1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc/g1/collectionSetChooser.hpp"
  29 #include "gc/g1/g1CollectorState.hpp"
  30 #include "gc/g1/g1GCPhaseTimes.hpp"
  31 #include "gc/g1/g1InCSetState.hpp"
  32 #include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp"
  33 #include "gc/g1/g1MMUTracker.hpp"
  34 #include "gc/g1/g1Predictions.hpp"
  35 #include "gc/shared/collectorPolicy.hpp"
  36 #include "utilities/pair.hpp"
  37 
  38 // A G1CollectorPolicy makes policy decisions that determine the
  39 // characteristics of the collector.  Examples include:
  40 //   * choice of collection set.
  41 //   * when to collect.
  42 
  43 class HeapRegion;
  44 class CollectionSetChooser;
  45 class G1IHOPControl;
  46 
  47 // TraceYoungGenTime collects data on _both_ young and mixed evacuation pauses
  48 // (the latter may contain non-young regions - i.e. regions that are
  49 // technically in old) while TraceOldGenTime collects data about full GCs.
  50 class TraceYoungGenTimeData : public CHeapObj<mtGC> {
  51  private:
  52   unsigned  _young_pause_num;
  53   unsigned  _mixed_pause_num;
  54 
  55   NumberSeq _all_stop_world_times_ms;
  56   NumberSeq _all_yield_times_ms;
  57 
  58   NumberSeq _total;
  59   NumberSeq _other;
  60   NumberSeq _root_region_scan_wait;
  61   NumberSeq _parallel;
  62   NumberSeq _ext_root_scan;
  63   NumberSeq _satb_filtering;
  64   NumberSeq _update_rs;
  65   NumberSeq _scan_rs;
  66   NumberSeq _obj_copy;
  67   NumberSeq _termination;
  68   NumberSeq _parallel_other;
  69   NumberSeq _clear_ct;
  70 
  71   void print_summary(const char* str, const NumberSeq* seq) const;
  72   void print_summary_sd(const char* str, const NumberSeq* seq) const;
  73 
  74 public:
  75    TraceYoungGenTimeData() : _young_pause_num(0), _mixed_pause_num(0) {};
  76   void record_start_collection(double time_to_stop_the_world_ms);
  77   void record_yield_time(double yield_time_ms);
  78   void record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times);
  79   void increment_young_collection_count();
  80   void increment_mixed_collection_count();
  81   void print() const;
  82 };
  83 
  84 class TraceOldGenTimeData : public CHeapObj<mtGC> {
  85  private:
  86   NumberSeq _all_full_gc_times;
  87 
  88  public:
  89   void record_full_collection(double full_gc_time_ms);
  90   void print() const;
  91 };
  92 
  93 // There are three command line options related to the young gen size:
  94 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
  95 // just a short form for NewSize==MaxNewSize). G1 will use its internal
  96 // heuristics to calculate the actual young gen size, so these options
  97 // basically only limit the range within which G1 can pick a young gen
  98 // size. Also, these are general options taking byte sizes. G1 will
  99 // internally work with a number of regions instead. So, some rounding
 100 // will occur.
 101 //
 102 // If nothing related to the the young gen size is set on the command
 103 // line we should allow the young gen to be between G1NewSizePercent
 104 // and G1MaxNewSizePercent of the heap size. This means that every time
 105 // the heap size changes, the limits for the young gen size will be
 106 // recalculated.
 107 //
 108 // If only -XX:NewSize is set we should use the specified value as the
 109 // minimum size for young gen. Still using G1MaxNewSizePercent of the
 110 // heap as maximum.
 111 //
 112 // If only -XX:MaxNewSize is set we should use the specified value as the
 113 // maximum size for young gen. Still using G1NewSizePercent of the heap
 114 // as minimum.
 115 //
 116 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 117 // No updates when the heap size changes. There is a special case when
 118 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 119 // different heuristic for calculating the collection set when we do mixed
 120 // collection.
 121 //
 122 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 123 // as both min and max. This will be interpreted as "fixed" just like the
 124 // NewSize==MaxNewSize case above. But we will update the min and max
 125 // every time the heap size changes.
