1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/concurrentMark.hpp"
  29 #include "gc/g1/evacuationInfo.hpp"
  30 #include "gc/g1/g1AllocationContext.hpp"
  31 #include "gc/g1/g1BiasedArray.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1HRPrinter.hpp"
  34 #include "gc/g1/g1InCSetState.hpp"
  35 #include "gc/g1/g1MonitoringSupport.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/g1YCTypes.hpp"
  39 #include "gc/g1/hSpaceCounters.hpp"
  40 #include "gc/g1/heapRegionManager.hpp"
  41 #include "gc/g1/heapRegionSet.hpp"
  42 #include "gc/g1/youngList.hpp"
  43 #include "gc/shared/barrierSet.hpp"
  44 #include "gc/shared/collectedHeap.hpp"
  45 #include "gc/shared/plab.hpp"
  46 #include "memory/memRegion.hpp"
  47 #include "utilities/stack.hpp"
  48 
  49 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  50 // It uses the "Garbage First" heap organization and algorithm, which
  51 // may combine concurrent marking with parallel, incremental compaction of
  52 // heap subsets that will yield large amounts of garbage.
  53 
  54 // Forward declarations
  55 class HeapRegion;
  56 class HRRSCleanupTask;
  57 class GenerationSpec;
  58 class OopsInHeapRegionClosure;
  59 class G1ParScanThreadState;
  60 class G1ParScanThreadStateSet;
  61 class G1KlassScanClosure;
  62 class G1ParScanThreadState;
  63 class ObjectClosure;
  64 class SpaceClosure;
  65 class CompactibleSpaceClosure;
  66 class Space;
  67 class G1CollectorPolicy;
  68 class G1RemSet;
  69 class HeapRegionRemSetIterator;
  70 class ConcurrentMark;
  71 class ConcurrentMarkThread;
  72 class ConcurrentG1Refine;
  73 class ConcurrentGCTimer;
  74 class GenerationCounters;
  75 class STWGCTimer;
  76 class G1NewTracer;
  77 class G1OldTracer;
  78 class EvacuationFailedInfo;
  79 class nmethod;
  80 class Ticks;
  81 class WorkGang;
  82 class G1Allocator;
  83 class G1ArchiveAllocator;
  84 
  85 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  86 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  87 
  88 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  89 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  90 
  91 // The G1 STW is alive closure.
  92 // An instance is embedded into the G1CH and used as the
  93 // (optional) _is_alive_non_header closure in the STW
  94 // reference processor. It is also extensively used during
  95 // reference processing during STW evacuation pauses.
  96 class G1STWIsAliveClosure: public BoolObjectClosure {
  97   G1CollectedHeap* _g1;
  98 public:
  99   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 100   bool do_object_b(oop p);
 101 };
 102 
 103 class RefineCardTableEntryClosure;
 104 
 105 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 106  private:
 107   void reset_from_card_cache(uint start_idx, size_t num_regions);
 108  public:
 109   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 110 };
 111 
 112 class G1CollectedHeap : public CollectedHeap {
 113   friend class VM_CollectForMetadataAllocation;
 114   friend class VM_G1CollectForAllocation;
 115   friend class VM_G1CollectFull;
 116   friend class VM_G1IncCollectionPause;
 117   friend class VMStructs;
 118   friend class MutatorAllocRegion;
 119   friend class G1GCAllocRegion;
 120 
 121   // Closures used in implementation.
 122   friend class G1ParScanThreadState;
 123   friend class G1ParScanThreadStateSet;
 124   friend class G1ParTask;
 125   friend class G1PLABAllocator;
 126   friend class G1PrepareCompactClosure;
 127 
 128   // Other related classes.
 129   friend class HeapRegionClaimer;
 130 
 131   // Testing classes.
 132   friend class G1CheckCSetFastTableClosure;
 133 
 134 private:
 135   WorkGang* _workers;
 136 
 137   static size_t _humongous_object_threshold_in_words;
 138 
 139   // The secondary free list which contains regions that have been
 140   // freed up during the cleanup process. This will be appended to
 141   // the master free list when appropriate.
 142   FreeRegionList _secondary_free_list;
 143 
 144   // It keeps track of the old regions.
 145   HeapRegionSet _old_set;
 146 
 147   // It keeps track of the humongous regions.
 148   HeapRegionSet _humongous_set;
 149 
 150   void eagerly_reclaim_humongous_regions();
 151 
 152   // The number of regions we could create by expansion.
 153   uint _expansion_regions;
 154 
 155   // The block offset table for the G1 heap.
 156   G1BlockOffsetSharedArray* _bot_shared;
 157 
 158   // Tears down the region sets / lists so that they are empty and the
 159   // regions on the heap do not belong to a region set / list. The
 160   // only exception is the humongous set which we leave unaltered. If
 161   // free_list_only is true, it will only tear down the master free
 162   // list. It is called before a Full GC (free_list_only == false) or
 163   // before heap shrinking (free_list_only == true).
 164   void tear_down_region_sets(bool free_list_only);
 165 
 166   // Rebuilds the region sets / lists so that they are repopulated to
 167   // reflect the contents of the heap. The only exception is the
 168   // humongous set which was not torn down in the first place. If
 169   // free_list_only is true, it will only rebuild the master free
 170   // list. It is called after a Full GC (free_list_only == false) or
 171   // after heap shrinking (free_list_only == true).
 172   void rebuild_region_sets(bool free_list_only);
 173 
 174   // Callback for region mapping changed events.
 175   G1RegionMappingChangedListener _listener;
 176 
 177   // The sequence of all heap regions in the heap.
 178   HeapRegionManager _hrm;
 179 
 180   // Manages all allocations with regions except humongous object allocations.
 181   G1Allocator* _allocator;
 182 
 183   // Outside of GC pauses, the number of bytes used in all regions other
 184   // than the current allocation region(s).
 185   size_t _summary_bytes_used;
 186 
 187   void increase_used(size_t bytes);
 188   void decrease_used(size_t bytes);
 189 
 190   void set_used(size_t bytes);
 191 
 192   // Class that handles archive allocation ranges.
 193   G1ArchiveAllocator* _archive_allocator;
 194 
 195   // Statistics for each allocation context
 196   AllocationContextStats _allocation_context_stats;
 197 
 198   // GC allocation statistics policy for survivors.
 199   G1EvacStats _survivor_evac_stats;
 200 
 201   // GC allocation statistics policy for tenured objects.
 202   G1EvacStats _old_evac_stats;
 203 
 204   // It specifies whether we should attempt to expand the heap after a
 205   // region allocation failure. If heap expansion fails we set this to
 206   // false so that we don't re-attempt the heap expansion (it's likely
 207   // that subsequent expansion attempts will also fail if one fails).
 208   // Currently, it is only consulted during GC and it's reset at the
 209   // start of each GC.
 210   bool _expand_heap_after_alloc_failure;
 211 
 212   // Helper for monitoring and management support.
 213   G1MonitoringSupport* _g1mm;
 214 
 215   // Records whether the region at the given index is (still) a
 216   // candidate for eager reclaim.  Only valid for humongous start
 217   // regions; other regions have unspecified values.  Humongous start
 218   // regions are initialized at start of collection pause, with
 219   // candidates removed from the set as they are found reachable from
 220   // roots or the young generation.
 221   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 222    protected:
 223     bool default_value() const { return false; }
 224    public:
 225     void clear() { G1BiasedMappedArray<bool>::clear(); }
 226     void set_candidate(uint region, bool value) {
 227       set_by_index(region, value);
 228     }
 229     bool is_candidate(uint region) {
 230       return get_by_index(region);
 231     }
 232   };
 233 
 234   HumongousReclaimCandidates _humongous_reclaim_candidates;
 235   // Stores whether during humongous object registration we found candidate regions.
 236   // If not, we can skip a few steps.
 237   bool _has_humongous_reclaim_candidates;
 238 
 239   volatile unsigned _gc_time_stamp;
 240 
 241   G1HRPrinter _hr_printer;
 242 
 243   // It decides whether an explicit GC should start a concurrent cycle
 244   // instead of doing a STW GC. Currently, a concurrent cycle is
 245   // explicitly started if:
 246   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 247   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 248   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 249   // (d) cause == _g1_humongous_allocation
 250   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 251 
 252   // indicates whether we are in young or mixed GC mode
 253   G1CollectorState _collector_state;
 254 
 255   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 256   // concurrent cycles) we have started.
 257   volatile uint _old_marking_cycles_started;
 258 
 259   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 260   // concurrent cycles) we have completed.
 261   volatile uint _old_marking_cycles_completed;
 262 
 263   bool _heap_summary_sent;
 264 
 265   // This is a non-product method that is helpful for testing. It is
 266   // called at the end of a GC and artificially expands the heap by
 267   // allocating a number of dead regions. This way we can induce very
 268   // frequent marking cycles and stress the cleanup / concurrent
 269   // cleanup code more (as all the regions that will be allocated by
 270   // this method will be found dead by the marking cycle).
 271   void allocate_dummy_regions() PRODUCT_RETURN;
 272 
 273   // Clear RSets after a compaction. It also resets the GC time stamps.
 274   void clear_rsets_post_compaction();
 275 
 276   // If the HR printer is active, dump the state of the regions in the
 277   // heap after a compaction.
 278   void print_hrm_post_compaction();
 279 
 280   // Create a memory mapper for auxiliary data structures of the given size and
 281   // translation factor.
 282   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 283                                                          size_t size,
 284                                                          size_t translation_factor);
 285 
 286   double verify(bool guard, const char* msg);
 287   void verify_before_gc();
 288   void verify_after_gc();
 289 
 290   void log_gc_header();
 291   void log_gc_footer(double pause_time_sec);
 292 
 293   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 294 
 295   // These are macros so that, if the assert fires, we get the correct
 296   // line number, file, etc.
 297 
 298 #define heap_locking_asserts_params(_extra_message_)                          \
 299   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 300   (_extra_message_),                                                          \
 301   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 302   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 303   BOOL_TO_STR(Thread::current()->is_VM_thread())
 304 
 305 #define assert_heap_locked()                                                  \
 306   do {                                                                        \
 307     assert(Heap_lock->owned_by_self(),                                        \
 308            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 309   } while (0)
 310 
 311 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 312   do {                                                                        \
 313     assert(Heap_lock->owned_by_self() ||                                      \
 314            (SafepointSynchronize::is_at_safepoint() &&                        \
 315              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 316            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 317                                         "should be at a safepoint"));         \
 318   } while (0)
 319 
 320 #define assert_heap_locked_and_not_at_safepoint()                             \
 321   do {                                                                        \
 322     assert(Heap_lock->owned_by_self() &&                                      \
 323                                     !SafepointSynchronize::is_at_safepoint(), \
 324           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 325                                        "should not be at a safepoint"));      \
 326   } while (0)
 327 
 328 #define assert_heap_not_locked()                                              \
 329   do {                                                                        \
 330     assert(!Heap_lock->owned_by_self(),                                       \
 331         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 332   } while (0)
 333 
 334 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 335   do {                                                                        \
 336     assert(!Heap_lock->owned_by_self() &&                                     \
 337                                     !SafepointSynchronize::is_at_safepoint(), \
 338       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 339                                    "should not be at a safepoint"));          \
 340   } while (0)
 341 
 342 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 343   do {                                                                        \
 344     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 345               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 346            heap_locking_asserts_params("should be at a safepoint"));          \
 347   } while (0)
 348 
 349 #define assert_not_at_safepoint()                                             \
 350   do {                                                                        \
 351     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 352            heap_locking_asserts_params("should not be at a safepoint"));      \
 353   } while (0)
 354 
 355 protected:
 356 
 357   // The young region list.
 358   YoungList*  _young_list;
 359 
 360   // The current policy object for the collector.
 361   G1CollectorPolicy* _g1_policy;
 362 
 363   // This is the second level of trying to allocate a new region. If
 364   // new_region() didn't find a region on the free_list, this call will
 365   // check whether there's anything available on the
 366   // secondary_free_list and/or wait for more regions to appear on
 367   // that list, if _free_regions_coming is set.
 368   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 369 
 370   // Try to allocate a single non-humongous HeapRegion sufficient for
 371   // an allocation of the given word_size. If do_expand is true,
 372   // attempt to expand the heap if necessary to satisfy the allocation
 373   // request. If the region is to be used as an old region or for a
 374   // humongous object, set is_old to true. If not, to false.
 375   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 376 
 377   // Initialize a contiguous set of free regions of length num_regions
 378   // and starting at index first so that they appear as a single
 379   // humongous region.
 380   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 381                                                       uint num_regions,
 382                                                       size_t word_size,
 383                                                       AllocationContext_t context);
 384 
 385   // Attempt to allocate a humongous object of the given size. Return
 386   // NULL if unsuccessful.
 387   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 388 
 389   // The following two methods, allocate_new_tlab() and
 390   // mem_allocate(), are the two main entry points from the runtime
 391   // into the G1's allocation routines. They have the following
 392   // assumptions:
 393   //
 394   // * They should both be called outside safepoints.
 395   //
 396   // * They should both be called without holding the Heap_lock.
 397   //
 398   // * All allocation requests for new TLABs should go to
 399   //   allocate_new_tlab().
 400   //
 401   // * All non-TLAB allocation requests should go to mem_allocate().
 402   //
 403   // * If either call cannot satisfy the allocation request using the
 404   //   current allocating region, they will try to get a new one. If
 405   //   this fails, they will attempt to do an evacuation pause and
 406   //   retry the allocation.
 407   //
 408   // * If all allocation attempts fail, even after trying to schedule
 409   //   an evacuation pause, allocate_new_tlab() will return NULL,
 410   //   whereas mem_allocate() will attempt a heap expansion and/or
 411   //   schedule a Full GC.
 412   //
 413   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 414   //   should never be called with word_size being humongous. All
 415   //   humongous allocation requests should go to mem_allocate() which
 416   //   will satisfy them with a special path.
 417 
 418   virtual HeapWord* allocate_new_tlab(size_t word_size);
 419 
 420   virtual HeapWord* mem_allocate(size_t word_size,
 421                                  bool*  gc_overhead_limit_was_exceeded);
 422 
 423   // The following three methods take a gc_count_before_ret
 424   // parameter which is used to return the GC count if the method
 425   // returns NULL. Given that we are required to read the GC count
 426   // while holding the Heap_lock, and these paths will take the
 427   // Heap_lock at some point, it's easier to get them to read the GC
 428   // count while holding the Heap_lock before they return NULL instead
 429   // of the caller (namely: mem_allocate()) having to also take the
 430   // Heap_lock just to read the GC count.
 431 
 432   // First-level mutator allocation attempt: try to allocate out of
 433   // the mutator alloc region without taking the Heap_lock. This
 434   // should only be used for non-humongous allocations.
 435   inline HeapWord* attempt_allocation(size_t word_size,
 436                                       uint* gc_count_before_ret,
 437                                       uint* gclocker_retry_count_ret);
 438 
 439   // Second-level mutator allocation attempt: take the Heap_lock and
 440   // retry the allocation attempt, potentially scheduling a GC
 441   // pause. This should only be used for non-humongous allocations.
 442   HeapWord* attempt_allocation_slow(size_t word_size,
 443                                     AllocationContext_t context,
 444                                     uint* gc_count_before_ret,
 445                                     uint* gclocker_retry_count_ret);
 446 
 447   // Takes the Heap_lock and attempts a humongous allocation. It can
 448   // potentially schedule a GC pause.
 449   HeapWord* attempt_allocation_humongous(size_t word_size,
 450                                          uint* gc_count_before_ret,
 451                                          uint* gclocker_retry_count_ret);
 452 
 453   // Allocation attempt that should be called during safepoints (e.g.,
 454   // at the end of a successful GC). expect_null_mutator_alloc_region
 455   // specifies whether the mutator alloc region is expected to be NULL
 456   // or not.
 457   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 458                                             AllocationContext_t context,
 459                                             bool expect_null_mutator_alloc_region);
 460 
 461   // These methods are the "callbacks" from the G1AllocRegion class.
 462 
 463   // For mutator alloc regions.
 464   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 465   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 466                                    size_t allocated_bytes);
 467 
 468   // For GC alloc regions.
 469   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 470                                   InCSetState dest);
 471   void retire_gc_alloc_region(HeapRegion* alloc_region,
 472                               size_t allocated_bytes, InCSetState dest);
 473 
 474   // - if explicit_gc is true, the GC is for a System.gc() etc,
 475   //   otherwise it's for a failed allocation.
 476   // - if clear_all_soft_refs is true, all soft references should be
 477   //   cleared during the GC.
 478   // - it returns false if it is unable to do the collection due to the
 479   //   GC locker being active, true otherwise.
 480   bool do_full_collection(bool explicit_gc,
 481                           bool clear_all_soft_refs);
 482 
 483   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 484   virtual void do_full_collection(bool clear_all_soft_refs);
 485 
 486   // Resize the heap if necessary after a full collection.
 487   void resize_if_necessary_after_full_collection();
 488 
 489   // Callback from VM_G1CollectForAllocation operation.
 490   // This function does everything necessary/possible to satisfy a
 491   // failed allocation request (including collection, expansion, etc.)
 492   HeapWord* satisfy_failed_allocation(size_t word_size,
 493                                       AllocationContext_t context,
 494                                       bool* succeeded);
 495 private:
 496   // Helper method for satisfy_failed_allocation()
 497   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 498                                              AllocationContext_t context,
 499                                              bool do_gc,
 500                                              bool clear_all_soft_refs,
 501                                              bool expect_null_mutator_alloc_region,
 502                                              bool* gc_succeeded);
 503 
 504 protected:
 505   // Attempting to expand the heap sufficiently
 506   // to support an allocation of the given "word_size".  If
 507   // successful, perform the allocation and return the address of the
 508   // allocated block, or else "NULL".
 509   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 510 
 511   // Process any reference objects discovered during
 512   // an incremental evacuation pause.
 513   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 514 
 515   // Enqueue any remaining discovered references
 516   // after processing.
 517   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 518 
 519 public:
 520   WorkGang* workers() const { return _workers; }
 521 
 522   G1Allocator* allocator() {
 523     return _allocator;
 524   }
 525 
 526   G1MonitoringSupport* g1mm() {
 527     assert(_g1mm != NULL, "should have been initialized");
 528     return _g1mm;
 529   }
 530 
 531   // Expand the garbage-first heap by at least the given size (in bytes!).
 532   // Returns true if the heap was expanded by the requested amount;
 533   // false otherwise.
 534   // (Rounds up to a HeapRegion boundary.)
 535   bool expand(size_t expand_bytes, double* expand_time_ms = NULL);
 536 
 537   // Returns the PLAB statistics for a given destination.
 538   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 539 
 540   // Determines PLAB size for a given destination.
 541   inline size_t desired_plab_sz(InCSetState dest);
 542 
 543   inline AllocationContextStats& allocation_context_stats();
 544 
 545   // Do anything common to GC's.
 546   void gc_prologue(bool full);
 547   void gc_epilogue(bool full);
 548 
 549   // Modify the reclaim candidate set and test for presence.
 550   // These are only valid for starts_humongous regions.
 551   inline void set_humongous_reclaim_candidate(uint region, bool value);
 552   inline bool is_humongous_reclaim_candidate(uint region);
 553 
 554   // Remove from the reclaim candidate set.  Also remove from the
 555   // collection set so that later encounters avoid the slow path.
 556   inline void set_humongous_is_live(oop obj);
 557 
 558   // Register the given region to be part of the collection set.
 559   inline void register_humongous_region_with_cset(uint index);
 560   // Register regions with humongous objects (actually on the start region) in
 561   // the in_cset_fast_test table.
 562   void register_humongous_regions_with_cset();
 563   // We register a region with the fast "in collection set" test. We
 564   // simply set to true the array slot corresponding to this region.
 565   void register_young_region_with_cset(HeapRegion* r) {
 566     _in_cset_fast_test.set_in_young(r->hrm_index());
 567   }
 568   void register_old_region_with_cset(HeapRegion* r) {
 569     _in_cset_fast_test.set_in_old(r->hrm_index());
 570   }
 571   void clear_in_cset(const HeapRegion* hr) {
 572     _in_cset_fast_test.clear(hr);
 573   }
 574 
 575   void clear_cset_fast_test() {
 576     _in_cset_fast_test.clear();
 577   }
 578 
 579   // This is called at the start of either a concurrent cycle or a Full
 580   // GC to update the number of old marking cycles started.
 581   void increment_old_marking_cycles_started();
 582 
 583   // This is called at the end of either a concurrent cycle or a Full
 584   // GC to update the number of old marking cycles completed. Those two
 585   // can happen in a nested fashion, i.e., we start a concurrent
 586   // cycle, a Full GC happens half-way through it which ends first,
 587   // and then the cycle notices that a Full GC happened and ends
 588   // too. The concurrent parameter is a boolean to help us do a bit
 589   // tighter consistency checking in the method. If concurrent is
 590   // false, the caller is the inner caller in the nesting (i.e., the
 591   // Full GC). If concurrent is true, the caller is the outer caller
 592   // in this nesting (i.e., the concurrent cycle). Further nesting is
 593   // not currently supported. The end of this call also notifies
 594   // the FullGCCount_lock in case a Java thread is waiting for a full
 595   // GC to happen (e.g., it called System.gc() with
 596   // +ExplicitGCInvokesConcurrent).
 597   void increment_old_marking_cycles_completed(bool concurrent);
 598 
 599   uint old_marking_cycles_completed() {
 600     return _old_marking_cycles_completed;
 601   }
 602 
 603   void register_concurrent_cycle_start(const Ticks& start_time);
 604   void register_concurrent_cycle_end();
 605   void trace_heap_after_concurrent_cycle();
 606 
 607   G1HRPrinter* hr_printer() { return &_hr_printer; }
 608 
 609   // Allocates a new heap region instance.
 610   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 611 
 612   // Allocate the highest free region in the reserved heap. This will commit
 613   // regions as necessary.
 614   HeapRegion* alloc_highest_free_region();
 615 
 616   // Frees a non-humongous region by initializing its contents and
 617   // adding it to the free list that's passed as a parameter (this is
 618   // usually a local list which will be appended to the master free
 619   // list later). The used bytes of freed regions are accumulated in
 620   // pre_used. If par is true, the region's RSet will not be freed
 621   // up. The assumption is that this will be done later.
 622   // The locked parameter indicates if the caller has already taken
 623   // care of proper synchronization. This may allow some optimizations.
 624   void free_region(HeapRegion* hr,
 625                    FreeRegionList* free_list,
 626                    bool par,
 627                    bool locked = false);
 628 
 629   // It dirties the cards that cover the block so that the post
 630   // write barrier never queues anything when updating objects on this
 631   // block. It is assumed (and in fact we assert) that the block
 632   // belongs to a young region.
 633   inline void dirty_young_block(HeapWord* start, size_t word_size);
 634 
 635   // Frees a humongous region by collapsing it into individual regions
 636   // and calling free_region() for each of them. The freed regions
 637   // will be added to the free list that's passed as a parameter (this
 638   // is usually a local list which will be appended to the master free
 639   // list later). The used bytes of freed regions are accumulated in
 640   // pre_used. If par is true, the region's RSet will not be freed
 641   // up. The assumption is that this will be done later.
 642   void free_humongous_region(HeapRegion* hr,
 643                              FreeRegionList* free_list,
 644                              bool par);
 645 
 646   // Facility for allocating in 'archive' regions in high heap memory and
 647   // recording the allocated ranges. These should all be called from the
 648   // VM thread at safepoints, without the heap lock held. They can be used
 649   // to create and archive a set of heap regions which can be mapped at the
 650   // same fixed addresses in a subsequent JVM invocation.
 651   void begin_archive_alloc_range();
 652 
 653   // Check if the requested size would be too large for an archive allocation.
 654   bool is_archive_alloc_too_large(size_t word_size);
 655 
 656   // Allocate memory of the requested size from the archive region. This will
 657   // return NULL if the size is too large or if no memory is available. It
 658   // does not trigger a garbage collection.
 659   HeapWord* archive_mem_allocate(size_t word_size);
 660 
 661   // Optionally aligns the end address and returns the allocated ranges in
 662   // an array of MemRegions in order of ascending addresses.
 663   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 664                                size_t end_alignment_in_bytes = 0);
 665 
 666   // Facility for allocating a fixed range within the heap and marking
 667   // the containing regions as 'archive'. For use at JVM init time, when the
 668   // caller may mmap archived heap data at the specified range(s).
 669   // Verify that the MemRegions specified in the argument array are within the
 670   // reserved heap.
 671   bool check_archive_addresses(MemRegion* range, size_t count);
 672 
 673   // Commit the appropriate G1 regions containing the specified MemRegions
 674   // and mark them as 'archive' regions. The regions in the array must be
 675   // non-overlapping and in order of ascending address.
 676   bool alloc_archive_regions(MemRegion* range, size_t count);
 677 
 678   // Insert any required filler objects in the G1 regions around the specified
 679   // ranges to make the regions parseable. This must be called after
 680   // alloc_archive_regions, and after class loading has occurred.
 681   void fill_archive_regions(MemRegion* range, size_t count);
 682 
 683   // For each of the specified MemRegions, uncommit the containing G1 regions
 684   // which had been allocated by alloc_archive_regions. This should be called
 685   // rather than fill_archive_regions at JVM init time if the archive file
 686   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 687   void dealloc_archive_regions(MemRegion* range, size_t count);
 688 
 689 protected:
 690 
 691   // Shrink the garbage-first heap by at most the given size (in bytes!).
 692   // (Rounds down to a HeapRegion boundary.)
 693   virtual void shrink(size_t expand_bytes);
 694   void shrink_helper(size_t expand_bytes);
 695 
 696   #if TASKQUEUE_STATS
 697   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 698   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 699   void reset_taskqueue_stats();
 700   #endif // TASKQUEUE_STATS
 701 
 702   // Schedule the VM operation that will do an evacuation pause to
 703   // satisfy an allocation request of word_size. *succeeded will
 704   // return whether the VM operation was successful (it did do an
 705   // evacuation pause) or not (another thread beat us to it or the GC
 706   // locker was active). Given that we should not be holding the
 707   // Heap_lock when we enter this method, we will pass the
 708   // gc_count_before (i.e., total_collections()) as a parameter since
 709   // it has to be read while holding the Heap_lock. Currently, both
 710   // methods that call do_collection_pause() release the Heap_lock
 711   // before the call, so it's easy to read gc_count_before just before.
 712   HeapWord* do_collection_pause(size_t         word_size,
 713                                 uint           gc_count_before,
 714                                 bool*          succeeded,
 715                                 GCCause::Cause gc_cause);
 716 
 717   void wait_for_root_region_scanning();
 718 
 719   // The guts of the incremental collection pause, executed by the vm
 720   // thread. It returns false if it is unable to do the collection due
 721   // to the GC locker being active, true otherwise
 722   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 723 
 724   // Actually do the work of evacuating the collection set.
 725   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 726 
 727   void pre_evacuate_collection_set();
 728   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 729 
 730   // Print the header for the per-thread termination statistics.
 731   static void print_termination_stats_hdr(outputStream* const st);
 732   // Print actual per-thread termination statistics.
 733   void print_termination_stats(outputStream* const st,
 734                                uint worker_id,
 735                                double elapsed_ms,
 736                                double strong_roots_ms,
 737                                double term_ms,
 738                                size_t term_attempts,
 739                                size_t alloc_buffer_waste,
 740                                size_t undo_waste) const;
 741   // Update object copying statistics.
 742   void record_obj_copy_mem_stats();
 743 
 744   // The g1 remembered set of the heap.
 745   G1RemSet* _g1_rem_set;
 746 
 747   // A set of cards that cover the objects for which the Rsets should be updated
 748   // concurrently after the collection.
 749   DirtyCardQueueSet _dirty_card_queue_set;
 750 
 751   // The closure used to refine a single card.
 752   RefineCardTableEntryClosure* _refine_cte_cl;
 753 
 754   // After a collection pause, make the regions in the CS into free
 755   // regions.
 756   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 757 
 758   // Abandon the current collection set without recording policy
 759   // statistics or updating free lists.
 760   void abandon_collection_set(HeapRegion* cs_head);
 761 
 762   // The concurrent marker (and the thread it runs in.)
 763   ConcurrentMark* _cm;
 764   ConcurrentMarkThread* _cmThread;
 765 
 766   // The concurrent refiner.
 767   ConcurrentG1Refine* _cg1r;
 768 
 769   // The parallel task queues
 770   RefToScanQueueSet *_task_queues;
 771 
 772   // True iff a evacuation has failed in the current collection.
 773   bool _evacuation_failed;
 774 
 775   EvacuationFailedInfo* _evacuation_failed_info_array;
 776 
 777   // Failed evacuations cause some logical from-space objects to have
 778   // forwarding pointers to themselves.  Reset them.
 779   void remove_self_forwarding_pointers();
 780 
 781   struct OopAndMarkOop {
 782    private:
 783     oop _o;
 784     markOop _m;
 785    public:
 786     OopAndMarkOop(oop obj, markOop m) : _o(obj), _m(m) {
 787     }
 788 
 789     void set_mark() {
 790       _o->set_mark(_m);
 791     }
 792   };
 793 
 794   typedef Stack<OopAndMarkOop,mtGC> OopAndMarkOopStack;
 795   // Stores marks with the corresponding oop that we need to preserve during evacuation
 796   // failure.
 797   OopAndMarkOopStack*  _preserved_objs;
 798 
 799   // Preserve the mark of "obj", if necessary, in preparation for its mark
 800   // word being overwritten with a self-forwarding-pointer.
 801   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 802 
 803 #ifndef PRODUCT
 804   // Support for forcing evacuation failures. Analogous to
 805   // PromotionFailureALot for the other collectors.
 806 
 807   // Records whether G1EvacuationFailureALot should be in effect
 808   // for the current GC
 809   bool _evacuation_failure_alot_for_current_gc;
 810 
 811   // Used to record the GC number for interval checking when
 812   // determining whether G1EvaucationFailureALot is in effect
 813   // for the current GC.
 814   size_t _evacuation_failure_alot_gc_number;
 815 
 816   // Count of the number of evacuations between failures.
 817   volatile size_t _evacuation_failure_alot_count;
 818 
 819   // Set whether G1EvacuationFailureALot should be in effect
 820   // for the current GC (based upon the type of GC and which
 821   // command line flags are set);
 822   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 823                                                   bool during_initial_mark,
 824                                                   bool during_marking);
 825 
 826   inline void set_evacuation_failure_alot_for_current_gc();
 827 
 828   // Return true if it's time to cause an evacuation failure.
 829   inline bool evacuation_should_fail();
 830 
 831   // Reset the G1EvacuationFailureALot counters.  Should be called at
 832   // the end of an evacuation pause in which an evacuation failure occurred.
 833   inline void reset_evacuation_should_fail();
 834 #endif // !PRODUCT
 835 
 836   // ("Weak") Reference processing support.
 837   //
 838   // G1 has 2 instances of the reference processor class. One
 839   // (_ref_processor_cm) handles reference object discovery
 840   // and subsequent processing during concurrent marking cycles.
 841   //
 842   // The other (_ref_processor_stw) handles reference object
 843   // discovery and processing during full GCs and incremental
 844   // evacuation pauses.
 845   //
 846   // During an incremental pause, reference discovery will be
 847   // temporarily disabled for _ref_processor_cm and will be
 848   // enabled for _ref_processor_stw. At the end of the evacuation
 849   // pause references discovered by _ref_processor_stw will be
 850   // processed and discovery will be disabled. The previous
 851   // setting for reference object discovery for _ref_processor_cm
 852   // will be re-instated.
 853   //
 854   // At the start of marking:
 855   //  * Discovery by the CM ref processor is verified to be inactive
 856   //    and it's discovered lists are empty.
 857   //  * Discovery by the CM ref processor is then enabled.
 858   //
 859   // At the end of marking:
 860   //  * Any references on the CM ref processor's discovered
 861   //    lists are processed (possibly MT).
 862   //
 863   // At the start of full GC we:
 864   //  * Disable discovery by the CM ref processor and
 865   //    empty CM ref processor's discovered lists
 866   //    (without processing any entries).
 867   //  * Verify that the STW ref processor is inactive and it's
 868   //    discovered lists are empty.
 869   //  * Temporarily set STW ref processor discovery as single threaded.
 870   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 871   //    field.
 872   //  * Finally enable discovery by the STW ref processor.
 873   //
 874   // The STW ref processor is used to record any discovered
 875   // references during the full GC.
 876   //
 877   // At the end of a full GC we:
 878   //  * Enqueue any reference objects discovered by the STW ref processor
 879   //    that have non-live referents. This has the side-effect of
 880   //    making the STW ref processor inactive by disabling discovery.
 881   //  * Verify that the CM ref processor is still inactive
 882   //    and no references have been placed on it's discovered
 883   //    lists (also checked as a precondition during initial marking).
 884 
 885   // The (stw) reference processor...
 886   ReferenceProcessor* _ref_processor_stw;
 887 
 888   STWGCTimer* _gc_timer_stw;
 889   ConcurrentGCTimer* _gc_timer_cm;
 890 
 891   G1OldTracer* _gc_tracer_cm;
 892   G1NewTracer* _gc_tracer_stw;
 893 
 894   // During reference object discovery, the _is_alive_non_header
 895   // closure (if non-null) is applied to the referent object to
 896   // determine whether the referent is live. If so then the
 897   // reference object does not need to be 'discovered' and can
 898   // be treated as a regular oop. This has the benefit of reducing
 899   // the number of 'discovered' reference objects that need to
 900   // be processed.
 901   //
 902   // Instance of the is_alive closure for embedding into the
 903   // STW reference processor as the _is_alive_non_header field.
 904   // Supplying a value for the _is_alive_non_header field is
 905   // optional but doing so prevents unnecessary additions to
 906   // the discovered lists during reference discovery.
 907   G1STWIsAliveClosure _is_alive_closure_stw;
 908 
 909   // The (concurrent marking) reference processor...
 910   ReferenceProcessor* _ref_processor_cm;
 911 
 912   // Instance of the concurrent mark is_alive closure for embedding
 913   // into the Concurrent Marking reference processor as the
 914   // _is_alive_non_header field. Supplying a value for the
 915   // _is_alive_non_header field is optional but doing so prevents
 916   // unnecessary additions to the discovered lists during reference
 917   // discovery.
 918   G1CMIsAliveClosure _is_alive_closure_cm;
 919 
 920   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 921   HeapRegion** _worker_cset_start_region;
 922 
 923   // Time stamp to validate the regions recorded in the cache
 924   // used by G1CollectedHeap::start_cset_region_for_worker().
 925   // The heap region entry for a given worker is valid iff
 926   // the associated time stamp value matches the current value
 927   // of G1CollectedHeap::_gc_time_stamp.
 928   uint* _worker_cset_start_region_time_stamp;
 929 
 930   volatile bool _free_regions_coming;
 931 
 932 public:
 933 
 934   void set_refine_cte_cl_concurrency(bool concurrent);
 935 
 936   RefToScanQueue *task_queue(uint i) const;
 937 
 938   uint num_task_queues() const;
 939 
 940   // A set of cards where updates happened during the GC
 941   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 942 
 943   // Create a G1CollectedHeap with the specified policy.
 944   // Must call the initialize method afterwards.
 945   // May not return if something goes wrong.
 946   G1CollectedHeap(G1CollectorPolicy* policy);
 947 
 948   // Initialize the G1CollectedHeap to have the initial and
 949   // maximum sizes and remembered and barrier sets
 950   // specified by the policy object.
 951   jint initialize();
 952 
 953   virtual void stop();
 954 
 955   // Return the (conservative) maximum heap alignment for any G1 heap
 956   static size_t conservative_max_heap_alignment();
 957 
 958   // Does operations required after initialization has been done.
 959   void post_initialize();
 960 
 961   // Initialize weak reference processing.
 962   void ref_processing_init();
 963 
 964   virtual Name kind() const {
 965     return CollectedHeap::G1CollectedHeap;
 966   }
 967 
 968   const G1CollectorState* collector_state() const { return &_collector_state; }
 969   G1CollectorState* collector_state() { return &_collector_state; }
 970 
 971   // The current policy object for the collector.
 972   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 973 
 974   virtual CollectorPolicy* collector_policy() const;
 975 
 976   // Adaptive size policy.  No such thing for g1.
 977   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 978 
 979   // The rem set and barrier set.
 980   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 981 
 982   unsigned get_gc_time_stamp() {
 983     return _gc_time_stamp;
 984   }
 985 
 986   inline void reset_gc_time_stamp();
 987 
 988   void check_gc_time_stamps() PRODUCT_RETURN;
 989 
 990   inline void increment_gc_time_stamp();
 991 
 992   // Reset the given region's GC timestamp. If it's starts humongous,
 993   // also reset the GC timestamp of its corresponding
 994   // continues humongous regions too.
 995   void reset_gc_time_stamps(HeapRegion* hr);
 996 
 997   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
 998   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
 999 
1000   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1001   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1002 
1003   // The shared block offset table array.
1004   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1005 
1006   // Reference Processing accessors
1007 
1008   // The STW reference processor....
1009   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1010 
1011   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1012 
1013   // The Concurrent Marking reference processor...
1014   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1015 
1016   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1017   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1018 
1019   virtual size_t capacity() const;
1020   virtual size_t used() const;
1021   // This should be called when we're not holding the heap lock. The
1022   // result might be a bit inaccurate.
1023   size_t used_unlocked() const;
1024   size_t recalculate_used() const;
1025 
1026   // These virtual functions do the actual allocation.
1027   // Some heaps may offer a contiguous region for shared non-blocking
1028   // allocation, via inlined code (by exporting the address of the top and
1029   // end fields defining the extent of the contiguous allocation region.)
1030   // But G1CollectedHeap doesn't yet support this.
1031 
1032   virtual bool is_maximal_no_gc() const {
1033     return _hrm.available() == 0;
1034   }
1035 
1036   // The current number of regions in the heap.
1037   uint num_regions() const { return _hrm.length(); }
1038 
1039   // The max number of regions in the heap.
1040   uint max_regions() const { return _hrm.max_length(); }
1041 
1042   // The number of regions that are completely free.
1043   uint num_free_regions() const { return _hrm.num_free_regions(); }
1044 
1045   MemoryUsage get_auxiliary_data_memory_usage() const {
1046     return _hrm.get_auxiliary_data_memory_usage();
1047   }
1048 
1049   // The number of regions that are not completely free.
1050   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1051 
1052   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1053   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1054   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1055   void verify_dirty_young_regions() PRODUCT_RETURN;
1056 
1057 #ifndef PRODUCT
1058   // Make sure that the given bitmap has no marked objects in the
1059   // range [from,limit). If it does, print an error message and return
1060   // false. Otherwise, just return true. bitmap_name should be "prev"
1061   // or "next".
1062   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1063                                 HeapWord* from, HeapWord* limit);
1064 
1065   // Verify that the prev / next bitmap range [tams,end) for the given
1066   // region has no marks. Return true if all is well, false if errors
1067   // are detected.
1068   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1069 #endif // PRODUCT
1070 
1071   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1072   // the given region do not have any spurious marks. If errors are
1073   // detected, print appropriate error messages and crash.
1074   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1075 
1076   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1077   // have any spurious marks. If errors are detected, print
1078   // appropriate error messages and crash.
1079   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1080 
1081   // Do sanity check on the contents of the in-cset fast test table.
1082   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1083 
1084   // verify_region_sets() performs verification over the region
1085   // lists. It will be compiled in the product code to be used when
1086   // necessary (i.e., during heap verification).
1087   void verify_region_sets();
1088 
1089   // verify_region_sets_optional() is planted in the code for
1090   // list verification in non-product builds (and it can be enabled in
1091   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1092 #if HEAP_REGION_SET_FORCE_VERIFY
1093   void verify_region_sets_optional() {
1094     verify_region_sets();
1095   }
1096 #else // HEAP_REGION_SET_FORCE_VERIFY
1097   void verify_region_sets_optional() { }
1098 #endif // HEAP_REGION_SET_FORCE_VERIFY
1099 
1100 #ifdef ASSERT
1101   bool is_on_master_free_list(HeapRegion* hr) {
1102     return _hrm.is_free(hr);
1103   }
1104 #endif // ASSERT
1105 
1106   // Wrapper for the region list operations that can be called from
1107   // methods outside this class.
1108 
1109   void secondary_free_list_add(FreeRegionList* list) {
1110     _secondary_free_list.add_ordered(list);
1111   }
1112 
1113   void append_secondary_free_list() {
1114     _hrm.insert_list_into_free_list(&_secondary_free_list);
1115   }
1116 
1117   void append_secondary_free_list_if_not_empty_with_lock() {
1118     // If the secondary free list looks empty there's no reason to
1119     // take the lock and then try to append it.
1120     if (!_secondary_free_list.is_empty()) {
1121       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1122       append_secondary_free_list();
1123     }
1124   }
1125 
1126   inline void old_set_add(HeapRegion* hr);
1127   inline void old_set_remove(HeapRegion* hr);
1128 
1129   size_t non_young_capacity_bytes() {
1130     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1131   }
1132 
1133   void set_free_regions_coming();
1134   void reset_free_regions_coming();
1135   bool free_regions_coming() { return _free_regions_coming; }
1136   void wait_while_free_regions_coming();
1137 
1138   // Determine whether the given region is one that we are using as an
1139   // old GC alloc region.
1140   bool is_old_gc_alloc_region(HeapRegion* hr);
1141 
1142   // Perform a collection of the heap; intended for use in implementing
1143   // "System.gc".  This probably implies as full a collection as the
1144   // "CollectedHeap" supports.
1145   virtual void collect(GCCause::Cause cause);
1146 
1147   virtual bool copy_allocation_context_stats(const jint* contexts,
1148                                              jlong* totals,
1149                                              jbyte* accuracy,
1150                                              jint len);
1151 
1152   // True iff an evacuation has failed in the most-recent collection.
1153   bool evacuation_failed() { return _evacuation_failed; }
1154 
1155   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1156   void prepend_to_freelist(FreeRegionList* list);
1157   void decrement_summary_bytes(size_t bytes);
1158 
1159   virtual bool is_in(const void* p) const;
1160 #ifdef ASSERT
1161   // Returns whether p is in one of the available areas of the heap. Slow but
1162   // extensive version.
1163   bool is_in_exact(const void* p) const;
1164 #endif
1165 
1166   // Return "TRUE" iff the given object address is within the collection
1167   // set. Slow implementation.
1168   bool obj_in_cs(oop obj);
1169 
1170   inline bool is_in_cset(const HeapRegion *hr);
1171   inline bool is_in_cset(oop obj);
1172 
1173   inline bool is_in_cset_or_humongous(const oop obj);
1174 
1175  private:
1176   // This array is used for a quick test on whether a reference points into
1177   // the collection set or not. Each of the array's elements denotes whether the
1178   // corresponding region is in the collection set or not.
1179   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1180 
1181  public:
1182 
1183   inline InCSetState in_cset_state(const oop obj);
1184 
1185   // Return "TRUE" iff the given object address is in the reserved
1186   // region of g1.
1187   bool is_in_g1_reserved(const void* p) const {
1188     return _hrm.reserved().contains(p);
1189   }
1190 
1191   // Returns a MemRegion that corresponds to the space that has been
1192   // reserved for the heap
1193   MemRegion g1_reserved() const {
1194     return _hrm.reserved();
1195   }
1196 
1197   virtual bool is_in_closed_subset(const void* p) const;
1198 
1199   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1200     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1201   }
1202 
1203   // This resets the card table to all zeros.  It is used after
1204   // a collection pause which used the card table to claim cards.
1205   void cleanUpCardTable();
1206 
1207   // Iteration functions.
1208 
1209   // Iterate over all objects, calling "cl.do_object" on each.
1210   virtual void object_iterate(ObjectClosure* cl);
1211 
1212   virtual void safe_object_iterate(ObjectClosure* cl) {
1213     object_iterate(cl);
1214   }
1215 
1216   // Iterate over heap regions, in address order, terminating the
1217   // iteration early if the "doHeapRegion" method returns "true".
1218   void heap_region_iterate(HeapRegionClosure* blk) const;
1219 
1220   // Return the region with the given index. It assumes the index is valid.
1221   inline HeapRegion* region_at(uint index) const;
1222 
1223   // Return the next region (by index) that is part of the same
1224   // humongous object that hr is part of.
1225   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1226 
1227   // Calculate the region index of the given address. Given address must be
1228   // within the heap.
1229   inline uint addr_to_region(HeapWord* addr) const;
1230 
1231   inline HeapWord* bottom_addr_for_region(uint index) const;
1232 
1233   // Iterate over the heap regions in parallel. Assumes that this will be called
1234   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1235   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1236   // to each of the regions, by attempting to claim the region using the
1237   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1238   // region. The concurrent argument should be set to true if iteration is
1239   // performed concurrently, during which no assumptions are made for consistent
1240   // attributes of the heap regions (as they might be modified while iterating).
1241   void heap_region_par_iterate(HeapRegionClosure* cl,
1242                                uint worker_id,
1243                                HeapRegionClaimer* hrclaimer,
1244                                bool concurrent = false) const;
1245 
1246   // Clear the cached cset start regions and (more importantly)
1247   // the time stamps. Called when we reset the GC time stamp.
1248   void clear_cset_start_regions();
1249 
1250   // Given the id of a worker, obtain or calculate a suitable
1251   // starting region for iterating over the current collection set.
1252   HeapRegion* start_cset_region_for_worker(uint worker_i);
1253 
1254   // Iterate over the regions (if any) in the current collection set.
1255   void collection_set_iterate(HeapRegionClosure* blk);
1256 
1257   // As above but starting from region r
1258   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1259 
1260   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1261 
1262   // Returns the HeapRegion that contains addr. addr must not be NULL.
1263   template <class T>
1264   inline HeapRegion* heap_region_containing(const T addr) const;
1265 
1266   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1267   // each address in the (reserved) heap is a member of exactly
1268   // one block.  The defining characteristic of a block is that it is
1269   // possible to find its size, and thus to progress forward to the next
1270   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1271   // represent Java objects, or they might be free blocks in a
1272   // free-list-based heap (or subheap), as long as the two kinds are
1273   // distinguishable and the size of each is determinable.
1274 
1275   // Returns the address of the start of the "block" that contains the
1276   // address "addr".  We say "blocks" instead of "object" since some heaps
1277   // may not pack objects densely; a chunk may either be an object or a
1278   // non-object.
1279   virtual HeapWord* block_start(const void* addr) const;
1280 
1281   // Requires "addr" to be the start of a chunk, and returns its size.
1282   // "addr + size" is required to be the start of a new chunk, or the end
1283   // of the active area of the heap.
1284   virtual size_t block_size(const HeapWord* addr) const;
1285 
1286   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1287   // the block is an object.
1288   virtual bool block_is_obj(const HeapWord* addr) const;
1289 
1290   // Section on thread-local allocation buffers (TLABs)
1291   // See CollectedHeap for semantics.
1292 
1293   bool supports_tlab_allocation() const;
1294   size_t tlab_capacity(Thread* ignored) const;
1295   size_t tlab_used(Thread* ignored) const;
1296   size_t max_tlab_size() const;
1297   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1298 
1299   // Can a compiler initialize a new object without store barriers?
1300   // This permission only extends from the creation of a new object
1301   // via a TLAB up to the first subsequent safepoint. If such permission
1302   // is granted for this heap type, the compiler promises to call
1303   // defer_store_barrier() below on any slow path allocation of
1304   // a new object for which such initializing store barriers will
1305   // have been elided. G1, like CMS, allows this, but should be
1306   // ready to provide a compensating write barrier as necessary
1307   // if that storage came out of a non-young region. The efficiency
1308   // of this implementation depends crucially on being able to
1309   // answer very efficiently in constant time whether a piece of
1310   // storage in the heap comes from a young region or not.
1311   // See ReduceInitialCardMarks.
1312   virtual bool can_elide_tlab_store_barriers() const {
1313     return true;
1314   }
1315 
1316   virtual bool card_mark_must_follow_store() const {
1317     return true;
1318   }
1319 
1320   inline bool is_in_young(const oop obj);
1321 
1322   virtual bool is_scavengable(const void* addr);
1323 
1324   // We don't need barriers for initializing stores to objects
1325   // in the young gen: for the SATB pre-barrier, there is no
1326   // pre-value that needs to be remembered; for the remembered-set
1327   // update logging post-barrier, we don't maintain remembered set
1328   // information for young gen objects.
1329   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1330 
1331   // Returns "true" iff the given word_size is "very large".
1332   static bool is_humongous(size_t word_size) {
1333     // Note this has to be strictly greater-than as the TLABs
1334     // are capped at the humongous threshold and we want to
1335     // ensure that we don't try to allocate a TLAB as
1336     // humongous and that we don't allocate a humongous
1337     // object in a TLAB.
1338     return word_size > _humongous_object_threshold_in_words;
1339   }
1340 
1341   // Returns the humongous threshold for a specific region size
1342   static size_t humongous_threshold_for(size_t region_size) {
1343     return (region_size / 2);
1344   }
1345 
1346   // Returns the number of regions the humongous object of the given word size
1347   // requires.
1348   static size_t humongous_obj_size_in_regions(size_t word_size);
1349 
1350   // Print the maximum heap capacity.
1351   virtual size_t max_capacity() const;
1352 
1353   virtual jlong millis_since_last_gc();
1354 
1355 
1356   // Convenience function to be used in situations where the heap type can be
1357   // asserted to be this type.
1358   static G1CollectedHeap* heap();
1359 
1360   void set_region_short_lived_locked(HeapRegion* hr);
1361   // add appropriate methods for any other surv rate groups
1362 
1363   YoungList* young_list() const { return _young_list; }
1364 
1365   // debugging
1366   bool check_young_list_well_formed() {
1367     return _young_list->check_list_well_formed();
1368   }
1369 
1370   bool check_young_list_empty(bool check_heap,
1371                               bool check_sample = true);
1372 
1373   // *** Stuff related to concurrent marking.  It's not clear to me that so
1374   // many of these need to be public.
1375 
1376   // The functions below are helper functions that a subclass of
1377   // "CollectedHeap" can use in the implementation of its virtual
1378   // functions.
1379   // This performs a concurrent marking of the live objects in a
1380   // bitmap off to the side.
1381   void doConcurrentMark();
1382 
1383   bool isMarkedPrev(oop obj) const;
1384   bool isMarkedNext(oop obj) const;
1385 
1386   // Determine if an object is dead, given the object and also
1387   // the region to which the object belongs. An object is dead
1388   // iff a) it was not allocated since the last mark, b) it
1389   // is not marked, and c) it is not in an archive region.
1390   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1391     return
1392       !hr->obj_allocated_since_prev_marking(obj) &&
1393       !isMarkedPrev(obj) &&
1394       !hr->is_archive();
1395   }
1396 
1397   // This function returns true when an object has been
1398   // around since the previous marking and hasn't yet
1399   // been marked during this marking, and is not in an archive region.
1400   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1401     return
1402       !hr->obj_allocated_since_next_marking(obj) &&
1403       !isMarkedNext(obj) &&
1404       !hr->is_archive();
1405   }
1406 
1407   // Determine if an object is dead, given only the object itself.
1408   // This will find the region to which the object belongs and
1409   // then call the region version of the same function.
1410 
1411   // Added if it is NULL it isn't dead.
1412 
1413   inline bool is_obj_dead(const oop obj) const;
1414 
1415   inline bool is_obj_ill(const oop obj) const;
1416 
1417   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1418   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1419   bool is_marked(oop obj, VerifyOption vo);
1420   const char* top_at_mark_start_str(VerifyOption vo);
1421 
1422   ConcurrentMark* concurrent_mark() const { return _cm; }
1423 
1424   // Refinement
1425 
1426   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1427 
1428   // The dirty cards region list is used to record a subset of regions
1429   // whose cards need clearing. The list if populated during the
1430   // remembered set scanning and drained during the card table
1431   // cleanup. Although the methods are reentrant, population/draining
1432   // phases must not overlap. For synchronization purposes the last
1433   // element on the list points to itself.
1434   HeapRegion* _dirty_cards_region_list;
1435   void push_dirty_cards_region(HeapRegion* hr);
1436   HeapRegion* pop_dirty_cards_region();
1437 
1438   // Optimized nmethod scanning support routines
1439 
1440   // Register the given nmethod with the G1 heap.
1441   virtual void register_nmethod(nmethod* nm);
1442 
1443   // Unregister the given nmethod from the G1 heap.
1444   virtual void unregister_nmethod(nmethod* nm);
1445 
1446   // Free up superfluous code root memory.
1447   void purge_code_root_memory();
1448 
1449   // Rebuild the strong code root lists for each region
1450   // after a full GC.
1451   void rebuild_strong_code_roots();
1452 
1453   // Delete entries for dead interned string and clean up unreferenced symbols
1454   // in symbol table, possibly in parallel.
1455   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1456 
1457   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1458   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1459 
1460   // Redirty logged cards in the refinement queue.
1461   void redirty_logged_cards();
1462   // Verification
1463 
1464   // Perform any cleanup actions necessary before allowing a verification.
1465   virtual void prepare_for_verify();
1466 
1467   // Perform verification.
1468 
1469   // vo == UsePrevMarking  -> use "prev" marking information,
1470   // vo == UseNextMarking -> use "next" marking information
1471   // vo == UseMarkWord    -> use the mark word in the object header
1472   //
1473   // NOTE: Only the "prev" marking information is guaranteed to be
1474   // consistent most of the time, so most calls to this should use
1475   // vo == UsePrevMarking.
1476   // Currently, there is only one case where this is called with
1477   // vo == UseNextMarking, which is to verify the "next" marking
1478   // information at the end of remark.
1479   // Currently there is only one place where this is called with
1480   // vo == UseMarkWord, which is to verify the marking during a
1481   // full GC.
1482   void verify(bool silent, VerifyOption vo);
1483 
1484   // Override; it uses the "prev" marking information
1485   virtual void verify(bool silent);
1486 
1487   // The methods below are here for convenience and dispatch the
1488   // appropriate method depending on value of the given VerifyOption
1489   // parameter. The values for that parameter, and their meanings,
1490   // are the same as those above.
1491 
1492   bool is_obj_dead_cond(const oop obj,
1493                         const HeapRegion* hr,
1494                         const VerifyOption vo) const;
1495 
1496   bool is_obj_dead_cond(const oop obj,
1497                         const VerifyOption vo) const;
1498 
1499   G1HeapSummary create_g1_heap_summary();
1500   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1501 
1502   // Printing
1503 
1504   virtual void print_on(outputStream* st) const;
1505   virtual void print_extended_on(outputStream* st) const;
1506   virtual void print_on_error(outputStream* st) const;
1507 
1508   virtual void print_gc_threads_on(outputStream* st) const;
1509   virtual void gc_threads_do(ThreadClosure* tc) const;
1510 
1511   // Override
1512   void print_tracing_info() const;
1513 
1514   // The following two methods are helpful for debugging RSet issues.
1515   void print_cset_rsets() PRODUCT_RETURN;
1516   void print_all_rsets() PRODUCT_RETURN;
1517 
1518 public:
1519   size_t pending_card_num();
1520 
1521 protected:
1522   size_t _max_heap_capacity;
1523 };
1524 
1525 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP