card_index)) {
3563           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3564           // The remembered set might contain references to already freed
3565           // regions. Filter out such entries to avoid failing card table
3566           // verification.
3567           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3568             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3569               *card_ptr = CardTableModRefBS::dirty_card_val();
3570               _dcq.enqueue(card_ptr);
3571             }
3572           }
3573         }
3574         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3575                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3576                hrrs.n_yielded(), r->rem_set()->occupied());
3577         r->rem_set()->clear_locked();
3578       }
3579       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3580     }
3581     _total_humongous++;
3582 
3583     return false;
3584   }
3585 
3586   size_t total_humongous() const { return _total_humongous; }
3587   size_t candidate_humongous() const { return _candidate_humongous; }
3588 
3589   void flush_rem_set_entries() { _dcq.flush(); }
3590 };
3591 
3592 void G1CollectedHeap::register_humongous_regions_with_cset() {
3593   if (!G1EagerReclaimHumongousObjects) {
3594     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3595     return;
3596   }
3597   double time = os::elapsed_counter();
3598 
3599   // Collect reclaim candidate information and register candidates with cset.
3600   RegisterHumongousWithInCSetFastTestClosure cl;
3601   heap_region_iterate(&cl);
3602 
3603   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3604   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3605                                                                   cl.total_humongous(),
3606                                                                   cl.candidate_humongous());
3607   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3608 
3609   // Finally flush all remembered set entries to re-check into the global DCQS.
3610   cl.flush_rem_set_entries();
3611 }
3612 
3613 #ifdef ASSERT
3614 class VerifyCSetClosure: public HeapRegionClosure {
3615 public:
3616   bool doHeapRegion(HeapRegion* hr) {
3617     // Here we check that the CSet region's RSet is ready for parallel
3618     // iteration. The fields that we'll verify are only manipulated
3619     // when the region is part of a CSet and is collected. Afterwards,
3620     // we reset these fields when we clear the region's RSet (when the
3621     // region is freed) so they are ready when the region is
3622     // re-allocated. The only exception to this is if there's an
3623     // evacuation failure and instead of freeing the region we leave
3624     // it in the heap. In that case, we reset these fields during
3625     // evacuation failure handling.
3626     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3627 
3628     // Here's a good place to add any other checks we'd like to
3629     // perform on CSet regions.
3630     return false;
3631   }
3632 };
3633 #endif // ASSERT
3634 
3635 uint G1CollectedHeap::num_task_queues() const {
3636   return _task_queues->size();
3637 }
3638 
3639 #if TASKQUEUE_STATS
3640 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3641   st->print_raw_cr("GC Task Stats");
3642   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3643   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3644 }
3645 
3646 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3647   print_taskqueue_stats_hdr(st);
3648 
3649   TaskQueueStats totals;
3650   const uint n = num_task_queues();
3651   for (uint i = 0; i < n; ++i) {
3652     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3653     totals += task_queue(i)->stats;
3654   }
3655   st->print_raw("tot "); totals.print(st); st->cr();
3656 
3657   DEBUG_ONLY(totals.verify());
3658 }
3659 
3660 void G1CollectedHeap::reset_taskqueue_stats() {
3661   const uint n = num_task_queues();
3662   for (uint i = 0; i < n; ++i) {
3663     task_queue(i)->stats.reset();
3664   }
3665 }
3666 #endif // TASKQUEUE_STATS
3667 
3668 void G1CollectedHeap::log_gc_header() {
3669   if (!G1Log::fine()) {
3670     return;
3671   }
3672 
3673   gclog_or_tty->gclog_stamp();
3674 
3675   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3676     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3677     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3678 
3679   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3680 }
3681 
3682 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3683   if (!G1Log::fine()) {
3684     return;
3685   }
3686 
3687   if (G1Log::finer()) {
3688     if (evacuation_failed()) {
3689       gclog_or_tty->print(" (to-space exhausted)");
3690     }
3691     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3692     g1_policy()->print_phases(pause_time_sec);
3693     g1_policy()->print_detailed_heap_transition();
3694   } else {
3695     if (evacuation_failed()) {
3696       gclog_or_tty->print("--");
3697     }
3698     g1_policy()->print_heap_transition();
3699     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3700   }
3701   gclog_or_tty->flush();
3702 }
3703 
3704 void G1CollectedHeap::wait_for_root_region_scanning() {
3705   double scan_wait_start = os::elapsedTime();
3706   // We have to wait until the CM threads finish scanning the
3707   // root regions as it's the only way to ensure that all the
3708   // objects on them have been correctly scanned before we start
3709   // moving them during the GC.
3710   bool waited = _cm->root_regions()->wait_until_scan_finished();
3711   double wait_time_ms = 0.0;
3712   if (waited) {
3713     double scan_wait_end = os::elapsedTime();
3714     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3715   }
3716   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3717 }
3718 
3719 bool
3720 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3721   assert_at_safepoint(true /* should_be_vm_thread */);
3722   guarantee(!is_gc_active(), "collection is not reentrant");
3723 
3724   if (GC_locker::check_active_before_gc()) {
3725     return false;
3726   }
3727 
3728   _gc_timer_stw->register_gc_start();
3729 
3730   GCIdMark gc_id_mark;
3731   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3732 
3733   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3734   ResourceMark rm;
3735 
3736   wait_for_root_region_scanning();
3737 
3738   G1Log::update_level();
3739   print_heap_before_gc();
3740   trace_heap_before_gc(_gc_tracer_stw);
3741 
3742   verify_region_sets_optional();
3743   verify_dirty_young_regions();
3744 
3745   // This call will decide whether this pause is an initial-mark
3746   // pause. If it is, during_initial_mark_pause() will return true
3747   // for the duration of this pause.
3748   g1_policy()->decide_on_conc_mark_initiation();
3749 
3750   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3751   assert(!collector_state()->during_initial_mark_pause() ||
3752           collector_state()->gcs_are_young(), "sanity");
3753 
3754   // We also do not allow mixed GCs during marking.
3755   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3756 
3757   // Record whether this pause is an initial mark. When the current
3758   // thread has completed its logging output and it's safe to signal
3759   // the CM thread, the flag's value in the policy has been reset.
3760   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3761 
3762   // Inner scope for scope based logging, timers, and stats collection
3763   {
3764     EvacuationInfo evacuation_info;
3765 
3766     if (collector_state()->during_initial_mark_pause()) {
3767       // We are about to start a marking cycle, so we increment the
3768       // full collection counter.
3769       increment_old_marking_cycles_started();
3770       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3771     }
3772 
3773     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3774 
3775     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3776 
3777     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3778                                                                   workers()->active_workers(),
3779                                                                   Threads::number_of_non_daemon_threads());
3780     workers()->set_active_workers(active_workers);
3781 
3782     double pause_start_sec = os::elapsedTime();
3783     g1_policy()->note_gc_start(active_workers);
3784     log_gc_header();
3785 
3786     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3787     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3788 
3789     // If the secondary_free_list is not empty, append it to the
3790     // free_list. No need to wait for the cleanup operation to finish;
3791     // the region allocation code will check the secondary_free_list
3792     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3793     // set, skip this step so that the region allocation code has to
3794     // get entries from the secondary_free_list.
3795     if (!G1StressConcRegionFreeing) {
3796       append_secondary_free_list_if_not_empty_with_lock();
3797     }
3798 
3799     assert(check_young_list_well_formed(), "young list should be well formed");
3800 
3801     // Don't dynamically change the number of GC threads this early.  A value of
3802     // 0 is used to indicate serial work.  When parallel work is done,
3803     // it will be set.
3804 
3805     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3806       IsGCActiveMark x;
3807 
3808       gc_prologue(false);
3809       increment_total_collections(false /* full gc */);
3810       increment_gc_time_stamp();
3811 
3812       verify_before_gc();
3813 
3814       check_bitmaps("GC Start");
3815 
3816 #if defined(COMPILER2) || INCLUDE_JVMCI
3817       DerivedPointerTable::clear();
3818 #endif
3819 
3820       // Please see comment in g1CollectedHeap.hpp and
3821       // G1CollectedHeap::ref_processing_init() to see how
3822       // reference processing currently works in G1.
3823 
3824       // Enable discovery in the STW reference processor
3825       ref_processor_stw()->enable_discovery();
3826 
3827       {
3828         // We want to temporarily turn off discovery by the
3829         // CM ref processor, if necessary, and turn it back on
3830         // on again later if we do. Using a scoped
3831         // NoRefDiscovery object will do this.
3832         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3833 
3834         // Forget the current alloc region (we might even choose it to be part
3835         // of the collection set!).
3836         _allocator->release_mutator_alloc_region();
3837 
3838         // We should call this after we retire the mutator alloc
3839         // region(s) so that all the ALLOC / RETIRE events are generated
3840         // before the start GC event.
3841         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3842 
3843         // This timing is only used by the ergonomics to handle our pause target.
3844         // It is unclear why this should not include the full pause. We will
3845         // investigate this in CR 7178365.
3846         //
3847         // Preserving the old comment here if that helps the investigation:
3848         //
3849         // The elapsed time induced by the start time below deliberately elides
3850         // the possible verification above.
3851         double sample_start_time_sec = os::elapsedTime();
3852 
3853         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3854 
3855         if (collector_state()->during_initial_mark_pause()) {
3856           concurrent_mark()->checkpointRootsInitialPre();
3857         }
3858 
3859         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3860         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3861 
3862         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3863 
3864         // Make sure the remembered sets are up to date. This needs to be
3865         // done before register_humongous_regions_with_cset(), because the
3866         // remembered sets are used there to choose eager reclaim candidates.
3867         // If the remembered sets are not up to date we might miss some
3868         // entries that need to be handled.
3869         g1_rem_set()->cleanupHRRS();
3870 
3871         register_humongous_regions_with_cset();
3872 
3873         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3874 
3875         _cm->note_start_of_gc();
3876         // We call this after finalize_cset() to
3877         // ensure that the CSet has been finalized.
3878         _cm->verify_no_cset_oops();
3879 
3880         if (_hr_printer.is_active()) {
3881           HeapRegion* hr = g1_policy()->collection_set();
3882           while (hr != NULL) {
3883             _hr_printer.cset(hr);
3884             hr = hr->next_in_collection_set();
3885           }
3886         }
3887 
3888 #ifdef ASSERT
3889         VerifyCSetClosure cl;
3890         collection_set_iterate(&cl);
3891 #endif // ASSERT
3892 
3893         // Initialize the GC alloc regions.
3894         _allocator->init_gc_alloc_regions(evacuation_info);
3895 
3896         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3897         pre_evacuate_collection_set();
3898 
3899         // Actually do the work...
3900         evacuate_collection_set(evacuation_info, &per_thread_states);
3901 
3902         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3903 
3904         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3905         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3906 
3907         eagerly_reclaim_humongous_regions();
3908 
3909         g1_policy()->clear_collection_set();
3910 
3911         // Start a new incremental collection set for the next pause.
3912         g1_policy()->start_incremental_cset_building();
3913 
3914         clear_cset_fast_test();
3915 
3916         _young_list->reset_sampled_info();
3917 
3918         // Don't check the whole heap at this point as the
3919         // GC alloc regions from this pause have been tagged
3920         // as survivors and moved on to the survivor list.
3921         // Survivor regions will fail the !is_young() check.
3922         assert(check_young_list_empty(false /* check_heap */),
3923           "young list should be empty");
3924 
3925         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3926                                              _young_list->first_survivor_region(),
3927                                              _young_list->last_survivor_region());
3928 
3929         _young_list->reset_auxilary_lists();
3930 
3931         if (evacuation_failed()) {
3932           set_used(recalculate_used());
3933           if (_archive_allocator != NULL) {
3934             _archive_allocator->clear_used();
3935           }
3936           for (uint i = 0; i < ParallelGCThreads; i++) {
3937             if (_evacuation_failed_info_array[i].has_failed()) {
3938               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3939             }
3940           }
3941         } else {
3942           // The "used" of the the collection set have already been subtracted
3943           // when they were freed.  Add in the bytes evacuated.
3944           increase_used(g1_policy()->bytes_copied_during_gc());
3945         }
3946 
3947         if (collector_state()->during_initial_mark_pause()) {
3948           // We have to do this before we notify the CM threads that
3949           // they can start working to make sure that all the
3950           // appropriate initialization is done on the CM object.
3951           concurrent_mark()->checkpointRootsInitialPost();
3952           collector_state()->set_mark_in_progress(true);
3953           // Note that we don't actually trigger the CM thread at
3954           // this point. We do that later when we're sure that
3955           // the current thread has completed its logging output.
3956         }
3957 
3958         allocate_dummy_regions();
3959 
3960         _allocator->init_mutator_alloc_region();
3961 
3962         {
3963           size_t expand_bytes = g1_policy()->expansion_amount();
3964           if (expand_bytes > 0) {
3965             size_t bytes_before = capacity();
3966             // No need for an ergo verbose message here,
3967             // expansion_amount() does this when it returns a value > 0.
3968             double expand_ms;
3969             if (!expand(expand_bytes, &expand_ms)) {
3970               // We failed to expand the heap. Cannot do anything about it.
3971             }
3972             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3973           }
3974         }
3975 
3976         // We redo the verification but now wrt to the new CSet which
3977         // has just got initialized after the previous CSet was freed.
3978         _cm->verify_no_cset_oops();
3979         _cm->note_end_of_gc();
3980 
3981         // This timing is only used by the ergonomics to handle our pause target.
3982         // It is unclear why this should not include the full pause. We will
3983         // investigate this in CR 7178365.
3984         double sample_end_time_sec = os::elapsedTime();
3985         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3986         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3987         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3988 
3989         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3990         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3991 
3992         MemoryService::track_memory_usage();
3993 
3994         // In prepare_for_verify() below we'll need to scan the deferred
3995         // update buffers to bring the RSets up-to-date if
3996         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3997         // the update buffers we'll probably need to scan cards on the
3998         // regions we just allocated to (i.e., the GC alloc
3999         // regions). However, during the last GC we called
4000         // set_saved_mark() on all the GC alloc regions, so card
4001         // scanning might skip the [saved_mark_word()...top()] area of
4002         // those regions (i.e., the area we allocated objects into
4003         // during the last GC). But it shouldn't. Given that
4004         // saved_mark_word() is conditional on whether the GC time stamp
4005         // on the region is current or not, by incrementing the GC time
4006         // stamp here we invalidate all the GC time stamps on all the
4007         // regions and saved_mark_word() will simply return top() for
4008         // all the regions. This is a nicer way of ensuring this rather
4009         // than iterating over the regions and fixing them. In fact, the
4010         // GC time stamp increment here also ensures that
4011         // saved_mark_word() will return top() between pauses, i.e.,
4012         // during concurrent refinement. So we don't need the
4013         // is_gc_active() check to decided which top to use when
4014         // scanning cards (see CR 7039627).
4015         increment_gc_time_stamp();
4016 
4017         verify_after_gc();
4018         check_bitmaps("GC End");
4019 
4020         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4021         ref_processor_stw()->verify_no_references_recorded();
4022 
4023         // CM reference discovery will be re-enabled if necessary.
4024       }
4025 
4026       // We should do this after we potentially expand the heap so
4027       // that all the COMMIT events are generated before the end GC
4028       // event, and after we retire the GC alloc regions so that all
4029       // RETIRE events are generated before the end GC event.
4030       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4031 
4032 #ifdef TRACESPINNING
4033       ParallelTaskTerminator::print_termination_counts();
4034 #endif
4035 
4036       gc_epilogue(false);
4037     }
4038 
4039     // Print the remainder of the GC log output.
4040     log_gc_footer(os::elapsedTime() - pause_start_sec);
4041 
4042     // It is not yet to safe to tell the concurrent mark to
4043     // start as we have some optional output below. We don't want the
4044     // output from the concurrent mark thread interfering with this
4045     // logging output either.
4046 
4047     _hrm.verify_optional();
4048     verify_region_sets_optional();
4049 
4050     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4051     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4052 
4053     print_heap_after_gc();
4054     trace_heap_after_gc(_gc_tracer_stw);
4055 
4056     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4057     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4058     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4059     // before any GC notifications are raised.
4060     g1mm()->update_sizes();
4061 
4062     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4063     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4064     _gc_timer_stw->register_gc_end();
4065     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4066   }
4067   // It should now be safe to tell the concurrent mark thread to start
4068   // without its logging output interfering with the logging output
4069   // that came from the pause.
4070 
4071   if (should_start_conc_mark) {
4072     // CAUTION: after the doConcurrentMark() call below,
4073     // the concurrent marking thread(s) could be running
4074     // concurrently with us. Make sure that anything after
4075     // this point does not assume that we are the only GC thread
4076     // running. Note: of course, the actual marking work will
4077     // not start until the safepoint itself is released in
4078     // SuspendibleThreadSet::desynchronize().
4079     doConcurrentMark();
4080   }
4081 
4082   return true;
4083 }
4084 
4085 void G1CollectedHeap::remove_self_forwarding_pointers() {
4086   double remove_self_forwards_start = os::elapsedTime();
4087 
4088   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4089   workers()->run_task(&rsfp_task);
4090 
4091   // Now restore saved marks, if any.
4092   for (uint i = 0; i < ParallelGCThreads; i++) {
4093     OopAndMarkOopStack& cur = _preserved_objs[i];
4094     while (!cur.is_empty()) {
4095       OopAndMarkOop elem = cur.pop();
4096       elem.set_mark();
4097     }
4098     cur.clear(true);
4099   }
4100 
4101   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4102 }
4103 
4104 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4105   if (!_evacuation_failed) {
4106     _evacuation_failed = true;
4107   }
4108 
4109   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4110 
4111   // We want to call the "for_promotion_failure" version only in the
4112   // case of a promotion failure.
4113   if (m->must_be_preserved_for_promotion_failure(obj)) {
4114     OopAndMarkOop elem(obj, m);
4115     _preserved_objs[worker_id].push(elem);
4116   }
4117 }
4118 
4119 class G1ParEvacuateFollowersClosure : public VoidClosure {
4120 private:
4121   double _start_term;
4122   double _term_time;
4123   size_t _term_attempts;
4124 
4125   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4126   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4127 protected:
4128   G1CollectedHeap*              _g1h;
4129   G1ParScanThreadState*         _par_scan_state;
4130   RefToScanQueueSet*            _queues;
4131   ParallelTaskTerminator*       _terminator;
4132 
4133   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4134   RefToScanQueueSet*      queues()         { return _queues; }
4135   ParallelTaskTerminator* terminator()     { return _terminator; }
4136 
4137 public:
4138   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4139                                 G1ParScanThreadState* par_scan_state,
4140                                 RefToScanQueueSet* queues,
4141                                 ParallelTaskTerminator* terminator)
4142     : _g1h(g1h), _par_scan_state(par_scan_state),
4143       _queues(queues), _terminator(terminator),
4144       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4145 
4146   void do_void();
4147 
4148   double term_time() const { return _term_time; }
4149   size_t term_attempts() const { return _term_attempts; }
4150 
4151 private:
4152   inline bool offer_termination();
4153 };
4154 
4155 bool G1ParEvacuateFollowersClosure::offer_termination() {
4156   G1ParScanThreadState* const pss = par_scan_state();
4157   start_term_time();
4158   const bool res = terminator()->offer_termination();
4159   end_term_time();
4160   return res;
4161 }
4162 
4163 void G1ParEvacuateFollowersClosure::do_void() {
4164   G1ParScanThreadState* const pss = par_scan_state();
4165   pss->trim_queue();
4166   do {
4167     pss->steal_and_trim_queue(queues());
4168   } while (!offer_termination());
4169 }
4170 
4171 class G1ParTask : public AbstractGangTask {
4172 protected:
4173   G1CollectedHeap*         _g1h;
4174   G1ParScanThreadStateSet* _pss;
4175   RefToScanQueueSet*       _queues;
4176   G1RootProcessor*         _root_processor;
4177   ParallelTaskTerminator   _terminator;
4178   uint                     _n_workers;
4179 
4180 public:
4181   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4182     : AbstractGangTask("G1 collection"),
4183       _g1h(g1h),
4184       _pss(per_thread_states),
4185       _queues(task_queues),
4186       _root_processor(root_processor),
4187       _terminator(n_workers, _queues),
4188       _n_workers(n_workers)
4189   {}
4190 
4191   void work(uint worker_id) {
4192     if (worker_id >= _n_workers) return;  // no work needed this round
4193 
4194     double start_sec = os::elapsedTime();
4195     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4196 
4197     {
4198       ResourceMark rm;
4199       HandleMark   hm;
4200 
4201       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4202 
4203       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4204       pss->set_ref_processor(rp);
4205 
4206       double start_strong_roots_sec = os::elapsedTime();
4207 
4208       _root_processor->evacuate_roots(pss->closures(), worker_id);
4209 
4210       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4211 
4212       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4213       // treating the nmethods visited to act as roots for concurrent marking.
4214       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4215       // objects copied by the current evacuation.
4216       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4217                                                                              pss->closures()->weak_codeblobs(),
4218                                                                              worker_id);
4219 
4220       _pss->add_cards_scanned(worker_id, cards_scanned);
4221 
4222       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4223 
4224       double term_sec = 0.0;
4225       size_t evac_term_attempts = 0;
4226       {
4227         double start = os::elapsedTime();
4228         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4229         evac.do_void();
4230 
4231         evac_term_attempts = evac.term_attempts();
4232         term_sec = evac.term_time();
4233         double elapsed_sec = os::elapsedTime() - start;
4234         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4235         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4236         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4237       }
4238 
4239       assert(pss->queue_is_empty(), "should be empty");
4240 
4241       if (PrintTerminationStats) {
4242         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4243         size_t lab_waste;
4244         size_t lab_undo_waste;
4245         pss->waste(lab_waste, lab_undo_waste);
4246         _g1h->print_termination_stats(gclog_or_tty,
4247                                       worker_id,
4248                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4249                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4250                                       term_sec * 1000.0,                          /* evac term time */
4251                                       evac_term_attempts,                         /* evac term attempts */
4252                                       lab_waste,                                  /* alloc buffer waste */
4253                                       lab_undo_waste                              /* undo waste */
4254                                       );
4255       }
4256 
4257       // Close the inner scope so that the ResourceMark and HandleMark
4258       // destructors are executed here and are included as part of the
4259       // "GC Worker Time".
4260     }
4261     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4262   }
4263 };
4264 
4265 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4266   st->print_raw_cr("GC Termination Stats");
4267   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4268   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4269   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4270 }
4271 
4272 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4273                                               uint worker_id,
4274                                               double elapsed_ms,
4275                                               double strong_roots_ms,
4276                                               double term_ms,
4277                                               size_t term_attempts,
4278                                               size_t alloc_buffer_waste,
4279                                               size_t undo_waste) const {
4280   st->print_cr("%3d %9.2f %9.2f %6.2f "
4281                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4282                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4283                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4284                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4285                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4286                alloc_buffer_waste * HeapWordSize / K,
4287                undo_waste * HeapWordSize / K);
4288 }
4289 
4290 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4291 private:
4292   BoolObjectClosure* _is_alive;
4293   int _initial_string_table_size;
4294   int _initial_symbol_table_size;
4295 
4296   bool  _process_strings;
4297   int _strings_processed;
4298   int _strings_removed;
4299 
4300   bool  _process_symbols;
4301   int _symbols_processed;
4302   int _symbols_removed;
4303 
4304 public:
4305   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4306     AbstractGangTask("String/Symbol Unlinking"),
4307     _is_alive(is_alive),
4308     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4309     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4310 
4311     _initial_string_table_size = StringTable::the_table()->table_size();
4312     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4313     if (process_strings) {
4314       StringTable::clear_parallel_claimed_index();
4315     }
4316     if (process_symbols) {
4317       SymbolTable::clear_parallel_claimed_index();
4318     }
4319   }
4320 
4321   ~G1StringSymbolTableUnlinkTask() {
4322     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4323               "claim value %d after unlink less than initial string table size %d",
4324               StringTable::parallel_claimed_index(), _initial_string_table_size);
4325     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4326               "claim value %d after unlink less than initial symbol table size %d",
4327               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4328 
4329     if (G1TraceStringSymbolTableScrubbing) {
4330       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4331                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4332                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4333                              strings_processed(), strings_removed(),
4334                              symbols_processed(), symbols_removed());
4335     }
4336   }
4337 
4338   void work(uint worker_id) {
4339     int strings_processed = 0;
4340     int strings_removed = 0;
4341     int symbols_processed = 0;
4342     int symbols_removed = 0;
4343     if (_process_strings) {
4344       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4345       Atomic::add(strings_processed, &_strings_processed);
4346       Atomic::add(strings_removed, &_strings_removed);
4347     }
4348     if (_process_symbols) {
4349       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4350       Atomic::add(symbols_processed, &_symbols_processed);
4351       Atomic::add(symbols_removed, &_symbols_removed);
4352     }
4353   }
4354 
4355   size_t strings_processed() const { return (size_t)_strings_processed; }
4356   size_t strings_removed()   const { return (size_t)_strings_removed; }
4357 
4358   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4359   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4360 };
4361 
4362 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4363 private:
4364   static Monitor* _lock;
4365 
4366   BoolObjectClosure* const _is_alive;
4367   const bool               _unloading_occurred;
4368   const uint               _num_workers;
4369 
4370   // Variables used to claim nmethods.
4371   nmethod* _first_nmethod;
4372   volatile nmethod* _claimed_nmethod;
4373 
4374   // The list of nmethods that need to be processed by the second pass.
4375   volatile nmethod* _postponed_list;
4376   volatile uint     _num_entered_barrier;
4377 
4378  public:
4379   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4380       _is_alive(is_alive),
4381       _unloading_occurred(unloading_occurred),
4382       _num_workers(num_workers),
4383       _first_nmethod(NULL),
4384       _claimed_nmethod(NULL),
4385       _postponed_list(NULL),
4386       _num_entered_barrier(0)
4387   {
4388     nmethod::increase_unloading_clock();
4389     // Get first alive nmethod
4390     NMethodIterator iter = NMethodIterator();
4391     if(iter.next_alive()) {
4392       _first_nmethod = iter.method();
4393     }
4394     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4395   }
4396 
4397   ~G1CodeCacheUnloadingTask() {
4398     CodeCache::verify_clean_inline_caches();
4399 
4400     CodeCache::set_needs_cache_clean(false);
4401     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4402 
4403     CodeCache::verify_icholder_relocations();
4404   }
4405 
4406  private:
4407   void add_to_postponed_list(nmethod* nm) {
4408       nmethod* old;
4409       do {
4410         old = (nmethod*)_postponed_list;
4411         nm->set_unloading_next(old);
4412       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4413   }
4414 
4415   void clean_nmethod(nmethod* nm) {
4416     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4417 
4418     if (postponed) {
4419       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4420       add_to_postponed_list(nm);
4421     }
4422 
4423     // Mark that this thread has been cleaned/unloaded.
4424     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4425     nm->set_unloading_clock(nmethod::global_unloading_clock());
4426   }
4427 
4428   void clean_nmethod_postponed(nmethod* nm) {
4429     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4430   }
4431 
4432   static const int MaxClaimNmethods = 16;
4433 
4434   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4435     nmethod* first;
4436     NMethodIterator last;
4437 
4438     do {
4439       *num_claimed_nmethods = 0;
4440 
4441       first = (nmethod*)_claimed_nmethod;
4442       last = NMethodIterator(first);
4443 
4444       if (first != NULL) {
4445 
4446         for (int i = 0; i < MaxClaimNmethods; i++) {
4447           if (!last.next_alive()) {
4448             break;
4449           }
4450           claimed_nmethods[i] = last.method();
4451           (*num_claimed_nmethods)++;
4452         }
4453       }
4454 
4455     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4456   }
4457 
4458   nmethod* claim_postponed_nmethod() {
4459     nmethod* claim;
4460     nmethod* next;
4461 
4462     do {
4463       claim = (nmethod*)_postponed_list;
4464       if (claim == NULL) {
4465         return NULL;
4466       }
4467 
4468       next = claim->unloading_next();
4469 
4470     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4471 
4472     return claim;
4473   }
4474 
4475  public:
4476   // Mark that we're done with the first pass of nmethod cleaning.
4477   void barrier_mark(uint worker_id) {
4478     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4479     _num_entered_barrier++;
4480     if (_num_entered_barrier == _num_workers) {
4481       ml.notify_all();
4482     }
4483   }
4484 
4485   // See if we have to wait for the other workers to
4486   // finish their first-pass nmethod cleaning work.
4487   void barrier_wait(uint worker_id) {
4488     if (_num_entered_barrier < _num_workers) {
4489       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4490       while (_num_entered_barrier < _num_workers) {
4491           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4492       }
4493     }
4494   }
4495 
4496   // Cleaning and unloading of nmethods. Some work has to be postponed
4497   // to the second pass, when we know which nmethods survive.
4498   void work_first_pass(uint worker_id) {
4499     // The first nmethods is claimed by the first worker.
4500     if (worker_id == 0 && _first_nmethod != NULL) {
4501       clean_nmethod(_first_nmethod);
4502       _first_nmethod = NULL;
4503     }
4504 
4505     int num_claimed_nmethods;
4506     nmethod* claimed_nmethods[MaxClaimNmethods];
4507 
4508     while (true) {
4509       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4510 
4511       if (num_claimed_nmethods == 0) {
4512         break;
4513       }
4514 
4515       for (int i = 0; i < num_claimed_nmethods; i++) {
4516         clean_nmethod(claimed_nmethods[i]);
4517       }
4518     }
4519   }
4520 
4521   void work_second_pass(uint worker_id) {
4522     nmethod* nm;
4523     // Take care of postponed nmethods.
4524     while ((nm = claim_postponed_nmethod()) != NULL) {
4525       clean_nmethod_postponed(nm);
4526     }
4527   }
4528 };
4529 
4530 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4531 
4532 class G1KlassCleaningTask : public StackObj {
4533   BoolObjectClosure*                      _is_alive;
4534   volatile jint                           _clean_klass_tree_claimed;
4535   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4536 
4537  public:
4538   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4539       _is_alive(is_alive),
4540       _clean_klass_tree_claimed(0),
4541       _klass_iterator() {
4542   }
4543 
4544  private:
4545   bool claim_clean_klass_tree_task() {
4546     if (_clean_klass_tree_claimed) {
4547       return false;
4548     }
4549 
4550     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4551   }
4552 
4553   InstanceKlass* claim_next_klass() {
4554     Klass* klass;
4555     do {
4556       klass =_klass_iterator.next_klass();
4557     } while (klass != NULL && !klass->is_instance_klass());
4558 
4559     // this can be null so don't call InstanceKlass::cast
4560     return static_cast<InstanceKlass*>(klass);
4561   }
4562 
4563 public:
4564 
4565   void clean_klass(InstanceKlass* ik) {
4566     ik->clean_weak_instanceklass_links(_is_alive);
4567   }
4568 
4569   void work() {
4570     ResourceMark rm;
4571 
4572     // One worker will clean the subklass/sibling klass tree.
4573     if (claim_clean_klass_tree_task()) {
4574       Klass::clean_subklass_tree(_is_alive);
4575     }
4576 
4577     // All workers will help cleaning the classes,
4578     InstanceKlass* klass;
4579     while ((klass = claim_next_klass()) != NULL) {
4580       clean_klass(klass);
4581     }
4582   }
4583 };
4584 
4585 // To minimize the remark pause times, the tasks below are done in parallel.
4586 class G1ParallelCleaningTask : public AbstractGangTask {
4587 private:
4588   G1StringSymbolTableUnlinkTask _string_symbol_task;
4589   G1CodeCacheUnloadingTask      _code_cache_task;
4590   G1KlassCleaningTask           _klass_cleaning_task;
4591 
4592 public:
4593   // The constructor is run in the VMThread.
4594   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4595       AbstractGangTask("Parallel Cleaning"),
4596       _string_symbol_task(is_alive, process_strings, process_symbols),
4597       _code_cache_task(num_workers, is_alive, unloading_occurred),
4598       _klass_cleaning_task(is_alive) {
4599   }
4600 
4601   // The parallel work done by all worker threads.
4602   void work(uint worker_id) {
4603     // Do first pass of code cache cleaning.
4604     _code_cache_task.work_first_pass(worker_id);
4605 
4606     // Let the threads mark that the first pass is done.
4607     _code_cache_task.barrier_mark(worker_id);
4608 
4609     // Clean the Strings and Symbols.
4610     _string_symbol_task.work(worker_id);
4611 
4612     // Wait for all workers to finish the first code cache cleaning pass.
4613     _code_cache_task.barrier_wait(worker_id);
4614 
4615     // Do the second code cache cleaning work, which realize on
4616     // the liveness information gathered during the first pass.
4617     _code_cache_task.work_second_pass(worker_id);
4618 
4619     // Clean all klasses that were not unloaded.
4620     _klass_cleaning_task.work();
4621   }
4622 };
4623 
4624 
4625 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4626                                         bool process_strings,
4627                                         bool process_symbols,
4628                                         bool class_unloading_occurred) {
4629   uint n_workers = workers()->active_workers();
4630 
4631   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4632                                         n_workers, class_unloading_occurred);
4633   workers()->run_task(&g1_unlink_task);
4634 }
4635 
4636 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4637                                                      bool process_strings, bool process_symbols) {
4638   {
4639     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4640     workers()->run_task(&g1_unlink_task);
4641   }
4642 
4643   if (G1StringDedup::is_enabled()) {
4644     G1StringDedup::unlink(is_alive);
4645   }
4646 }
4647 
4648 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4649  private:
4650   DirtyCardQueueSet* _queue;
4651  public:
4652   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4653 
4654   virtual void work(uint worker_id) {
4655     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4656     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4657 
4658     RedirtyLoggedCardTableEntryClosure cl;
4659     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4660 
4661     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4662   }
4663 };
4664 
4665 void G1CollectedHeap::redirty_logged_cards() {
4666   double redirty_logged_cards_start = os::elapsedTime();
4667 
4668   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4669   dirty_card_queue_set().reset_for_par_iteration();
4670   workers()->run_task(&redirty_task);
4671 
4672   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4673   dcq.merge_bufferlists(&dirty_card_queue_set());
4674   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4675 
4676   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4677 }
4678 
4679 // Weak Reference Processing support
4680 
4681 // An always "is_alive" closure that is used to preserve referents.
4682 // If the object is non-null then it's alive.  Used in the preservation
4683 // of referent objects that are pointed to by reference objects
4684 // discovered by the CM ref processor.
4685 class G1AlwaysAliveClosure: public BoolObjectClosure {
4686   G1CollectedHeap* _g1;
4687 public:
4688   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4689   bool do_object_b(oop p) {
4690     if (p != NULL) {
4691       return true;
4692     }
4693     return false;
4694   }
4695 };
4696 
4697 bool G1STWIsAliveClosure::do_object_b(oop p) {
4698   // An object is reachable if it is outside the collection set,
4699   // or is inside and copied.
4700   return !_g1->is_in_cset(p) || p->is_forwarded();
4701 }
4702 
4703 // Non Copying Keep Alive closure
4704 class G1KeepAliveClosure: public OopClosure {
4705   G1CollectedHeap* _g1;
4706 public:
4707   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4708   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4709   void do_oop(oop* p) {
4710     oop obj = *p;
4711     assert(obj != NULL, "the caller should have filtered out NULL values");
4712 
4713     const InCSetState cset_state = _g1->in_cset_state(obj);
4714     if (!cset_state.is_in_cset_or_humongous()) {
4715       return;
4716     }
4717     if (cset_state.is_in_cset()) {
4718       assert( obj->is_forwarded(), "invariant" );
4719       *p = obj->forwardee();
4720     } else {
4721       assert(!obj->is_forwarded(), "invariant" );
4722       assert(cset_state.is_humongous(),
4723              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4724       _g1->set_humongous_is_live(obj);
4725     }
4726   }
4727 };
4728 
4729 // Copying Keep Alive closure - can be called from both
4730 // serial and parallel code as long as different worker
4731 // threads utilize different G1ParScanThreadState instances
4732 // and different queues.
4733 
4734 class G1CopyingKeepAliveClosure: public OopClosure {
4735   G1CollectedHeap*         _g1h;
4736   OopClosure*              _copy_non_heap_obj_cl;
4737   G1ParScanThreadState*    _par_scan_state;
4738 
4739 public:
4740   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4741                             OopClosure* non_heap_obj_cl,
4742                             G1ParScanThreadState* pss):
4743     _g1h(g1h),
4744     _copy_non_heap_obj_cl(non_heap_obj_cl),
4745     _par_scan_state(pss)
4746   {}
4747 
4748   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4749   virtual void do_oop(      oop* p) { do_oop_work(p); }
4750 
4751   template <class T> void do_oop_work(T* p) {
4752     oop obj = oopDesc::load_decode_heap_oop(p);
4753 
4754     if (_g1h->is_in_cset_or_humongous(obj)) {
4755       // If the referent object has been forwarded (either copied
4756       // to a new location or to itself in the event of an
4757       // evacuation failure) then we need to update the reference
4758       // field and, if both reference and referent are in the G1
4759       // heap, update the RSet for the referent.
4760       //
4761       // If the referent has not been forwarded then we have to keep
4762       // it alive by policy. Therefore we have copy the referent.
4763       //
4764       // If the reference field is in the G1 heap then we can push
4765       // on the PSS queue. When the queue is drained (after each
4766       // phase of reference processing) the object and it's followers
4767       // will be copied, the reference field set to point to the
4768       // new location, and the RSet updated. Otherwise we need to
4769       // use the the non-heap or metadata closures directly to copy
4770       // the referent object and update the pointer, while avoiding
4771       // updating the RSet.
4772 
4773       if (_g1h->is_in_g1_reserved(p)) {
4774         _par_scan_state->push_on_queue(p);
4775       } else {
4776         assert(!Metaspace::contains((const void*)p),
4777                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4778         _copy_non_heap_obj_cl->do_oop(p);
4779       }
4780     }
4781   }
4782 };
4783 
4784 // Serial drain queue closure. Called as the 'complete_gc'
4785 // closure for each discovered list in some of the
4786 // reference processing phases.
4787 
4788 class G1STWDrainQueueClosure: public VoidClosure {
4789 protected:
4790   G1CollectedHeap* _g1h;
4791   G1ParScanThreadState* _par_scan_state;
4792 
4793   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4794 
4795 public:
4796   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4797     _g1h(g1h),
4798     _par_scan_state(pss)
4799   { }
4800 
4801   void do_void() {
4802     G1ParScanThreadState* const pss = par_scan_state();
4803     pss->trim_queue();
4804   }
4805 };
4806 
4807 // Parallel Reference Processing closures
4808 
4809 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4810 // processing during G1 evacuation pauses.
4811 
4812 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4813 private:
4814   G1CollectedHeap*          _g1h;
4815   G1ParScanThreadStateSet*  _pss;
4816   RefToScanQueueSet*        _queues;
4817   WorkGang*                 _workers;
4818   uint                      _active_workers;
4819 
4820 public:
4821   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4822                            G1ParScanThreadStateSet* per_thread_states,
4823                            WorkGang* workers,
4824                            RefToScanQueueSet *task_queues,
4825                            uint n_workers) :
4826     _g1h(g1h),
4827     _pss(per_thread_states),
4828     _queues(task_queues),
4829     _workers(workers),
4830     _active_workers(n_workers)
4831   {
4832     assert(n_workers > 0, "shouldn't call this otherwise");
4833   }
4834 
4835   // Executes the given task using concurrent marking worker threads.
4836   virtual void execute(ProcessTask& task);
4837   virtual void execute(EnqueueTask& task);
4838 };
4839 
4840 // Gang task for possibly parallel reference processing
4841 
4842 class G1STWRefProcTaskProxy: public AbstractGangTask {
4843   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4844   ProcessTask&     _proc_task;
4845   G1CollectedHeap* _g1h;
4846   G1ParScanThreadStateSet* _pss;
4847   RefToScanQueueSet* _task_queues;
4848   ParallelTaskTerminator* _terminator;
4849 
4850 public:
4851   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4852                         G1CollectedHeap* g1h,
4853                         G1ParScanThreadStateSet* per_thread_states,
4854                         RefToScanQueueSet *task_queues,
4855                         ParallelTaskTerminator* terminator) :
4856     AbstractGangTask("Process reference objects in parallel"),
4857     _proc_task(proc_task),
4858     _g1h(g1h),
4859     _pss(per_thread_states),
4860     _task_queues(task_queues),
4861     _terminator(terminator)
4862   {}
4863 
4864   virtual void work(uint worker_id) {
4865     // The reference processing task executed by a single worker.
4866     ResourceMark rm;
4867     HandleMark   hm;
4868 
4869     G1STWIsAliveClosure is_alive(_g1h);
4870 
4871     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4872     pss->set_ref_processor(NULL);
4873 
4874     // Keep alive closure.
4875     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4876 
4877     // Complete GC closure
4878     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4879 
4880     // Call the reference processing task's work routine.
4881     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4882 
4883     // Note we cannot assert that the refs array is empty here as not all
4884     // of the processing tasks (specifically phase2 - pp2_work) execute
4885     // the complete_gc closure (which ordinarily would drain the queue) so
4886     // the queue may not be empty.
4887   }
4888 };
4889 
4890 // Driver routine for parallel reference processing.
4891 // Creates an instance of the ref processing gang
4892 // task and has the worker threads execute it.
4893 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4894   assert(_workers != NULL, "Need parallel worker threads.");
4895 
4896   ParallelTaskTerminator terminator(_active_workers, _queues);
4897   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4898 
4899   _workers->run_task(&proc_task_proxy);
4900 }
4901 
4902 // Gang task for parallel reference enqueueing.
4903 
4904 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4905   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4906   EnqueueTask& _enq_task;
4907 
4908 public:
4909   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4910     AbstractGangTask("Enqueue reference objects in parallel"),
4911     _enq_task(enq_task)
4912   { }
4913 
4914   virtual void work(uint worker_id) {
4915     _enq_task.work(worker_id);
4916   }
4917 };
4918 
4919 // Driver routine for parallel reference enqueueing.
4920 // Creates an instance of the ref enqueueing gang
4921 // task and has the worker threads execute it.
4922 
4923 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4924   assert(_workers != NULL, "Need parallel worker threads.");
4925 
4926   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4927 
4928   _workers->run_task(&enq_task_proxy);
4929 }
4930 
4931 // End of weak reference support closures
4932 
4933 // Abstract task used to preserve (i.e. copy) any referent objects
4934 // that are in the collection set and are pointed to by reference
4935 // objects discovered by the CM ref processor.
4936 
4937 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4938 protected:
4939   G1CollectedHeap*         _g1h;
4940   G1ParScanThreadStateSet* _pss;
4941   RefToScanQueueSet*       _queues;
4942   ParallelTaskTerminator   _terminator;
4943   uint                     _n_workers;
4944 
4945 public:
4946   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4947     AbstractGangTask("ParPreserveCMReferents"),
4948     _g1h(g1h),
4949     _pss(per_thread_states),
4950     _queues(task_queues),
4951     _terminator(workers, _queues),
4952     _n_workers(workers)
4953   { }
4954 
4955   void work(uint worker_id) {
4956     ResourceMark rm;
4957     HandleMark   hm;
4958 
4959     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4960     pss->set_ref_processor(NULL);
4961     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4962 
4963     // Is alive closure
4964     G1AlwaysAliveClosure always_alive(_g1h);
4965 
4966     // Copying keep alive closure. Applied to referent objects that need
4967     // to be copied.
4968     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4969 
4970     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4971 
4972     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4973     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4974 
4975     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4976     // So this must be true - but assert just in case someone decides to
4977     // change the worker ids.
4978     assert(worker_id < limit, "sanity");
4979     assert(!rp->discovery_is_atomic(), "check this code");
4980 
4981     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4982     for (uint idx = worker_id; idx < limit; idx += stride) {
4983       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4984 
4985       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4986       while (iter.has_next()) {
4987         // Since discovery is not atomic for the CM ref processor, we
4988         // can see some null referent objects.
4989         iter.load_ptrs(DEBUG_ONLY(true));
4990         oop ref = iter.obj();
4991 
4992         // This will filter nulls.
4993         if (iter.is_referent_alive()) {
4994           iter.make_referent_alive();
4995         }
4996         iter.move_to_next();
4997       }
4998     }
4999 
5000     // Drain the queue - which may cause stealing
5001     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5002     drain_queue.do_void();
5003     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5004     assert(pss->queue_is_empty(), "should be");
5005   }
5006 };
5007 
5008 // Weak Reference processing during an evacuation pause (part 1).
5009 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5010   double ref_proc_start = os::elapsedTime();
5011 
5012   ReferenceProcessor* rp = _ref_processor_stw;
5013   assert(rp->discovery_enabled(), "should have been enabled");
5014 
5015   // Any reference objects, in the collection set, that were 'discovered'
5016   // by the CM ref processor should have already been copied (either by
5017   // applying the external root copy closure to the discovered lists, or
5018   // by following an RSet entry).
5019   //
5020   // But some of the referents, that are in the collection set, that these
5021   // reference objects point to may not have been copied: the STW ref
5022   // processor would have seen that the reference object had already
5023   // been 'discovered' and would have skipped discovering the reference,
5024   // but would not have treated the reference object as a regular oop.
5025   // As a result the copy closure would not have been applied to the
5026   // referent object.
5027   //
5028   // We need to explicitly copy these referent objects - the references
5029   // will be processed at the end of remarking.
5030   //
5031   // We also need to do this copying before we process the reference
5032   // objects discovered by the STW ref processor in case one of these
5033   // referents points to another object which is also referenced by an
5034   // object discovered by the STW ref processor.
5035 
5036   uint no_of_gc_workers = workers()->active_workers();
5037 
5038   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5039                                                  per_thread_states,
5040                                                  no_of_gc_workers,
5041                                                  _task_queues);
5042 
5043   workers()->run_task(&keep_cm_referents);
5044 
5045   // Closure to test whether a referent is alive.
5046   G1STWIsAliveClosure is_alive(this);
5047 
5048   // Even when parallel reference processing is enabled, the processing
5049   // of JNI refs is serial and performed serially by the current thread
5050   // rather than by a worker. The following PSS will be used for processing
5051   // JNI refs.
5052 
5053   // Use only a single queue for this PSS.
5054   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5055   pss->set_ref_processor(NULL);
5056   assert(pss->queue_is_empty(), "pre-condition");
5057 
5058   // Keep alive closure.
5059   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5060 
5061   // Serial Complete GC closure
5062   G1STWDrainQueueClosure drain_queue(this, pss);
5063 
5064   // Setup the soft refs policy...
5065   rp->setup_policy(false);
5066 
5067   ReferenceProcessorStats stats;
5068   if (!rp->processing_is_mt()) {
5069     // Serial reference processing...
5070     stats = rp->process_discovered_references(&is_alive,
5071                                               &keep_alive,
5072                                               &drain_queue,
5073                                               NULL,
5074                                               _gc_timer_stw);
5075   } else {
5076     // Parallel reference processing
5077     assert(rp->num_q() == no_of_gc_workers, "sanity");
5078     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5079 
5080     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5081     stats = rp->process_discovered_references(&is_alive,
5082                                               &keep_alive,
5083                                               &drain_queue,
5084                                               &par_task_executor,
5085                                               _gc_timer_stw);
5086   }
5087 
5088   _gc_tracer_stw->report_gc_reference_stats(stats);
5089 
5090   // We have completed copying any necessary live referent objects.
5091   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5092 
5093   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5094   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5095 }
5096 
5097 // Weak Reference processing during an evacuation pause (part 2).
5098 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5099   double ref_enq_start = os::elapsedTime();
5100 
5101   ReferenceProcessor* rp = _ref_processor_stw;
5102   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5103 
5104   // Now enqueue any remaining on the discovered lists on to
5105   // the pending list.
5106   if (!rp->processing_is_mt()) {
5107     // Serial reference processing...
5108     rp->enqueue_discovered_references();
5109   } else {
5110     // Parallel reference enqueueing
5111 
5112     uint n_workers = workers()->active_workers();
5113 
5114     assert(rp->num_q() == n_workers, "sanity");
5115     assert(n_workers <= rp->max_num_q(), "sanity");
5116 
5117     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5118     rp->enqueue_discovered_references(&par_task_executor);
5119   }
5120 
5121   rp->verify_no_references_recorded();
5122   assert(!rp->discovery_enabled(), "should have been disabled");
5123 
5124   // FIXME
5125   // CM's reference processing also cleans up the string and symbol tables.
5126   // Should we do that here also? We could, but it is a serial operation
5127   // and could significantly increase the pause time.
5128 
5129   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5130   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5131 }
5132 
5133 void G1CollectedHeap::pre_evacuate_collection_set() {
5134   _expand_heap_after_alloc_failure = true;
5135   _evacuation_failed = false;
5136 
5137   // Disable the hot card cache.
5138   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5139   hot_card_cache->reset_hot_cache_claimed_index();
5140   hot_card_cache->set_use_cache(false);
5141 
5142 }
5143 
5144 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5145   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5146 
5147   // Should G1EvacuationFailureALot be in effect for this GC?
5148   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5149 
5150   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5151   double start_par_time_sec = os::elapsedTime();
5152   double end_par_time_sec;
5153 
5154   {
5155     const uint n_workers = workers()->active_workers();
5156     G1RootProcessor root_processor(this, n_workers);
5157     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5158     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5159     if (collector_state()->during_initial_mark_pause()) {
5160       ClassLoaderDataGraph::clear_claimed_marks();
5161     }
5162 
5163     // The individual threads will set their evac-failure closures.
5164     if (PrintTerminationStats) {
5165       print_termination_stats_hdr(gclog_or_tty);
5166     }
5167 
5168     workers()->run_task(&g1_par_task);
5169     end_par_time_sec = os::elapsedTime();
5170 
5171     // Closing the inner scope will execute the destructor
5172     // for the G1RootProcessor object. We record the current
5173     // elapsed time before closing the scope so that time
5174     // taken for the destructor is NOT included in the
5175     // reported parallel time.
5176   }
5177 
5178   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5179 
5180   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5181   phase_times->record_par_time(par_time_ms);
5182 
5183   double code_root_fixup_time_ms =
5184         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5185   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5186 
5187   // Process any discovered reference objects - we have
5188   // to do this _before_ we retire the GC alloc regions
5189   // as we may have to copy some 'reachable' referent
5190   // objects (and their reachable sub-graphs) that were
5191   // not copied during the pause.
5192   process_discovered_references(per_thread_states);
5193 
5194   if (G1StringDedup::is_enabled()) {
5195     double fixup_start = os::elapsedTime();
5196 
5197     G1STWIsAliveClosure is_alive(this);
5198     G1KeepAliveClosure keep_alive(this);
5199     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5200 
5201     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5202     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5203   }
5204 
5205   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5206 
5207   if (evacuation_failed()) {
5208     remove_self_forwarding_pointers();
5209 
5210     // Reset the G1EvacuationFailureALot counters and flags
5211     // Note: the values are reset only when an actual
5212     // evacuation failure occurs.
5213     NOT_PRODUCT(reset_evacuation_should_fail();)
5214   }
5215 
5216   // Enqueue any remaining references remaining on the STW
5217   // reference processor's discovered lists. We need to do
5218   // this after the card table is cleaned (and verified) as
5219   // the act of enqueueing entries on to the pending list
5220   // will log these updates (and dirty their associated
5221   // cards). We need these updates logged to update any
5222   // RSets.
5223   enqueue_discovered_references(per_thread_states);
5224 }
5225 
5226 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5227   _allocator->release_gc_alloc_regions(evacuation_info);
5228 
5229   per_thread_states->flush();
5230 
5231   record_obj_copy_mem_stats();
5232 
5233   _survivor_evac_stats.adjust_desired_plab_sz();
5234   _old_evac_stats.adjust_desired_plab_sz();
5235 
5236   // Reset and re-enable the hot card cache.
5237   // Note the counts for the cards in the regions in the
5238   // collection set are reset when the collection set is freed.
5239   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5240   hot_card_cache->reset_hot_cache();
5241   hot_card_cache->set_use_cache(true);
5242 
5243   purge_code_root_memory();
5244 
5245   redirty_logged_cards();
5246 #if defined(COMPILER2) || INCLUDE_JVMCI
5247   DerivedPointerTable::update_pointers();
5248 #endif
5249 }
5250 
5251 void G1CollectedHeap::record_obj_copy_mem_stats() {
5252   g1_policy()->add_last_old_allocated_bytes(_old_evac_stats.allocated() * HeapWordSize);
5253 
5254   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5255                                                create_g1_evac_summary(&_old_evac_stats));
5256 }
5257 
5258 void G1CollectedHeap::free_region(HeapRegion* hr,
5259                                   FreeRegionList* free_list,
5260                                   bool par,
5261                                   bool locked) {
5262   assert(!hr->is_free(), "the region should not be free");
5263   assert(!hr->is_empty(), "the region should not be empty");
5264   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5265   assert(free_list != NULL, "pre-condition");
5266 
5267   if (G1VerifyBitmaps) {
5268     MemRegion mr(hr->bottom(), hr->end());
5269     concurrent_mark()->clearRangePrevBitmap(mr);
5270   }
5271 
5272   // Clear the card counts for this region.
5273   // Note: we only need to do this if the region is not young
5274   // (since we don't refine cards in young regions).
5275   if (!hr->is_young()) {
5276     _cg1r->hot_card_cache()->reset_card_counts(hr);
5277   }
5278   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5279   free_list->add_ordered(hr);
5280 }
5281 
5282 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5283                                             FreeRegionList* free_list,
5284                                             bool par) {
5285   assert(hr->is_humongous(), "this is only for humongous regions");
5286   assert(free_list != NULL, "pre-condition");
5287   hr->clear_humongous();
5288   free_region(hr, free_list, par);
5289 }
5290 
5291 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5292                                            const HeapRegionSetCount& humongous_regions_removed) {
5293   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5294     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5295     _old_set.bulk_remove(old_regions_removed);
5296     _humongous_set.bulk_remove(humongous_regions_removed);
5297   }
5298 
5299 }
5300 
5301 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5302   assert(list != NULL, "list can't be null");
5303   if (!list->is_empty()) {
5304     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5305     _hrm.insert_list_into_free_list(list);
5306   }
5307 }
5308 
5309 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5310   decrease_used(bytes);
5311 }
5312 
5313 class G1ParCleanupCTTask : public AbstractGangTask {
5314   G1SATBCardTableModRefBS* _ct_bs;
5315   G1CollectedHeap* _g1h;
5316   HeapRegion* volatile _su_head;
5317 public:
5318   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5319                      G1CollectedHeap* g1h) :
5320     AbstractGangTask("G1 Par Cleanup CT Task"),
5321     _ct_bs(ct_bs), _g1h(g1h) { }
5322 
5323   void work(uint worker_id) {
5324     HeapRegion* r;
5325     while (r = _g1h->pop_dirty_cards_region()) {
5326       clear_cards(r);
5327     }
5328   }
5329 
5330   void clear_cards(HeapRegion* r) {
5331     // Cards of the survivors should have already been dirtied.
5332     if (!r->is_survivor()) {
5333       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5334     }
5335   }
5336 };
5337 
5338 #ifndef PRODUCT
5339 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5340   G1CollectedHeap* _g1h;
5341   G1SATBCardTableModRefBS* _ct_bs;
5342 public:
5343   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5344     : _g1h(g1h), _ct_bs(ct_bs) { }
5345   virtual bool doHeapRegion(HeapRegion* r) {
5346     if (r->is_survivor()) {
5347       _g1h->verify_dirty_region(r);
5348     } else {
5349       _g1h->verify_not_dirty_region(r);
5350     }
5351     return false;
5352   }
5353 };
5354 
5355 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5356   // All of the region should be clean.
5357   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5358   MemRegion mr(hr->bottom(), hr->end());
5359   ct_bs->verify_not_dirty_region(mr);
5360 }
5361 
5362 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5363   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5364   // dirty allocated blocks as they allocate them. The thread that
5365   // retires each region and replaces it with a new one will do a
5366   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5367   // not dirty that area (one less thing to have to do while holding
5368   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5369   // is dirty.
5370   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5371   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5372   if (hr->is_young()) {
5373     ct_bs->verify_g1_young_region(mr);
5374   } else {
5375     ct_bs->verify_dirty_region(mr);
5376   }
5377 }
5378 
5379 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5380   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5381   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5382     verify_dirty_region(hr);
5383   }
5384 }
5385 
5386 void G1CollectedHeap::verify_dirty_young_regions() {
5387   verify_dirty_young_list(_young_list->first_region());
5388 }
5389 
5390 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5391                                                HeapWord* tams, HeapWord* end) {
5392   guarantee(tams <= end,
5393             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5394   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5395   if (result < end) {
5396     gclog_or_tty->cr();
5397     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5398                            bitmap_name, p2i(result));
5399     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5400                            bitmap_name, p2i(tams), p2i(end));
5401     return false;
5402   }
5403   return true;
5404 }
5405 
5406 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5407   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5408   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5409 
5410   HeapWord* bottom = hr->bottom();
5411   HeapWord* ptams  = hr->prev_top_at_mark_start();
5412   HeapWord* ntams  = hr->next_top_at_mark_start();
5413   HeapWord* end    = hr->end();
5414 
5415   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5416 
5417   bool res_n = true;
5418   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5419   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5420   // if we happen to be in that state.
5421   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5422     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5423   }
5424   if (!res_p || !res_n) {
5425     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5426                            HR_FORMAT_PARAMS(hr));
5427     gclog_or_tty->print_cr("#### Caller: %s", caller);
5428     return false;
5429   }
5430   return true;
5431 }
5432 
5433 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5434   if (!G1VerifyBitmaps) return;
5435 
5436   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5437 }
5438 
5439 class G1VerifyBitmapClosure : public HeapRegionClosure {
5440 private:
5441   const char* _caller;
5442   G1CollectedHeap* _g1h;
5443   bool _failures;
5444 
5445 public:
5446   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5447     _caller(caller), _g1h(g1h), _failures(false) { }
5448 
5449   bool failures() { return _failures; }
5450 
5451   virtual bool doHeapRegion(HeapRegion* hr) {
5452     bool result = _g1h->verify_bitmaps(_caller, hr);
5453     if (!result) {
5454       _failures = true;
5455     }
5456     return false;
5457   }
5458 };
5459 
5460 void G1CollectedHeap::check_bitmaps(const char* caller) {
5461   if (!G1VerifyBitmaps) return;
5462 
5463   G1VerifyBitmapClosure cl(caller, this);
5464   heap_region_iterate(&cl);
5465   guarantee(!cl.failures(), "bitmap verification");
5466 }
5467 
5468 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5469  private:
5470   bool _failures;
5471  public:
5472   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5473 
5474   virtual bool doHeapRegion(HeapRegion* hr) {
5475     uint i = hr->hrm_index();
5476     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5477     if (hr->is_humongous()) {
5478       if (hr->in_collection_set()) {
5479         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5480         _failures = true;
5481         return true;
5482       }
5483       if (cset_state.is_in_cset()) {
5484         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5485         _failures = true;
5486         return true;
5487       }
5488       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5489         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5490         _failures = true;
5491         return true;
5492       }
5493     } else {
5494       if (cset_state.is_humongous()) {
5495         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5496         _failures = true;
5497         return true;
5498       }
5499       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5500         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5501                                hr->in_collection_set(), cset_state.value(), i);
5502         _failures = true;
5503         return true;
5504       }
5505       if (cset_state.is_in_cset()) {
5506         if (hr->is_young() != (cset_state.is_young())) {
5507           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5508                                  hr->is_young(), cset_state.value(), i);
5509           _failures = true;
5510           return true;
5511         }
5512         if (hr->is_old() != (cset_state.is_old())) {
5513           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5514                                  hr->is_old(), cset_state.value(), i);
5515           _failures = true;
5516           return true;
5517         }
5518       }
5519     }
5520     return false;
5521   }
5522 
5523   bool failures() const { return _failures; }
5524 };
5525 
5526 bool G1CollectedHeap::check_cset_fast_test() {
5527   G1CheckCSetFastTableClosure cl;
5528   _hrm.iterate(&cl);
5529   return !cl.failures();
5530 }
5531 #endif // PRODUCT
5532 
5533 void G1CollectedHeap::cleanUpCardTable() {
5534   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5535   double start = os::elapsedTime();
5536 
5537   {
5538     // Iterate over the dirty cards region list.
5539     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5540 
5541     workers()->run_task(&cleanup_task);
5542 #ifndef PRODUCT
5543     if (G1VerifyCTCleanup || VerifyAfterGC) {
5544       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5545       heap_region_iterate(&cleanup_verifier);
5546     }
5547 #endif
5548   }
5549 
5550   double elapsed = os::elapsedTime() - start;
5551   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5552 }
5553 
5554 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5555   size_t pre_used = 0;
5556   FreeRegionList local_free_list("Local List for CSet Freeing");
5557 
5558   double young_time_ms     = 0.0;
5559   double non_young_time_ms = 0.0;
5560 
5561   // Since the collection set is a superset of the the young list,
5562   // all we need to do to clear the young list is clear its
5563   // head and length, and unlink any young regions in the code below
5564   _young_list->clear();
5565 
5566   G1CollectorPolicy* policy = g1_policy();
5567 
5568   double start_sec = os::elapsedTime();
5569   bool non_young = true;
5570 
5571   HeapRegion* cur = cs_head;
5572   int age_bound = -1;
5573   size_t rs_lengths = 0;
5574 
5575   while (cur != NULL) {
5576     assert(!is_on_master_free_list(cur), "sanity");
5577     if (non_young) {
5578       if (cur->is_young()) {
5579         double end_sec = os::elapsedTime();
5580         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5581         non_young_time_ms += elapsed_ms;
5582 
5583         start_sec = os::elapsedTime();
5584         non_young = false;
5585       }
5586     } else {
5587       if (!cur->is_young()) {
5588         double end_sec = os::elapsedTime();
5589         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5590         young_time_ms += elapsed_ms;
5591 
5592         start_sec = os::elapsedTime();
5593         non_young = true;
5594       }
5595     }
5596 
5597     rs_lengths += cur->rem_set()->occupied_locked();
5598 
5599     HeapRegion* next = cur->next_in_collection_set();
5600     assert(cur->in_collection_set(), "bad CS");
5601     cur->set_next_in_collection_set(NULL);
5602     clear_in_cset(cur);
5603 
5604     if (cur->is_young()) {
5605       int index = cur->young_index_in_cset();
5606       assert(index != -1, "invariant");
5607       assert((uint) index < policy->young_cset_region_length(), "invariant");
5608       size_t words_survived = surviving_young_words[index];
5609       cur->record_surv_words_in_group(words_survived);
5610 
5611       // At this point the we have 'popped' cur from the collection set
5612       // (linked via next_in_collection_set()) but it is still in the
5613       // young list (linked via next_young_region()). Clear the
5614       // _next_young_region field.
5615       cur->set_next_young_region(NULL);
5616     } else {
5617       int index = cur->young_index_in_cset();
5618       assert(index == -1, "invariant");
5619     }
5620 
5621     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5622             (!cur->is_young() && cur->young_index_in_cset() == -1),
5623             "invariant" );
5624 
5625     if (!cur->evacuation_failed()) {
5626       MemRegion used_mr = cur->used_region();
5627 
5628       // And the region is empty.
5629       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5630       pre_used += cur->used();
5631       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5632     } else {
5633       cur->uninstall_surv_rate_group();
5634       if (cur->is_young()) {
5635         cur->set_young_index_in_cset(-1);
5636       }
5637       cur->set_evacuation_failed(false);
5638       // The region is now considered to be old.
5639       cur->set_old();
5640       // Do some allocation statistics accounting. Regions that failed evacuation
5641       // are always made old, so there is no need to update anything in the young
5642       // gen statistics, but we need to update old gen statistics.
5643       size_t used_words = cur->marked_bytes() / HeapWordSize;
5644       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5645       _old_set.add(cur);
5646       evacuation_info.increment_collectionset_used_after(cur->used());
5647     }
5648     cur = next;
5649   }
5650 
5651   evacuation_info.set_regions_freed(local_free_list.length());
5652   policy->record_max_rs_lengths(rs_lengths);
5653   policy->cset_regions_freed();
5654 
5655   double end_sec = os::elapsedTime();
5656   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5657 
5658   if (non_young) {
5659     non_young_time_ms += elapsed_ms;
5660   } else {
5661     young_time_ms += elapsed_ms;
5662   }
5663 
5664   prepend_to_freelist(&local_free_list);
5665   decrement_summary_bytes(pre_used);
5666   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5667   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5668 }
5669 
5670 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5671  private:
5672   FreeRegionList* _free_region_list;
5673   HeapRegionSet* _proxy_set;
5674   HeapRegionSetCount _humongous_regions_removed;
5675   size_t _freed_bytes;
5676  public:
5677 
5678   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5679     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5680   }
5681 
5682   virtual bool doHeapRegion(HeapRegion* r) {
5683     if (!r->is_starts_humongous()) {
5684       return false;
5685     }
5686 
5687     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5688 
5689     oop obj = (oop)r->bottom();
5690     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5691 
5692     // The following checks whether the humongous object is live are sufficient.
5693     // The main additional check (in addition to having a reference from the roots
5694     // or the young gen) is whether the humongous object has a remembered set entry.
5695     //
5696     // A humongous object cannot be live if there is no remembered set for it
5697     // because:
5698     // - there can be no references from within humongous starts regions referencing
5699     // the object because we never allocate other objects into them.
5700     // (I.e. there are no intra-region references that may be missed by the
5701     // remembered set)
5702     // - as soon there is a remembered set entry to the humongous starts region
5703     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5704     // until the end of a concurrent mark.
5705     //
5706     // It is not required to check whether the object has been found dead by marking
5707     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5708     // all objects allocated during that time are considered live.
5709     // SATB marking is even more conservative than the remembered set.
5710     // So if at this point in the collection there is no remembered set entry,
5711     // nobody has a reference to it.
5712     // At the start of collection we flush all refinement logs, and remembered sets
5713     // are completely up-to-date wrt to references to the humongous object.
5714     //
5715     // Other implementation considerations:
5716     // - never consider object arrays at this time because they would pose
5717     // considerable effort for cleaning up the the remembered sets. This is
5718     // required because stale remembered sets might reference locations that
5719     // are currently allocated into.
5720     uint region_idx = r->hrm_index();
5721     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5722         !r->rem_set()->is_empty()) {
5723 
5724       if (G1TraceEagerReclaimHumongousObjects) {
5725         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5726                                region_idx,
5727                                (size_t)obj->size() * HeapWordSize,
5728                                p2i(r->bottom()),
5729                                r->rem_set()->occupied(),
5730                                r->rem_set()->strong_code_roots_list_length(),
5731                                next_bitmap->isMarked(r->bottom()),
5732                                g1h->is_humongous_reclaim_candidate(region_idx),
5733                                obj->is_typeArray()
5734                               );
5735       }
5736 
5737       return false;
5738     }
5739 
5740     guarantee(obj->is_typeArray(),
5741               "Only eagerly reclaiming type arrays is supported, but the object "
5742               PTR_FORMAT " is not.", p2i(r->bottom()));
5743 
5744     if (G1TraceEagerReclaimHumongousObjects) {
5745       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5746                              region_idx,
5747                              (size_t)obj->size() * HeapWordSize,
5748                              p2i(r->bottom()),
5749                              r->rem_set()->occupied(),
5750                              r->rem_set()->strong_code_roots_list_length(),
5751                              next_bitmap->isMarked(r->bottom()),
5752                              g1h->is_humongous_reclaim_candidate(region_idx),
5753                              obj->is_typeArray()
5754                             );
5755     }
5756     // Need to clear mark bit of the humongous object if already set.
5757     if (next_bitmap->isMarked(r->bottom())) {
5758       next_bitmap->clear(r->bottom());
5759     }
5760     do {
5761       HeapRegion* next = g1h->next_region_in_humongous(r);
5762       _freed_bytes += r->used();
5763       r->set_containing_set(NULL);
5764       _humongous_regions_removed.increment(1u, r->capacity());
5765       g1h->free_humongous_region(r, _free_region_list, false);
5766       r = next;
5767     } while (r != NULL);
5768 
5769     return false;
5770   }
5771 
5772   HeapRegionSetCount& humongous_free_count() {
5773     return _humongous_regions_removed;
5774   }
5775 
5776   size_t bytes_freed() const {
5777     return _freed_bytes;
5778   }
5779 
5780   size_t humongous_reclaimed() const {
5781     return _humongous_regions_removed.length();
5782   }
5783 };
5784 
5785 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5786   assert_at_safepoint(true);
5787 
5788   if (!G1EagerReclaimHumongousObjects ||
5789       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5790     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5791     return;
5792   }
5793 
5794   double start_time = os::elapsedTime();
5795 
5796   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5797 
5798   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5799   heap_region_iterate(&cl);
5800 
5801   HeapRegionSetCount empty_set;
5802   remove_from_old_sets(empty_set, cl.humongous_free_count());
5803 
5804   G1HRPrinter* hrp = hr_printer();
5805   if (hrp->is_active()) {
5806     FreeRegionListIterator iter(&local_cleanup_list);
5807     while (iter.more_available()) {
5808       HeapRegion* hr = iter.get_next();
5809       hrp->cleanup(hr);
5810     }
5811   }
5812 
5813   prepend_to_freelist(&local_cleanup_list);
5814   decrement_summary_bytes(cl.bytes_freed());
5815 
5816   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5817                                                                     cl.humongous_reclaimed());
5818 }
5819 
5820 // This routine is similar to the above but does not record
5821 // any policy statistics or update free lists; we are abandoning
5822 // the current incremental collection set in preparation of a
5823 // full collection. After the full GC we will start to build up
5824 // the incremental collection set again.
5825 // This is only called when we're doing a full collection
5826 // and is immediately followed by the tearing down of the young list.
5827 
5828 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5829   HeapRegion* cur = cs_head;
5830 
5831   while (cur != NULL) {
5832     HeapRegion* next = cur->next_in_collection_set();
5833     assert(cur->in_collection_set(), "bad CS");
5834     cur->set_next_in_collection_set(NULL);
5835     clear_in_cset(cur);
5836     cur->set_young_index_in_cset(-1);
5837     cur = next;
5838   }
5839 }
5840 
5841 void G1CollectedHeap::set_free_regions_coming() {
5842   if (G1ConcRegionFreeingVerbose) {
5843     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5844                            "setting free regions coming");
5845   }
5846 
5847   assert(!free_regions_coming(), "pre-condition");
5848   _free_regions_coming = true;
5849 }
5850 
5851 void G1CollectedHeap::reset_free_regions_coming() {
5852   assert(free_regions_coming(), "pre-condition");
5853 
5854   {
5855     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5856     _free_regions_coming = false;
5857     SecondaryFreeList_lock->notify_all();
5858   }
5859 
5860   if (G1ConcRegionFreeingVerbose) {
5861     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5862                            "reset free regions coming");
5863   }
5864 }
5865 
5866 void G1CollectedHeap::wait_while_free_regions_coming() {
5867   // Most of the time we won't have to wait, so let's do a quick test
5868   // first before we take the lock.
5869   if (!free_regions_coming()) {
5870     return;
5871   }
5872 
5873   if (G1ConcRegionFreeingVerbose) {
5874     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5875                            "waiting for free regions");
5876   }
5877 
5878   {
5879     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5880     while (free_regions_coming()) {
5881       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5882     }
5883   }
5884 
5885   if (G1ConcRegionFreeingVerbose) {
5886     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5887                            "done waiting for free regions");
5888   }
5889 }
5890 
5891 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5892   return _allocator->is_retained_old_region(hr);
5893 }
5894 
5895 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5896   _young_list->push_region(hr);
5897 }
5898 
5899 class NoYoungRegionsClosure: public HeapRegionClosure {
5900 private:
5901   bool _success;
5902 public:
5903   NoYoungRegionsClosure() : _success(true) { }
5904   bool doHeapRegion(HeapRegion* r) {
5905     if (r->is_young()) {
5906       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5907                              p2i(r->bottom()), p2i(r->end()));
5908       _success = false;
5909     }
5910     return false;
5911   }
5912   bool success() { return _success; }
5913 };
5914 
5915 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5916   bool ret = _young_list->check_list_empty(check_sample);
5917 
5918   if (check_heap) {
5919     NoYoungRegionsClosure closure;
5920     heap_region_iterate(&closure);
5921     ret = ret && closure.success();
5922   }
5923 
5924   return ret;
5925 }
5926 
5927 class TearDownRegionSetsClosure : public HeapRegionClosure {
5928 private:
5929   HeapRegionSet *_old_set;
5930 
5931 public:
5932   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5933 
5934   bool doHeapRegion(HeapRegion* r) {
5935     if (r->is_old()) {
5936       _old_set->remove(r);
5937     } else {
5938       // We ignore free regions, we'll empty the free list afterwards.
5939       // We ignore young regions, we'll empty the young list afterwards.
5940       // We ignore humongous regions, we're not tearing down the
5941       // humongous regions set.
5942       assert(r->is_free() || r->is_young() || r->is_humongous(),
5943              "it cannot be another type");
5944     }
5945     return false;
5946   }
5947 
5948   ~TearDownRegionSetsClosure() {
5949     assert(_old_set->is_empty(), "post-condition");
5950   }
5951 };
5952 
5953 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5954   assert_at_safepoint(true /* should_be_vm_thread */);
5955 
5956   if (!free_list_only) {
5957     TearDownRegionSetsClosure cl(&_old_set);
5958     heap_region_iterate(&cl);
5959 
5960     // Note that emptying the _young_list is postponed and instead done as
5961     // the first step when rebuilding the regions sets again. The reason for
5962     // this is that during a full GC string deduplication needs to know if
5963     // a collected region was young or old when the full GC was initiated.
5964   }
5965   _hrm.remove_all_free_regions();
5966 }
5967 
5968 void G1CollectedHeap::increase_used(size_t bytes) {
5969   _summary_bytes_used += bytes;
5970 }
5971 
5972 void G1CollectedHeap::decrease_used(size_t bytes) {
5973   assert(_summary_bytes_used >= bytes,
5974          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5975          _summary_bytes_used, bytes);
5976   _summary_bytes_used -= bytes;
5977 }
5978 
5979 void G1CollectedHeap::set_used(size_t bytes) {
5980   _summary_bytes_used = bytes;
5981 }
5982 
5983 class RebuildRegionSetsClosure : public HeapRegionClosure {
5984 private:
5985   bool            _free_list_only;
5986   HeapRegionSet*   _old_set;
5987   HeapRegionManager*   _hrm;
5988   size_t          _total_used;
5989 
5990 public:
5991   RebuildRegionSetsClosure(bool free_list_only,
5992                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5993     _free_list_only(free_list_only),
5994     _old_set(old_set), _hrm(hrm), _total_used(0) {
5995     assert(_hrm->num_free_regions() == 0, "pre-condition");
5996     if (!free_list_only) {
5997       assert(_old_set->is_empty(), "pre-condition");
5998     }
5999   }
6000 
6001   bool doHeapRegion(HeapRegion* r) {
6002     if (r->is_empty()) {
6003       // Add free regions to the free list
6004       r->set_free();
6005       r->set_allocation_context(AllocationContext::system());
6006       _hrm->insert_into_free_list(r);
6007     } else if (!_free_list_only) {
6008       assert(!r->is_young(), "we should not come across young regions");
6009 
6010       if (r->is_humongous()) {
6011         // We ignore humongous regions. We left the humongous set unchanged.
6012       } else {
6013         // Objects that were compacted would have ended up on regions
6014         // that were previously old or free.  Archive regions (which are
6015         // old) will not have been touched.
6016         assert(r->is_free() || r->is_old(), "invariant");
6017         // We now consider them old, so register as such. Leave
6018         // archive regions set that way, however, while still adding
6019         // them to the old set.
6020         if (!r->is_archive()) {
6021           r->set_old();
6022         }
6023         _old_set->add(r);
6024       }
6025       _total_used += r->used();
6026     }
6027 
6028     return false;
6029   }
6030 
6031   size_t total_used() {
6032     return _total_used;
6033   }
6034 };
6035 
6036 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6037   assert_at_safepoint(true /* should_be_vm_thread */);
6038 
6039   if (!free_list_only) {
6040     _young_list->empty_list();
6041   }
6042 
6043   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6044   heap_region_iterate(&cl);
6045 
6046   if (!free_list_only) {
6047     set_used(cl.total_used());
6048     if (_archive_allocator != NULL) {
6049       _archive_allocator->clear_used();
6050     }
6051   }
6052   assert(used_unlocked() == recalculate_used(),
6053          "inconsistent used_unlocked(), "
6054          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6055          used_unlocked(), recalculate_used());
6056 }
6057 
6058 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6059   _refine_cte_cl->set_concurrent(concurrent);
6060 }
6061 
6062 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6063   HeapRegion* hr = heap_region_containing(p);
6064   return hr->is_in(p);
6065 }
6066 
6067 // Methods for the mutator alloc region
6068 
6069 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6070                                                       bool force) {
6071   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6072   assert(!force || g1_policy()->can_expand_young_list(),
6073          "if force is true we should be able to expand the young list");
6074   bool young_list_full = g1_policy()->is_young_list_full();
6075   if (force || !young_list_full) {
6076     HeapRegion* new_alloc_region = new_region(word_size,
6077                                               false /* is_old */,
6078                                               false /* do_expand */);
6079     if (new_alloc_region != NULL) {
6080       set_region_short_lived_locked(new_alloc_region);
6081       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6082       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6083       return new_alloc_region;
6084     }
6085   }
6086   return NULL;
6087 }
6088 
6089 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6090                                                   size_t allocated_bytes) {
6091   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6092   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6093 
6094   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6095   increase_used(allocated_bytes);
6096   _hr_printer.retire(alloc_region);
6097   // We update the eden sizes here, when the region is retired,
6098   // instead of when it's allocated, since this is the point that its
6099   // used space has been recored in _summary_bytes_used.
6100   g1mm()->update_eden_size();
6101 }
6102 
6103 // Methods for the GC alloc regions
6104 
6105 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6106                                                  uint count,
6107                                                  InCSetState dest) {
6108   assert(FreeList_lock->owned_by_self(), "pre-condition");
6109 
6110   if (count < g1_policy()->max_regions(dest)) {
6111     const bool is_survivor = (dest.is_young());
6112     HeapRegion* new_alloc_region = new_region(word_size,
6113                                               !is_survivor,
6114                                               true /* do_expand */);
6115     if (new_alloc_region != NULL) {
6116       // We really only need to do this for old regions given that we
6117       // should never scan survivors. But it doesn't hurt to do it
6118       // for survivors too.
6119       new_alloc_region->record_timestamp();
6120       if (is_survivor) {
6121         new_alloc_region->set_survivor();
6122         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6123         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6124       } else {
6125         new_alloc_region->set_old();
6126         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6127         check_bitmaps("Old Region Allocation", new_alloc_region);
6128       }
6129       bool during_im = collector_state()->during_initial_mark_pause();
6130       new_alloc_region->note_start_of_copying(during_im);
6131       return new_alloc_region;
6132     }
6133   }
6134   return NULL;
6135 }
6136 
6137 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6138                                              size_t allocated_bytes,
6139                                              InCSetState dest) {
6140   bool during_im = collector_state()->during_initial_mark_pause();
6141   alloc_region->note_end_of_copying(during_im);
6142   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6143   if (dest.is_young()) {
6144     young_list()->add_survivor_region(alloc_region);
6145   } else {
6146     _old_set.add(alloc_region);
6147   }
6148   _hr_printer.retire(alloc_region);
6149 }
6150 
6151 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6152   bool expanded = false;
6153   uint index = _hrm.find_highest_free(&expanded);
6154 
6155   if (index != G1_NO_HRM_INDEX) {
6156     if (expanded) {
6157       ergo_verbose1(ErgoHeapSizing,
6158                     "attempt heap expansion",
6159                     ergo_format_reason("requested address range outside heap bounds")
6160                     ergo_format_byte("region size"),
6161                     HeapRegion::GrainWords * HeapWordSize);
6162     }
6163     _hrm.allocate_free_regions_starting_at(index, 1);
6164     return region_at(index);
6165   }
6166   return NULL;
6167 }
6168 
6169 // Heap region set verification
6170 
6171 class VerifyRegionListsClosure : public HeapRegionClosure {
6172 private:
6173   HeapRegionSet*   _old_set;
6174   HeapRegionSet*   _humongous_set;
6175   HeapRegionManager*   _hrm;
6176 
6177 public:
6178   HeapRegionSetCount _old_count;
6179   HeapRegionSetCount _humongous_count;
6180   HeapRegionSetCount _free_count;
6181 
6182   VerifyRegionListsClosure(HeapRegionSet* old_set,
6183                            HeapRegionSet* humongous_set,
6184                            HeapRegionManager* hrm) :
6185     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6186     _old_count(), _humongous_count(), _free_count(){ }
6187 
6188   bool doHeapRegion(HeapRegion* hr) {
6189     if (hr->is_young()) {
6190       // TODO
6191     } else if (hr->is_humongous()) {
6192       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6193       _humongous_count.increment(1u, hr->capacity());
6194     } else if (hr->is_empty()) {
6195       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6196       _free_count.increment(1u, hr->capacity());
6197     } else if (hr->is_old()) {
6198       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6199       _old_count.increment(1u, hr->capacity());
6200     } else {
6201       // There are no other valid region types. Check for one invalid
6202       // one we can identify: pinned without old or humongous set.
6203       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6204       ShouldNotReachHere();
6205     }
6206     return false;
6207   }
6208 
6209   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6210     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6211     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6212               old_set->total_capacity_bytes(), _old_count.capacity());
6213 
6214     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6215     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6216               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6217 
6218     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6219     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6220               free_list->total_capacity_bytes(), _free_count.capacity());
6221   }
6222 };
6223 
6224 void G1CollectedHeap::verify_region_sets() {
6225   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6226 
6227   // First, check the explicit lists.
6228   _hrm.verify();
6229   {
6230     // Given that a concurrent operation might be adding regions to
6231     // the secondary free list we have to take the lock before
6232     // verifying it.
6233     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6234     _secondary_free_list.verify_list();
6235   }
6236 
6237   // If a concurrent region freeing operation is in progress it will
6238   // be difficult to correctly attributed any free regions we come
6239   // across to the correct free list given that they might belong to
6240   // one of several (free_list, secondary_free_list, any local lists,
6241   // etc.). So, if that's the case we will skip the rest of the
6242   // verification operation. Alternatively, waiting for the concurrent
6243   // operation to complete will have a non-trivial effect on the GC's
6244   // operation (no concurrent operation will last longer than the
6245   // interval between two calls to verification) and it might hide
6246   // any issues that we would like to catch during testing.
6247   if (free_regions_coming()) {
6248     return;
6249   }
6250 
6251   // Make sure we append the secondary_free_list on the free_list so
6252   // that all free regions we will come across can be safely
6253   // attributed to the free_list.
6254   append_secondary_free_list_if_not_empty_with_lock();
6255 
6256   // Finally, make sure that the region accounting in the lists is
6257   // consistent with what we see in the heap.
6258 
6259   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6260   heap_region_iterate(&cl);
6261   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6262 }
6263 
6264 // Optimized nmethod scanning
6265 
6266 class RegisterNMethodOopClosure: public OopClosure {
6267   G1CollectedHeap* _g1h;
6268   nmethod* _nm;
6269 
6270   template <class T> void do_oop_work(T* p) {
6271     T heap_oop = oopDesc::load_heap_oop(p);
6272     if (!oopDesc::is_null(heap_oop)) {
6273       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6274       HeapRegion* hr = _g1h->heap_region_containing(obj);
6275       assert(!hr->is_continues_humongous(),
6276              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6277              " starting at " HR_FORMAT,
6278              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6279 
6280       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6281       hr->add_strong_code_root_locked(_nm);
6282     }
6283   }
6284 
6285 public:
6286   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6287     _g1h(g1h), _nm(nm) {}
6288 
6289   void do_oop(oop* p)       { do_oop_work(p); }
6290   void do_oop(narrowOop* p) { do_oop_work(p); }
6291 };
6292 
6293 class UnregisterNMethodOopClosure: public OopClosure {
6294   G1CollectedHeap* _g1h;
6295   nmethod* _nm;
6296 
6297   template <class T> void do_oop_work(T* p) {
6298     T heap_oop = oopDesc::load_heap_oop(p);
6299     if (!oopDesc::is_null(heap_oop)) {
6300       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6301       HeapRegion* hr = _g1h->heap_region_containing(obj);
6302       assert(!hr->is_continues_humongous(),
6303              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6304              " starting at " HR_FORMAT,
6305              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6306 
6307       hr->remove_strong_code_root(_nm);
6308     }
6309   }
6310 
6311 public:
6312   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6313     _g1h(g1h), _nm(nm) {}
6314 
6315   void do_oop(oop* p)       { do_oop_work(p); }
6316   void do_oop(narrowOop* p) { do_oop_work(p); }
6317 };
6318 
6319 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6320   CollectedHeap::register_nmethod(nm);
6321 
6322   guarantee(nm != NULL, "sanity");
6323   RegisterNMethodOopClosure reg_cl(this, nm);
6324   nm->oops_do(&reg_cl);
6325 }
6326 
6327 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6328   CollectedHeap::unregister_nmethod(nm);
6329 
6330   guarantee(nm != NULL, "sanity");
6331   UnregisterNMethodOopClosure reg_cl(this, nm);
6332   nm->oops_do(&reg_cl, true);
6333 }
6334 
6335 void G1CollectedHeap::purge_code_root_memory() {
6336   double purge_start = os::elapsedTime();
6337   G1CodeRootSet::purge();
6338   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6339   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6340 }
6341 
6342 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6343   G1CollectedHeap* _g1h;
6344 
6345 public:
6346   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6347     _g1h(g1h) {}
6348 
6349   void do_code_blob(CodeBlob* cb) {
6350     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6351     if (nm == NULL) {
6352       return;
6353     }
6354 
6355     if (ScavengeRootsInCode) {
6356       _g1h->register_nmethod(nm);
6357     }
6358   }
6359 };
6360 
6361 void G1CollectedHeap::rebuild_strong_code_roots() {
6362   RebuildStrongCodeRootClosure blob_cl(this);
6363   CodeCache::blobs_do(&blob_cl);
6364 }