 126 //
 127 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 128 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 129 class G1YoungGenSizer : public CHeapObj<mtGC> {
 130 private:
 131   enum SizerKind {
 132     SizerDefaults,
 133     SizerNewSizeOnly,
 134     SizerMaxNewSizeOnly,
 135     SizerMaxAndNewSize,
 136     SizerNewRatio
 137   };
 138   SizerKind _sizer_kind;
 139   uint _min_desired_young_length;
 140   uint _max_desired_young_length;
 141   bool _adaptive_size;
 142   uint calculate_default_min_length(uint new_number_of_heap_regions);
 143   uint calculate_default_max_length(uint new_number_of_heap_regions);
 144 
 145   // Update the given values for minimum and maximum young gen length in regions
 146   // given the number of heap regions depending on the kind of sizing algorithm.
 147   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
 148 
 149 public:
 150   G1YoungGenSizer();
 151   // Calculate the maximum length of the young gen given the number of regions
 152   // depending on the sizing algorithm.
 153   uint max_young_length(uint number_of_heap_regions);
 154 
 155   void heap_size_changed(uint new_number_of_heap_regions);
 156   uint min_desired_young_length() {
 157     return _min_desired_young_length;
 158   }
 159   uint max_desired_young_length() {
 160     return _max_desired_young_length;
 161   }
 162   bool adaptive_young_list_length() const {
 163     return _adaptive_size;
 164   }
 165 };
 166 
 167 class G1CollectorPolicy: public CollectorPolicy {
 168  private:
 169   G1IHOPControl* _ihop_control;
 170 
 171   G1IHOPControl* create_ihop_control() const;
 172   // Update the IHOP control with necessary statistics.
 173   void update_ihop_prediction(double mutator_time_s,
 174                               size_t mutator_alloc_bytes,
 175                               size_t young_gen_size);
 176   void report_ihop_statistics();
 177 
 178   G1Predictions _predictor;
 179 
 180   double get_new_prediction(TruncatedSeq const* seq) const;
 181 
 182   // either equal to the number of parallel threads, if ParallelGCThreads
 183   // has been set, or 1 otherwise
 184   int _parallel_gc_threads;
 185 
 186   // The number of GC threads currently active.
 187   uintx _no_of_gc_threads;
 188 
 189   G1MMUTracker* _mmu_tracker;
 190 
 191   void initialize_alignments();
 192   void initialize_flags();
 193 
 194   CollectionSetChooser* _collectionSetChooser;
 195 
 196   double _full_collection_start_sec;
 197   uint   _cur_collection_pause_used_regions_at_start;
 198 
 199   // These exclude marking times.
 200   TruncatedSeq* _recent_gc_times_ms;
 201 
 202   TruncatedSeq* _concurrent_mark_remark_times_ms;
 203   TruncatedSeq* _concurrent_mark_cleanup_times_ms;
 204 
 205   TraceYoungGenTimeData _trace_young_gen_time_data;
 206   TraceOldGenTimeData   _trace_old_gen_time_data;
 207 
 208   double _stop_world_start;
 209 
 210   uint _young_list_target_length;
 211   uint _young_list_fixed_length;
 212 
 213   // The max number of regions we can extend the eden by while the GC
 214   // locker is active. This should be >= _young_list_target_length;
 215   uint _young_list_max_length;
 216 
 217   SurvRateGroup* _short_lived_surv_rate_group;
 218   SurvRateGroup* _survivor_surv_rate_group;
 219   // add here any more surv rate groups
 220 
 221   double _gc_overhead_perc;
 222 
 223   double _reserve_factor;
 224   uint   _reserve_regions;
 225 
 226   enum PredictionConstants {
 227     TruncatedSeqLength = 10,
 228     NumPrevPausesForHeuristics = 10
 229   };
 230 
 231   TruncatedSeq* _alloc_rate_ms_seq;
 232   double        _prev_collection_pause_end_ms;
 233 
 234   TruncatedSeq* _rs_length_diff_seq;
 235   TruncatedSeq* _cost_per_card_ms_seq;
 236   TruncatedSeq* _cost_scan_hcc_seq;
 237   TruncatedSeq* _young_cards_per_entry_ratio_seq;
 238   TruncatedSeq* _mixed_cards_per_entry_ratio_seq;
 239   TruncatedSeq* _cost_per_entry_ms_seq;
 240   TruncatedSeq* _mixed_cost_per_entry_ms_seq;
 241   TruncatedSeq* _cost_per_byte_ms_seq;
 242   TruncatedSeq* _constant_other_time_ms_seq;
 243   TruncatedSeq* _young_other_cost_per_region_ms_seq;
 244   TruncatedSeq* _non_young_other_cost_per_region_ms_seq;
 245 
 246   TruncatedSeq* _pending_cards_seq;
 247   TruncatedSeq* _rs_lengths_seq;
 248 
 249   TruncatedSeq* _cost_per_byte_ms_during_cm_seq;
 250 
 251   G1YoungGenSizer* _young_gen_sizer;
 252 
 253   uint _eden_cset_region_length;
 254   uint _survivor_cset_region_length;
 255   uint _old_cset_region_length;
 256 
 257   void init_cset_region_lengths(uint eden_cset_region_length,
 258                                 uint survivor_cset_region_length);
 259 
 260   uint eden_cset_region_length() const     { return _eden_cset_region_length;     }
 261   uint survivor_cset_region_length() const { return _survivor_cset_region_length; }
 262   uint old_cset_region_length() const      { return _old_cset_region_length;      }
 263 
 264   uint _free_regions_at_end_of_collection;
 265 
 266   size_t _recorded_rs_lengths;
 267   size_t _max_rs_lengths;
 268 
 269   size_t _rs_lengths_prediction;
 270 
 271 #ifndef PRODUCT
 272   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
 273 #endif // PRODUCT
 274 
 275   void adjust_concurrent_refinement(double update_rs_time,
 276                                     double update_rs_processed_buffers,
 277                                     double goal_ms);
 278 
 279   uintx no_of_gc_threads() { return _no_of_gc_threads; }
 280   void set_no_of_gc_threads(uintx v) { _no_of_gc_threads = v; }
 281 
 282   double _pause_time_target_ms;
 283 
 284   size_t _pending_cards;
 285 
 286   // The amount of allocated bytes in old gen during the last mutator and the following
 287   // young GC phase.
 288   size_t _bytes_allocated_in_old_since_last_gc;
 289 
 290   G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed;
 291 public:
 292   const G1Predictions& predictor() const { return _predictor; }
 293 
 294   // Add the given number of bytes to the total number of allocated bytes in the old gen.
 295   void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; }
 296 
 297   // Accessors
 298 
 299   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 300     hr->set_eden();
 301     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 302     hr->set_young_index_in_cset(young_index_in_cset);
 303   }
 304 
 305   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 306     assert(hr->is_survivor(), "pre-condition");
 307     hr->install_surv_rate_group(_survivor_surv_rate_group);
 308     hr->set_young_index_in_cset(young_index_in_cset);
 309   }
 310 
 311 #ifndef PRODUCT
 312   bool verify_young_ages();
 313 #endif // PRODUCT
 314 
 315   void record_max_rs_lengths(size_t rs_lengths) {
 316     _max_rs_lengths = rs_lengths;
 317   }
 318 
 319   size_t predict_rs_length_diff() const;
 320 
 321   double predict_alloc_rate_ms() const;
 322 
 323   double predict_cost_per_card_ms() const;
 324 
 325   double predict_scan_hcc_ms() const;
 326 
 327   double predict_rs_update_time_ms(size_t pending_cards) const;
 328 
 329   double predict_young_cards_per_entry_ratio() const;
 330 
 331   double predict_mixed_cards_per_entry_ratio() const;
 332 
 333   size_t predict_young_card_num(size_t rs_length) const;
 334 
 335   size_t predict_non_young_card_num(size_t rs_length) const;
 336 
 337   double predict_rs_scan_time_ms(size_t card_num) const;
 338 
 339   double predict_mixed_rs_scan_time_ms(size_t card_num) const;
 340 
 341   double predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const;
 342 
 343   double predict_object_copy_time_ms(size_t bytes_to_copy) const;
 344 
 345   double predict_constant_other_time_ms() const;
 346 
 347   double predict_young_other_time_ms(size_t young_num) const;
 348 
 349   double predict_non_young_other_time_ms(size_t non_young_num) const;
 350 
 351   double predict_base_elapsed_time_ms(size_t pending_cards) const;
 352   double predict_base_elapsed_time_ms(size_t pending_cards,
 353                                       size_t scanned_cards) const;
 354   size_t predict_bytes_to_copy(HeapRegion* hr) const;
 355   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const;
 356 
 357   void set_recorded_rs_lengths(size_t rs_lengths);
 358 
 359   uint cset_region_length() const       { return young_cset_region_length() +
 360                                            old_cset_region_length(); }
 361   uint young_cset_region_length() const { return eden_cset_region_length() +
 362                                            survivor_cset_region_length(); }
 363 
 364   double predict_survivor_regions_evac_time() const;
 365 
 366   bool should_update_surv_rate_group_predictors() {
 367     return collector_state()->last_gc_was_young() && !collector_state()->in_marking_window();
 368   }
 369 
 370   void cset_regions_freed() {
 371     bool update = should_update_surv_rate_group_predictors();
 372 
 373     _short_lived_surv_rate_group->all_surviving_words_recorded(update);
 374     _survivor_surv_rate_group->all_surviving_words_recorded(update);
 375   }
 376 
 377   G1MMUTracker* mmu_tracker() {
 378     return _mmu_tracker;
 379   }
 380 
 381   const G1MMUTracker* mmu_tracker() const {
 382     return _mmu_tracker;
 383   }
 384 
 385   double max_pause_time_ms() const {
 386     return _mmu_tracker->max_gc_time() * 1000.0;
 387   }
 388 
 389   double predict_remark_time_ms() const;
 390 
 391   double predict_cleanup_time_ms() const;
 392 
 393   // Returns an estimate of the survival rate of the region at yg-age
 394   // "yg_age".
 395   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const;
 396 
 397   double predict_yg_surv_rate(int age) const;
 398 
 399   double accum_yg_surv_rate_pred(int age) const;
 400 
 401 protected:
 402   virtual double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const;
 403   virtual double other_time_ms(double pause_time_ms) const;
 404 
 405   double young_other_time_ms() const;
 406   double non_young_other_time_ms() const;
 407   double constant_other_time_ms(double pause_time_ms) const;
 408 
 409 private:
 410   // Statistics kept per GC stoppage, pause or full.
 411   TruncatedSeq* _recent_prev_end_times_for_all_gcs_sec;
 412 
 413   // Add a new GC of the given duration and end time to the record.
 414   void update_recent_gc_times(double end_time_sec, double elapsed_ms);
 415 
 416   // The head of the list (via "next_in_collection_set()") representing the
 417   // current collection set. Set from the incrementally built collection
 418   // set at the start of the pause.
 419   HeapRegion* _collection_set;
 420 
 421   // The number of bytes in the collection set before the pause. Set from
 422   // the incrementally built collection set at the start of an evacuation
 423   // pause, and incremented in finalize_old_cset_part() when adding old regions
 424   // (if any) to the collection set.
 425   size_t _collection_set_bytes_used_before;
 426 
 427   // The number of bytes copied during the GC.
 428   size_t _bytes_copied_during_gc;
 429 
 430   // The associated information that is maintained while the incremental
 431   // collection set is being built with young regions. Used to populate
 432   // the recorded info for the evacuation pause.
 433 
 434   enum CSetBuildType {
 435     Active,             // We are actively building the collection set
 436     Inactive            // We are not actively building the collection set
 437   };
 438 
 439   CSetBuildType _inc_cset_build_state;
 440 
 441   // The head of the incrementally built collection set.
 442   HeapRegion* _inc_cset_head;
 443 
 444   // The tail of the incrementally built collection set.
 445   HeapRegion* _inc_cset_tail;
 446 
 447   // The number of bytes in the incrementally built collection set.
 448   // Used to set _collection_set_bytes_used_before at the start of
 449   // an evacuation pause.
 450   size_t _inc_cset_bytes_used_before;
 451 
 452   // Used to record the highest end of heap region in collection set
 453   HeapWord* _inc_cset_max_finger;
 454 
 455   // The RSet lengths recorded for regions in the CSet. It is updated
 456   // by the thread that adds a new region to the CSet. We assume that
 457   // only one thread can be allocating a new CSet region (currently,
 458   // it does so after taking the Heap_lock) hence no need to
 459   // synchronize updates to this field.
 460   size_t _inc_cset_recorded_rs_lengths;
 461 
 462   // A concurrent refinement thread periodically samples the young
 463   // region RSets and needs to update _inc_cset_recorded_rs_lengths as
 464   // the RSets grow. Instead of having to synchronize updates to that
 465   // field we accumulate them in this field and add it to
 466   // _inc_cset_recorded_rs_lengths_diffs at the start of a GC.
 467   ssize_t _inc_cset_recorded_rs_lengths_diffs;
 468 
 469   // The predicted elapsed time it will take to collect the regions in
 470   // the CSet. This is updated by the thread that adds a new region to
 471   // the CSet. See the comment for _inc_cset_recorded_rs_lengths about
 472   // MT-safety assumptions.
 473   double _inc_cset_predicted_elapsed_time_ms;
 474 
 475   // See the comment for _inc_cset_recorded_rs_lengths_diffs.
 476   double _inc_cset_predicted_elapsed_time_ms_diffs;
 477 
 478   // Stash a pointer to the g1 heap.
 479   G1CollectedHeap* _g1;
 480 
 481   G1GCPhaseTimes* _phase_times;
 482 
 483   // The ratio of gc time to elapsed time, computed over recent pauses.
 484   double _recent_avg_pause_time_ratio;
 485 
 486   double recent_avg_pause_time_ratio() const {
 487     return _recent_avg_pause_time_ratio;
 488   }
 489 
 490   // This set of variables tracks the collector efficiency, in order to
 491   // determine whether we should initiate a new marking.
 492   double _cur_mark_stop_world_time_ms;
 493   double _mark_remark_start_sec;
 494   double _mark_cleanup_start_sec;
 495 
 496   // Updates the internal young list maximum and target lengths. Returns the
 497   // unbounded young list target length.
 498   uint update_young_list_max_and_target_length();
 499   uint update_young_list_max_and_target_length(size_t rs_lengths);
 500 
 501   // Update the young list target length either by setting it to the
 502   // desired fixed value or by calculating it using G1's pause
 503   // prediction model. If no rs_lengths parameter is passed, predict
 504   // the RS lengths using the prediction model, otherwise use the
 505   // given rs_lengths as the prediction.
 506   // Returns the unbounded young list target length.
 507   uint update_young_list_target_length(size_t rs_lengths);
 508 
 509   // Calculate and return the minimum desired young list target
 510   // length. This is the minimum desired young list length according
 511   // to the user's inputs.
 512   uint calculate_young_list_desired_min_length(uint base_min_length) const;
 513 
 514   // Calculate and return the maximum desired young list target
 515   // length. This is the maximum desired young list length according
 516   // to the user's inputs.
 517   uint calculate_young_list_desired_max_length() const;
 518 
 519   // Calculate and return the maximum young list target length that
 520   // can fit into the pause time goal. The parameters are: rs_lengths
 521   // represent the prediction of how large the young RSet lengths will
 522   // be, base_min_length is the already existing number of regions in
 523   // the young list, min_length and max_length are the desired min and
 524   // max young list length according to the user's inputs.
 525   uint calculate_young_list_target_length(size_t rs_lengths,
 526                                           uint base_min_length,
 527                                           uint desired_min_length,
 528                                           uint desired_max_length) const;
 529 
 530   // Result of the bounded_young_list_target_length() method, containing both the
 531   // bounded as well as the unbounded young list target lengths in this order.
 532   typedef Pair<uint, uint, StackObj> YoungTargetLengths;
 533   YoungTargetLengths young_list_target_lengths(size_t rs_lengths) const;
 534 
 535   void update_rs_lengths_prediction();
 536   void update_rs_lengths_prediction(size_t prediction);
 537 
 538   // Calculate and return chunk size (in number of regions) for parallel
 539   // concurrent mark cleanup.
 540   uint calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const;
 541 
 542   // Check whether a given young length (young_length) fits into the
 543   // given target pause time and whether the prediction for the amount
 544   // of objects to be copied for the given length will fit into the
 545   // given free space (expressed by base_free_regions).  It is used by
 546   // calculate_young_list_target_length().
 547   bool predict_will_fit(uint young_length, double base_time_ms,
 548                         uint base_free_regions, double target_pause_time_ms) const;
 549 
 550   // Calculate the minimum number of old regions we'll add to the CSet
 551   // during a mixed GC.
 552   uint calc_min_old_cset_length() const;
 553 
 554   // Calculate the maximum number of old regions we'll add to the CSet
 555   // during a mixed GC.
 556   uint calc_max_old_cset_length() const;
 557 
 558   // Returns the given amount of uncollected reclaimable space
 559   // as a percentage of the current heap capacity.
 560   double reclaimable_bytes_perc(size_t reclaimable_bytes) const;
 561 
 562   // Sets up marking if proper conditions are met.
 563   void maybe_start_marking();
 564 
 565   // The kind of STW pause.
 566   enum PauseKind {
 567     FullGC,
 568     YoungOnlyGC,
 569     MixedGC,
 570     LastYoungGC,
 571     InitialMarkGC,
 572     Cleanup,
 573     Remark
 574   };
 575 
 576   // Calculate PauseKind from internal state.
 577   PauseKind young_gc_pause_kind() const;
 578   // Record the given STW pause with the given start and end times (in s).
 579   void record_pause(PauseKind kind, double start, double end);
 580   // Indicate that we aborted marking before doing any mixed GCs.
 581   void abort_time_to_mixed_tracking();
 582 public:
 583 
 584   G1CollectorPolicy();
 585 
 586   virtual ~G1CollectorPolicy();
 587 
 588   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 589 
 590   G1CollectorState* collector_state() const;
 591 
 592   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 593 
 594   // Check the current value of the young list RSet lengths and
 595   // compare it against the last prediction. If the current value is
 596   // higher, recalculate the young list target length prediction.
 597   void revise_young_list_target_length_if_necessary();
 598 
 599   // This should be called after the heap is resized.
 600   void record_new_heap_size(uint new_number_of_regions);
 601 
 602   void init();
 603 
 604   virtual void note_gc_start(uint num_active_workers);
 605 
 606   // Create jstat counters for the policy.
 607   virtual void initialize_gc_policy_counters();
 608 
 609   virtual HeapWord* mem_allocate_work(size_t size,
 610                                       bool is_tlab,
 611                                       bool* gc_overhead_limit_was_exceeded);
 612 
 613   // This method controls how a collector handles one or more
 614   // of its generations being fully allocated.
 615   virtual HeapWord* satisfy_failed_allocation(size_t size,
 616                                               bool is_tlab);
 617 
 618   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 619 
 620   bool about_to_start_mixed_phase() const;
 621 
 622   // Record the start and end of an evacuation pause.
 623   void record_collection_pause_start(double start_time_sec);
 624   void record_collection_pause_end(double pause_time_ms, size_t cards_scanned);
 625 
 626   // Record the start and end of a full collection.
 627   void record_full_collection_start();
 628   void record_full_collection_end();
 629 
 630   // Must currently be called while the world is stopped.
 631   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 632 
 633   // Record start and end of remark.
 634   void record_concurrent_mark_remark_start();
 635   void record_concurrent_mark_remark_end();
 636 
 637   // Record start, end, and completion of cleanup.
 638   void record_concurrent_mark_cleanup_start();
 639   void record_concurrent_mark_cleanup_end();
 640   void record_concurrent_mark_cleanup_completed();
 641 
 642   // Records the information about the heap size for reporting in
 643   // print_detailed_heap_transition
 644   void record_heap_size_info_at_start(bool full);
 645 
 646   // Print heap sizing transition (with less and more detail).
 647 
 648   void print_heap_transition(size_t bytes_before) const;
 649   void print_heap_transition() const;
 650   void print_detailed_heap_transition(bool full = false) const;
 651 
 652   virtual void print_phases(double pause_time_sec);
 653 
 654   void record_stop_world_start();
 655   void record_concurrent_pause();
 656 
 657   // Record how much space we copied during a GC. This is typically
 658   // called when a GC alloc region is being retired.
 659   void record_bytes_copied_during_gc(size_t bytes) {
 660     _bytes_copied_during_gc += bytes;
 661   }
 662 
 663   // The amount of space we copied during a GC.
 664   size_t bytes_copied_during_gc() const {
 665     return _bytes_copied_during_gc;
 666   }
 667 
 668   size_t collection_set_bytes_used_before() const {
 669     return _collection_set_bytes_used_before;
 670   }
 671 
 672   // Determine whether there are candidate regions so that the
 673   // next GC should be mixed. The two action strings are used
 674   // in the ergo output when the method returns true or false.
 675   bool next_gc_should_be_mixed(const char* true_action_str,
 676                                const char* false_action_str) const;
 677 
 678   // Choose a new collection set.  Marks the chosen regions as being
 679   // "in_collection_set", and links them together.  The head and number of
 680   // the collection set are available via access methods.
 681   double finalize_young_cset_part(double target_pause_time_ms);
 682   virtual void finalize_old_cset_part(double time_remaining_ms);
 683 
 684   // The head of the list (via "next_in_collection_set()") representing the
 685   // current collection set.
 686   HeapRegion* collection_set() { return _collection_set; }
 687 
 688   void clear_collection_set() { _collection_set = NULL; }
 689 
 690   // Add old region "hr" to the CSet.
 691   void add_old_region_to_cset(HeapRegion* hr);
 692 
 693   // Incremental CSet Support
 694 
 695   // The head of the incrementally built collection set.
 696   HeapRegion* inc_cset_head() { return _inc_cset_head; }
 697 
 698   // The tail of the incrementally built collection set.
 699   HeapRegion* inc_set_tail() { return _inc_cset_tail; }
 700 
 701   // Initialize incremental collection set info.
 702   void start_incremental_cset_building();
 703 
 704   // Perform any final calculations on the incremental CSet fields
 705   // before we can use them.
 706   void finalize_incremental_cset_building();
 707 
 708   void clear_incremental_cset() {
 709     _inc_cset_head = NULL;
 710     _inc_cset_tail = NULL;
 711   }
 712 
 713   // Stop adding regions to the incremental collection set
 714   void stop_incremental_cset_building() { _inc_cset_build_state = Inactive; }
 715 
 716   // Add information about hr to the aggregated information for the
 717   // incrementally built collection set.
 718   void add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length);
 719 
 720   // Update information about hr in the aggregated information for
 721   // the incrementally built collection set.
 722   void update_incremental_cset_info(HeapRegion* hr, size_t new_rs_length);
 723 
 724 private:
 725   // Update the incremental cset information when adding a region
 726   // (should not be called directly).
 727   void add_region_to_incremental_cset_common(HeapRegion* hr);
 728 
 729 public:
 730   // Add hr to the LHS of the incremental collection set.
 731   void add_region_to_incremental_cset_lhs(HeapRegion* hr);
 732 
 733   // Add hr to the RHS of the incremental collection set.
 734   void add_region_to_incremental_cset_rhs(HeapRegion* hr);
 735 
 736 #ifndef PRODUCT
 737   void print_collection_set(HeapRegion* list_head, outputStream* st);
 738 #endif // !PRODUCT
 739 
 740   // This sets the initiate_conc_mark_if_possible() flag to start a
 741   // new cycle, as long as we are not already in one. It's best if it
 742   // is called during a safepoint when the test whether a cycle is in
 743   // progress or not is stable.
 744   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 745 
 746   // This is called at the very beginning of an evacuation pause (it
 747   // has to be the first thing that the pause does). If
 748   // initiate_conc_mark_if_possible() is true, and the concurrent
 749   // marking thread has completed its work during the previous cycle,
 750   // it will set during_initial_mark_pause() to so that the pause does
 751   // the initial-mark work and start a marking cycle.
 752   void decide_on_conc_mark_initiation();
 753 
 754   // If an expansion would be appropriate, because recent GC overhead had
 755   // exceeded the desired limit, return an amount to expand by.
 756   virtual size_t expansion_amount() const;
 757 
 758   // Print tracing information.
 759   void print_tracing_info() const;
 760 
 761   // Print stats on young survival ratio
 762   void print_yg_surv_rate_info() const;
 763 
 764   void finished_recalculating_age_indexes(bool is_survivors) {
 765     if (is_survivors) {
 766       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 767     } else {
 768       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 769     }
 770     // do that for any other surv rate groups
 771   }
 772 
 773   size_t young_list_target_length() const { return _young_list_target_length; }
 774 
 775   bool is_young_list_full() const;
 776 
 777   bool can_expand_young_list() const;
 778 
 779   uint young_list_max_length() const {
 780     return _young_list_max_length;
 781   }
 782 
 783   bool adaptive_young_list_length() const {
 784     return _young_gen_sizer->adaptive_young_list_length();
 785   }
 786 
 787 private:
 788   //
 789   // Survivor regions policy.
 790   //
 791 
 792   // Current tenuring threshold, set to 0 if the collector reaches the
 793   // maximum amount of survivors regions.
 794   uint _tenuring_threshold;
 795 
 796   // The limit on the number of regions allocated for survivors.
 797   uint _max_survivor_regions;
 798 
 799   // For reporting purposes.
 800   // The value of _heap_bytes_before_gc is also used to calculate
 801   // the cost of copying.
 802 
 803   size_t _eden_used_bytes_before_gc;         // Eden occupancy before GC
 804   size_t _survivor_used_bytes_before_gc;     // Survivor occupancy before GC
 805   size_t _heap_used_bytes_before_gc;         // Heap occupancy before GC
 806   size_t _metaspace_used_bytes_before_gc;    // Metaspace occupancy before GC
 807 
 808   size_t _eden_capacity_bytes_before_gc;     // Eden capacity before GC
 809   size_t _heap_capacity_bytes_before_gc;     // Heap capacity before GC
 810 
 811   // The amount of survivor regions after a collection.
 812   uint _recorded_survivor_regions;
 813   // List of survivor regions.
 814   HeapRegion* _recorded_survivor_head;
 815   HeapRegion* _recorded_survivor_tail;
 816 
 817   ageTable _survivors_age_table;
 818 
 819 public:
 820   uint tenuring_threshold() const { return _tenuring_threshold; }
 821 
 822   static const uint REGIONS_UNLIMITED = (uint) -1;
 823 
 824   uint max_regions(InCSetState dest) const {
 825     switch (dest.value()) {
 826       case InCSetState::Young:
 827         return _max_survivor_regions;
 828       case InCSetState::Old:
 829         return REGIONS_UNLIMITED;
 830       default:
 831         assert(false, "Unknown dest state: " CSETSTATE_FORMAT, dest.value());
 832         break;
 833     }
 834     // keep some compilers happy
 835     return 0;
 836   }
 837 
 838   void note_start_adding_survivor_regions() {
 839     _survivor_surv_rate_group->start_adding_regions();
 840   }
 841 
 842   void note_stop_adding_survivor_regions() {
 843     _survivor_surv_rate_group->stop_adding_regions();
 844   }
 845 
 846   void record_survivor_regions(uint regions,
 847                                HeapRegion* head,
 848                                HeapRegion* tail) {
 849     _recorded_survivor_regions = regions;
 850     _recorded_survivor_head    = head;
 851     _recorded_survivor_tail    = tail;
 852   }
 853 
 854   uint recorded_survivor_regions() const {
 855     return _recorded_survivor_regions;
 856   }
 857 
 858   void record_age_table(ageTable* age_table) {
 859     _survivors_age_table.merge(age_table);
 860   }
 861 
 862   void update_max_gc_locker_expansion();
 863 
 864   // Calculates survivor space parameters.
 865   void update_survivors_policy();
 866 
 867   virtual void post_heap_initialize();
 868 };
 869 
 870 #endif // SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP