1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new end of the first region in the series that
 324   // should also match the end of the last region in the series.
 325   HeapWord* new_end = new_obj + word_size_sum;
 326   // This will be the new top of the first region that will reflect
 327   // this allocation.
 328   HeapWord* new_top = new_obj + word_size;
 329 
 330   // First, we need to zero the header of the space that we will be
 331   // allocating. When we update top further down, some refinement
 332   // threads might try to scan the region. By zeroing the header we
 333   // ensure that any thread that will try to scan the region will
 334   // come across the zero klass word and bail out.
 335   //
 336   // NOTE: It would not have been correct to have used
 337   // CollectedHeap::fill_with_object() and make the space look like
 338   // an int array. The thread that is doing the allocation will
 339   // later update the object header to a potentially different array
 340   // type and, for a very short period of time, the klass and length
 341   // fields will be inconsistent. This could cause a refinement
 342   // thread to calculate the object size incorrectly.
 343   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 344 
 345   // We will set up the first region as "starts humongous". This
 346   // will also update the BOT covering all the regions to reflect
 347   // that there is a single object that starts at the bottom of the
 348   // first region.
 349   first_hr->set_starts_humongous(new_top, new_end);
 350   first_hr->set_allocation_context(context);
 351   // Then, if there are any, we will set up the "continues
 352   // humongous" regions.
 353   HeapRegion* hr = NULL;
 354   for (uint i = first + 1; i < last; ++i) {
 355     hr = region_at(i);
 356     hr->set_continues_humongous(first_hr);
 357     hr->set_allocation_context(context);
 358   }
 359   // If we have "continues humongous" regions (hr != NULL), then the
 360   // end of the last one should match new_end.
 361   assert(hr == NULL || hr->end() == new_end, "sanity");
 362 
 363   // Up to this point no concurrent thread would have been able to
 364   // do any scanning on any region in this series. All the top
 365   // fields still point to bottom, so the intersection between
 366   // [bottom,top] and [card_start,card_end] will be empty. Before we
 367   // update the top fields, we'll do a storestore to make sure that
 368   // no thread sees the update to top before the zeroing of the
 369   // object header and the BOT initialization.
 370   OrderAccess::storestore();
 371 
 372   // Now that the BOT and the object header have been initialized,
 373   // we can update top of the "starts humongous" region.
 374   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 375          "new_top should be in this region");
 376   first_hr->set_top(new_top);
 377   if (_hr_printer.is_active()) {
 378     HeapWord* bottom = first_hr->bottom();
 379     HeapWord* end = first_hr->orig_end();
 380     if ((first + 1) == last) {
 381       // the series has a single humongous region
 382       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 383     } else {
 384       // the series has more than one humongous regions
 385       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 386     }
 387   }
 388 
 389   // Now, we will update the top fields of the "continues humongous"
 390   // regions. The reason we need to do this is that, otherwise,
 391   // these regions would look empty and this will confuse parts of
 392   // G1. For example, the code that looks for a consecutive number
 393   // of empty regions will consider them empty and try to
 394   // re-allocate them. We can extend is_empty() to also include
 395   // !is_continues_humongous(), but it is easier to just update the top
 396   // fields here. The way we set top for all regions (i.e., top ==
 397   // end for all regions but the last one, top == new_top for the
 398   // last one) is actually used when we will free up the humongous
 399   // region in free_humongous_region().
 400   hr = NULL;
 401   for (uint i = first + 1; i < last; ++i) {
 402     hr = region_at(i);
 403     if ((i + 1) == last) {
 404       // last continues humongous region
 405       assert(hr->bottom() < new_top && new_top <= hr->end(),
 406              "new_top should fall on this region");
 407       hr->set_top(new_top);
 408       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 409     } else {
 410       // not last one
 411       assert(new_top > hr->end(), "new_top should be above this region");
 412       hr->set_top(hr->end());
 413       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 414     }
 415   }
 416   // If we have continues humongous regions (hr != NULL), then the
 417   // end of the last one should match new_end and its top should
 418   // match new_top.
 419   assert(hr == NULL ||
 420          (hr->end() == new_end && hr->top() == new_top), "sanity");
 421   check_bitmaps("Humongous Region Allocation", first_hr);
 422 
 423   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 424   increase_used(first_hr->used());
 425   _humongous_set.add(first_hr);
 426 
 427   return new_obj;
 428 }
 429 
 430 // If could fit into free regions w/o expansion, try.
 431 // Otherwise, if can expand, do so.
 432 // Otherwise, if using ex regions might help, try with ex given back.
 433 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 434   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 435 
 436   verify_region_sets_optional();
 437 
 438   uint first = G1_NO_HRM_INDEX;
 439   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 440 
 441   if (obj_regions == 1) {
 442     // Only one region to allocate, try to use a fast path by directly allocating
 443     // from the free lists. Do not try to expand here, we will potentially do that
 444     // later.
 445     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 446     if (hr != NULL) {
 447       first = hr->hrm_index();
 448     }
 449   } else {
 450     // We can't allocate humongous regions spanning more than one region while
 451     // cleanupComplete() is running, since some of the regions we find to be
 452     // empty might not yet be added to the free list. It is not straightforward
 453     // to know in which list they are on so that we can remove them. We only
 454     // need to do this if we need to allocate more than one region to satisfy the
 455     // current humongous allocation request. If we are only allocating one region
 456     // we use the one-region region allocation code (see above), that already
 457     // potentially waits for regions from the secondary free list.
 458     wait_while_free_regions_coming();
 459     append_secondary_free_list_if_not_empty_with_lock();
 460 
 461     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 462     // are lucky enough to find some.
 463     first = _hrm.find_contiguous_only_empty(obj_regions);
 464     if (first != G1_NO_HRM_INDEX) {
 465       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 466     }
 467   }
 468 
 469   if (first == G1_NO_HRM_INDEX) {
 470     // Policy: We could not find enough regions for the humongous object in the
 471     // free list. Look through the heap to find a mix of free and uncommitted regions.
 472     // If so, try expansion.
 473     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 474     if (first != G1_NO_HRM_INDEX) {
 475       // We found something. Make sure these regions are committed, i.e. expand
 476       // the heap. Alternatively we could do a defragmentation GC.
 477       ergo_verbose1(ErgoHeapSizing,
 478                     "attempt heap expansion",
 479                     ergo_format_reason("humongous allocation request failed")
 480                     ergo_format_byte("allocation request"),
 481                     word_size * HeapWordSize);
 482 
 483       _hrm.expand_at(first, obj_regions);
 484       g1_policy()->record_new_heap_size(num_regions());
 485 
 486 #ifdef ASSERT
 487       for (uint i = first; i < first + obj_regions; ++i) {
 488         HeapRegion* hr = region_at(i);
 489         assert(hr->is_free(), "sanity");
 490         assert(hr->is_empty(), "sanity");
 491         assert(is_on_master_free_list(hr), "sanity");
 492       }
 493 #endif
 494       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 495     } else {
 496       // Policy: Potentially trigger a defragmentation GC.
 497     }
 498   }
 499 
 500   HeapWord* result = NULL;
 501   if (first != G1_NO_HRM_INDEX) {
 502     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 503                                                        word_size, context);
 504     assert(result != NULL, "it should always return a valid result");
 505 
 506     // A successful humongous object allocation changes the used space
 507     // information of the old generation so we need to recalculate the
 508     // sizes and update the jstat counters here.
 509     g1mm()->update_sizes();
 510   }
 511 
 512   verify_region_sets_optional();
 513 
 514   return result;
 515 }
 516 
 517 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 518   assert_heap_not_locked_and_not_at_safepoint();
 519   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 520 
 521   uint dummy_gc_count_before;
 522   uint dummy_gclocker_retry_count = 0;
 523   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 524 }
 525 
 526 HeapWord*
 527 G1CollectedHeap::mem_allocate(size_t word_size,
 528                               bool*  gc_overhead_limit_was_exceeded) {
 529   assert_heap_not_locked_and_not_at_safepoint();
 530 
 531   // Loop until the allocation is satisfied, or unsatisfied after GC.
 532   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 533     uint gc_count_before;
 534 
 535     HeapWord* result = NULL;
 536     if (!is_humongous(word_size)) {
 537       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 538     } else {
 539       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 540     }
 541     if (result != NULL) {
 542       return result;
 543     }
 544 
 545     // Create the garbage collection operation...
 546     VM_G1CollectForAllocation op(gc_count_before, word_size);
 547     op.set_allocation_context(AllocationContext::current());
 548 
 549     // ...and get the VM thread to execute it.
 550     VMThread::execute(&op);
 551 
 552     if (op.prologue_succeeded() && op.pause_succeeded()) {
 553       // If the operation was successful we'll return the result even
 554       // if it is NULL. If the allocation attempt failed immediately
 555       // after a Full GC, it's unlikely we'll be able to allocate now.
 556       HeapWord* result = op.result();
 557       if (result != NULL && !is_humongous(word_size)) {
 558         // Allocations that take place on VM operations do not do any
 559         // card dirtying and we have to do it here. We only have to do
 560         // this for non-humongous allocations, though.
 561         dirty_young_block(result, word_size);
 562       }
 563       return result;
 564     } else {
 565       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 566         return NULL;
 567       }
 568       assert(op.result() == NULL,
 569              "the result should be NULL if the VM op did not succeed");
 570     }
 571 
 572     // Give a warning if we seem to be looping forever.
 573     if ((QueuedAllocationWarningCount > 0) &&
 574         (try_count % QueuedAllocationWarningCount == 0)) {
 575       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 576     }
 577   }
 578 
 579   ShouldNotReachHere();
 580   return NULL;
 581 }
 582 
 583 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 584                                                    AllocationContext_t context,
 585                                                    uint* gc_count_before_ret,
 586                                                    uint* gclocker_retry_count_ret) {
 587   // Make sure you read the note in attempt_allocation_humongous().
 588 
 589   assert_heap_not_locked_and_not_at_safepoint();
 590   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 591          "be called for humongous allocation requests");
 592 
 593   // We should only get here after the first-level allocation attempt
 594   // (attempt_allocation()) failed to allocate.
 595 
 596   // We will loop until a) we manage to successfully perform the
 597   // allocation or b) we successfully schedule a collection which
 598   // fails to perform the allocation. b) is the only case when we'll
 599   // return NULL.
 600   HeapWord* result = NULL;
 601   for (int try_count = 1; /* we'll return */; try_count += 1) {
 602     bool should_try_gc;
 603     uint gc_count_before;
 604 
 605     {
 606       MutexLockerEx x(Heap_lock);
 607       result = _allocator->attempt_allocation_locked(word_size, context);
 608       if (result != NULL) {
 609         return result;
 610       }
 611 
 612       if (GC_locker::is_active_and_needs_gc()) {
 613         if (g1_policy()->can_expand_young_list()) {
 614           // No need for an ergo verbose message here,
 615           // can_expand_young_list() does this when it returns true.
 616           result = _allocator->attempt_allocation_force(word_size, context);
 617           if (result != NULL) {
 618             return result;
 619           }
 620         }
 621         should_try_gc = false;
 622       } else {
 623         // The GCLocker may not be active but the GCLocker initiated
 624         // GC may not yet have been performed (GCLocker::needs_gc()
 625         // returns true). In this case we do not try this GC and
 626         // wait until the GCLocker initiated GC is performed, and
 627         // then retry the allocation.
 628         if (GC_locker::needs_gc()) {
 629           should_try_gc = false;
 630         } else {
 631           // Read the GC count while still holding the Heap_lock.
 632           gc_count_before = total_collections();
 633           should_try_gc = true;
 634         }
 635       }
 636     }
 637 
 638     if (should_try_gc) {
 639       bool succeeded;
 640       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 641                                    GCCause::_g1_inc_collection_pause);
 642       if (result != NULL) {
 643         assert(succeeded, "only way to get back a non-NULL result");
 644         return result;
 645       }
 646 
 647       if (succeeded) {
 648         // If we get here we successfully scheduled a collection which
 649         // failed to allocate. No point in trying to allocate
 650         // further. We'll just return NULL.
 651         MutexLockerEx x(Heap_lock);
 652         *gc_count_before_ret = total_collections();
 653         return NULL;
 654       }
 655     } else {
 656       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 657         MutexLockerEx x(Heap_lock);
 658         *gc_count_before_ret = total_collections();
 659         return NULL;
 660       }
 661       // The GCLocker is either active or the GCLocker initiated
 662       // GC has not yet been performed. Stall until it is and
 663       // then retry the allocation.
 664       GC_locker::stall_until_clear();
 665       (*gclocker_retry_count_ret) += 1;
 666     }
 667 
 668     // We can reach here if we were unsuccessful in scheduling a
 669     // collection (because another thread beat us to it) or if we were
 670     // stalled due to the GC locker. In either can we should retry the
 671     // allocation attempt in case another thread successfully
 672     // performed a collection and reclaimed enough space. We do the
 673     // first attempt (without holding the Heap_lock) here and the
 674     // follow-on attempt will be at the start of the next loop
 675     // iteration (after taking the Heap_lock).
 676     result = _allocator->attempt_allocation(word_size, context);
 677     if (result != NULL) {
 678       return result;
 679     }
 680 
 681     // Give a warning if we seem to be looping forever.
 682     if ((QueuedAllocationWarningCount > 0) &&
 683         (try_count % QueuedAllocationWarningCount == 0)) {
 684       warning("G1CollectedHeap::attempt_allocation_slow() "
 685               "retries %d times", try_count);
 686     }
 687   }
 688 
 689   ShouldNotReachHere();
 690   return NULL;
 691 }
 692 
 693 void G1CollectedHeap::begin_archive_alloc_range() {
 694   assert_at_safepoint(true /* should_be_vm_thread */);
 695   if (_archive_allocator == NULL) {
 696     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 697   }
 698 }
 699 
 700 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 701   // Allocations in archive regions cannot be of a size that would be considered
 702   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 703   // may be different at archive-restore time.
 704   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 705 }
 706 
 707 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 708   assert_at_safepoint(true /* should_be_vm_thread */);
 709   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 710   if (is_archive_alloc_too_large(word_size)) {
 711     return NULL;
 712   }
 713   return _archive_allocator->archive_mem_allocate(word_size);
 714 }
 715 
 716 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 717                                               size_t end_alignment_in_bytes) {
 718   assert_at_safepoint(true /* should_be_vm_thread */);
 719   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 720 
 721   // Call complete_archive to do the real work, filling in the MemRegion
 722   // array with the archive regions.
 723   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 724   delete _archive_allocator;
 725   _archive_allocator = NULL;
 726 }
 727 
 728 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 729   assert(ranges != NULL, "MemRegion array NULL");
 730   assert(count != 0, "No MemRegions provided");
 731   MemRegion reserved = _hrm.reserved();
 732   for (size_t i = 0; i < count; i++) {
 733     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 734       return false;
 735     }
 736   }
 737   return true;
 738 }
 739 
 740 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 741   assert(!is_init_completed(), "Expect to be called at JVM init time");
 742   assert(ranges != NULL, "MemRegion array NULL");
 743   assert(count != 0, "No MemRegions provided");
 744   MutexLockerEx x(Heap_lock);
 745 
 746   MemRegion reserved = _hrm.reserved();
 747   HeapWord* prev_last_addr = NULL;
 748   HeapRegion* prev_last_region = NULL;
 749 
 750   // Temporarily disable pretouching of heap pages. This interface is used
 751   // when mmap'ing archived heap data in, so pre-touching is wasted.
 752   FlagSetting fs(AlwaysPreTouch, false);
 753 
 754   // Enable archive object checking in G1MarkSweep. We have to let it know
 755   // about each archive range, so that objects in those ranges aren't marked.
 756   G1MarkSweep::enable_archive_object_check();
 757 
 758   // For each specified MemRegion range, allocate the corresponding G1
 759   // regions and mark them as archive regions. We expect the ranges in
 760   // ascending starting address order, without overlap.
 761   for (size_t i = 0; i < count; i++) {
 762     MemRegion curr_range = ranges[i];
 763     HeapWord* start_address = curr_range.start();
 764     size_t word_size = curr_range.word_size();
 765     HeapWord* last_address = curr_range.last();
 766     size_t commits = 0;
 767 
 768     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 769               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 770               p2i(start_address), p2i(last_address));
 771     guarantee(start_address > prev_last_addr,
 772               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 773               p2i(start_address), p2i(prev_last_addr));
 774     prev_last_addr = last_address;
 775 
 776     // Check for ranges that start in the same G1 region in which the previous
 777     // range ended, and adjust the start address so we don't try to allocate
 778     // the same region again. If the current range is entirely within that
 779     // region, skip it, just adjusting the recorded top.
 780     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 781     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 782       start_address = start_region->end();
 783       if (start_address > last_address) {
 784         increase_used(word_size * HeapWordSize);
 785         start_region->set_top(last_address + 1);
 786         continue;
 787       }
 788       start_region->set_top(start_address);
 789       curr_range = MemRegion(start_address, last_address + 1);
 790       start_region = _hrm.addr_to_region(start_address);
 791     }
 792 
 793     // Perform the actual region allocation, exiting if it fails.
 794     // Then note how much new space we have allocated.
 795     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 796       return false;
 797     }
 798     increase_used(word_size * HeapWordSize);
 799     if (commits != 0) {
 800       ergo_verbose1(ErgoHeapSizing,
 801                     "attempt heap expansion",
 802                     ergo_format_reason("allocate archive regions")
 803                     ergo_format_byte("total size"),
 804                     HeapRegion::GrainWords * HeapWordSize * commits);
 805     }
 806 
 807     // Mark each G1 region touched by the range as archive, add it to the old set,
 808     // and set the allocation context and top.
 809     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 810     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 811     prev_last_region = last_region;
 812 
 813     while (curr_region != NULL) {
 814       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 815              "Region already in use (index %u)", curr_region->hrm_index());
 816       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 817       curr_region->set_allocation_context(AllocationContext::system());
 818       curr_region->set_archive();
 819       _old_set.add(curr_region);
 820       if (curr_region != last_region) {
 821         curr_region->set_top(curr_region->end());
 822         curr_region = _hrm.next_region_in_heap(curr_region);
 823       } else {
 824         curr_region->set_top(last_address + 1);
 825         curr_region = NULL;
 826       }
 827     }
 828 
 829     // Notify mark-sweep of the archive range.
 830     G1MarkSweep::set_range_archive(curr_range, true);
 831   }
 832   return true;
 833 }
 834 
 835 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 836   assert(!is_init_completed(), "Expect to be called at JVM init time");
 837   assert(ranges != NULL, "MemRegion array NULL");
 838   assert(count != 0, "No MemRegions provided");
 839   MemRegion reserved = _hrm.reserved();
 840   HeapWord *prev_last_addr = NULL;
 841   HeapRegion* prev_last_region = NULL;
 842 
 843   // For each MemRegion, create filler objects, if needed, in the G1 regions
 844   // that contain the address range. The address range actually within the
 845   // MemRegion will not be modified. That is assumed to have been initialized
 846   // elsewhere, probably via an mmap of archived heap data.
 847   MutexLockerEx x(Heap_lock);
 848   for (size_t i = 0; i < count; i++) {
 849     HeapWord* start_address = ranges[i].start();
 850     HeapWord* last_address = ranges[i].last();
 851 
 852     assert(reserved.contains(start_address) && reserved.contains(last_address),
 853            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 854            p2i(start_address), p2i(last_address));
 855     assert(start_address > prev_last_addr,
 856            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 857            p2i(start_address), p2i(prev_last_addr));
 858 
 859     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 860     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 861     HeapWord* bottom_address = start_region->bottom();
 862 
 863     // Check for a range beginning in the same region in which the
 864     // previous one ended.
 865     if (start_region == prev_last_region) {
 866       bottom_address = prev_last_addr + 1;
 867     }
 868 
 869     // Verify that the regions were all marked as archive regions by
 870     // alloc_archive_regions.
 871     HeapRegion* curr_region = start_region;
 872     while (curr_region != NULL) {
 873       guarantee(curr_region->is_archive(),
 874                 "Expected archive region at index %u", curr_region->hrm_index());
 875       if (curr_region != last_region) {
 876         curr_region = _hrm.next_region_in_heap(curr_region);
 877       } else {
 878         curr_region = NULL;
 879       }
 880     }
 881 
 882     prev_last_addr = last_address;
 883     prev_last_region = last_region;
 884 
 885     // Fill the memory below the allocated range with dummy object(s),
 886     // if the region bottom does not match the range start, or if the previous
 887     // range ended within the same G1 region, and there is a gap.
 888     if (start_address != bottom_address) {
 889       size_t fill_size = pointer_delta(start_address, bottom_address);
 890       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 891       increase_used(fill_size * HeapWordSize);
 892     }
 893   }
 894 }
 895 
 896 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 897                                                      uint* gc_count_before_ret,
 898                                                      uint* gclocker_retry_count_ret) {
 899   assert_heap_not_locked_and_not_at_safepoint();
 900   assert(!is_humongous(word_size), "attempt_allocation() should not "
 901          "be called for humongous allocation requests");
 902 
 903   AllocationContext_t context = AllocationContext::current();
 904   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 905 
 906   if (result == NULL) {
 907     result = attempt_allocation_slow(word_size,
 908                                      context,
 909                                      gc_count_before_ret,
 910                                      gclocker_retry_count_ret);
 911   }
 912   assert_heap_not_locked();
 913   if (result != NULL) {
 914     dirty_young_block(result, word_size);
 915   }
 916   return result;
 917 }
 918 
 919 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 920   assert(!is_init_completed(), "Expect to be called at JVM init time");
 921   assert(ranges != NULL, "MemRegion array NULL");
 922   assert(count != 0, "No MemRegions provided");
 923   MemRegion reserved = _hrm.reserved();
 924   HeapWord* prev_last_addr = NULL;
 925   HeapRegion* prev_last_region = NULL;
 926   size_t size_used = 0;
 927   size_t uncommitted_regions = 0;
 928 
 929   // For each Memregion, free the G1 regions that constitute it, and
 930   // notify mark-sweep that the range is no longer to be considered 'archive.'
 931   MutexLockerEx x(Heap_lock);
 932   for (size_t i = 0; i < count; i++) {
 933     HeapWord* start_address = ranges[i].start();
 934     HeapWord* last_address = ranges[i].last();
 935 
 936     assert(reserved.contains(start_address) && reserved.contains(last_address),
 937            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 938            p2i(start_address), p2i(last_address));
 939     assert(start_address > prev_last_addr,
 940            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 941            p2i(start_address), p2i(prev_last_addr));
 942     size_used += ranges[i].byte_size();
 943     prev_last_addr = last_address;
 944 
 945     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 946     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 947 
 948     // Check for ranges that start in the same G1 region in which the previous
 949     // range ended, and adjust the start address so we don't try to free
 950     // the same region again. If the current range is entirely within that
 951     // region, skip it.
 952     if (start_region == prev_last_region) {
 953       start_address = start_region->end();
 954       if (start_address > last_address) {
 955         continue;
 956       }
 957       start_region = _hrm.addr_to_region(start_address);
 958     }
 959     prev_last_region = last_region;
 960 
 961     // After verifying that each region was marked as an archive region by
 962     // alloc_archive_regions, set it free and empty and uncommit it.
 963     HeapRegion* curr_region = start_region;
 964     while (curr_region != NULL) {
 965       guarantee(curr_region->is_archive(),
 966                 "Expected archive region at index %u", curr_region->hrm_index());
 967       uint curr_index = curr_region->hrm_index();
 968       _old_set.remove(curr_region);
 969       curr_region->set_free();
 970       curr_region->set_top(curr_region->bottom());
 971       if (curr_region != last_region) {
 972         curr_region = _hrm.next_region_in_heap(curr_region);
 973       } else {
 974         curr_region = NULL;
 975       }
 976       _hrm.shrink_at(curr_index, 1);
 977       uncommitted_regions++;
 978     }
 979 
 980     // Notify mark-sweep that this is no longer an archive range.
 981     G1MarkSweep::set_range_archive(ranges[i], false);
 982   }
 983 
 984   if (uncommitted_regions != 0) {
 985     ergo_verbose1(ErgoHeapSizing,
 986                   "attempt heap shrinking",
 987                   ergo_format_reason("uncommitted archive regions")
 988                   ergo_format_byte("total size"),
 989                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 990   }
 991   decrease_used(size_used);
 992 }
 993 
 994 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 995                                                         uint* gc_count_before_ret,
 996                                                         uint* gclocker_retry_count_ret) {
 997   // The structure of this method has a lot of similarities to
 998   // attempt_allocation_slow(). The reason these two were not merged
 999   // into a single one is that such a method would require several "if
1000   // allocation is not humongous do this, otherwise do that"
1001   // conditional paths which would obscure its flow. In fact, an early
1002   // version of this code did use a unified method which was harder to
1003   // follow and, as a result, it had subtle bugs that were hard to
1004   // track down. So keeping these two methods separate allows each to
1005   // be more readable. It will be good to keep these two in sync as
1006   // much as possible.
1007 
1008   assert_heap_not_locked_and_not_at_safepoint();
1009   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1010          "should only be called for humongous allocations");
1011 
1012   // Humongous objects can exhaust the heap quickly, so we should check if we
1013   // need to start a marking cycle at each humongous object allocation. We do
1014   // the check before we do the actual allocation. The reason for doing it
1015   // before the allocation is that we avoid having to keep track of the newly
1016   // allocated memory while we do a GC.
1017   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1018                                            word_size)) {
1019     collect(GCCause::_g1_humongous_allocation);
1020   }
1021 
1022   // We will loop until a) we manage to successfully perform the
1023   // allocation or b) we successfully schedule a collection which
1024   // fails to perform the allocation. b) is the only case when we'll
1025   // return NULL.
1026   HeapWord* result = NULL;
1027   for (int try_count = 1; /* we'll return */; try_count += 1) {
1028     bool should_try_gc;
1029     uint gc_count_before;
1030 
1031     {
1032       MutexLockerEx x(Heap_lock);
1033 
1034       // Given that humongous objects are not allocated in young
1035       // regions, we'll first try to do the allocation without doing a
1036       // collection hoping that there's enough space in the heap.
1037       result = humongous_obj_allocate(word_size, AllocationContext::current());
1038       if (result != NULL) {
1039         return result;
1040       }
1041 
1042       if (GC_locker::is_active_and_needs_gc()) {
1043         should_try_gc = false;
1044       } else {
1045          // The GCLocker may not be active but the GCLocker initiated
1046         // GC may not yet have been performed (GCLocker::needs_gc()
1047         // returns true). In this case we do not try this GC and
1048         // wait until the GCLocker initiated GC is performed, and
1049         // then retry the allocation.
1050         if (GC_locker::needs_gc()) {
1051           should_try_gc = false;
1052         } else {
1053           // Read the GC count while still holding the Heap_lock.
1054           gc_count_before = total_collections();
1055           should_try_gc = true;
1056         }
1057       }
1058     }
1059 
1060     if (should_try_gc) {
1061       // If we failed to allocate the humongous object, we should try to
1062       // do a collection pause (if we're allowed) in case it reclaims
1063       // enough space for the allocation to succeed after the pause.
1064 
1065       bool succeeded;
1066       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1067                                    GCCause::_g1_humongous_allocation);
1068       if (result != NULL) {
1069         assert(succeeded, "only way to get back a non-NULL result");
1070         return result;
1071       }
1072 
1073       if (succeeded) {
1074         // If we get here we successfully scheduled a collection which
1075         // failed to allocate. No point in trying to allocate
1076         // further. We'll just return NULL.
1077         MutexLockerEx x(Heap_lock);
1078         *gc_count_before_ret = total_collections();
1079         return NULL;
1080       }
1081     } else {
1082       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1083         MutexLockerEx x(Heap_lock);
1084         *gc_count_before_ret = total_collections();
1085         return NULL;
1086       }
1087       // The GCLocker is either active or the GCLocker initiated
1088       // GC has not yet been performed. Stall until it is and
1089       // then retry the allocation.
1090       GC_locker::stall_until_clear();
1091       (*gclocker_retry_count_ret) += 1;
1092     }
1093 
1094     // We can reach here if we were unsuccessful in scheduling a
1095     // collection (because another thread beat us to it) or if we were
1096     // stalled due to the GC locker. In either can we should retry the
1097     // allocation attempt in case another thread successfully
1098     // performed a collection and reclaimed enough space.  Give a
1099     // warning if we seem to be looping forever.
1100 
1101     if ((QueuedAllocationWarningCount > 0) &&
1102         (try_count % QueuedAllocationWarningCount == 0)) {
1103       warning("G1CollectedHeap::attempt_allocation_humongous() "
1104               "retries %d times", try_count);
1105     }
1106   }
1107 
1108   ShouldNotReachHere();
1109   return NULL;
1110 }
1111 
1112 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1113                                                            AllocationContext_t context,
1114                                                            bool expect_null_mutator_alloc_region) {
1115   assert_at_safepoint(true /* should_be_vm_thread */);
1116   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1117          "the current alloc region was unexpectedly found to be non-NULL");
1118 
1119   if (!is_humongous(word_size)) {
1120     return _allocator->attempt_allocation_locked(word_size, context);
1121   } else {
1122     HeapWord* result = humongous_obj_allocate(word_size, context);
1123     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1124       collector_state()->set_initiate_conc_mark_if_possible(true);
1125     }
1126     return result;
1127   }
1128 
1129   ShouldNotReachHere();
1130 }
1131 
1132 class PostMCRemSetClearClosure: public HeapRegionClosure {
1133   G1CollectedHeap* _g1h;
1134   ModRefBarrierSet* _mr_bs;
1135 public:
1136   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1137     _g1h(g1h), _mr_bs(mr_bs) {}
1138 
1139   bool doHeapRegion(HeapRegion* r) {
1140     HeapRegionRemSet* hrrs = r->rem_set();
1141 
1142     if (r->is_continues_humongous()) {
1143       // We'll assert that the strong code root list and RSet is empty
1144       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1145       assert(hrrs->occupied() == 0, "RSet should be empty");
1146       return false;
1147     }
1148 
1149     _g1h->reset_gc_time_stamps(r);
1150     hrrs->clear();
1151     // You might think here that we could clear just the cards
1152     // corresponding to the used region.  But no: if we leave a dirty card
1153     // in a region we might allocate into, then it would prevent that card
1154     // from being enqueued, and cause it to be missed.
1155     // Re: the performance cost: we shouldn't be doing full GC anyway!
1156     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1157 
1158     return false;
1159   }
1160 };
1161 
1162 void G1CollectedHeap::clear_rsets_post_compaction() {
1163   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1164   heap_region_iterate(&rs_clear);
1165 }
1166 
1167 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1168   G1CollectedHeap*   _g1h;
1169   UpdateRSOopClosure _cl;
1170 public:
1171   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1172     _cl(g1->g1_rem_set(), worker_i),
1173     _g1h(g1)
1174   { }
1175 
1176   bool doHeapRegion(HeapRegion* r) {
1177     if (!r->is_continues_humongous()) {
1178       _cl.set_from(r);
1179       r->oop_iterate(&_cl);
1180     }
1181     return false;
1182   }
1183 };
1184 
1185 class ParRebuildRSTask: public AbstractGangTask {
1186   G1CollectedHeap* _g1;
1187   HeapRegionClaimer _hrclaimer;
1188 
1189 public:
1190   ParRebuildRSTask(G1CollectedHeap* g1) :
1191       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1192 
1193   void work(uint worker_id) {
1194     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1195     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1196   }
1197 };
1198 
1199 class PostCompactionPrinterClosure: public HeapRegionClosure {
1200 private:
1201   G1HRPrinter* _hr_printer;
1202 public:
1203   bool doHeapRegion(HeapRegion* hr) {
1204     assert(!hr->is_young(), "not expecting to find young regions");
1205     if (hr->is_free()) {
1206       // We only generate output for non-empty regions.
1207     } else if (hr->is_starts_humongous()) {
1208       if (hr->region_num() == 1) {
1209         // single humongous region
1210         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1211       } else {
1212         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1213       }
1214     } else if (hr->is_continues_humongous()) {
1215       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1216     } else if (hr->is_archive()) {
1217       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1218     } else if (hr->is_old()) {
1219       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1220     } else {
1221       ShouldNotReachHere();
1222     }
1223     return false;
1224   }
1225 
1226   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1227     : _hr_printer(hr_printer) { }
1228 };
1229 
1230 void G1CollectedHeap::print_hrm_post_compaction() {
1231   PostCompactionPrinterClosure cl(hr_printer());
1232   heap_region_iterate(&cl);
1233 }
1234 
1235 bool G1CollectedHeap::do_collection(bool explicit_gc,
1236                                     bool clear_all_soft_refs,
1237                                     size_t word_size) {
1238   assert_at_safepoint(true /* should_be_vm_thread */);
1239 
1240   if (GC_locker::check_active_before_gc()) {
1241     return false;
1242   }
1243 
1244   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1245   gc_timer->register_gc_start();
1246 
1247   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1248   GCIdMark gc_id_mark;
1249   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1250 
1251   SvcGCMarker sgcm(SvcGCMarker::FULL);
1252   ResourceMark rm;
1253 
1254   G1Log::update_level();
1255   print_heap_before_gc();
1256   trace_heap_before_gc(gc_tracer);
1257 
1258   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1259 
1260   verify_region_sets_optional();
1261 
1262   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1263                            collector_policy()->should_clear_all_soft_refs();
1264 
1265   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1266 
1267   {
1268     IsGCActiveMark x;
1269 
1270     // Timing
1271     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1272     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1273 
1274     {
1275       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1276       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1277       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1278 
1279       g1_policy()->record_full_collection_start();
1280 
1281       // Note: When we have a more flexible GC logging framework that
1282       // allows us to add optional attributes to a GC log record we
1283       // could consider timing and reporting how long we wait in the
1284       // following two methods.
1285       wait_while_free_regions_coming();
1286       // If we start the compaction before the CM threads finish
1287       // scanning the root regions we might trip them over as we'll
1288       // be moving objects / updating references. So let's wait until
1289       // they are done. By telling them to abort, they should complete
1290       // early.
1291       _cm->root_regions()->abort();
1292       _cm->root_regions()->wait_until_scan_finished();
1293       append_secondary_free_list_if_not_empty_with_lock();
1294 
1295       gc_prologue(true);
1296       increment_total_collections(true /* full gc */);
1297       increment_old_marking_cycles_started();
1298 
1299       assert(used() == recalculate_used(), "Should be equal");
1300 
1301       verify_before_gc();
1302 
1303       check_bitmaps("Full GC Start");
1304       pre_full_gc_dump(gc_timer);
1305 
1306 #if defined(COMPILER2) || INCLUDE_JVMCI
1307       DerivedPointerTable::clear();
1308 #endif
1309 
1310       // Disable discovery and empty the discovered lists
1311       // for the CM ref processor.
1312       ref_processor_cm()->disable_discovery();
1313       ref_processor_cm()->abandon_partial_discovery();
1314       ref_processor_cm()->verify_no_references_recorded();
1315 
1316       // Abandon current iterations of concurrent marking and concurrent
1317       // refinement, if any are in progress. We have to do this before
1318       // wait_until_scan_finished() below.
1319       concurrent_mark()->abort();
1320 
1321       // Make sure we'll choose a new allocation region afterwards.
1322       _allocator->release_mutator_alloc_region();
1323       _allocator->abandon_gc_alloc_regions();
1324       g1_rem_set()->cleanupHRRS();
1325 
1326       // We should call this after we retire any currently active alloc
1327       // regions so that all the ALLOC / RETIRE events are generated
1328       // before the start GC event.
1329       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1330 
1331       // We may have added regions to the current incremental collection
1332       // set between the last GC or pause and now. We need to clear the
1333       // incremental collection set and then start rebuilding it afresh
1334       // after this full GC.
1335       abandon_collection_set(g1_policy()->inc_cset_head());
1336       g1_policy()->clear_incremental_cset();
1337       g1_policy()->stop_incremental_cset_building();
1338 
1339       tear_down_region_sets(false /* free_list_only */);
1340       collector_state()->set_gcs_are_young(true);
1341 
1342       // See the comments in g1CollectedHeap.hpp and
1343       // G1CollectedHeap::ref_processing_init() about
1344       // how reference processing currently works in G1.
1345 
1346       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1347       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1348 
1349       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1350       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1351 
1352       ref_processor_stw()->enable_discovery();
1353       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1354 
1355       // Do collection work
1356       {
1357         HandleMark hm;  // Discard invalid handles created during gc
1358         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1359       }
1360 
1361       assert(num_free_regions() == 0, "we should not have added any free regions");
1362       rebuild_region_sets(false /* free_list_only */);
1363 
1364       // Enqueue any discovered reference objects that have
1365       // not been removed from the discovered lists.
1366       ref_processor_stw()->enqueue_discovered_references();
1367 
1368 #if defined(COMPILER2) || INCLUDE_JVMCI
1369       DerivedPointerTable::update_pointers();
1370 #endif
1371 
1372       MemoryService::track_memory_usage();
1373 
1374       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1375       ref_processor_stw()->verify_no_references_recorded();
1376 
1377       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1378       ClassLoaderDataGraph::purge();
1379       MetaspaceAux::verify_metrics();
1380 
1381       // Note: since we've just done a full GC, concurrent
1382       // marking is no longer active. Therefore we need not
1383       // re-enable reference discovery for the CM ref processor.
1384       // That will be done at the start of the next marking cycle.
1385       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1386       ref_processor_cm()->verify_no_references_recorded();
1387 
1388       reset_gc_time_stamp();
1389       // Since everything potentially moved, we will clear all remembered
1390       // sets, and clear all cards.  Later we will rebuild remembered
1391       // sets. We will also reset the GC time stamps of the regions.
1392       clear_rsets_post_compaction();
1393       check_gc_time_stamps();
1394 
1395       // Resize the heap if necessary.
1396       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1397 
1398       if (_hr_printer.is_active()) {
1399         // We should do this after we potentially resize the heap so
1400         // that all the COMMIT / UNCOMMIT events are generated before
1401         // the end GC event.
1402 
1403         print_hrm_post_compaction();
1404         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1405       }
1406 
1407       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1408       if (hot_card_cache->use_cache()) {
1409         hot_card_cache->reset_card_counts();
1410         hot_card_cache->reset_hot_cache();
1411       }
1412 
1413       // Rebuild remembered sets of all regions.
1414       uint n_workers =
1415         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1416                                                 workers()->active_workers(),
1417                                                 Threads::number_of_non_daemon_threads());
1418       workers()->set_active_workers(n_workers);
1419 
1420       ParRebuildRSTask rebuild_rs_task(this);
1421       workers()->run_task(&rebuild_rs_task);
1422 
1423       // Rebuild the strong code root lists for each region
1424       rebuild_strong_code_roots();
1425 
1426       if (true) { // FIXME
1427         MetaspaceGC::compute_new_size();
1428       }
1429 
1430 #ifdef TRACESPINNING
1431       ParallelTaskTerminator::print_termination_counts();
1432 #endif
1433 
1434       // Discard all rset updates
1435       JavaThread::dirty_card_queue_set().abandon_logs();
1436       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1437 
1438       _young_list->reset_sampled_info();
1439       // At this point there should be no regions in the
1440       // entire heap tagged as young.
1441       assert(check_young_list_empty(true /* check_heap */),
1442              "young list should be empty at this point");
1443 
1444       // Update the number of full collections that have been completed.
1445       increment_old_marking_cycles_completed(false /* concurrent */);
1446 
1447       _hrm.verify_optional();
1448       verify_region_sets_optional();
1449 
1450       verify_after_gc();
1451 
1452       // Clear the previous marking bitmap, if needed for bitmap verification.
1453       // Note we cannot do this when we clear the next marking bitmap in
1454       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1455       // objects marked during a full GC against the previous bitmap.
1456       // But we need to clear it before calling check_bitmaps below since
1457       // the full GC has compacted objects and updated TAMS but not updated
1458       // the prev bitmap.
1459       if (G1VerifyBitmaps) {
1460         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1461       }
1462       check_bitmaps("Full GC End");
1463 
1464       // Start a new incremental collection set for the next pause
1465       assert(g1_policy()->collection_set() == NULL, "must be");
1466       g1_policy()->start_incremental_cset_building();
1467 
1468       clear_cset_fast_test();
1469 
1470       _allocator->init_mutator_alloc_region();
1471 
1472       g1_policy()->record_full_collection_end();
1473 
1474       if (G1Log::fine()) {
1475         g1_policy()->print_heap_transition();
1476       }
1477 
1478       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1479       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1480       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1481       // before any GC notifications are raised.
1482       g1mm()->update_sizes();
1483 
1484       gc_epilogue(true);
1485     }
1486 
1487     if (G1Log::finer()) {
1488       g1_policy()->print_detailed_heap_transition(true /* full */);
1489     }
1490 
1491     print_heap_after_gc();
1492     trace_heap_after_gc(gc_tracer);
1493 
1494     post_full_gc_dump(gc_timer);
1495 
1496     gc_timer->register_gc_end();
1497     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1498   }
1499 
1500   return true;
1501 }
1502 
1503 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1504   // do_collection() will return whether it succeeded in performing
1505   // the GC. Currently, there is no facility on the
1506   // do_full_collection() API to notify the caller than the collection
1507   // did not succeed (e.g., because it was locked out by the GC
1508   // locker). So, right now, we'll ignore the return value.
1509   bool dummy = do_collection(true,                /* explicit_gc */
1510                              clear_all_soft_refs,
1511                              0                    /* word_size */);
1512 }
1513 
1514 // This code is mostly copied from TenuredGeneration.
1515 void
1516 G1CollectedHeap::
1517 resize_if_necessary_after_full_collection(size_t word_size) {
1518   // Include the current allocation, if any, and bytes that will be
1519   // pre-allocated to support collections, as "used".
1520   const size_t used_after_gc = used();
1521   const size_t capacity_after_gc = capacity();
1522   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1523 
1524   // This is enforced in arguments.cpp.
1525   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1526          "otherwise the code below doesn't make sense");
1527 
1528   // We don't have floating point command-line arguments
1529   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1530   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1531   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1532   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1533 
1534   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1535   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1536 
1537   // We have to be careful here as these two calculations can overflow
1538   // 32-bit size_t's.
1539   double used_after_gc_d = (double) used_after_gc;
1540   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1541   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1542 
1543   // Let's make sure that they are both under the max heap size, which
1544   // by default will make them fit into a size_t.
1545   double desired_capacity_upper_bound = (double) max_heap_size;
1546   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1547                                     desired_capacity_upper_bound);
1548   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1549                                     desired_capacity_upper_bound);
1550 
1551   // We can now safely turn them into size_t's.
1552   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1553   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1554 
1555   // This assert only makes sense here, before we adjust them
1556   // with respect to the min and max heap size.
1557   assert(minimum_desired_capacity <= maximum_desired_capacity,
1558          "minimum_desired_capacity = " SIZE_FORMAT ", "
1559          "maximum_desired_capacity = " SIZE_FORMAT,
1560          minimum_desired_capacity, maximum_desired_capacity);
1561 
1562   // Should not be greater than the heap max size. No need to adjust
1563   // it with respect to the heap min size as it's a lower bound (i.e.,
1564   // we'll try to make the capacity larger than it, not smaller).
1565   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1566   // Should not be less than the heap min size. No need to adjust it
1567   // with respect to the heap max size as it's an upper bound (i.e.,
1568   // we'll try to make the capacity smaller than it, not greater).
1569   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1570 
1571   if (capacity_after_gc < minimum_desired_capacity) {
1572     // Don't expand unless it's significant
1573     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1574     ergo_verbose4(ErgoHeapSizing,
1575                   "attempt heap expansion",
1576                   ergo_format_reason("capacity lower than "
1577                                      "min desired capacity after Full GC")
1578                   ergo_format_byte("capacity")
1579                   ergo_format_byte("occupancy")
1580                   ergo_format_byte_perc("min desired capacity"),
1581                   capacity_after_gc, used_after_gc,
1582                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1583     expand(expand_bytes);
1584 
1585     // No expansion, now see if we want to shrink
1586   } else if (capacity_after_gc > maximum_desired_capacity) {
1587     // Capacity too large, compute shrinking size
1588     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1589     ergo_verbose4(ErgoHeapSizing,
1590                   "attempt heap shrinking",
1591                   ergo_format_reason("capacity higher than "
1592                                      "max desired capacity after Full GC")
1593                   ergo_format_byte("capacity")
1594                   ergo_format_byte("occupancy")
1595                   ergo_format_byte_perc("max desired capacity"),
1596                   capacity_after_gc, used_after_gc,
1597                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1598     shrink(shrink_bytes);
1599   }
1600 }
1601 
1602 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1603                                                             AllocationContext_t context,
1604                                                             bool do_gc,
1605                                                             bool clear_all_soft_refs,
1606                                                             bool expect_null_mutator_alloc_region,
1607                                                             bool* gc_succeeded) {
1608   *gc_succeeded = true;
1609   // Let's attempt the allocation first.
1610   HeapWord* result =
1611     attempt_allocation_at_safepoint(word_size,
1612                                     context,
1613                                     expect_null_mutator_alloc_region);
1614   if (result != NULL) {
1615     assert(*gc_succeeded, "sanity");
1616     return result;
1617   }
1618 
1619   // In a G1 heap, we're supposed to keep allocation from failing by
1620   // incremental pauses.  Therefore, at least for now, we'll favor
1621   // expansion over collection.  (This might change in the future if we can
1622   // do something smarter than full collection to satisfy a failed alloc.)
1623   result = expand_and_allocate(word_size, context);
1624   if (result != NULL) {
1625     assert(*gc_succeeded, "sanity");
1626     return result;
1627   }
1628 
1629   if (do_gc) {
1630     // Expansion didn't work, we'll try to do a Full GC.
1631     *gc_succeeded = do_collection(false, /* explicit_gc */
1632                                   clear_all_soft_refs,
1633                                   word_size);
1634   }
1635 
1636   return NULL;
1637 }
1638 
1639 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1640                                                      AllocationContext_t context,
1641                                                      bool* succeeded) {
1642   assert_at_safepoint(true /* should_be_vm_thread */);
1643 
1644   // Attempts to allocate followed by Full GC.
1645   HeapWord* result =
1646     satisfy_failed_allocation_helper(word_size,
1647                                      context,
1648                                      true,  /* do_gc */
1649                                      false, /* clear_all_soft_refs */
1650                                      false, /* expect_null_mutator_alloc_region */
1651                                      succeeded);
1652 
1653   if (result != NULL || !*succeeded) {
1654     return result;
1655   }
1656 
1657   // Attempts to allocate followed by Full GC that will collect all soft references.
1658   result = satisfy_failed_allocation_helper(word_size,
1659                                             context,
1660                                             true, /* do_gc */
1661                                             true, /* clear_all_soft_refs */
1662                                             true, /* expect_null_mutator_alloc_region */
1663                                             succeeded);
1664 
1665   if (result != NULL || !*succeeded) {
1666     return result;
1667   }
1668 
1669   // Attempts to allocate, no GC
1670   result = satisfy_failed_allocation_helper(word_size,
1671                                             context,
1672                                             false, /* do_gc */
1673                                             false, /* clear_all_soft_refs */
1674                                             true,  /* expect_null_mutator_alloc_region */
1675                                             succeeded);
1676 
1677   if (result != NULL) {
1678     assert(*succeeded, "sanity");
1679     return result;
1680   }
1681 
1682   assert(!collector_policy()->should_clear_all_soft_refs(),
1683          "Flag should have been handled and cleared prior to this point");
1684 
1685   // What else?  We might try synchronous finalization later.  If the total
1686   // space available is large enough for the allocation, then a more
1687   // complete compaction phase than we've tried so far might be
1688   // appropriate.
1689   assert(*succeeded, "sanity");
1690   return NULL;
1691 }
1692 
1693 // Attempting to expand the heap sufficiently
1694 // to support an allocation of the given "word_size".  If
1695 // successful, perform the allocation and return the address of the
1696 // allocated block, or else "NULL".
1697 
1698 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1699   assert_at_safepoint(true /* should_be_vm_thread */);
1700 
1701   verify_region_sets_optional();
1702 
1703   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1704   ergo_verbose1(ErgoHeapSizing,
1705                 "attempt heap expansion",
1706                 ergo_format_reason("allocation request failed")
1707                 ergo_format_byte("allocation request"),
1708                 word_size * HeapWordSize);
1709   if (expand(expand_bytes)) {
1710     _hrm.verify_optional();
1711     verify_region_sets_optional();
1712     return attempt_allocation_at_safepoint(word_size,
1713                                            context,
1714                                            false /* expect_null_mutator_alloc_region */);
1715   }
1716   return NULL;
1717 }
1718 
1719 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1720   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1721   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1722                                        HeapRegion::GrainBytes);
1723   ergo_verbose2(ErgoHeapSizing,
1724                 "expand the heap",
1725                 ergo_format_byte("requested expansion amount")
1726                 ergo_format_byte("attempted expansion amount"),
1727                 expand_bytes, aligned_expand_bytes);
1728 
1729   if (is_maximal_no_gc()) {
1730     ergo_verbose0(ErgoHeapSizing,
1731                       "did not expand the heap",
1732                       ergo_format_reason("heap already fully expanded"));
1733     return false;
1734   }
1735 
1736   double expand_heap_start_time_sec = os::elapsedTime();
1737   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1738   assert(regions_to_expand > 0, "Must expand by at least one region");
1739 
1740   uint expanded_by = _hrm.expand_by(regions_to_expand);
1741   if (expand_time_ms != NULL) {
1742     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1743   }
1744 
1745   if (expanded_by > 0) {
1746     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1747     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1748     g1_policy()->record_new_heap_size(num_regions());
1749   } else {
1750     ergo_verbose0(ErgoHeapSizing,
1751                   "did not expand the heap",
1752                   ergo_format_reason("heap expansion operation failed"));
1753     // The expansion of the virtual storage space was unsuccessful.
1754     // Let's see if it was because we ran out of swap.
1755     if (G1ExitOnExpansionFailure &&
1756         _hrm.available() >= regions_to_expand) {
1757       // We had head room...
1758       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1759     }
1760   }
1761   return regions_to_expand > 0;
1762 }
1763 
1764 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1765   size_t aligned_shrink_bytes =
1766     ReservedSpace::page_align_size_down(shrink_bytes);
1767   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1768                                          HeapRegion::GrainBytes);
1769   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1770 
1771   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1772   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1773 
1774   ergo_verbose3(ErgoHeapSizing,
1775                 "shrink the heap",
1776                 ergo_format_byte("requested shrinking amount")
1777                 ergo_format_byte("aligned shrinking amount")
1778                 ergo_format_byte("attempted shrinking amount"),
1779                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1780   if (num_regions_removed > 0) {
1781     g1_policy()->record_new_heap_size(num_regions());
1782   } else {
1783     ergo_verbose0(ErgoHeapSizing,
1784                   "did not shrink the heap",
1785                   ergo_format_reason("heap shrinking operation failed"));
1786   }
1787 }
1788 
1789 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1790   verify_region_sets_optional();
1791 
1792   // We should only reach here at the end of a Full GC which means we
1793   // should not not be holding to any GC alloc regions. The method
1794   // below will make sure of that and do any remaining clean up.
1795   _allocator->abandon_gc_alloc_regions();
1796 
1797   // Instead of tearing down / rebuilding the free lists here, we
1798   // could instead use the remove_all_pending() method on free_list to
1799   // remove only the ones that we need to remove.
1800   tear_down_region_sets(true /* free_list_only */);
1801   shrink_helper(shrink_bytes);
1802   rebuild_region_sets(true /* free_list_only */);
1803 
1804   _hrm.verify_optional();
1805   verify_region_sets_optional();
1806 }
1807 
1808 // Public methods.
1809 
1810 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1811 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1812 #endif // _MSC_VER
1813 
1814 
1815 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1816   CollectedHeap(),
1817   _g1_policy(policy_),
1818   _dirty_card_queue_set(false),
1819   _into_cset_dirty_card_queue_set(false),
1820   _is_alive_closure_cm(this),
1821   _is_alive_closure_stw(this),
1822   _ref_processor_cm(NULL),
1823   _ref_processor_stw(NULL),
1824   _bot_shared(NULL),
1825   _cg1r(NULL),
1826   _g1mm(NULL),
1827   _refine_cte_cl(NULL),
1828   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1829   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1830   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1831   _humongous_reclaim_candidates(),
1832   _has_humongous_reclaim_candidates(false),
1833   _archive_allocator(NULL),
1834   _free_regions_coming(false),
1835   _young_list(new YoungList(this)),
1836   _gc_time_stamp(0),
1837   _summary_bytes_used(0),
1838   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1839   _old_evac_stats(OldPLABSize, PLABWeight),
1840   _expand_heap_after_alloc_failure(true),
1841   _old_marking_cycles_started(0),
1842   _old_marking_cycles_completed(0),
1843   _heap_summary_sent(false),
1844   _in_cset_fast_test(),
1845   _dirty_cards_region_list(NULL),
1846   _worker_cset_start_region(NULL),
1847   _worker_cset_start_region_time_stamp(NULL),
1848   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1849   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1850   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1851   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1852 
1853   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1854                           /* are_GC_task_threads */true,
1855                           /* are_ConcurrentGC_threads */false);
1856   _workers->initialize_workers();
1857 
1858   _allocator = G1Allocator::create_allocator(this);
1859   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1860 
1861   // Override the default _filler_array_max_size so that no humongous filler
1862   // objects are created.
1863   _filler_array_max_size = _humongous_object_threshold_in_words;
1864 
1865   uint n_queues = ParallelGCThreads;
1866   _task_queues = new RefToScanQueueSet(n_queues);
1867 
1868   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1869   assert(n_rem_sets > 0, "Invariant.");
1870 
1871   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1872   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1873   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1874 
1875   for (uint i = 0; i < n_queues; i++) {
1876     RefToScanQueue* q = new RefToScanQueue();
1877     q->initialize();
1878     _task_queues->register_queue(i, q);
1879     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1880   }
1881   clear_cset_start_regions();
1882 
1883   // Initialize the G1EvacuationFailureALot counters and flags.
1884   NOT_PRODUCT(reset_evacuation_should_fail();)
1885 
1886   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1887 }
1888 
1889 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1890                                                                  size_t size,
1891                                                                  size_t translation_factor) {
1892   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1893   // Allocate a new reserved space, preferring to use large pages.
1894   ReservedSpace rs(size, preferred_page_size);
1895   G1RegionToSpaceMapper* result  =
1896     G1RegionToSpaceMapper::create_mapper(rs,
1897                                          size,
1898                                          rs.alignment(),
1899                                          HeapRegion::GrainBytes,
1900                                          translation_factor,
1901                                          mtGC);
1902   if (TracePageSizes) {
1903     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1904                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1905   }
1906   return result;
1907 }
1908 
1909 jint G1CollectedHeap::initialize() {
1910   CollectedHeap::pre_initialize();
1911   os::enable_vtime();
1912 
1913   G1Log::init();
1914 
1915   // Necessary to satisfy locking discipline assertions.
1916 
1917   MutexLocker x(Heap_lock);
1918 
1919   // We have to initialize the printer before committing the heap, as
1920   // it will be used then.
1921   _hr_printer.set_active(G1PrintHeapRegions);
1922 
1923   // While there are no constraints in the GC code that HeapWordSize
1924   // be any particular value, there are multiple other areas in the
1925   // system which believe this to be true (e.g. oop->object_size in some
1926   // cases incorrectly returns the size in wordSize units rather than
1927   // HeapWordSize).
1928   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1929 
1930   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1931   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1932   size_t heap_alignment = collector_policy()->heap_alignment();
1933 
1934   // Ensure that the sizes are properly aligned.
1935   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1936   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1937   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1938 
1939   _refine_cte_cl = new RefineCardTableEntryClosure();
1940 
1941   jint ecode = JNI_OK;
1942   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1943   if (_cg1r == NULL) {
1944     return ecode;
1945   }
1946 
1947   // Reserve the maximum.
1948 
1949   // When compressed oops are enabled, the preferred heap base
1950   // is calculated by subtracting the requested size from the
1951   // 32Gb boundary and using the result as the base address for
1952   // heap reservation. If the requested size is not aligned to
1953   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1954   // into the ReservedHeapSpace constructor) then the actual
1955   // base of the reserved heap may end up differing from the
1956   // address that was requested (i.e. the preferred heap base).
1957   // If this happens then we could end up using a non-optimal
1958   // compressed oops mode.
1959 
1960   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1961                                                  heap_alignment);
1962 
1963   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1964 
1965   // Create the barrier set for the entire reserved region.
1966   G1SATBCardTableLoggingModRefBS* bs
1967     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1968   bs->initialize();
1969   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1970   set_barrier_set(bs);
1971 
1972   // Also create a G1 rem set.
1973   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1974 
1975   // Carve out the G1 part of the heap.
1976 
1977   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1978   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1979   G1RegionToSpaceMapper* heap_storage =
1980     G1RegionToSpaceMapper::create_mapper(g1_rs,
1981                                          g1_rs.size(),
1982                                          page_size,
1983                                          HeapRegion::GrainBytes,
1984                                          1,
1985                                          mtJavaHeap);
1986   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1987                        max_byte_size, page_size,
1988                        heap_rs.base(),
1989                        heap_rs.size());
1990   heap_storage->set_mapping_changed_listener(&_listener);
1991 
1992   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1993   G1RegionToSpaceMapper* bot_storage =
1994     create_aux_memory_mapper("Block offset table",
1995                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1996                              G1BlockOffsetSharedArray::heap_map_factor());
1997 
1998   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1999   G1RegionToSpaceMapper* cardtable_storage =
2000     create_aux_memory_mapper("Card table",
2001                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2002                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2003 
2004   G1RegionToSpaceMapper* card_counts_storage =
2005     create_aux_memory_mapper("Card counts table",
2006                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2007                              G1CardCounts::heap_map_factor());
2008 
2009   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2010   G1RegionToSpaceMapper* prev_bitmap_storage =
2011     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2012   G1RegionToSpaceMapper* next_bitmap_storage =
2013     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2014 
2015   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2016   g1_barrier_set()->initialize(cardtable_storage);
2017    // Do later initialization work for concurrent refinement.
2018   _cg1r->init(card_counts_storage);
2019 
2020   // 6843694 - ensure that the maximum region index can fit
2021   // in the remembered set structures.
2022   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2023   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2024 
2025   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2026   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2027   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2028             "too many cards per region");
2029 
2030   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2031 
2032   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2033 
2034   {
2035     HeapWord* start = _hrm.reserved().start();
2036     HeapWord* end = _hrm.reserved().end();
2037     size_t granularity = HeapRegion::GrainBytes;
2038 
2039     _in_cset_fast_test.initialize(start, end, granularity);
2040     _humongous_reclaim_candidates.initialize(start, end, granularity);
2041   }
2042 
2043   // Create the ConcurrentMark data structure and thread.
2044   // (Must do this late, so that "max_regions" is defined.)
2045   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2046   if (_cm == NULL || !_cm->completed_initialization()) {
2047     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2048     return JNI_ENOMEM;
2049   }
2050   _cmThread = _cm->cmThread();
2051 
2052   // Initialize the from_card cache structure of HeapRegionRemSet.
2053   HeapRegionRemSet::init_heap(max_regions());
2054 
2055   // Now expand into the initial heap size.
2056   if (!expand(init_byte_size)) {
2057     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2058     return JNI_ENOMEM;
2059   }
2060 
2061   // Perform any initialization actions delegated to the policy.
2062   g1_policy()->init();
2063 
2064   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2065                                                SATB_Q_FL_lock,
2066                                                G1SATBProcessCompletedThreshold,
2067                                                Shared_SATB_Q_lock);
2068 
2069   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2070                                                 DirtyCardQ_CBL_mon,
2071                                                 DirtyCardQ_FL_lock,
2072                                                 concurrent_g1_refine()->yellow_zone(),
2073                                                 concurrent_g1_refine()->red_zone(),
2074                                                 Shared_DirtyCardQ_lock);
2075 
2076   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2077                                     DirtyCardQ_CBL_mon,
2078                                     DirtyCardQ_FL_lock,
2079                                     -1, // never trigger processing
2080                                     -1, // no limit on length
2081                                     Shared_DirtyCardQ_lock,
2082                                     &JavaThread::dirty_card_queue_set());
2083 
2084   // Initialize the card queue set used to hold cards containing
2085   // references into the collection set.
2086   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2087                                              DirtyCardQ_CBL_mon,
2088                                              DirtyCardQ_FL_lock,
2089                                              -1, // never trigger processing
2090                                              -1, // no limit on length
2091                                              Shared_DirtyCardQ_lock,
2092                                              &JavaThread::dirty_card_queue_set());
2093 
2094   // Here we allocate the dummy HeapRegion that is required by the
2095   // G1AllocRegion class.
2096   HeapRegion* dummy_region = _hrm.get_dummy_region();
2097 
2098   // We'll re-use the same region whether the alloc region will
2099   // require BOT updates or not and, if it doesn't, then a non-young
2100   // region will complain that it cannot support allocations without
2101   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2102   dummy_region->set_eden();
2103   // Make sure it's full.
2104   dummy_region->set_top(dummy_region->end());
2105   G1AllocRegion::setup(this, dummy_region);
2106 
2107   _allocator->init_mutator_alloc_region();
2108 
2109   // Do create of the monitoring and management support so that
2110   // values in the heap have been properly initialized.
2111   _g1mm = new G1MonitoringSupport(this);
2112 
2113   G1StringDedup::initialize();
2114 
2115   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2116   for (uint i = 0; i < ParallelGCThreads; i++) {
2117     new (&_preserved_objs[i]) OopAndMarkOopStack();
2118   }
2119 
2120   return JNI_OK;
2121 }
2122 
2123 void G1CollectedHeap::stop() {
2124   // Stop all concurrent threads. We do this to make sure these threads
2125   // do not continue to execute and access resources (e.g. gclog_or_tty)
2126   // that are destroyed during shutdown.
2127   _cg1r->stop();
2128   _cmThread->stop();
2129   if (G1StringDedup::is_enabled()) {
2130     G1StringDedup::stop();
2131   }
2132 }
2133 
2134 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2135   return HeapRegion::max_region_size();
2136 }
2137 
2138 void G1CollectedHeap::post_initialize() {
2139   CollectedHeap::post_initialize();
2140   ref_processing_init();
2141 }
2142 
2143 void G1CollectedHeap::ref_processing_init() {
2144   // Reference processing in G1 currently works as follows:
2145   //
2146   // * There are two reference processor instances. One is
2147   //   used to record and process discovered references
2148   //   during concurrent marking; the other is used to
2149   //   record and process references during STW pauses
2150   //   (both full and incremental).
2151   // * Both ref processors need to 'span' the entire heap as
2152   //   the regions in the collection set may be dotted around.
2153   //
2154   // * For the concurrent marking ref processor:
2155   //   * Reference discovery is enabled at initial marking.
2156   //   * Reference discovery is disabled and the discovered
2157   //     references processed etc during remarking.
2158   //   * Reference discovery is MT (see below).
2159   //   * Reference discovery requires a barrier (see below).
2160   //   * Reference processing may or may not be MT
2161   //     (depending on the value of ParallelRefProcEnabled
2162   //     and ParallelGCThreads).
2163   //   * A full GC disables reference discovery by the CM
2164   //     ref processor and abandons any entries on it's
2165   //     discovered lists.
2166   //
2167   // * For the STW processor:
2168   //   * Non MT discovery is enabled at the start of a full GC.
2169   //   * Processing and enqueueing during a full GC is non-MT.
2170   //   * During a full GC, references are processed after marking.
2171   //
2172   //   * Discovery (may or may not be MT) is enabled at the start
2173   //     of an incremental evacuation pause.
2174   //   * References are processed near the end of a STW evacuation pause.
2175   //   * For both types of GC:
2176   //     * Discovery is atomic - i.e. not concurrent.
2177   //     * Reference discovery will not need a barrier.
2178 
2179   MemRegion mr = reserved_region();
2180 
2181   // Concurrent Mark ref processor
2182   _ref_processor_cm =
2183     new ReferenceProcessor(mr,    // span
2184                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2185                                 // mt processing
2186                            ParallelGCThreads,
2187                                 // degree of mt processing
2188                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2189                                 // mt discovery
2190                            MAX2(ParallelGCThreads, ConcGCThreads),
2191                                 // degree of mt discovery
2192                            false,
2193                                 // Reference discovery is not atomic
2194                            &_is_alive_closure_cm);
2195                                 // is alive closure
2196                                 // (for efficiency/performance)
2197 
2198   // STW ref processor
2199   _ref_processor_stw =
2200     new ReferenceProcessor(mr,    // span
2201                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2202                                 // mt processing
2203                            ParallelGCThreads,
2204                                 // degree of mt processing
2205                            (ParallelGCThreads > 1),
2206                                 // mt discovery
2207                            ParallelGCThreads,
2208                                 // degree of mt discovery
2209                            true,
2210                                 // Reference discovery is atomic
2211                            &_is_alive_closure_stw);
2212                                 // is alive closure
2213                                 // (for efficiency/performance)
2214 }
2215 
2216 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2217   return g1_policy();
2218 }
2219 
2220 size_t G1CollectedHeap::capacity() const {
2221   return _hrm.length() * HeapRegion::GrainBytes;
2222 }
2223 
2224 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2225   assert(!hr->is_continues_humongous(), "pre-condition");
2226   hr->reset_gc_time_stamp();
2227   if (hr->is_starts_humongous()) {
2228     uint first_index = hr->hrm_index() + 1;
2229     uint last_index = hr->last_hc_index();
2230     for (uint i = first_index; i < last_index; i += 1) {
2231       HeapRegion* chr = region_at(i);
2232       assert(chr->is_continues_humongous(), "sanity");
2233       chr->reset_gc_time_stamp();
2234     }
2235   }
2236 }
2237 
2238 #ifndef PRODUCT
2239 
2240 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2241 private:
2242   unsigned _gc_time_stamp;
2243   bool _failures;
2244 
2245 public:
2246   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2247     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2248 
2249   virtual bool doHeapRegion(HeapRegion* hr) {
2250     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2251     if (_gc_time_stamp != region_gc_time_stamp) {
2252       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2253                              "expected %d", HR_FORMAT_PARAMS(hr),
2254                              region_gc_time_stamp, _gc_time_stamp);
2255       _failures = true;
2256     }
2257     return false;
2258   }
2259 
2260   bool failures() { return _failures; }
2261 };
2262 
2263 void G1CollectedHeap::check_gc_time_stamps() {
2264   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2265   heap_region_iterate(&cl);
2266   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2267 }
2268 #endif // PRODUCT
2269 
2270 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2271   _cg1r->hot_card_cache()->drain(cl, worker_i);
2272 }
2273 
2274 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2275   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2276   size_t n_completed_buffers = 0;
2277   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2278     n_completed_buffers++;
2279   }
2280   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2281   dcqs.clear_n_completed_buffers();
2282   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2283 }
2284 
2285 // Computes the sum of the storage used by the various regions.
2286 size_t G1CollectedHeap::used() const {
2287   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2288   if (_archive_allocator != NULL) {
2289     result += _archive_allocator->used();
2290   }
2291   return result;
2292 }
2293 
2294 size_t G1CollectedHeap::used_unlocked() const {
2295   return _summary_bytes_used;
2296 }
2297 
2298 class SumUsedClosure: public HeapRegionClosure {
2299   size_t _used;
2300 public:
2301   SumUsedClosure() : _used(0) {}
2302   bool doHeapRegion(HeapRegion* r) {
2303     if (!r->is_continues_humongous()) {
2304       _used += r->used();
2305     }
2306     return false;
2307   }
2308   size_t result() { return _used; }
2309 };
2310 
2311 size_t G1CollectedHeap::recalculate_used() const {
2312   double recalculate_used_start = os::elapsedTime();
2313 
2314   SumUsedClosure blk;
2315   heap_region_iterate(&blk);
2316 
2317   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2318   return blk.result();
2319 }
2320 
2321 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2322   switch (cause) {
2323     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2324     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2325     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2326     case GCCause::_g1_humongous_allocation: return true;
2327     case GCCause::_update_allocation_context_stats_inc: return true;
2328     case GCCause::_wb_conc_mark:            return true;
2329     default:                                return false;
2330   }
2331 }
2332 
2333 #ifndef PRODUCT
2334 void G1CollectedHeap::allocate_dummy_regions() {
2335   // Let's fill up most of the region
2336   size_t word_size = HeapRegion::GrainWords - 1024;
2337   // And as a result the region we'll allocate will be humongous.
2338   guarantee(is_humongous(word_size), "sanity");
2339 
2340   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2341     // Let's use the existing mechanism for the allocation
2342     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2343                                                  AllocationContext::system());
2344     if (dummy_obj != NULL) {
2345       MemRegion mr(dummy_obj, word_size);
2346       CollectedHeap::fill_with_object(mr);
2347     } else {
2348       // If we can't allocate once, we probably cannot allocate
2349       // again. Let's get out of the loop.
2350       break;
2351     }
2352   }
2353 }
2354 #endif // !PRODUCT
2355 
2356 void G1CollectedHeap::increment_old_marking_cycles_started() {
2357   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2358          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2359          "Wrong marking cycle count (started: %d, completed: %d)",
2360          _old_marking_cycles_started, _old_marking_cycles_completed);
2361 
2362   _old_marking_cycles_started++;
2363 }
2364 
2365 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2366   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2367 
2368   // We assume that if concurrent == true, then the caller is a
2369   // concurrent thread that was joined the Suspendible Thread
2370   // Set. If there's ever a cheap way to check this, we should add an
2371   // assert here.
2372 
2373   // Given that this method is called at the end of a Full GC or of a
2374   // concurrent cycle, and those can be nested (i.e., a Full GC can
2375   // interrupt a concurrent cycle), the number of full collections
2376   // completed should be either one (in the case where there was no
2377   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2378   // behind the number of full collections started.
2379 
2380   // This is the case for the inner caller, i.e. a Full GC.
2381   assert(concurrent ||
2382          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2383          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2384          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2385          "is inconsistent with _old_marking_cycles_completed = %u",
2386          _old_marking_cycles_started, _old_marking_cycles_completed);
2387 
2388   // This is the case for the outer caller, i.e. the concurrent cycle.
2389   assert(!concurrent ||
2390          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2391          "for outer caller (concurrent cycle): "
2392          "_old_marking_cycles_started = %u "
2393          "is inconsistent with _old_marking_cycles_completed = %u",
2394          _old_marking_cycles_started, _old_marking_cycles_completed);
2395 
2396   _old_marking_cycles_completed += 1;
2397 
2398   // We need to clear the "in_progress" flag in the CM thread before
2399   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2400   // is set) so that if a waiter requests another System.gc() it doesn't
2401   // incorrectly see that a marking cycle is still in progress.
2402   if (concurrent) {
2403     _cmThread->set_idle();
2404   }
2405 
2406   // This notify_all() will ensure that a thread that called
2407   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2408   // and it's waiting for a full GC to finish will be woken up. It is
2409   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2410   FullGCCount_lock->notify_all();
2411 }
2412 
2413 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2414   GCIdMarkAndRestore conc_gc_id_mark;
2415   collector_state()->set_concurrent_cycle_started(true);
2416   _gc_timer_cm->register_gc_start(start_time);
2417 
2418   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2419   trace_heap_before_gc(_gc_tracer_cm);
2420   _cmThread->set_gc_id(GCId::current());
2421 }
2422 
2423 void G1CollectedHeap::register_concurrent_cycle_end() {
2424   if (collector_state()->concurrent_cycle_started()) {
2425     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2426     if (_cm->has_aborted()) {
2427       _gc_tracer_cm->report_concurrent_mode_failure();
2428     }
2429 
2430     _gc_timer_cm->register_gc_end();
2431     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2432 
2433     // Clear state variables to prepare for the next concurrent cycle.
2434      collector_state()->set_concurrent_cycle_started(false);
2435     _heap_summary_sent = false;
2436   }
2437 }
2438 
2439 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2440   if (collector_state()->concurrent_cycle_started()) {
2441     // This function can be called when:
2442     //  the cleanup pause is run
2443     //  the concurrent cycle is aborted before the cleanup pause.
2444     //  the concurrent cycle is aborted after the cleanup pause,
2445     //   but before the concurrent cycle end has been registered.
2446     // Make sure that we only send the heap information once.
2447     if (!_heap_summary_sent) {
2448       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2449       trace_heap_after_gc(_gc_tracer_cm);
2450       _heap_summary_sent = true;
2451     }
2452   }
2453 }
2454 
2455 void G1CollectedHeap::collect(GCCause::Cause cause) {
2456   assert_heap_not_locked();
2457 
2458   uint gc_count_before;
2459   uint old_marking_count_before;
2460   uint full_gc_count_before;
2461   bool retry_gc;
2462 
2463   do {
2464     retry_gc = false;
2465 
2466     {
2467       MutexLocker ml(Heap_lock);
2468 
2469       // Read the GC count while holding the Heap_lock
2470       gc_count_before = total_collections();
2471       full_gc_count_before = total_full_collections();
2472       old_marking_count_before = _old_marking_cycles_started;
2473     }
2474 
2475     if (should_do_concurrent_full_gc(cause)) {
2476       // Schedule an initial-mark evacuation pause that will start a
2477       // concurrent cycle. We're setting word_size to 0 which means that
2478       // we are not requesting a post-GC allocation.
2479       VM_G1IncCollectionPause op(gc_count_before,
2480                                  0,     /* word_size */
2481                                  true,  /* should_initiate_conc_mark */
2482                                  g1_policy()->max_pause_time_ms(),
2483                                  cause);
2484       op.set_allocation_context(AllocationContext::current());
2485 
2486       VMThread::execute(&op);
2487       if (!op.pause_succeeded()) {
2488         if (old_marking_count_before == _old_marking_cycles_started) {
2489           retry_gc = op.should_retry_gc();
2490         } else {
2491           // A Full GC happened while we were trying to schedule the
2492           // initial-mark GC. No point in starting a new cycle given
2493           // that the whole heap was collected anyway.
2494         }
2495 
2496         if (retry_gc) {
2497           if (GC_locker::is_active_and_needs_gc()) {
2498             GC_locker::stall_until_clear();
2499           }
2500         }
2501       }
2502     } else {
2503       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2504           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2505 
2506         // Schedule a standard evacuation pause. We're setting word_size
2507         // to 0 which means that we are not requesting a post-GC allocation.
2508         VM_G1IncCollectionPause op(gc_count_before,
2509                                    0,     /* word_size */
2510                                    false, /* should_initiate_conc_mark */
2511                                    g1_policy()->max_pause_time_ms(),
2512                                    cause);
2513         VMThread::execute(&op);
2514       } else {
2515         // Schedule a Full GC.
2516         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2517         VMThread::execute(&op);
2518       }
2519     }
2520   } while (retry_gc);
2521 }
2522 
2523 bool G1CollectedHeap::is_in(const void* p) const {
2524   if (_hrm.reserved().contains(p)) {
2525     // Given that we know that p is in the reserved space,
2526     // heap_region_containing_raw() should successfully
2527     // return the containing region.
2528     HeapRegion* hr = heap_region_containing_raw(p);
2529     return hr->is_in(p);
2530   } else {
2531     return false;
2532   }
2533 }
2534 
2535 #ifdef ASSERT
2536 bool G1CollectedHeap::is_in_exact(const void* p) const {
2537   bool contains = reserved_region().contains(p);
2538   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2539   if (contains && available) {
2540     return true;
2541   } else {
2542     return false;
2543   }
2544 }
2545 #endif
2546 
2547 bool G1CollectedHeap::obj_in_cs(oop obj) {
2548   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2549   return r != NULL && r->in_collection_set();
2550 }
2551 
2552 // Iteration functions.
2553 
2554 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2555 
2556 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2557   ExtendedOopClosure* _cl;
2558 public:
2559   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2560   bool doHeapRegion(HeapRegion* r) {
2561     if (!r->is_continues_humongous()) {
2562       r->oop_iterate(_cl);
2563     }
2564     return false;
2565   }
2566 };
2567 
2568 // Iterates an ObjectClosure over all objects within a HeapRegion.
2569 
2570 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2571   ObjectClosure* _cl;
2572 public:
2573   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2574   bool doHeapRegion(HeapRegion* r) {
2575     if (!r->is_continues_humongous()) {
2576       r->object_iterate(_cl);
2577     }
2578     return false;
2579   }
2580 };
2581 
2582 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2583   IterateObjectClosureRegionClosure blk(cl);
2584   heap_region_iterate(&blk);
2585 }
2586 
2587 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2588   _hrm.iterate(cl);
2589 }
2590 
2591 void
2592 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2593                                          uint worker_id,
2594                                          HeapRegionClaimer *hrclaimer,
2595                                          bool concurrent) const {
2596   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2597 }
2598 
2599 // Clear the cached CSet starting regions and (more importantly)
2600 // the time stamps. Called when we reset the GC time stamp.
2601 void G1CollectedHeap::clear_cset_start_regions() {
2602   assert(_worker_cset_start_region != NULL, "sanity");
2603   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2604 
2605   for (uint i = 0; i < ParallelGCThreads; i++) {
2606     _worker_cset_start_region[i] = NULL;
2607     _worker_cset_start_region_time_stamp[i] = 0;
2608   }
2609 }
2610 
2611 // Given the id of a worker, obtain or calculate a suitable
2612 // starting region for iterating over the current collection set.
2613 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2614   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2615 
2616   HeapRegion* result = NULL;
2617   unsigned gc_time_stamp = get_gc_time_stamp();
2618 
2619   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2620     // Cached starting region for current worker was set
2621     // during the current pause - so it's valid.
2622     // Note: the cached starting heap region may be NULL
2623     // (when the collection set is empty).
2624     result = _worker_cset_start_region[worker_i];
2625     assert(result == NULL || result->in_collection_set(), "sanity");
2626     return result;
2627   }
2628 
2629   // The cached entry was not valid so let's calculate
2630   // a suitable starting heap region for this worker.
2631 
2632   // We want the parallel threads to start their collection
2633   // set iteration at different collection set regions to
2634   // avoid contention.
2635   // If we have:
2636   //          n collection set regions
2637   //          p threads
2638   // Then thread t will start at region floor ((t * n) / p)
2639 
2640   result = g1_policy()->collection_set();
2641   uint cs_size = g1_policy()->cset_region_length();
2642   uint active_workers = workers()->active_workers();
2643 
2644   uint end_ind   = (cs_size * worker_i) / active_workers;
2645   uint start_ind = 0;
2646 
2647   if (worker_i > 0 &&
2648       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2649     // Previous workers starting region is valid
2650     // so let's iterate from there
2651     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2652     result = _worker_cset_start_region[worker_i - 1];
2653   }
2654 
2655   for (uint i = start_ind; i < end_ind; i++) {
2656     result = result->next_in_collection_set();
2657   }
2658 
2659   // Note: the calculated starting heap region may be NULL
2660   // (when the collection set is empty).
2661   assert(result == NULL || result->in_collection_set(), "sanity");
2662   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2663          "should be updated only once per pause");
2664   _worker_cset_start_region[worker_i] = result;
2665   OrderAccess::storestore();
2666   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2667   return result;
2668 }
2669 
2670 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2671   HeapRegion* r = g1_policy()->collection_set();
2672   while (r != NULL) {
2673     HeapRegion* next = r->next_in_collection_set();
2674     if (cl->doHeapRegion(r)) {
2675       cl->incomplete();
2676       return;
2677     }
2678     r = next;
2679   }
2680 }
2681 
2682 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2683                                                   HeapRegionClosure *cl) {
2684   if (r == NULL) {
2685     // The CSet is empty so there's nothing to do.
2686     return;
2687   }
2688 
2689   assert(r->in_collection_set(),
2690          "Start region must be a member of the collection set.");
2691   HeapRegion* cur = r;
2692   while (cur != NULL) {
2693     HeapRegion* next = cur->next_in_collection_set();
2694     if (cl->doHeapRegion(cur) && false) {
2695       cl->incomplete();
2696       return;
2697     }
2698     cur = next;
2699   }
2700   cur = g1_policy()->collection_set();
2701   while (cur != r) {
2702     HeapRegion* next = cur->next_in_collection_set();
2703     if (cl->doHeapRegion(cur) && false) {
2704       cl->incomplete();
2705       return;
2706     }
2707     cur = next;
2708   }
2709 }
2710 
2711 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2712   HeapRegion* result = _hrm.next_region_in_heap(from);
2713   while (result != NULL && result->is_pinned()) {
2714     result = _hrm.next_region_in_heap(result);
2715   }
2716   return result;
2717 }
2718 
2719 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2720   HeapRegion* hr = heap_region_containing(addr);
2721   return hr->block_start(addr);
2722 }
2723 
2724 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2725   HeapRegion* hr = heap_region_containing(addr);
2726   return hr->block_size(addr);
2727 }
2728 
2729 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2730   HeapRegion* hr = heap_region_containing(addr);
2731   return hr->block_is_obj(addr);
2732 }
2733 
2734 bool G1CollectedHeap::supports_tlab_allocation() const {
2735   return true;
2736 }
2737 
2738 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2739   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2740 }
2741 
2742 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2743   return young_list()->eden_used_bytes();
2744 }
2745 
2746 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2747 // must be equal to the humongous object limit.
2748 size_t G1CollectedHeap::max_tlab_size() const {
2749   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2750 }
2751 
2752 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2753   AllocationContext_t context = AllocationContext::current();
2754   return _allocator->unsafe_max_tlab_alloc(context);
2755 }
2756 
2757 size_t G1CollectedHeap::max_capacity() const {
2758   return _hrm.reserved().byte_size();
2759 }
2760 
2761 jlong G1CollectedHeap::millis_since_last_gc() {
2762   // assert(false, "NYI");
2763   return 0;
2764 }
2765 
2766 void G1CollectedHeap::prepare_for_verify() {
2767   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2768     ensure_parsability(false);
2769   }
2770   g1_rem_set()->prepare_for_verify();
2771 }
2772 
2773 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2774                                               VerifyOption vo) {
2775   switch (vo) {
2776   case VerifyOption_G1UsePrevMarking:
2777     return hr->obj_allocated_since_prev_marking(obj);
2778   case VerifyOption_G1UseNextMarking:
2779     return hr->obj_allocated_since_next_marking(obj);
2780   case VerifyOption_G1UseMarkWord:
2781     return false;
2782   default:
2783     ShouldNotReachHere();
2784   }
2785   return false; // keep some compilers happy
2786 }
2787 
2788 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2789   switch (vo) {
2790   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2791   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2792   case VerifyOption_G1UseMarkWord:    return NULL;
2793   default:                            ShouldNotReachHere();
2794   }
2795   return NULL; // keep some compilers happy
2796 }
2797 
2798 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2799   switch (vo) {
2800   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2801   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2802   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2803   default:                            ShouldNotReachHere();
2804   }
2805   return false; // keep some compilers happy
2806 }
2807 
2808 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2809   switch (vo) {
2810   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2811   case VerifyOption_G1UseNextMarking: return "NTAMS";
2812   case VerifyOption_G1UseMarkWord:    return "NONE";
2813   default:                            ShouldNotReachHere();
2814   }
2815   return NULL; // keep some compilers happy
2816 }
2817 
2818 class VerifyRootsClosure: public OopClosure {
2819 private:
2820   G1CollectedHeap* _g1h;
2821   VerifyOption     _vo;
2822   bool             _failures;
2823 public:
2824   // _vo == UsePrevMarking -> use "prev" marking information,
2825   // _vo == UseNextMarking -> use "next" marking information,
2826   // _vo == UseMarkWord    -> use mark word from object header.
2827   VerifyRootsClosure(VerifyOption vo) :
2828     _g1h(G1CollectedHeap::heap()),
2829     _vo(vo),
2830     _failures(false) { }
2831 
2832   bool failures() { return _failures; }
2833 
2834   template <class T> void do_oop_nv(T* p) {
2835     T heap_oop = oopDesc::load_heap_oop(p);
2836     if (!oopDesc::is_null(heap_oop)) {
2837       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2838       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2839         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2840                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2841         if (_vo == VerifyOption_G1UseMarkWord) {
2842           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2843         }
2844         obj->print_on(gclog_or_tty);
2845         _failures = true;
2846       }
2847     }
2848   }
2849 
2850   void do_oop(oop* p)       { do_oop_nv(p); }
2851   void do_oop(narrowOop* p) { do_oop_nv(p); }
2852 };
2853 
2854 class G1VerifyCodeRootOopClosure: public OopClosure {
2855   G1CollectedHeap* _g1h;
2856   OopClosure* _root_cl;
2857   nmethod* _nm;
2858   VerifyOption _vo;
2859   bool _failures;
2860 
2861   template <class T> void do_oop_work(T* p) {
2862     // First verify that this root is live
2863     _root_cl->do_oop(p);
2864 
2865     if (!G1VerifyHeapRegionCodeRoots) {
2866       // We're not verifying the code roots attached to heap region.
2867       return;
2868     }
2869 
2870     // Don't check the code roots during marking verification in a full GC
2871     if (_vo == VerifyOption_G1UseMarkWord) {
2872       return;
2873     }
2874 
2875     // Now verify that the current nmethod (which contains p) is
2876     // in the code root list of the heap region containing the
2877     // object referenced by p.
2878 
2879     T heap_oop = oopDesc::load_heap_oop(p);
2880     if (!oopDesc::is_null(heap_oop)) {
2881       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2882 
2883       // Now fetch the region containing the object
2884       HeapRegion* hr = _g1h->heap_region_containing(obj);
2885       HeapRegionRemSet* hrrs = hr->rem_set();
2886       // Verify that the strong code root list for this region
2887       // contains the nmethod
2888       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2889         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2890                                "from nmethod " PTR_FORMAT " not in strong "
2891                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2892                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2893         _failures = true;
2894       }
2895     }
2896   }
2897 
2898 public:
2899   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2900     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2901 
2902   void do_oop(oop* p) { do_oop_work(p); }
2903   void do_oop(narrowOop* p) { do_oop_work(p); }
2904 
2905   void set_nmethod(nmethod* nm) { _nm = nm; }
2906   bool failures() { return _failures; }
2907 };
2908 
2909 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2910   G1VerifyCodeRootOopClosure* _oop_cl;
2911 
2912 public:
2913   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2914     _oop_cl(oop_cl) {}
2915 
2916   void do_code_blob(CodeBlob* cb) {
2917     nmethod* nm = cb->as_nmethod_or_null();
2918     if (nm != NULL) {
2919       _oop_cl->set_nmethod(nm);
2920       nm->oops_do(_oop_cl);
2921     }
2922   }
2923 };
2924 
2925 class YoungRefCounterClosure : public OopClosure {
2926   G1CollectedHeap* _g1h;
2927   int              _count;
2928  public:
2929   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2930   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2931   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2932 
2933   int count() { return _count; }
2934   void reset_count() { _count = 0; };
2935 };
2936 
2937 class VerifyKlassClosure: public KlassClosure {
2938   YoungRefCounterClosure _young_ref_counter_closure;
2939   OopClosure *_oop_closure;
2940  public:
2941   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2942   void do_klass(Klass* k) {
2943     k->oops_do(_oop_closure);
2944 
2945     _young_ref_counter_closure.reset_count();
2946     k->oops_do(&_young_ref_counter_closure);
2947     if (_young_ref_counter_closure.count() > 0) {
2948       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2949     }
2950   }
2951 };
2952 
2953 class VerifyLivenessOopClosure: public OopClosure {
2954   G1CollectedHeap* _g1h;
2955   VerifyOption _vo;
2956 public:
2957   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2958     _g1h(g1h), _vo(vo)
2959   { }
2960   void do_oop(narrowOop *p) { do_oop_work(p); }
2961   void do_oop(      oop *p) { do_oop_work(p); }
2962 
2963   template <class T> void do_oop_work(T *p) {
2964     oop obj = oopDesc::load_decode_heap_oop(p);
2965     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2966               "Dead object referenced by a not dead object");
2967   }
2968 };
2969 
2970 class VerifyObjsInRegionClosure: public ObjectClosure {
2971 private:
2972   G1CollectedHeap* _g1h;
2973   size_t _live_bytes;
2974   HeapRegion *_hr;
2975   VerifyOption _vo;
2976 public:
2977   // _vo == UsePrevMarking -> use "prev" marking information,
2978   // _vo == UseNextMarking -> use "next" marking information,
2979   // _vo == UseMarkWord    -> use mark word from object header.
2980   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2981     : _live_bytes(0), _hr(hr), _vo(vo) {
2982     _g1h = G1CollectedHeap::heap();
2983   }
2984   void do_object(oop o) {
2985     VerifyLivenessOopClosure isLive(_g1h, _vo);
2986     assert(o != NULL, "Huh?");
2987     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2988       // If the object is alive according to the mark word,
2989       // then verify that the marking information agrees.
2990       // Note we can't verify the contra-positive of the
2991       // above: if the object is dead (according to the mark
2992       // word), it may not be marked, or may have been marked
2993       // but has since became dead, or may have been allocated
2994       // since the last marking.
2995       if (_vo == VerifyOption_G1UseMarkWord) {
2996         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2997       }
2998 
2999       o->oop_iterate_no_header(&isLive);
3000       if (!_hr->obj_allocated_since_prev_marking(o)) {
3001         size_t obj_size = o->size();    // Make sure we don't overflow
3002         _live_bytes += (obj_size * HeapWordSize);
3003       }
3004     }
3005   }
3006   size_t live_bytes() { return _live_bytes; }
3007 };
3008 
3009 class VerifyArchiveOopClosure: public OopClosure {
3010 public:
3011   VerifyArchiveOopClosure(HeapRegion *hr) { }
3012   void do_oop(narrowOop *p) { do_oop_work(p); }
3013   void do_oop(      oop *p) { do_oop_work(p); }
3014 
3015   template <class T> void do_oop_work(T *p) {
3016     oop obj = oopDesc::load_decode_heap_oop(p);
3017     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3018               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3019               p2i(p), p2i(obj));
3020   }
3021 };
3022 
3023 class VerifyArchiveRegionClosure: public ObjectClosure {
3024 public:
3025   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3026   // Verify that all object pointers are to archive regions.
3027   void do_object(oop o) {
3028     VerifyArchiveOopClosure checkOop(NULL);
3029     assert(o != NULL, "Should not be here for NULL oops");
3030     o->oop_iterate_no_header(&checkOop);
3031   }
3032 };
3033 
3034 class VerifyRegionClosure: public HeapRegionClosure {
3035 private:
3036   bool             _par;
3037   VerifyOption     _vo;
3038   bool             _failures;
3039 public:
3040   // _vo == UsePrevMarking -> use "prev" marking information,
3041   // _vo == UseNextMarking -> use "next" marking information,
3042   // _vo == UseMarkWord    -> use mark word from object header.
3043   VerifyRegionClosure(bool par, VerifyOption vo)
3044     : _par(par),
3045       _vo(vo),
3046       _failures(false) {}
3047 
3048   bool failures() {
3049     return _failures;
3050   }
3051 
3052   bool doHeapRegion(HeapRegion* r) {
3053     // For archive regions, verify there are no heap pointers to
3054     // non-pinned regions. For all others, verify liveness info.
3055     if (r->is_archive()) {
3056       VerifyArchiveRegionClosure verify_oop_pointers(r);
3057       r->object_iterate(&verify_oop_pointers);
3058       return true;
3059     }
3060     if (!r->is_continues_humongous()) {
3061       bool failures = false;
3062       r->verify(_vo, &failures);
3063       if (failures) {
3064         _failures = true;
3065       } else {
3066         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3067         r->object_iterate(&not_dead_yet_cl);
3068         if (_vo != VerifyOption_G1UseNextMarking) {
3069           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3070             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3071                                    "max_live_bytes " SIZE_FORMAT " "
3072                                    "< calculated " SIZE_FORMAT,
3073                                    p2i(r->bottom()), p2i(r->end()),
3074                                    r->max_live_bytes(),
3075                                  not_dead_yet_cl.live_bytes());
3076             _failures = true;
3077           }
3078         } else {
3079           // When vo == UseNextMarking we cannot currently do a sanity
3080           // check on the live bytes as the calculation has not been
3081           // finalized yet.
3082         }
3083       }
3084     }
3085     return false; // stop the region iteration if we hit a failure
3086   }
3087 };
3088 
3089 // This is the task used for parallel verification of the heap regions
3090 
3091 class G1ParVerifyTask: public AbstractGangTask {
3092 private:
3093   G1CollectedHeap*  _g1h;
3094   VerifyOption      _vo;
3095   bool              _failures;
3096   HeapRegionClaimer _hrclaimer;
3097 
3098 public:
3099   // _vo == UsePrevMarking -> use "prev" marking information,
3100   // _vo == UseNextMarking -> use "next" marking information,
3101   // _vo == UseMarkWord    -> use mark word from object header.
3102   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3103       AbstractGangTask("Parallel verify task"),
3104       _g1h(g1h),
3105       _vo(vo),
3106       _failures(false),
3107       _hrclaimer(g1h->workers()->active_workers()) {}
3108 
3109   bool failures() {
3110     return _failures;
3111   }
3112 
3113   void work(uint worker_id) {
3114     HandleMark hm;
3115     VerifyRegionClosure blk(true, _vo);
3116     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3117     if (blk.failures()) {
3118       _failures = true;
3119     }
3120   }
3121 };
3122 
3123 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3124   if (SafepointSynchronize::is_at_safepoint()) {
3125     assert(Thread::current()->is_VM_thread(),
3126            "Expected to be executed serially by the VM thread at this point");
3127 
3128     if (!silent) { gclog_or_tty->print("Roots "); }
3129     VerifyRootsClosure rootsCl(vo);
3130     VerifyKlassClosure klassCl(this, &rootsCl);
3131     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3132 
3133     // We apply the relevant closures to all the oops in the
3134     // system dictionary, class loader data graph, the string table
3135     // and the nmethods in the code cache.
3136     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3137     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3138 
3139     {
3140       G1RootProcessor root_processor(this, 1);
3141       root_processor.process_all_roots(&rootsCl,
3142                                        &cldCl,
3143                                        &blobsCl);
3144     }
3145 
3146     bool failures = rootsCl.failures() || codeRootsCl.failures();
3147 
3148     if (vo != VerifyOption_G1UseMarkWord) {
3149       // If we're verifying during a full GC then the region sets
3150       // will have been torn down at the start of the GC. Therefore
3151       // verifying the region sets will fail. So we only verify
3152       // the region sets when not in a full GC.
3153       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3154       verify_region_sets();
3155     }
3156 
3157     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3158     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3159 
3160       G1ParVerifyTask task(this, vo);
3161       workers()->run_task(&task);
3162       if (task.failures()) {
3163         failures = true;
3164       }
3165 
3166     } else {
3167       VerifyRegionClosure blk(false, vo);
3168       heap_region_iterate(&blk);
3169       if (blk.failures()) {
3170         failures = true;
3171       }
3172     }
3173 
3174     if (G1StringDedup::is_enabled()) {
3175       if (!silent) gclog_or_tty->print("StrDedup ");
3176       G1StringDedup::verify();
3177     }
3178 
3179     if (failures) {
3180       gclog_or_tty->print_cr("Heap:");
3181       // It helps to have the per-region information in the output to
3182       // help us track down what went wrong. This is why we call
3183       // print_extended_on() instead of print_on().
3184       print_extended_on(gclog_or_tty);
3185       gclog_or_tty->cr();
3186       gclog_or_tty->flush();
3187     }
3188     guarantee(!failures, "there should not have been any failures");
3189   } else {
3190     if (!silent) {
3191       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3192       if (G1StringDedup::is_enabled()) {
3193         gclog_or_tty->print(", StrDedup");
3194       }
3195       gclog_or_tty->print(") ");
3196     }
3197   }
3198 }
3199 
3200 void G1CollectedHeap::verify(bool silent) {
3201   verify(silent, VerifyOption_G1UsePrevMarking);
3202 }
3203 
3204 double G1CollectedHeap::verify(bool guard, const char* msg) {
3205   double verify_time_ms = 0.0;
3206 
3207   if (guard && total_collections() >= VerifyGCStartAt) {
3208     double verify_start = os::elapsedTime();
3209     HandleMark hm;  // Discard invalid handles created during verification
3210     prepare_for_verify();
3211     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3212     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3213   }
3214 
3215   return verify_time_ms;
3216 }
3217 
3218 void G1CollectedHeap::verify_before_gc() {
3219   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3220   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3221 }
3222 
3223 void G1CollectedHeap::verify_after_gc() {
3224   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3225   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3226 }
3227 
3228 class PrintRegionClosure: public HeapRegionClosure {
3229   outputStream* _st;
3230 public:
3231   PrintRegionClosure(outputStream* st) : _st(st) {}
3232   bool doHeapRegion(HeapRegion* r) {
3233     r->print_on(_st);
3234     return false;
3235   }
3236 };
3237 
3238 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3239                                        const HeapRegion* hr,
3240                                        const VerifyOption vo) const {
3241   switch (vo) {
3242   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3243   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3244   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3245   default:                            ShouldNotReachHere();
3246   }
3247   return false; // keep some compilers happy
3248 }
3249 
3250 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3251                                        const VerifyOption vo) const {
3252   switch (vo) {
3253   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3254   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3255   case VerifyOption_G1UseMarkWord: {
3256     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3257     return !obj->is_gc_marked() && !hr->is_archive();
3258   }
3259   default:                            ShouldNotReachHere();
3260   }
3261   return false; // keep some compilers happy
3262 }
3263 
3264 void G1CollectedHeap::print_on(outputStream* st) const {
3265   st->print(" %-20s", "garbage-first heap");
3266   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3267             capacity()/K, used_unlocked()/K);
3268   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3269             p2i(_hrm.reserved().start()),
3270             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3271             p2i(_hrm.reserved().end()));
3272   st->cr();
3273   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3274   uint young_regions = _young_list->length();
3275   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3276             (size_t) young_regions * HeapRegion::GrainBytes / K);
3277   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3278   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3279             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3280   st->cr();
3281   MetaspaceAux::print_on(st);
3282 }
3283 
3284 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3285   print_on(st);
3286 
3287   // Print the per-region information.
3288   st->cr();
3289   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3290                "HS=humongous(starts), HC=humongous(continues), "
3291                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3292                "PTAMS=previous top-at-mark-start, "
3293                "NTAMS=next top-at-mark-start)");
3294   PrintRegionClosure blk(st);
3295   heap_region_iterate(&blk);
3296 }
3297 
3298 void G1CollectedHeap::print_on_error(outputStream* st) const {
3299   this->CollectedHeap::print_on_error(st);
3300 
3301   if (_cm != NULL) {
3302     st->cr();
3303     _cm->print_on_error(st);
3304   }
3305 }
3306 
3307 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3308   workers()->print_worker_threads_on(st);
3309   _cmThread->print_on(st);
3310   st->cr();
3311   _cm->print_worker_threads_on(st);
3312   _cg1r->print_worker_threads_on(st);
3313   if (G1StringDedup::is_enabled()) {
3314     G1StringDedup::print_worker_threads_on(st);
3315   }
3316 }
3317 
3318 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3319   workers()->threads_do(tc);
3320   tc->do_thread(_cmThread);
3321   _cg1r->threads_do(tc);
3322   if (G1StringDedup::is_enabled()) {
3323     G1StringDedup::threads_do(tc);
3324   }
3325 }
3326 
3327 void G1CollectedHeap::print_tracing_info() const {
3328   // We'll overload this to mean "trace GC pause statistics."
3329   if (TraceYoungGenTime || TraceOldGenTime) {
3330     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3331     // to that.
3332     g1_policy()->print_tracing_info();
3333   }
3334   if (G1SummarizeRSetStats) {
3335     g1_rem_set()->print_summary_info();
3336   }
3337   if (G1SummarizeConcMark) {
3338     concurrent_mark()->print_summary_info();
3339   }
3340   g1_policy()->print_yg_surv_rate_info();
3341 }
3342 
3343 #ifndef PRODUCT
3344 // Helpful for debugging RSet issues.
3345 
3346 class PrintRSetsClosure : public HeapRegionClosure {
3347 private:
3348   const char* _msg;
3349   size_t _occupied_sum;
3350 
3351 public:
3352   bool doHeapRegion(HeapRegion* r) {
3353     HeapRegionRemSet* hrrs = r->rem_set();
3354     size_t occupied = hrrs->occupied();
3355     _occupied_sum += occupied;
3356 
3357     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3358                            HR_FORMAT_PARAMS(r));
3359     if (occupied == 0) {
3360       gclog_or_tty->print_cr("  RSet is empty");
3361     } else {
3362       hrrs->print();
3363     }
3364     gclog_or_tty->print_cr("----------");
3365     return false;
3366   }
3367 
3368   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3369     gclog_or_tty->cr();
3370     gclog_or_tty->print_cr("========================================");
3371     gclog_or_tty->print_cr("%s", msg);
3372     gclog_or_tty->cr();
3373   }
3374 
3375   ~PrintRSetsClosure() {
3376     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3377     gclog_or_tty->print_cr("========================================");
3378     gclog_or_tty->cr();
3379   }
3380 };
3381 
3382 void G1CollectedHeap::print_cset_rsets() {
3383   PrintRSetsClosure cl("Printing CSet RSets");
3384   collection_set_iterate(&cl);
3385 }
3386 
3387 void G1CollectedHeap::print_all_rsets() {
3388   PrintRSetsClosure cl("Printing All RSets");;
3389   heap_region_iterate(&cl);
3390 }
3391 #endif // PRODUCT
3392 
3393 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3394   YoungList* young_list = heap()->young_list();
3395 
3396   size_t eden_used_bytes = young_list->eden_used_bytes();
3397   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3398 
3399   size_t eden_capacity_bytes =
3400     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3401 
3402   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3403   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3404 }
3405 
3406 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3407   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3408                        stats->unused(), stats->used(), stats->region_end_waste(),
3409                        stats->regions_filled(), stats->direct_allocated(),
3410                        stats->failure_used(), stats->failure_waste());
3411 }
3412 
3413 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3414   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3415   gc_tracer->report_gc_heap_summary(when, heap_summary);
3416 
3417   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3418   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3419 }
3420 
3421 
3422 G1CollectedHeap* G1CollectedHeap::heap() {
3423   CollectedHeap* heap = Universe::heap();
3424   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3425   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3426   return (G1CollectedHeap*)heap;
3427 }
3428 
3429 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3430   // always_do_update_barrier = false;
3431   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3432   // Fill TLAB's and such
3433   accumulate_statistics_all_tlabs();
3434   ensure_parsability(true);
3435 
3436   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3437       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3438     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3439   }
3440 }
3441 
3442 void G1CollectedHeap::gc_epilogue(bool full) {
3443 
3444   if (G1SummarizeRSetStats &&
3445       (G1SummarizeRSetStatsPeriod > 0) &&
3446       // we are at the end of the GC. Total collections has already been increased.
3447       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3448     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3449   }
3450 
3451   // FIXME: what is this about?
3452   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3453   // is set.
3454 #if defined(COMPILER2) || INCLUDE_JVMCI
3455   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3456 #endif
3457   // always_do_update_barrier = true;
3458 
3459   resize_all_tlabs();
3460   allocation_context_stats().update(full);
3461 
3462   // We have just completed a GC. Update the soft reference
3463   // policy with the new heap occupancy
3464   Universe::update_heap_info_at_gc();
3465 }
3466 
3467 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3468                                                uint gc_count_before,
3469                                                bool* succeeded,
3470                                                GCCause::Cause gc_cause) {
3471   assert_heap_not_locked_and_not_at_safepoint();
3472   g1_policy()->record_stop_world_start();
3473   VM_G1IncCollectionPause op(gc_count_before,
3474                              word_size,
3475                              false, /* should_initiate_conc_mark */
3476                              g1_policy()->max_pause_time_ms(),
3477                              gc_cause);
3478 
3479   op.set_allocation_context(AllocationContext::current());
3480   VMThread::execute(&op);
3481 
3482   HeapWord* result = op.result();
3483   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3484   assert(result == NULL || ret_succeeded,
3485          "the result should be NULL if the VM did not succeed");
3486   *succeeded = ret_succeeded;
3487 
3488   assert_heap_not_locked();
3489   return result;
3490 }
3491 
3492 void
3493 G1CollectedHeap::doConcurrentMark() {
3494   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3495   if (!_cmThread->in_progress()) {
3496     _cmThread->set_started();
3497     CGC_lock->notify();
3498   }
3499 }
3500 
3501 size_t G1CollectedHeap::pending_card_num() {
3502   size_t extra_cards = 0;
3503   JavaThread *curr = Threads::first();
3504   while (curr != NULL) {
3505     DirtyCardQueue& dcq = curr->dirty_card_queue();
3506     extra_cards += dcq.size();
3507     curr = curr->next();
3508   }
3509   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3510   size_t buffer_size = dcqs.buffer_size();
3511   size_t buffer_num = dcqs.completed_buffers_num();
3512 
3513   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3514   // in bytes - not the number of 'entries'. We need to convert
3515   // into a number of cards.
3516   return (buffer_size * buffer_num + extra_cards) / oopSize;
3517 }
3518 
3519 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3520  private:
3521   size_t _total_humongous;
3522   size_t _candidate_humongous;
3523 
3524   DirtyCardQueue _dcq;
3525 
3526   // We don't nominate objects with many remembered set entries, on
3527   // the assumption that such objects are likely still live.
3528   bool is_remset_small(HeapRegion* region) const {
3529     HeapRegionRemSet* const rset = region->rem_set();
3530     return G1EagerReclaimHumongousObjectsWithStaleRefs
3531       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3532       : rset->is_empty();
3533   }
3534 
3535   bool is_typeArray_region(HeapRegion* region) const {
3536     return oop(region->bottom())->is_typeArray();
3537   }
3538 
3539   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3540     assert(region->is_starts_humongous(), "Must start a humongous object");
3541 
3542     // Candidate selection must satisfy the following constraints
3543     // while concurrent marking is in progress:
3544     //
3545     // * In order to maintain SATB invariants, an object must not be
3546     // reclaimed if it was allocated before the start of marking and
3547     // has not had its references scanned.  Such an object must have
3548     // its references (including type metadata) scanned to ensure no
3549     // live objects are missed by the marking process.  Objects
3550     // allocated after the start of concurrent marking don't need to
3551     // be scanned.
3552     //
3553     // * An object must not be reclaimed if it is on the concurrent
3554     // mark stack.  Objects allocated after the start of concurrent
3555     // marking are never pushed on the mark stack.
3556     //
3557     // Nominating only objects allocated after the start of concurrent
3558     // marking is sufficient to meet both constraints.  This may miss
3559     // some objects that satisfy the constraints, but the marking data
3560     // structures don't support efficiently performing the needed
3561     // additional tests or scrubbing of the mark stack.
3562     //
3563     // However, we presently only nominate is_typeArray() objects.
3564     // A humongous object containing references induces remembered
3565     // set entries on other regions.  In order to reclaim such an
3566     // object, those remembered sets would need to be cleaned up.
3567     //
3568     // We also treat is_typeArray() objects specially, allowing them
3569     // to be reclaimed even if allocated before the start of
3570     // concurrent mark.  For this we rely on mark stack insertion to
3571     // exclude is_typeArray() objects, preventing reclaiming an object
3572     // that is in the mark stack.  We also rely on the metadata for
3573     // such objects to be built-in and so ensured to be kept live.
3574     // Frequent allocation and drop of large binary blobs is an
3575     // important use case for eager reclaim, and this special handling
3576     // may reduce needed headroom.
3577 
3578     return is_typeArray_region(region) && is_remset_small(region);
3579   }
3580 
3581  public:
3582   RegisterHumongousWithInCSetFastTestClosure()
3583   : _total_humongous(0),
3584     _candidate_humongous(0),
3585     _dcq(&JavaThread::dirty_card_queue_set()) {
3586   }
3587 
3588   virtual bool doHeapRegion(HeapRegion* r) {
3589     if (!r->is_starts_humongous()) {
3590       return false;
3591     }
3592     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3593 
3594     bool is_candidate = humongous_region_is_candidate(g1h, r);
3595     uint rindex = r->hrm_index();
3596     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3597     if (is_candidate) {
3598       _candidate_humongous++;
3599       g1h->register_humongous_region_with_cset(rindex);
3600       // Is_candidate already filters out humongous object with large remembered sets.
3601       // If we have a humongous object with a few remembered sets, we simply flush these
3602       // remembered set entries into the DCQS. That will result in automatic
3603       // re-evaluation of their remembered set entries during the following evacuation
3604       // phase.
3605       if (!r->rem_set()->is_empty()) {
3606         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3607                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3608         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3609         HeapRegionRemSetIterator hrrs(r->rem_set());
3610         size_t card_index;
3611         while (hrrs.has_next(card_index)) {
3612           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3613           // The remembered set might contain references to already freed
3614           // regions. Filter out such entries to avoid failing card table
3615           // verification.
3616           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3617             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3618               *card_ptr = CardTableModRefBS::dirty_card_val();
3619               _dcq.enqueue(card_ptr);
3620             }
3621           }
3622         }
3623         r->rem_set()->clear_locked();
3624       }
3625       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3626     }
3627     _total_humongous++;
3628 
3629     return false;
3630   }
3631 
3632   size_t total_humongous() const { return _total_humongous; }
3633   size_t candidate_humongous() const { return _candidate_humongous; }
3634 
3635   void flush_rem_set_entries() { _dcq.flush(); }
3636 };
3637 
3638 void G1CollectedHeap::register_humongous_regions_with_cset() {
3639   if (!G1EagerReclaimHumongousObjects) {
3640     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3641     return;
3642   }
3643   double time = os::elapsed_counter();
3644 
3645   // Collect reclaim candidate information and register candidates with cset.
3646   RegisterHumongousWithInCSetFastTestClosure cl;
3647   heap_region_iterate(&cl);
3648 
3649   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3650   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3651                                                                   cl.total_humongous(),
3652                                                                   cl.candidate_humongous());
3653   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3654 
3655   // Finally flush all remembered set entries to re-check into the global DCQS.
3656   cl.flush_rem_set_entries();
3657 }
3658 
3659 #ifdef ASSERT
3660 class VerifyCSetClosure: public HeapRegionClosure {
3661 public:
3662   bool doHeapRegion(HeapRegion* hr) {
3663     // Here we check that the CSet region's RSet is ready for parallel
3664     // iteration. The fields that we'll verify are only manipulated
3665     // when the region is part of a CSet and is collected. Afterwards,
3666     // we reset these fields when we clear the region's RSet (when the
3667     // region is freed) so they are ready when the region is
3668     // re-allocated. The only exception to this is if there's an
3669     // evacuation failure and instead of freeing the region we leave
3670     // it in the heap. In that case, we reset these fields during
3671     // evacuation failure handling.
3672     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3673 
3674     // Here's a good place to add any other checks we'd like to
3675     // perform on CSet regions.
3676     return false;
3677   }
3678 };
3679 #endif // ASSERT
3680 
3681 uint G1CollectedHeap::num_task_queues() const {
3682   return _task_queues->size();
3683 }
3684 
3685 #if TASKQUEUE_STATS
3686 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3687   st->print_raw_cr("GC Task Stats");
3688   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3689   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3690 }
3691 
3692 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3693   print_taskqueue_stats_hdr(st);
3694 
3695   TaskQueueStats totals;
3696   const uint n = num_task_queues();
3697   for (uint i = 0; i < n; ++i) {
3698     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3699     totals += task_queue(i)->stats;
3700   }
3701   st->print_raw("tot "); totals.print(st); st->cr();
3702 
3703   DEBUG_ONLY(totals.verify());
3704 }
3705 
3706 void G1CollectedHeap::reset_taskqueue_stats() {
3707   const uint n = num_task_queues();
3708   for (uint i = 0; i < n; ++i) {
3709     task_queue(i)->stats.reset();
3710   }
3711 }
3712 #endif // TASKQUEUE_STATS
3713 
3714 void G1CollectedHeap::log_gc_header() {
3715   if (!G1Log::fine()) {
3716     return;
3717   }
3718 
3719   gclog_or_tty->gclog_stamp();
3720 
3721   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3722     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3723     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3724 
3725   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3726 }
3727 
3728 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3729   if (!G1Log::fine()) {
3730     return;
3731   }
3732 
3733   if (G1Log::finer()) {
3734     if (evacuation_failed()) {
3735       gclog_or_tty->print(" (to-space exhausted)");
3736     }
3737     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3738     g1_policy()->print_phases(pause_time_sec);
3739     g1_policy()->print_detailed_heap_transition();
3740   } else {
3741     if (evacuation_failed()) {
3742       gclog_or_tty->print("--");
3743     }
3744     g1_policy()->print_heap_transition();
3745     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3746   }
3747   gclog_or_tty->flush();
3748 }
3749 
3750 void G1CollectedHeap::wait_for_root_region_scanning() {
3751   double scan_wait_start = os::elapsedTime();
3752   // We have to wait until the CM threads finish scanning the
3753   // root regions as it's the only way to ensure that all the
3754   // objects on them have been correctly scanned before we start
3755   // moving them during the GC.
3756   bool waited = _cm->root_regions()->wait_until_scan_finished();
3757   double wait_time_ms = 0.0;
3758   if (waited) {
3759     double scan_wait_end = os::elapsedTime();
3760     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3761   }
3762   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3763 }
3764 
3765 bool
3766 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3767   assert_at_safepoint(true /* should_be_vm_thread */);
3768   guarantee(!is_gc_active(), "collection is not reentrant");
3769 
3770   if (GC_locker::check_active_before_gc()) {
3771     return false;
3772   }
3773 
3774   _gc_timer_stw->register_gc_start();
3775 
3776   GCIdMark gc_id_mark;
3777   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3778 
3779   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3780   ResourceMark rm;
3781 
3782   wait_for_root_region_scanning();
3783 
3784   G1Log::update_level();
3785   print_heap_before_gc();
3786   trace_heap_before_gc(_gc_tracer_stw);
3787 
3788   verify_region_sets_optional();
3789   verify_dirty_young_regions();
3790 
3791   // This call will decide whether this pause is an initial-mark
3792   // pause. If it is, during_initial_mark_pause() will return true
3793   // for the duration of this pause.
3794   g1_policy()->decide_on_conc_mark_initiation();
3795 
3796   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3797   assert(!collector_state()->during_initial_mark_pause() ||
3798           collector_state()->gcs_are_young(), "sanity");
3799 
3800   // We also do not allow mixed GCs during marking.
3801   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3802 
3803   // Record whether this pause is an initial mark. When the current
3804   // thread has completed its logging output and it's safe to signal
3805   // the CM thread, the flag's value in the policy has been reset.
3806   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3807 
3808   // Inner scope for scope based logging, timers, and stats collection
3809   {
3810     EvacuationInfo evacuation_info;
3811 
3812     if (collector_state()->during_initial_mark_pause()) {
3813       // We are about to start a marking cycle, so we increment the
3814       // full collection counter.
3815       increment_old_marking_cycles_started();
3816       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3817     }
3818 
3819     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3820 
3821     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3822 
3823     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3824                                                                   workers()->active_workers(),
3825                                                                   Threads::number_of_non_daemon_threads());
3826     workers()->set_active_workers(active_workers);
3827 
3828     double pause_start_sec = os::elapsedTime();
3829     g1_policy()->note_gc_start(active_workers);
3830     log_gc_header();
3831 
3832     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3833     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3834 
3835     // If the secondary_free_list is not empty, append it to the
3836     // free_list. No need to wait for the cleanup operation to finish;
3837     // the region allocation code will check the secondary_free_list
3838     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3839     // set, skip this step so that the region allocation code has to
3840     // get entries from the secondary_free_list.
3841     if (!G1StressConcRegionFreeing) {
3842       append_secondary_free_list_if_not_empty_with_lock();
3843     }
3844 
3845     assert(check_young_list_well_formed(), "young list should be well formed");
3846 
3847     // Don't dynamically change the number of GC threads this early.  A value of
3848     // 0 is used to indicate serial work.  When parallel work is done,
3849     // it will be set.
3850 
3851     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3852       IsGCActiveMark x;
3853 
3854       gc_prologue(false);
3855       increment_total_collections(false /* full gc */);
3856       increment_gc_time_stamp();
3857 
3858       verify_before_gc();
3859 
3860       check_bitmaps("GC Start");
3861 
3862 #if defined(COMPILER2) || INCLUDE_JVMCI
3863       DerivedPointerTable::clear();
3864 #endif
3865 
3866       // Please see comment in g1CollectedHeap.hpp and
3867       // G1CollectedHeap::ref_processing_init() to see how
3868       // reference processing currently works in G1.
3869 
3870       // Enable discovery in the STW reference processor
3871       ref_processor_stw()->enable_discovery();
3872 
3873       {
3874         // We want to temporarily turn off discovery by the
3875         // CM ref processor, if necessary, and turn it back on
3876         // on again later if we do. Using a scoped
3877         // NoRefDiscovery object will do this.
3878         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3879 
3880         // Forget the current alloc region (we might even choose it to be part
3881         // of the collection set!).
3882         _allocator->release_mutator_alloc_region();
3883 
3884         // We should call this after we retire the mutator alloc
3885         // region(s) so that all the ALLOC / RETIRE events are generated
3886         // before the start GC event.
3887         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3888 
3889         // This timing is only used by the ergonomics to handle our pause target.
3890         // It is unclear why this should not include the full pause. We will
3891         // investigate this in CR 7178365.
3892         //
3893         // Preserving the old comment here if that helps the investigation:
3894         //
3895         // The elapsed time induced by the start time below deliberately elides
3896         // the possible verification above.
3897         double sample_start_time_sec = os::elapsedTime();
3898 
3899         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3900 
3901         if (collector_state()->during_initial_mark_pause()) {
3902           concurrent_mark()->checkpointRootsInitialPre();
3903         }
3904 
3905         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3906         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3907 
3908         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3909 
3910         register_humongous_regions_with_cset();
3911 
3912         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3913 
3914         _cm->note_start_of_gc();
3915         // We call this after finalize_cset() to
3916         // ensure that the CSet has been finalized.
3917         _cm->verify_no_cset_oops();
3918 
3919         if (_hr_printer.is_active()) {
3920           HeapRegion* hr = g1_policy()->collection_set();
3921           while (hr != NULL) {
3922             _hr_printer.cset(hr);
3923             hr = hr->next_in_collection_set();
3924           }
3925         }
3926 
3927 #ifdef ASSERT
3928         VerifyCSetClosure cl;
3929         collection_set_iterate(&cl);
3930 #endif // ASSERT
3931 
3932         // Initialize the GC alloc regions.
3933         _allocator->init_gc_alloc_regions(evacuation_info);
3934 
3935         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3936         pre_evacuate_collection_set();
3937 
3938         // Actually do the work...
3939         evacuate_collection_set(evacuation_info, &per_thread_states);
3940 
3941         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3942 
3943         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3944         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3945 
3946         eagerly_reclaim_humongous_regions();
3947 
3948         g1_policy()->clear_collection_set();
3949 
3950         // Start a new incremental collection set for the next pause.
3951         g1_policy()->start_incremental_cset_building();
3952 
3953         clear_cset_fast_test();
3954 
3955         _young_list->reset_sampled_info();
3956 
3957         // Don't check the whole heap at this point as the
3958         // GC alloc regions from this pause have been tagged
3959         // as survivors and moved on to the survivor list.
3960         // Survivor regions will fail the !is_young() check.
3961         assert(check_young_list_empty(false /* check_heap */),
3962           "young list should be empty");
3963 
3964         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3965                                              _young_list->first_survivor_region(),
3966                                              _young_list->last_survivor_region());
3967 
3968         _young_list->reset_auxilary_lists();
3969 
3970         if (evacuation_failed()) {
3971           set_used(recalculate_used());
3972           if (_archive_allocator != NULL) {
3973             _archive_allocator->clear_used();
3974           }
3975           for (uint i = 0; i < ParallelGCThreads; i++) {
3976             if (_evacuation_failed_info_array[i].has_failed()) {
3977               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3978             }
3979           }
3980         } else {
3981           // The "used" of the the collection set have already been subtracted
3982           // when they were freed.  Add in the bytes evacuated.
3983           increase_used(g1_policy()->bytes_copied_during_gc());
3984         }
3985 
3986         if (collector_state()->during_initial_mark_pause()) {
3987           // We have to do this before we notify the CM threads that
3988           // they can start working to make sure that all the
3989           // appropriate initialization is done on the CM object.
3990           concurrent_mark()->checkpointRootsInitialPost();
3991           collector_state()->set_mark_in_progress(true);
3992           // Note that we don't actually trigger the CM thread at
3993           // this point. We do that later when we're sure that
3994           // the current thread has completed its logging output.
3995         }
3996 
3997         allocate_dummy_regions();
3998 
3999         _allocator->init_mutator_alloc_region();
4000 
4001         {
4002           size_t expand_bytes = g1_policy()->expansion_amount();
4003           if (expand_bytes > 0) {
4004             size_t bytes_before = capacity();
4005             // No need for an ergo verbose message here,
4006             // expansion_amount() does this when it returns a value > 0.
4007             double expand_ms;
4008             if (!expand(expand_bytes, &expand_ms)) {
4009               // We failed to expand the heap. Cannot do anything about it.
4010             }
4011             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
4012           }
4013         }
4014 
4015         // We redo the verification but now wrt to the new CSet which
4016         // has just got initialized after the previous CSet was freed.
4017         _cm->verify_no_cset_oops();
4018         _cm->note_end_of_gc();
4019 
4020         // This timing is only used by the ergonomics to handle our pause target.
4021         // It is unclear why this should not include the full pause. We will
4022         // investigate this in CR 7178365.
4023         double sample_end_time_sec = os::elapsedTime();
4024         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4025         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
4026         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
4027 
4028         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
4029         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
4030 
4031         MemoryService::track_memory_usage();
4032 
4033         // In prepare_for_verify() below we'll need to scan the deferred
4034         // update buffers to bring the RSets up-to-date if
4035         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4036         // the update buffers we'll probably need to scan cards on the
4037         // regions we just allocated to (i.e., the GC alloc
4038         // regions). However, during the last GC we called
4039         // set_saved_mark() on all the GC alloc regions, so card
4040         // scanning might skip the [saved_mark_word()...top()] area of
4041         // those regions (i.e., the area we allocated objects into
4042         // during the last GC). But it shouldn't. Given that
4043         // saved_mark_word() is conditional on whether the GC time stamp
4044         // on the region is current or not, by incrementing the GC time
4045         // stamp here we invalidate all the GC time stamps on all the
4046         // regions and saved_mark_word() will simply return top() for
4047         // all the regions. This is a nicer way of ensuring this rather
4048         // than iterating over the regions and fixing them. In fact, the
4049         // GC time stamp increment here also ensures that
4050         // saved_mark_word() will return top() between pauses, i.e.,
4051         // during concurrent refinement. So we don't need the
4052         // is_gc_active() check to decided which top to use when
4053         // scanning cards (see CR 7039627).
4054         increment_gc_time_stamp();
4055 
4056         verify_after_gc();
4057         check_bitmaps("GC End");
4058 
4059         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4060         ref_processor_stw()->verify_no_references_recorded();
4061 
4062         // CM reference discovery will be re-enabled if necessary.
4063       }
4064 
4065       // We should do this after we potentially expand the heap so
4066       // that all the COMMIT events are generated before the end GC
4067       // event, and after we retire the GC alloc regions so that all
4068       // RETIRE events are generated before the end GC event.
4069       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4070 
4071 #ifdef TRACESPINNING
4072       ParallelTaskTerminator::print_termination_counts();
4073 #endif
4074 
4075       gc_epilogue(false);
4076     }
4077 
4078     // Print the remainder of the GC log output.
4079     log_gc_footer(os::elapsedTime() - pause_start_sec);
4080 
4081     // It is not yet to safe to tell the concurrent mark to
4082     // start as we have some optional output below. We don't want the
4083     // output from the concurrent mark thread interfering with this
4084     // logging output either.
4085 
4086     _hrm.verify_optional();
4087     verify_region_sets_optional();
4088 
4089     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4090     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4091 
4092     print_heap_after_gc();
4093     trace_heap_after_gc(_gc_tracer_stw);
4094 
4095     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4096     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4097     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4098     // before any GC notifications are raised.
4099     g1mm()->update_sizes();
4100 
4101     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4102     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4103     _gc_timer_stw->register_gc_end();
4104     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4105   }
4106   // It should now be safe to tell the concurrent mark thread to start
4107   // without its logging output interfering with the logging output
4108   // that came from the pause.
4109 
4110   if (should_start_conc_mark) {
4111     // CAUTION: after the doConcurrentMark() call below,
4112     // the concurrent marking thread(s) could be running
4113     // concurrently with us. Make sure that anything after
4114     // this point does not assume that we are the only GC thread
4115     // running. Note: of course, the actual marking work will
4116     // not start until the safepoint itself is released in
4117     // SuspendibleThreadSet::desynchronize().
4118     doConcurrentMark();
4119   }
4120 
4121   return true;
4122 }
4123 
4124 void G1CollectedHeap::remove_self_forwarding_pointers() {
4125   double remove_self_forwards_start = os::elapsedTime();
4126 
4127   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4128   workers()->run_task(&rsfp_task);
4129 
4130   // Now restore saved marks, if any.
4131   for (uint i = 0; i < ParallelGCThreads; i++) {
4132     OopAndMarkOopStack& cur = _preserved_objs[i];
4133     while (!cur.is_empty()) {
4134       OopAndMarkOop elem = cur.pop();
4135       elem.set_mark();
4136     }
4137     cur.clear(true);
4138   }
4139 
4140   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4141 }
4142 
4143 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4144   if (!_evacuation_failed) {
4145     _evacuation_failed = true;
4146   }
4147 
4148   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4149 
4150   // We want to call the "for_promotion_failure" version only in the
4151   // case of a promotion failure.
4152   if (m->must_be_preserved_for_promotion_failure(obj)) {
4153     OopAndMarkOop elem(obj, m);
4154     _preserved_objs[worker_id].push(elem);
4155   }
4156 }
4157 
4158 class G1ParEvacuateFollowersClosure : public VoidClosure {
4159 private:
4160   double _start_term;
4161   double _term_time;
4162   size_t _term_attempts;
4163 
4164   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4165   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4166 protected:
4167   G1CollectedHeap*              _g1h;
4168   G1ParScanThreadState*         _par_scan_state;
4169   RefToScanQueueSet*            _queues;
4170   ParallelTaskTerminator*       _terminator;
4171 
4172   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4173   RefToScanQueueSet*      queues()         { return _queues; }
4174   ParallelTaskTerminator* terminator()     { return _terminator; }
4175 
4176 public:
4177   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4178                                 G1ParScanThreadState* par_scan_state,
4179                                 RefToScanQueueSet* queues,
4180                                 ParallelTaskTerminator* terminator)
4181     : _g1h(g1h), _par_scan_state(par_scan_state),
4182       _queues(queues), _terminator(terminator),
4183       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4184 
4185   void do_void();
4186 
4187   double term_time() const { return _term_time; }
4188   size_t term_attempts() const { return _term_attempts; }
4189 
4190 private:
4191   inline bool offer_termination();
4192 };
4193 
4194 bool G1ParEvacuateFollowersClosure::offer_termination() {
4195   G1ParScanThreadState* const pss = par_scan_state();
4196   start_term_time();
4197   const bool res = terminator()->offer_termination();
4198   end_term_time();
4199   return res;
4200 }
4201 
4202 void G1ParEvacuateFollowersClosure::do_void() {
4203   G1ParScanThreadState* const pss = par_scan_state();
4204   pss->trim_queue();
4205   do {
4206     pss->steal_and_trim_queue(queues());
4207   } while (!offer_termination());
4208 }
4209 
4210 class G1ParTask : public AbstractGangTask {
4211 protected:
4212   G1CollectedHeap*         _g1h;
4213   G1ParScanThreadStateSet* _pss;
4214   RefToScanQueueSet*       _queues;
4215   G1RootProcessor*         _root_processor;
4216   ParallelTaskTerminator   _terminator;
4217   uint                     _n_workers;
4218 
4219 public:
4220   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4221     : AbstractGangTask("G1 collection"),
4222       _g1h(g1h),
4223       _pss(per_thread_states),
4224       _queues(task_queues),
4225       _root_processor(root_processor),
4226       _terminator(n_workers, _queues),
4227       _n_workers(n_workers)
4228   {}
4229 
4230   void work(uint worker_id) {
4231     if (worker_id >= _n_workers) return;  // no work needed this round
4232 
4233     double start_sec = os::elapsedTime();
4234     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4235 
4236     {
4237       ResourceMark rm;
4238       HandleMark   hm;
4239 
4240       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4241 
4242       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4243       pss->set_ref_processor(rp);
4244 
4245       double start_strong_roots_sec = os::elapsedTime();
4246 
4247       _root_processor->evacuate_roots(pss->closures(), worker_id);
4248 
4249       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4250 
4251       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4252       // treating the nmethods visited to act as roots for concurrent marking.
4253       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4254       // objects copied by the current evacuation.
4255       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4256                                                                              pss->closures()->weak_codeblobs(),
4257                                                                              worker_id);
4258 
4259       _pss->add_cards_scanned(worker_id, cards_scanned);
4260 
4261       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4262 
4263       double term_sec = 0.0;
4264       size_t evac_term_attempts = 0;
4265       {
4266         double start = os::elapsedTime();
4267         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4268         evac.do_void();
4269 
4270         evac_term_attempts = evac.term_attempts();
4271         term_sec = evac.term_time();
4272         double elapsed_sec = os::elapsedTime() - start;
4273         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4274         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4275         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4276       }
4277 
4278       assert(pss->queue_is_empty(), "should be empty");
4279 
4280       if (PrintTerminationStats) {
4281         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4282         size_t lab_waste;
4283         size_t lab_undo_waste;
4284         pss->waste(lab_waste, lab_undo_waste);
4285         _g1h->print_termination_stats(gclog_or_tty,
4286                                       worker_id,
4287                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4288                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4289                                       term_sec * 1000.0,                          /* evac term time */
4290                                       evac_term_attempts,                         /* evac term attempts */
4291                                       lab_waste,                                  /* alloc buffer waste */
4292                                       lab_undo_waste                              /* undo waste */
4293                                       );
4294       }
4295 
4296       // Close the inner scope so that the ResourceMark and HandleMark
4297       // destructors are executed here and are included as part of the
4298       // "GC Worker Time".
4299     }
4300     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4301   }
4302 };
4303 
4304 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4305   st->print_raw_cr("GC Termination Stats");
4306   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4307   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4308   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4309 }
4310 
4311 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4312                                               uint worker_id,
4313                                               double elapsed_ms,
4314                                               double strong_roots_ms,
4315                                               double term_ms,
4316                                               size_t term_attempts,
4317                                               size_t alloc_buffer_waste,
4318                                               size_t undo_waste) const {
4319   st->print_cr("%3d %9.2f %9.2f %6.2f "
4320                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4321                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4322                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4323                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4324                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4325                alloc_buffer_waste * HeapWordSize / K,
4326                undo_waste * HeapWordSize / K);
4327 }
4328 
4329 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4330 private:
4331   BoolObjectClosure* _is_alive;
4332   int _initial_string_table_size;
4333   int _initial_symbol_table_size;
4334 
4335   bool  _process_strings;
4336   int _strings_processed;
4337   int _strings_removed;
4338 
4339   bool  _process_symbols;
4340   int _symbols_processed;
4341   int _symbols_removed;
4342 
4343 public:
4344   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4345     AbstractGangTask("String/Symbol Unlinking"),
4346     _is_alive(is_alive),
4347     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4348     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4349 
4350     _initial_string_table_size = StringTable::the_table()->table_size();
4351     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4352     if (process_strings) {
4353       StringTable::clear_parallel_claimed_index();
4354     }
4355     if (process_symbols) {
4356       SymbolTable::clear_parallel_claimed_index();
4357     }
4358   }
4359 
4360   ~G1StringSymbolTableUnlinkTask() {
4361     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4362               "claim value %d after unlink less than initial string table size %d",
4363               StringTable::parallel_claimed_index(), _initial_string_table_size);
4364     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4365               "claim value %d after unlink less than initial symbol table size %d",
4366               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4367 
4368     if (G1TraceStringSymbolTableScrubbing) {
4369       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4370                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4371                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4372                              strings_processed(), strings_removed(),
4373                              symbols_processed(), symbols_removed());
4374     }
4375   }
4376 
4377   void work(uint worker_id) {
4378     int strings_processed = 0;
4379     int strings_removed = 0;
4380     int symbols_processed = 0;
4381     int symbols_removed = 0;
4382     if (_process_strings) {
4383       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4384       Atomic::add(strings_processed, &_strings_processed);
4385       Atomic::add(strings_removed, &_strings_removed);
4386     }
4387     if (_process_symbols) {
4388       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4389       Atomic::add(symbols_processed, &_symbols_processed);
4390       Atomic::add(symbols_removed, &_symbols_removed);
4391     }
4392   }
4393 
4394   size_t strings_processed() const { return (size_t)_strings_processed; }
4395   size_t strings_removed()   const { return (size_t)_strings_removed; }
4396 
4397   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4398   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4399 };
4400 
4401 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4402 private:
4403   static Monitor* _lock;
4404 
4405   BoolObjectClosure* const _is_alive;
4406   const bool               _unloading_occurred;
4407   const uint               _num_workers;
4408 
4409   // Variables used to claim nmethods.
4410   nmethod* _first_nmethod;
4411   volatile nmethod* _claimed_nmethod;
4412 
4413   // The list of nmethods that need to be processed by the second pass.
4414   volatile nmethod* _postponed_list;
4415   volatile uint     _num_entered_barrier;
4416 
4417  public:
4418   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4419       _is_alive(is_alive),
4420       _unloading_occurred(unloading_occurred),
4421       _num_workers(num_workers),
4422       _first_nmethod(NULL),
4423       _claimed_nmethod(NULL),
4424       _postponed_list(NULL),
4425       _num_entered_barrier(0)
4426   {
4427     nmethod::increase_unloading_clock();
4428     // Get first alive nmethod
4429     NMethodIterator iter = NMethodIterator();
4430     if(iter.next_alive()) {
4431       _first_nmethod = iter.method();
4432     }
4433     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4434   }
4435 
4436   ~G1CodeCacheUnloadingTask() {
4437     CodeCache::verify_clean_inline_caches();
4438 
4439     CodeCache::set_needs_cache_clean(false);
4440     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4441 
4442     CodeCache::verify_icholder_relocations();
4443   }
4444 
4445  private:
4446   void add_to_postponed_list(nmethod* nm) {
4447       nmethod* old;
4448       do {
4449         old = (nmethod*)_postponed_list;
4450         nm->set_unloading_next(old);
4451       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4452   }
4453 
4454   void clean_nmethod(nmethod* nm) {
4455     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4456 
4457     if (postponed) {
4458       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4459       add_to_postponed_list(nm);
4460     }
4461 
4462     // Mark that this thread has been cleaned/unloaded.
4463     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4464     nm->set_unloading_clock(nmethod::global_unloading_clock());
4465   }
4466 
4467   void clean_nmethod_postponed(nmethod* nm) {
4468     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4469   }
4470 
4471   static const int MaxClaimNmethods = 16;
4472 
4473   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4474     nmethod* first;
4475     NMethodIterator last;
4476 
4477     do {
4478       *num_claimed_nmethods = 0;
4479 
4480       first = (nmethod*)_claimed_nmethod;
4481       last = NMethodIterator(first);
4482 
4483       if (first != NULL) {
4484 
4485         for (int i = 0; i < MaxClaimNmethods; i++) {
4486           if (!last.next_alive()) {
4487             break;
4488           }
4489           claimed_nmethods[i] = last.method();
4490           (*num_claimed_nmethods)++;
4491         }
4492       }
4493 
4494     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4495   }
4496 
4497   nmethod* claim_postponed_nmethod() {
4498     nmethod* claim;
4499     nmethod* next;
4500 
4501     do {
4502       claim = (nmethod*)_postponed_list;
4503       if (claim == NULL) {
4504         return NULL;
4505       }
4506 
4507       next = claim->unloading_next();
4508 
4509     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4510 
4511     return claim;
4512   }
4513 
4514  public:
4515   // Mark that we're done with the first pass of nmethod cleaning.
4516   void barrier_mark(uint worker_id) {
4517     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4518     _num_entered_barrier++;
4519     if (_num_entered_barrier == _num_workers) {
4520       ml.notify_all();
4521     }
4522   }
4523 
4524   // See if we have to wait for the other workers to
4525   // finish their first-pass nmethod cleaning work.
4526   void barrier_wait(uint worker_id) {
4527     if (_num_entered_barrier < _num_workers) {
4528       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4529       while (_num_entered_barrier < _num_workers) {
4530           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4531       }
4532     }
4533   }
4534 
4535   // Cleaning and unloading of nmethods. Some work has to be postponed
4536   // to the second pass, when we know which nmethods survive.
4537   void work_first_pass(uint worker_id) {
4538     // The first nmethods is claimed by the first worker.
4539     if (worker_id == 0 && _first_nmethod != NULL) {
4540       clean_nmethod(_first_nmethod);
4541       _first_nmethod = NULL;
4542     }
4543 
4544     int num_claimed_nmethods;
4545     nmethod* claimed_nmethods[MaxClaimNmethods];
4546 
4547     while (true) {
4548       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4549 
4550       if (num_claimed_nmethods == 0) {
4551         break;
4552       }
4553 
4554       for (int i = 0; i < num_claimed_nmethods; i++) {
4555         clean_nmethod(claimed_nmethods[i]);
4556       }
4557     }
4558   }
4559 
4560   void work_second_pass(uint worker_id) {
4561     nmethod* nm;
4562     // Take care of postponed nmethods.
4563     while ((nm = claim_postponed_nmethod()) != NULL) {
4564       clean_nmethod_postponed(nm);
4565     }
4566   }
4567 };
4568 
4569 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4570 
4571 class G1KlassCleaningTask : public StackObj {
4572   BoolObjectClosure*                      _is_alive;
4573   volatile jint                           _clean_klass_tree_claimed;
4574   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4575 
4576  public:
4577   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4578       _is_alive(is_alive),
4579       _clean_klass_tree_claimed(0),
4580       _klass_iterator() {
4581   }
4582 
4583  private:
4584   bool claim_clean_klass_tree_task() {
4585     if (_clean_klass_tree_claimed) {
4586       return false;
4587     }
4588 
4589     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4590   }
4591 
4592   InstanceKlass* claim_next_klass() {
4593     Klass* klass;
4594     do {
4595       klass =_klass_iterator.next_klass();
4596     } while (klass != NULL && !klass->is_instance_klass());
4597 
4598     // this can be null so don't call InstanceKlass::cast
4599     return static_cast<InstanceKlass*>(klass);
4600   }
4601 
4602 public:
4603 
4604   void clean_klass(InstanceKlass* ik) {
4605     ik->clean_weak_instanceklass_links(_is_alive);
4606   }
4607 
4608   void work() {
4609     ResourceMark rm;
4610 
4611     // One worker will clean the subklass/sibling klass tree.
4612     if (claim_clean_klass_tree_task()) {
4613       Klass::clean_subklass_tree(_is_alive);
4614     }
4615 
4616     // All workers will help cleaning the classes,
4617     InstanceKlass* klass;
4618     while ((klass = claim_next_klass()) != NULL) {
4619       clean_klass(klass);
4620     }
4621   }
4622 };
4623 
4624 // To minimize the remark pause times, the tasks below are done in parallel.
4625 class G1ParallelCleaningTask : public AbstractGangTask {
4626 private:
4627   G1StringSymbolTableUnlinkTask _string_symbol_task;
4628   G1CodeCacheUnloadingTask      _code_cache_task;
4629   G1KlassCleaningTask           _klass_cleaning_task;
4630 
4631 public:
4632   // The constructor is run in the VMThread.
4633   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4634       AbstractGangTask("Parallel Cleaning"),
4635       _string_symbol_task(is_alive, process_strings, process_symbols),
4636       _code_cache_task(num_workers, is_alive, unloading_occurred),
4637       _klass_cleaning_task(is_alive) {
4638   }
4639 
4640   // The parallel work done by all worker threads.
4641   void work(uint worker_id) {
4642     // Do first pass of code cache cleaning.
4643     _code_cache_task.work_first_pass(worker_id);
4644 
4645     // Let the threads mark that the first pass is done.
4646     _code_cache_task.barrier_mark(worker_id);
4647 
4648     // Clean the Strings and Symbols.
4649     _string_symbol_task.work(worker_id);
4650 
4651     // Wait for all workers to finish the first code cache cleaning pass.
4652     _code_cache_task.barrier_wait(worker_id);
4653 
4654     // Do the second code cache cleaning work, which realize on
4655     // the liveness information gathered during the first pass.
4656     _code_cache_task.work_second_pass(worker_id);
4657 
4658     // Clean all klasses that were not unloaded.
4659     _klass_cleaning_task.work();
4660   }
4661 };
4662 
4663 
4664 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4665                                         bool process_strings,
4666                                         bool process_symbols,
4667                                         bool class_unloading_occurred) {
4668   uint n_workers = workers()->active_workers();
4669 
4670   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4671                                         n_workers, class_unloading_occurred);
4672   workers()->run_task(&g1_unlink_task);
4673 }
4674 
4675 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4676                                                      bool process_strings, bool process_symbols) {
4677   {
4678     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4679     workers()->run_task(&g1_unlink_task);
4680   }
4681 
4682   if (G1StringDedup::is_enabled()) {
4683     G1StringDedup::unlink(is_alive);
4684   }
4685 }
4686 
4687 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4688  private:
4689   DirtyCardQueueSet* _queue;
4690  public:
4691   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4692 
4693   virtual void work(uint worker_id) {
4694     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4695     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4696 
4697     RedirtyLoggedCardTableEntryClosure cl;
4698     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4699 
4700     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4701   }
4702 };
4703 
4704 void G1CollectedHeap::redirty_logged_cards() {
4705   double redirty_logged_cards_start = os::elapsedTime();
4706 
4707   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4708   dirty_card_queue_set().reset_for_par_iteration();
4709   workers()->run_task(&redirty_task);
4710 
4711   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4712   dcq.merge_bufferlists(&dirty_card_queue_set());
4713   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4714 
4715   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4716 }
4717 
4718 // Weak Reference Processing support
4719 
4720 // An always "is_alive" closure that is used to preserve referents.
4721 // If the object is non-null then it's alive.  Used in the preservation
4722 // of referent objects that are pointed to by reference objects
4723 // discovered by the CM ref processor.
4724 class G1AlwaysAliveClosure: public BoolObjectClosure {
4725   G1CollectedHeap* _g1;
4726 public:
4727   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4728   bool do_object_b(oop p) {
4729     if (p != NULL) {
4730       return true;
4731     }
4732     return false;
4733   }
4734 };
4735 
4736 bool G1STWIsAliveClosure::do_object_b(oop p) {
4737   // An object is reachable if it is outside the collection set,
4738   // or is inside and copied.
4739   return !_g1->is_in_cset(p) || p->is_forwarded();
4740 }
4741 
4742 // Non Copying Keep Alive closure
4743 class G1KeepAliveClosure: public OopClosure {
4744   G1CollectedHeap* _g1;
4745 public:
4746   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4747   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4748   void do_oop(oop* p) {
4749     oop obj = *p;
4750     assert(obj != NULL, "the caller should have filtered out NULL values");
4751 
4752     const InCSetState cset_state = _g1->in_cset_state(obj);
4753     if (!cset_state.is_in_cset_or_humongous()) {
4754       return;
4755     }
4756     if (cset_state.is_in_cset()) {
4757       assert( obj->is_forwarded(), "invariant" );
4758       *p = obj->forwardee();
4759     } else {
4760       assert(!obj->is_forwarded(), "invariant" );
4761       assert(cset_state.is_humongous(),
4762              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4763       _g1->set_humongous_is_live(obj);
4764     }
4765   }
4766 };
4767 
4768 // Copying Keep Alive closure - can be called from both
4769 // serial and parallel code as long as different worker
4770 // threads utilize different G1ParScanThreadState instances
4771 // and different queues.
4772 
4773 class G1CopyingKeepAliveClosure: public OopClosure {
4774   G1CollectedHeap*         _g1h;
4775   OopClosure*              _copy_non_heap_obj_cl;
4776   G1ParScanThreadState*    _par_scan_state;
4777 
4778 public:
4779   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4780                             OopClosure* non_heap_obj_cl,
4781                             G1ParScanThreadState* pss):
4782     _g1h(g1h),
4783     _copy_non_heap_obj_cl(non_heap_obj_cl),
4784     _par_scan_state(pss)
4785   {}
4786 
4787   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4788   virtual void do_oop(      oop* p) { do_oop_work(p); }
4789 
4790   template <class T> void do_oop_work(T* p) {
4791     oop obj = oopDesc::load_decode_heap_oop(p);
4792 
4793     if (_g1h->is_in_cset_or_humongous(obj)) {
4794       // If the referent object has been forwarded (either copied
4795       // to a new location or to itself in the event of an
4796       // evacuation failure) then we need to update the reference
4797       // field and, if both reference and referent are in the G1
4798       // heap, update the RSet for the referent.
4799       //
4800       // If the referent has not been forwarded then we have to keep
4801       // it alive by policy. Therefore we have copy the referent.
4802       //
4803       // If the reference field is in the G1 heap then we can push
4804       // on the PSS queue. When the queue is drained (after each
4805       // phase of reference processing) the object and it's followers
4806       // will be copied, the reference field set to point to the
4807       // new location, and the RSet updated. Otherwise we need to
4808       // use the the non-heap or metadata closures directly to copy
4809       // the referent object and update the pointer, while avoiding
4810       // updating the RSet.
4811 
4812       if (_g1h->is_in_g1_reserved(p)) {
4813         _par_scan_state->push_on_queue(p);
4814       } else {
4815         assert(!Metaspace::contains((const void*)p),
4816                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4817         _copy_non_heap_obj_cl->do_oop(p);
4818       }
4819     }
4820   }
4821 };
4822 
4823 // Serial drain queue closure. Called as the 'complete_gc'
4824 // closure for each discovered list in some of the
4825 // reference processing phases.
4826 
4827 class G1STWDrainQueueClosure: public VoidClosure {
4828 protected:
4829   G1CollectedHeap* _g1h;
4830   G1ParScanThreadState* _par_scan_state;
4831 
4832   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4833 
4834 public:
4835   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4836     _g1h(g1h),
4837     _par_scan_state(pss)
4838   { }
4839 
4840   void do_void() {
4841     G1ParScanThreadState* const pss = par_scan_state();
4842     pss->trim_queue();
4843   }
4844 };
4845 
4846 // Parallel Reference Processing closures
4847 
4848 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4849 // processing during G1 evacuation pauses.
4850 
4851 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4852 private:
4853   G1CollectedHeap*          _g1h;
4854   G1ParScanThreadStateSet*  _pss;
4855   RefToScanQueueSet*        _queues;
4856   WorkGang*                 _workers;
4857   uint                      _active_workers;
4858 
4859 public:
4860   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4861                            G1ParScanThreadStateSet* per_thread_states,
4862                            WorkGang* workers,
4863                            RefToScanQueueSet *task_queues,
4864                            uint n_workers) :
4865     _g1h(g1h),
4866     _pss(per_thread_states),
4867     _queues(task_queues),
4868     _workers(workers),
4869     _active_workers(n_workers)
4870   {
4871     assert(n_workers > 0, "shouldn't call this otherwise");
4872   }
4873 
4874   // Executes the given task using concurrent marking worker threads.
4875   virtual void execute(ProcessTask& task);
4876   virtual void execute(EnqueueTask& task);
4877 };
4878 
4879 // Gang task for possibly parallel reference processing
4880 
4881 class G1STWRefProcTaskProxy: public AbstractGangTask {
4882   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4883   ProcessTask&     _proc_task;
4884   G1CollectedHeap* _g1h;
4885   G1ParScanThreadStateSet* _pss;
4886   RefToScanQueueSet* _task_queues;
4887   ParallelTaskTerminator* _terminator;
4888 
4889 public:
4890   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4891                         G1CollectedHeap* g1h,
4892                         G1ParScanThreadStateSet* per_thread_states,
4893                         RefToScanQueueSet *task_queues,
4894                         ParallelTaskTerminator* terminator) :
4895     AbstractGangTask("Process reference objects in parallel"),
4896     _proc_task(proc_task),
4897     _g1h(g1h),
4898     _pss(per_thread_states),
4899     _task_queues(task_queues),
4900     _terminator(terminator)
4901   {}
4902 
4903   virtual void work(uint worker_id) {
4904     // The reference processing task executed by a single worker.
4905     ResourceMark rm;
4906     HandleMark   hm;
4907 
4908     G1STWIsAliveClosure is_alive(_g1h);
4909 
4910     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4911     pss->set_ref_processor(NULL);
4912 
4913     // Keep alive closure.
4914     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4915 
4916     // Complete GC closure
4917     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4918 
4919     // Call the reference processing task's work routine.
4920     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4921 
4922     // Note we cannot assert that the refs array is empty here as not all
4923     // of the processing tasks (specifically phase2 - pp2_work) execute
4924     // the complete_gc closure (which ordinarily would drain the queue) so
4925     // the queue may not be empty.
4926   }
4927 };
4928 
4929 // Driver routine for parallel reference processing.
4930 // Creates an instance of the ref processing gang
4931 // task and has the worker threads execute it.
4932 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4933   assert(_workers != NULL, "Need parallel worker threads.");
4934 
4935   ParallelTaskTerminator terminator(_active_workers, _queues);
4936   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4937 
4938   _workers->run_task(&proc_task_proxy);
4939 }
4940 
4941 // Gang task for parallel reference enqueueing.
4942 
4943 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4944   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4945   EnqueueTask& _enq_task;
4946 
4947 public:
4948   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4949     AbstractGangTask("Enqueue reference objects in parallel"),
4950     _enq_task(enq_task)
4951   { }
4952 
4953   virtual void work(uint worker_id) {
4954     _enq_task.work(worker_id);
4955   }
4956 };
4957 
4958 // Driver routine for parallel reference enqueueing.
4959 // Creates an instance of the ref enqueueing gang
4960 // task and has the worker threads execute it.
4961 
4962 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4963   assert(_workers != NULL, "Need parallel worker threads.");
4964 
4965   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4966 
4967   _workers->run_task(&enq_task_proxy);
4968 }
4969 
4970 // End of weak reference support closures
4971 
4972 // Abstract task used to preserve (i.e. copy) any referent objects
4973 // that are in the collection set and are pointed to by reference
4974 // objects discovered by the CM ref processor.
4975 
4976 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4977 protected:
4978   G1CollectedHeap*         _g1h;
4979   G1ParScanThreadStateSet* _pss;
4980   RefToScanQueueSet*       _queues;
4981   ParallelTaskTerminator   _terminator;
4982   uint                     _n_workers;
4983 
4984 public:
4985   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4986     AbstractGangTask("ParPreserveCMReferents"),
4987     _g1h(g1h),
4988     _pss(per_thread_states),
4989     _queues(task_queues),
4990     _terminator(workers, _queues),
4991     _n_workers(workers)
4992   { }
4993 
4994   void work(uint worker_id) {
4995     ResourceMark rm;
4996     HandleMark   hm;
4997 
4998     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4999     pss->set_ref_processor(NULL);
5000     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5001 
5002     // Is alive closure
5003     G1AlwaysAliveClosure always_alive(_g1h);
5004 
5005     // Copying keep alive closure. Applied to referent objects that need
5006     // to be copied.
5007     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
5008 
5009     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5010 
5011     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5012     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5013 
5014     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5015     // So this must be true - but assert just in case someone decides to
5016     // change the worker ids.
5017     assert(worker_id < limit, "sanity");
5018     assert(!rp->discovery_is_atomic(), "check this code");
5019 
5020     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5021     for (uint idx = worker_id; idx < limit; idx += stride) {
5022       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5023 
5024       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5025       while (iter.has_next()) {
5026         // Since discovery is not atomic for the CM ref processor, we
5027         // can see some null referent objects.
5028         iter.load_ptrs(DEBUG_ONLY(true));
5029         oop ref = iter.obj();
5030 
5031         // This will filter nulls.
5032         if (iter.is_referent_alive()) {
5033           iter.make_referent_alive();
5034         }
5035         iter.move_to_next();
5036       }
5037     }
5038 
5039     // Drain the queue - which may cause stealing
5040     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5041     drain_queue.do_void();
5042     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5043     assert(pss->queue_is_empty(), "should be");
5044   }
5045 };
5046 
5047 // Weak Reference processing during an evacuation pause (part 1).
5048 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5049   double ref_proc_start = os::elapsedTime();
5050 
5051   ReferenceProcessor* rp = _ref_processor_stw;
5052   assert(rp->discovery_enabled(), "should have been enabled");
5053 
5054   // Any reference objects, in the collection set, that were 'discovered'
5055   // by the CM ref processor should have already been copied (either by
5056   // applying the external root copy closure to the discovered lists, or
5057   // by following an RSet entry).
5058   //
5059   // But some of the referents, that are in the collection set, that these
5060   // reference objects point to may not have been copied: the STW ref
5061   // processor would have seen that the reference object had already
5062   // been 'discovered' and would have skipped discovering the reference,
5063   // but would not have treated the reference object as a regular oop.
5064   // As a result the copy closure would not have been applied to the
5065   // referent object.
5066   //
5067   // We need to explicitly copy these referent objects - the references
5068   // will be processed at the end of remarking.
5069   //
5070   // We also need to do this copying before we process the reference
5071   // objects discovered by the STW ref processor in case one of these
5072   // referents points to another object which is also referenced by an
5073   // object discovered by the STW ref processor.
5074 
5075   uint no_of_gc_workers = workers()->active_workers();
5076 
5077   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5078                                                  per_thread_states,
5079                                                  no_of_gc_workers,
5080                                                  _task_queues);
5081 
5082   workers()->run_task(&keep_cm_referents);
5083 
5084   // Closure to test whether a referent is alive.
5085   G1STWIsAliveClosure is_alive(this);
5086 
5087   // Even when parallel reference processing is enabled, the processing
5088   // of JNI refs is serial and performed serially by the current thread
5089   // rather than by a worker. The following PSS will be used for processing
5090   // JNI refs.
5091 
5092   // Use only a single queue for this PSS.
5093   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5094   pss->set_ref_processor(NULL);
5095   assert(pss->queue_is_empty(), "pre-condition");
5096 
5097   // Keep alive closure.
5098   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5099 
5100   // Serial Complete GC closure
5101   G1STWDrainQueueClosure drain_queue(this, pss);
5102 
5103   // Setup the soft refs policy...
5104   rp->setup_policy(false);
5105 
5106   ReferenceProcessorStats stats;
5107   if (!rp->processing_is_mt()) {
5108     // Serial reference processing...
5109     stats = rp->process_discovered_references(&is_alive,
5110                                               &keep_alive,
5111                                               &drain_queue,
5112                                               NULL,
5113                                               _gc_timer_stw);
5114   } else {
5115     // Parallel reference processing
5116     assert(rp->num_q() == no_of_gc_workers, "sanity");
5117     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5118 
5119     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5120     stats = rp->process_discovered_references(&is_alive,
5121                                               &keep_alive,
5122                                               &drain_queue,
5123                                               &par_task_executor,
5124                                               _gc_timer_stw);
5125   }
5126 
5127   _gc_tracer_stw->report_gc_reference_stats(stats);
5128 
5129   // We have completed copying any necessary live referent objects.
5130   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5131 
5132   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5133   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5134 }
5135 
5136 // Weak Reference processing during an evacuation pause (part 2).
5137 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5138   double ref_enq_start = os::elapsedTime();
5139 
5140   ReferenceProcessor* rp = _ref_processor_stw;
5141   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5142 
5143   // Now enqueue any remaining on the discovered lists on to
5144   // the pending list.
5145   if (!rp->processing_is_mt()) {
5146     // Serial reference processing...
5147     rp->enqueue_discovered_references();
5148   } else {
5149     // Parallel reference enqueueing
5150 
5151     uint n_workers = workers()->active_workers();
5152 
5153     assert(rp->num_q() == n_workers, "sanity");
5154     assert(n_workers <= rp->max_num_q(), "sanity");
5155 
5156     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5157     rp->enqueue_discovered_references(&par_task_executor);
5158   }
5159 
5160   rp->verify_no_references_recorded();
5161   assert(!rp->discovery_enabled(), "should have been disabled");
5162 
5163   // FIXME
5164   // CM's reference processing also cleans up the string and symbol tables.
5165   // Should we do that here also? We could, but it is a serial operation
5166   // and could significantly increase the pause time.
5167 
5168   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5169   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5170 }
5171 
5172 void G1CollectedHeap::pre_evacuate_collection_set() {
5173   _expand_heap_after_alloc_failure = true;
5174   _evacuation_failed = false;
5175 
5176   // Disable the hot card cache.
5177   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5178   hot_card_cache->reset_hot_cache_claimed_index();
5179   hot_card_cache->set_use_cache(false);
5180 
5181 }
5182 
5183 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5184   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5185 
5186   // Should G1EvacuationFailureALot be in effect for this GC?
5187   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5188 
5189   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5190   double start_par_time_sec = os::elapsedTime();
5191   double end_par_time_sec;
5192 
5193   {
5194     const uint n_workers = workers()->active_workers();
5195     G1RootProcessor root_processor(this, n_workers);
5196     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5197     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5198     if (collector_state()->during_initial_mark_pause()) {
5199       ClassLoaderDataGraph::clear_claimed_marks();
5200     }
5201 
5202     // The individual threads will set their evac-failure closures.
5203     if (PrintTerminationStats) {
5204       print_termination_stats_hdr(gclog_or_tty);
5205     }
5206 
5207     workers()->run_task(&g1_par_task);
5208     end_par_time_sec = os::elapsedTime();
5209 
5210     // Closing the inner scope will execute the destructor
5211     // for the G1RootProcessor object. We record the current
5212     // elapsed time before closing the scope so that time
5213     // taken for the destructor is NOT included in the
5214     // reported parallel time.
5215   }
5216 
5217   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5218 
5219   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5220   phase_times->record_par_time(par_time_ms);
5221 
5222   double code_root_fixup_time_ms =
5223         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5224   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5225 
5226   // Process any discovered reference objects - we have
5227   // to do this _before_ we retire the GC alloc regions
5228   // as we may have to copy some 'reachable' referent
5229   // objects (and their reachable sub-graphs) that were
5230   // not copied during the pause.
5231   process_discovered_references(per_thread_states);
5232 
5233   if (G1StringDedup::is_enabled()) {
5234     double fixup_start = os::elapsedTime();
5235 
5236     G1STWIsAliveClosure is_alive(this);
5237     G1KeepAliveClosure keep_alive(this);
5238     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5239 
5240     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5241     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5242   }
5243 
5244   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5245 
5246   if (evacuation_failed()) {
5247     remove_self_forwarding_pointers();
5248 
5249     // Reset the G1EvacuationFailureALot counters and flags
5250     // Note: the values are reset only when an actual
5251     // evacuation failure occurs.
5252     NOT_PRODUCT(reset_evacuation_should_fail();)
5253   }
5254 
5255   // Enqueue any remaining references remaining on the STW
5256   // reference processor's discovered lists. We need to do
5257   // this after the card table is cleaned (and verified) as
5258   // the act of enqueueing entries on to the pending list
5259   // will log these updates (and dirty their associated
5260   // cards). We need these updates logged to update any
5261   // RSets.
5262   enqueue_discovered_references(per_thread_states);
5263 }
5264 
5265 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5266   _allocator->release_gc_alloc_regions(evacuation_info);
5267 
5268   per_thread_states->flush();
5269 
5270   record_obj_copy_mem_stats();
5271 
5272   // Reset and re-enable the hot card cache.
5273   // Note the counts for the cards in the regions in the
5274   // collection set are reset when the collection set is freed.
5275   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5276   hot_card_cache->reset_hot_cache();
5277   hot_card_cache->set_use_cache(true);
5278 
5279   purge_code_root_memory();
5280 
5281   redirty_logged_cards();
5282 #if defined(COMPILER2) || INCLUDE_JVMCI
5283   DerivedPointerTable::update_pointers();
5284 #endif
5285 }
5286 
5287 void G1CollectedHeap::record_obj_copy_mem_stats() {
5288   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5289                                                create_g1_evac_summary(&_old_evac_stats));
5290 }
5291 
5292 void G1CollectedHeap::free_region(HeapRegion* hr,
5293                                   FreeRegionList* free_list,
5294                                   bool par,
5295                                   bool locked) {
5296   assert(!hr->is_free(), "the region should not be free");
5297   assert(!hr->is_empty(), "the region should not be empty");
5298   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5299   assert(free_list != NULL, "pre-condition");
5300 
5301   if (G1VerifyBitmaps) {
5302     MemRegion mr(hr->bottom(), hr->end());
5303     concurrent_mark()->clearRangePrevBitmap(mr);
5304   }
5305 
5306   // Clear the card counts for this region.
5307   // Note: we only need to do this if the region is not young
5308   // (since we don't refine cards in young regions).
5309   if (!hr->is_young()) {
5310     _cg1r->hot_card_cache()->reset_card_counts(hr);
5311   }
5312   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5313   free_list->add_ordered(hr);
5314 }
5315 
5316 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5317                                      FreeRegionList* free_list,
5318                                      bool par) {
5319   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5320   assert(free_list != NULL, "pre-condition");
5321 
5322   size_t hr_capacity = hr->capacity();
5323   // We need to read this before we make the region non-humongous,
5324   // otherwise the information will be gone.
5325   uint last_index = hr->last_hc_index();
5326   hr->clear_humongous();
5327   free_region(hr, free_list, par);
5328 
5329   uint i = hr->hrm_index() + 1;
5330   while (i < last_index) {
5331     HeapRegion* curr_hr = region_at(i);
5332     assert(curr_hr->is_continues_humongous(), "invariant");
5333     curr_hr->clear_humongous();
5334     free_region(curr_hr, free_list, par);
5335     i += 1;
5336   }
5337 }
5338 
5339 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5340                                        const HeapRegionSetCount& humongous_regions_removed) {
5341   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5342     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5343     _old_set.bulk_remove(old_regions_removed);
5344     _humongous_set.bulk_remove(humongous_regions_removed);
5345   }
5346 
5347 }
5348 
5349 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5350   assert(list != NULL, "list can't be null");
5351   if (!list->is_empty()) {
5352     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5353     _hrm.insert_list_into_free_list(list);
5354   }
5355 }
5356 
5357 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5358   decrease_used(bytes);
5359 }
5360 
5361 class G1ParCleanupCTTask : public AbstractGangTask {
5362   G1SATBCardTableModRefBS* _ct_bs;
5363   G1CollectedHeap* _g1h;
5364   HeapRegion* volatile _su_head;
5365 public:
5366   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5367                      G1CollectedHeap* g1h) :
5368     AbstractGangTask("G1 Par Cleanup CT Task"),
5369     _ct_bs(ct_bs), _g1h(g1h) { }
5370 
5371   void work(uint worker_id) {
5372     HeapRegion* r;
5373     while (r = _g1h->pop_dirty_cards_region()) {
5374       clear_cards(r);
5375     }
5376   }
5377 
5378   void clear_cards(HeapRegion* r) {
5379     // Cards of the survivors should have already been dirtied.
5380     if (!r->is_survivor()) {
5381       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5382     }
5383   }
5384 };
5385 
5386 #ifndef PRODUCT
5387 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5388   G1CollectedHeap* _g1h;
5389   G1SATBCardTableModRefBS* _ct_bs;
5390 public:
5391   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5392     : _g1h(g1h), _ct_bs(ct_bs) { }
5393   virtual bool doHeapRegion(HeapRegion* r) {
5394     if (r->is_survivor()) {
5395       _g1h->verify_dirty_region(r);
5396     } else {
5397       _g1h->verify_not_dirty_region(r);
5398     }
5399     return false;
5400   }
5401 };
5402 
5403 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5404   // All of the region should be clean.
5405   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5406   MemRegion mr(hr->bottom(), hr->end());
5407   ct_bs->verify_not_dirty_region(mr);
5408 }
5409 
5410 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5411   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5412   // dirty allocated blocks as they allocate them. The thread that
5413   // retires each region and replaces it with a new one will do a
5414   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5415   // not dirty that area (one less thing to have to do while holding
5416   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5417   // is dirty.
5418   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5419   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5420   if (hr->is_young()) {
5421     ct_bs->verify_g1_young_region(mr);
5422   } else {
5423     ct_bs->verify_dirty_region(mr);
5424   }
5425 }
5426 
5427 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5428   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5429   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5430     verify_dirty_region(hr);
5431   }
5432 }
5433 
5434 void G1CollectedHeap::verify_dirty_young_regions() {
5435   verify_dirty_young_list(_young_list->first_region());
5436 }
5437 
5438 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5439                                                HeapWord* tams, HeapWord* end) {
5440   guarantee(tams <= end,
5441             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5442   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5443   if (result < end) {
5444     gclog_or_tty->cr();
5445     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5446                            bitmap_name, p2i(result));
5447     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5448                            bitmap_name, p2i(tams), p2i(end));
5449     return false;
5450   }
5451   return true;
5452 }
5453 
5454 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5455   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5456   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5457 
5458   HeapWord* bottom = hr->bottom();
5459   HeapWord* ptams  = hr->prev_top_at_mark_start();
5460   HeapWord* ntams  = hr->next_top_at_mark_start();
5461   HeapWord* end    = hr->end();
5462 
5463   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5464 
5465   bool res_n = true;
5466   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5467   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5468   // if we happen to be in that state.
5469   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5470     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5471   }
5472   if (!res_p || !res_n) {
5473     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5474                            HR_FORMAT_PARAMS(hr));
5475     gclog_or_tty->print_cr("#### Caller: %s", caller);
5476     return false;
5477   }
5478   return true;
5479 }
5480 
5481 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5482   if (!G1VerifyBitmaps) return;
5483 
5484   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5485 }
5486 
5487 class G1VerifyBitmapClosure : public HeapRegionClosure {
5488 private:
5489   const char* _caller;
5490   G1CollectedHeap* _g1h;
5491   bool _failures;
5492 
5493 public:
5494   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5495     _caller(caller), _g1h(g1h), _failures(false) { }
5496 
5497   bool failures() { return _failures; }
5498 
5499   virtual bool doHeapRegion(HeapRegion* hr) {
5500     if (hr->is_continues_humongous()) return false;
5501 
5502     bool result = _g1h->verify_bitmaps(_caller, hr);
5503     if (!result) {
5504       _failures = true;
5505     }
5506     return false;
5507   }
5508 };
5509 
5510 void G1CollectedHeap::check_bitmaps(const char* caller) {
5511   if (!G1VerifyBitmaps) return;
5512 
5513   G1VerifyBitmapClosure cl(caller, this);
5514   heap_region_iterate(&cl);
5515   guarantee(!cl.failures(), "bitmap verification");
5516 }
5517 
5518 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5519  private:
5520   bool _failures;
5521  public:
5522   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5523 
5524   virtual bool doHeapRegion(HeapRegion* hr) {
5525     uint i = hr->hrm_index();
5526     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5527     if (hr->is_humongous()) {
5528       if (hr->in_collection_set()) {
5529         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5530         _failures = true;
5531         return true;
5532       }
5533       if (cset_state.is_in_cset()) {
5534         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5535         _failures = true;
5536         return true;
5537       }
5538       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5539         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5540         _failures = true;
5541         return true;
5542       }
5543     } else {
5544       if (cset_state.is_humongous()) {
5545         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5546         _failures = true;
5547         return true;
5548       }
5549       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5550         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5551                                hr->in_collection_set(), cset_state.value(), i);
5552         _failures = true;
5553         return true;
5554       }
5555       if (cset_state.is_in_cset()) {
5556         if (hr->is_young() != (cset_state.is_young())) {
5557           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5558                                  hr->is_young(), cset_state.value(), i);
5559           _failures = true;
5560           return true;
5561         }
5562         if (hr->is_old() != (cset_state.is_old())) {
5563           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5564                                  hr->is_old(), cset_state.value(), i);
5565           _failures = true;
5566           return true;
5567         }
5568       }
5569     }
5570     return false;
5571   }
5572 
5573   bool failures() const { return _failures; }
5574 };
5575 
5576 bool G1CollectedHeap::check_cset_fast_test() {
5577   G1CheckCSetFastTableClosure cl;
5578   _hrm.iterate(&cl);
5579   return !cl.failures();
5580 }
5581 #endif // PRODUCT
5582 
5583 void G1CollectedHeap::cleanUpCardTable() {
5584   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5585   double start = os::elapsedTime();
5586 
5587   {
5588     // Iterate over the dirty cards region list.
5589     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5590 
5591     workers()->run_task(&cleanup_task);
5592 #ifndef PRODUCT
5593     if (G1VerifyCTCleanup || VerifyAfterGC) {
5594       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5595       heap_region_iterate(&cleanup_verifier);
5596     }
5597 #endif
5598   }
5599 
5600   double elapsed = os::elapsedTime() - start;
5601   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5602 }
5603 
5604 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5605   size_t pre_used = 0;
5606   FreeRegionList local_free_list("Local List for CSet Freeing");
5607 
5608   double young_time_ms     = 0.0;
5609   double non_young_time_ms = 0.0;
5610 
5611   // Since the collection set is a superset of the the young list,
5612   // all we need to do to clear the young list is clear its
5613   // head and length, and unlink any young regions in the code below
5614   _young_list->clear();
5615 
5616   G1CollectorPolicy* policy = g1_policy();
5617 
5618   double start_sec = os::elapsedTime();
5619   bool non_young = true;
5620 
5621   HeapRegion* cur = cs_head;
5622   int age_bound = -1;
5623   size_t rs_lengths = 0;
5624 
5625   while (cur != NULL) {
5626     assert(!is_on_master_free_list(cur), "sanity");
5627     if (non_young) {
5628       if (cur->is_young()) {
5629         double end_sec = os::elapsedTime();
5630         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5631         non_young_time_ms += elapsed_ms;
5632 
5633         start_sec = os::elapsedTime();
5634         non_young = false;
5635       }
5636     } else {
5637       if (!cur->is_young()) {
5638         double end_sec = os::elapsedTime();
5639         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5640         young_time_ms += elapsed_ms;
5641 
5642         start_sec = os::elapsedTime();
5643         non_young = true;
5644       }
5645     }
5646 
5647     rs_lengths += cur->rem_set()->occupied_locked();
5648 
5649     HeapRegion* next = cur->next_in_collection_set();
5650     assert(cur->in_collection_set(), "bad CS");
5651     cur->set_next_in_collection_set(NULL);
5652     clear_in_cset(cur);
5653 
5654     if (cur->is_young()) {
5655       int index = cur->young_index_in_cset();
5656       assert(index != -1, "invariant");
5657       assert((uint) index < policy->young_cset_region_length(), "invariant");
5658       size_t words_survived = surviving_young_words[index];
5659       cur->record_surv_words_in_group(words_survived);
5660 
5661       // At this point the we have 'popped' cur from the collection set
5662       // (linked via next_in_collection_set()) but it is still in the
5663       // young list (linked via next_young_region()). Clear the
5664       // _next_young_region field.
5665       cur->set_next_young_region(NULL);
5666     } else {
5667       int index = cur->young_index_in_cset();
5668       assert(index == -1, "invariant");
5669     }
5670 
5671     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5672             (!cur->is_young() && cur->young_index_in_cset() == -1),
5673             "invariant" );
5674 
5675     if (!cur->evacuation_failed()) {
5676       MemRegion used_mr = cur->used_region();
5677 
5678       // And the region is empty.
5679       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5680       pre_used += cur->used();
5681       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5682     } else {
5683       cur->uninstall_surv_rate_group();
5684       if (cur->is_young()) {
5685         cur->set_young_index_in_cset(-1);
5686       }
5687       cur->set_evacuation_failed(false);
5688       // The region is now considered to be old.
5689       cur->set_old();
5690       // Do some allocation statistics accounting. Regions that failed evacuation
5691       // are always made old, so there is no need to update anything in the young
5692       // gen statistics, but we need to update old gen statistics.
5693       size_t used_words = cur->marked_bytes() / HeapWordSize;
5694       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5695       _old_set.add(cur);
5696       evacuation_info.increment_collectionset_used_after(cur->used());
5697     }
5698     cur = next;
5699   }
5700 
5701   evacuation_info.set_regions_freed(local_free_list.length());
5702   policy->record_max_rs_lengths(rs_lengths);
5703   policy->cset_regions_freed();
5704 
5705   double end_sec = os::elapsedTime();
5706   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5707 
5708   if (non_young) {
5709     non_young_time_ms += elapsed_ms;
5710   } else {
5711     young_time_ms += elapsed_ms;
5712   }
5713 
5714   prepend_to_freelist(&local_free_list);
5715   decrement_summary_bytes(pre_used);
5716   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5717   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5718 }
5719 
5720 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5721  private:
5722   FreeRegionList* _free_region_list;
5723   HeapRegionSet* _proxy_set;
5724   HeapRegionSetCount _humongous_regions_removed;
5725   size_t _freed_bytes;
5726  public:
5727 
5728   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5729     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5730   }
5731 
5732   virtual bool doHeapRegion(HeapRegion* r) {
5733     if (!r->is_starts_humongous()) {
5734       return false;
5735     }
5736 
5737     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5738 
5739     oop obj = (oop)r->bottom();
5740     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5741 
5742     // The following checks whether the humongous object is live are sufficient.
5743     // The main additional check (in addition to having a reference from the roots
5744     // or the young gen) is whether the humongous object has a remembered set entry.
5745     //
5746     // A humongous object cannot be live if there is no remembered set for it
5747     // because:
5748     // - there can be no references from within humongous starts regions referencing
5749     // the object because we never allocate other objects into them.
5750     // (I.e. there are no intra-region references that may be missed by the
5751     // remembered set)
5752     // - as soon there is a remembered set entry to the humongous starts region
5753     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5754     // until the end of a concurrent mark.
5755     //
5756     // It is not required to check whether the object has been found dead by marking
5757     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5758     // all objects allocated during that time are considered live.
5759     // SATB marking is even more conservative than the remembered set.
5760     // So if at this point in the collection there is no remembered set entry,
5761     // nobody has a reference to it.
5762     // At the start of collection we flush all refinement logs, and remembered sets
5763     // are completely up-to-date wrt to references to the humongous object.
5764     //
5765     // Other implementation considerations:
5766     // - never consider object arrays at this time because they would pose
5767     // considerable effort for cleaning up the the remembered sets. This is
5768     // required because stale remembered sets might reference locations that
5769     // are currently allocated into.
5770     uint region_idx = r->hrm_index();
5771     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5772         !r->rem_set()->is_empty()) {
5773 
5774       if (G1TraceEagerReclaimHumongousObjects) {
5775         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5776                                region_idx,
5777                                (size_t)obj->size() * HeapWordSize,
5778                                p2i(r->bottom()),
5779                                r->region_num(),
5780                                r->rem_set()->occupied(),
5781                                r->rem_set()->strong_code_roots_list_length(),
5782                                next_bitmap->isMarked(r->bottom()),
5783                                g1h->is_humongous_reclaim_candidate(region_idx),
5784                                obj->is_typeArray()
5785                               );
5786       }
5787 
5788       return false;
5789     }
5790 
5791     guarantee(obj->is_typeArray(),
5792               "Only eagerly reclaiming type arrays is supported, but the object "
5793               PTR_FORMAT " is not.", p2i(r->bottom()));
5794 
5795     if (G1TraceEagerReclaimHumongousObjects) {
5796       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5797                              region_idx,
5798                              (size_t)obj->size() * HeapWordSize,
5799                              p2i(r->bottom()),
5800                              r->region_num(),
5801                              r->rem_set()->occupied(),
5802                              r->rem_set()->strong_code_roots_list_length(),
5803                              next_bitmap->isMarked(r->bottom()),
5804                              g1h->is_humongous_reclaim_candidate(region_idx),
5805                              obj->is_typeArray()
5806                             );
5807     }
5808     // Need to clear mark bit of the humongous object if already set.
5809     if (next_bitmap->isMarked(r->bottom())) {
5810       next_bitmap->clear(r->bottom());
5811     }
5812     _freed_bytes += r->used();
5813     r->set_containing_set(NULL);
5814     _humongous_regions_removed.increment(1u, r->capacity());
5815     g1h->free_humongous_region(r, _free_region_list, false);
5816 
5817     return false;
5818   }
5819 
5820   HeapRegionSetCount& humongous_free_count() {
5821     return _humongous_regions_removed;
5822   }
5823 
5824   size_t bytes_freed() const {
5825     return _freed_bytes;
5826   }
5827 
5828   size_t humongous_reclaimed() const {
5829     return _humongous_regions_removed.length();
5830   }
5831 };
5832 
5833 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5834   assert_at_safepoint(true);
5835 
5836   if (!G1EagerReclaimHumongousObjects ||
5837       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5838     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5839     return;
5840   }
5841 
5842   double start_time = os::elapsedTime();
5843 
5844   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5845 
5846   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5847   heap_region_iterate(&cl);
5848 
5849   HeapRegionSetCount empty_set;
5850   remove_from_old_sets(empty_set, cl.humongous_free_count());
5851 
5852   G1HRPrinter* hrp = hr_printer();
5853   if (hrp->is_active()) {
5854     FreeRegionListIterator iter(&local_cleanup_list);
5855     while (iter.more_available()) {
5856       HeapRegion* hr = iter.get_next();
5857       hrp->cleanup(hr);
5858     }
5859   }
5860 
5861   prepend_to_freelist(&local_cleanup_list);
5862   decrement_summary_bytes(cl.bytes_freed());
5863 
5864   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5865                                                                     cl.humongous_reclaimed());
5866 }
5867 
5868 // This routine is similar to the above but does not record
5869 // any policy statistics or update free lists; we are abandoning
5870 // the current incremental collection set in preparation of a
5871 // full collection. After the full GC we will start to build up
5872 // the incremental collection set again.
5873 // This is only called when we're doing a full collection
5874 // and is immediately followed by the tearing down of the young list.
5875 
5876 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5877   HeapRegion* cur = cs_head;
5878 
5879   while (cur != NULL) {
5880     HeapRegion* next = cur->next_in_collection_set();
5881     assert(cur->in_collection_set(), "bad CS");
5882     cur->set_next_in_collection_set(NULL);
5883     clear_in_cset(cur);
5884     cur->set_young_index_in_cset(-1);
5885     cur = next;
5886   }
5887 }
5888 
5889 void G1CollectedHeap::set_free_regions_coming() {
5890   if (G1ConcRegionFreeingVerbose) {
5891     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5892                            "setting free regions coming");
5893   }
5894 
5895   assert(!free_regions_coming(), "pre-condition");
5896   _free_regions_coming = true;
5897 }
5898 
5899 void G1CollectedHeap::reset_free_regions_coming() {
5900   assert(free_regions_coming(), "pre-condition");
5901 
5902   {
5903     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5904     _free_regions_coming = false;
5905     SecondaryFreeList_lock->notify_all();
5906   }
5907 
5908   if (G1ConcRegionFreeingVerbose) {
5909     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5910                            "reset free regions coming");
5911   }
5912 }
5913 
5914 void G1CollectedHeap::wait_while_free_regions_coming() {
5915   // Most of the time we won't have to wait, so let's do a quick test
5916   // first before we take the lock.
5917   if (!free_regions_coming()) {
5918     return;
5919   }
5920 
5921   if (G1ConcRegionFreeingVerbose) {
5922     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5923                            "waiting for free regions");
5924   }
5925 
5926   {
5927     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5928     while (free_regions_coming()) {
5929       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5930     }
5931   }
5932 
5933   if (G1ConcRegionFreeingVerbose) {
5934     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5935                            "done waiting for free regions");
5936   }
5937 }
5938 
5939 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5940   return _allocator->is_retained_old_region(hr);
5941 }
5942 
5943 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5944   _young_list->push_region(hr);
5945 }
5946 
5947 class NoYoungRegionsClosure: public HeapRegionClosure {
5948 private:
5949   bool _success;
5950 public:
5951   NoYoungRegionsClosure() : _success(true) { }
5952   bool doHeapRegion(HeapRegion* r) {
5953     if (r->is_young()) {
5954       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5955                              p2i(r->bottom()), p2i(r->end()));
5956       _success = false;
5957     }
5958     return false;
5959   }
5960   bool success() { return _success; }
5961 };
5962 
5963 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5964   bool ret = _young_list->check_list_empty(check_sample);
5965 
5966   if (check_heap) {
5967     NoYoungRegionsClosure closure;
5968     heap_region_iterate(&closure);
5969     ret = ret && closure.success();
5970   }
5971 
5972   return ret;
5973 }
5974 
5975 class TearDownRegionSetsClosure : public HeapRegionClosure {
5976 private:
5977   HeapRegionSet *_old_set;
5978 
5979 public:
5980   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5981 
5982   bool doHeapRegion(HeapRegion* r) {
5983     if (r->is_old()) {
5984       _old_set->remove(r);
5985     } else {
5986       // We ignore free regions, we'll empty the free list afterwards.
5987       // We ignore young regions, we'll empty the young list afterwards.
5988       // We ignore humongous regions, we're not tearing down the
5989       // humongous regions set.
5990       assert(r->is_free() || r->is_young() || r->is_humongous(),
5991              "it cannot be another type");
5992     }
5993     return false;
5994   }
5995 
5996   ~TearDownRegionSetsClosure() {
5997     assert(_old_set->is_empty(), "post-condition");
5998   }
5999 };
6000 
6001 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6002   assert_at_safepoint(true /* should_be_vm_thread */);
6003 
6004   if (!free_list_only) {
6005     TearDownRegionSetsClosure cl(&_old_set);
6006     heap_region_iterate(&cl);
6007 
6008     // Note that emptying the _young_list is postponed and instead done as
6009     // the first step when rebuilding the regions sets again. The reason for
6010     // this is that during a full GC string deduplication needs to know if
6011     // a collected region was young or old when the full GC was initiated.
6012   }
6013   _hrm.remove_all_free_regions();
6014 }
6015 
6016 void G1CollectedHeap::increase_used(size_t bytes) {
6017   _summary_bytes_used += bytes;
6018 }
6019 
6020 void G1CollectedHeap::decrease_used(size_t bytes) {
6021   assert(_summary_bytes_used >= bytes,
6022          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6023          _summary_bytes_used, bytes);
6024   _summary_bytes_used -= bytes;
6025 }
6026 
6027 void G1CollectedHeap::set_used(size_t bytes) {
6028   _summary_bytes_used = bytes;
6029 }
6030 
6031 class RebuildRegionSetsClosure : public HeapRegionClosure {
6032 private:
6033   bool            _free_list_only;
6034   HeapRegionSet*   _old_set;
6035   HeapRegionManager*   _hrm;
6036   size_t          _total_used;
6037 
6038 public:
6039   RebuildRegionSetsClosure(bool free_list_only,
6040                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6041     _free_list_only(free_list_only),
6042     _old_set(old_set), _hrm(hrm), _total_used(0) {
6043     assert(_hrm->num_free_regions() == 0, "pre-condition");
6044     if (!free_list_only) {
6045       assert(_old_set->is_empty(), "pre-condition");
6046     }
6047   }
6048 
6049   bool doHeapRegion(HeapRegion* r) {
6050     if (r->is_continues_humongous()) {
6051       return false;
6052     }
6053 
6054     if (r->is_empty()) {
6055       // Add free regions to the free list
6056       r->set_free();
6057       r->set_allocation_context(AllocationContext::system());
6058       _hrm->insert_into_free_list(r);
6059     } else if (!_free_list_only) {
6060       assert(!r->is_young(), "we should not come across young regions");
6061 
6062       if (r->is_humongous()) {
6063         // We ignore humongous regions. We left the humongous set unchanged.
6064       } else {
6065         // Objects that were compacted would have ended up on regions
6066         // that were previously old or free.  Archive regions (which are
6067         // old) will not have been touched.
6068         assert(r->is_free() || r->is_old(), "invariant");
6069         // We now consider them old, so register as such. Leave
6070         // archive regions set that way, however, while still adding
6071         // them to the old set.
6072         if (!r->is_archive()) {
6073           r->set_old();
6074         }
6075         _old_set->add(r);
6076       }
6077       _total_used += r->used();
6078     }
6079 
6080     return false;
6081   }
6082 
6083   size_t total_used() {
6084     return _total_used;
6085   }
6086 };
6087 
6088 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6089   assert_at_safepoint(true /* should_be_vm_thread */);
6090 
6091   if (!free_list_only) {
6092     _young_list->empty_list();
6093   }
6094 
6095   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6096   heap_region_iterate(&cl);
6097 
6098   if (!free_list_only) {
6099     set_used(cl.total_used());
6100     if (_archive_allocator != NULL) {
6101       _archive_allocator->clear_used();
6102     }
6103   }
6104   assert(used_unlocked() == recalculate_used(),
6105          "inconsistent used_unlocked(), "
6106          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6107          used_unlocked(), recalculate_used());
6108 }
6109 
6110 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6111   _refine_cte_cl->set_concurrent(concurrent);
6112 }
6113 
6114 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6115   HeapRegion* hr = heap_region_containing(p);
6116   return hr->is_in(p);
6117 }
6118 
6119 // Methods for the mutator alloc region
6120 
6121 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6122                                                       bool force) {
6123   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6124   assert(!force || g1_policy()->can_expand_young_list(),
6125          "if force is true we should be able to expand the young list");
6126   bool young_list_full = g1_policy()->is_young_list_full();
6127   if (force || !young_list_full) {
6128     HeapRegion* new_alloc_region = new_region(word_size,
6129                                               false /* is_old */,
6130                                               false /* do_expand */);
6131     if (new_alloc_region != NULL) {
6132       set_region_short_lived_locked(new_alloc_region);
6133       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6134       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6135       return new_alloc_region;
6136     }
6137   }
6138   return NULL;
6139 }
6140 
6141 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6142                                                   size_t allocated_bytes) {
6143   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6144   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6145 
6146   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6147   increase_used(allocated_bytes);
6148   _hr_printer.retire(alloc_region);
6149   // We update the eden sizes here, when the region is retired,
6150   // instead of when it's allocated, since this is the point that its
6151   // used space has been recored in _summary_bytes_used.
6152   g1mm()->update_eden_size();
6153 }
6154 
6155 // Methods for the GC alloc regions
6156 
6157 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6158                                                  uint count,
6159                                                  InCSetState dest) {
6160   assert(FreeList_lock->owned_by_self(), "pre-condition");
6161 
6162   if (count < g1_policy()->max_regions(dest)) {
6163     const bool is_survivor = (dest.is_young());
6164     HeapRegion* new_alloc_region = new_region(word_size,
6165                                               !is_survivor,
6166                                               true /* do_expand */);
6167     if (new_alloc_region != NULL) {
6168       // We really only need to do this for old regions given that we
6169       // should never scan survivors. But it doesn't hurt to do it
6170       // for survivors too.
6171       new_alloc_region->record_timestamp();
6172       if (is_survivor) {
6173         new_alloc_region->set_survivor();
6174         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6175         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6176       } else {
6177         new_alloc_region->set_old();
6178         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6179         check_bitmaps("Old Region Allocation", new_alloc_region);
6180       }
6181       bool during_im = collector_state()->during_initial_mark_pause();
6182       new_alloc_region->note_start_of_copying(during_im);
6183       return new_alloc_region;
6184     }
6185   }
6186   return NULL;
6187 }
6188 
6189 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6190                                              size_t allocated_bytes,
6191                                              InCSetState dest) {
6192   bool during_im = collector_state()->during_initial_mark_pause();
6193   alloc_region->note_end_of_copying(during_im);
6194   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6195   if (dest.is_young()) {
6196     young_list()->add_survivor_region(alloc_region);
6197   } else {
6198     _old_set.add(alloc_region);
6199   }
6200   _hr_printer.retire(alloc_region);
6201 }
6202 
6203 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6204   bool expanded = false;
6205   uint index = _hrm.find_highest_free(&expanded);
6206 
6207   if (index != G1_NO_HRM_INDEX) {
6208     if (expanded) {
6209       ergo_verbose1(ErgoHeapSizing,
6210                     "attempt heap expansion",
6211                     ergo_format_reason("requested address range outside heap bounds")
6212                     ergo_format_byte("region size"),
6213                     HeapRegion::GrainWords * HeapWordSize);
6214     }
6215     _hrm.allocate_free_regions_starting_at(index, 1);
6216     return region_at(index);
6217   }
6218   return NULL;
6219 }
6220 
6221 // Heap region set verification
6222 
6223 class VerifyRegionListsClosure : public HeapRegionClosure {
6224 private:
6225   HeapRegionSet*   _old_set;
6226   HeapRegionSet*   _humongous_set;
6227   HeapRegionManager*   _hrm;
6228 
6229 public:
6230   HeapRegionSetCount _old_count;
6231   HeapRegionSetCount _humongous_count;
6232   HeapRegionSetCount _free_count;
6233 
6234   VerifyRegionListsClosure(HeapRegionSet* old_set,
6235                            HeapRegionSet* humongous_set,
6236                            HeapRegionManager* hrm) :
6237     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6238     _old_count(), _humongous_count(), _free_count(){ }
6239 
6240   bool doHeapRegion(HeapRegion* hr) {
6241     if (hr->is_continues_humongous()) {
6242       return false;
6243     }
6244 
6245     if (hr->is_young()) {
6246       // TODO
6247     } else if (hr->is_starts_humongous()) {
6248       assert(hr->containing_set() == _humongous_set, "Heap region %u is starts humongous but not in humongous set.", hr->hrm_index());
6249       _humongous_count.increment(1u, hr->capacity());
6250     } else if (hr->is_empty()) {
6251       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6252       _free_count.increment(1u, hr->capacity());
6253     } else if (hr->is_old()) {
6254       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6255       _old_count.increment(1u, hr->capacity());
6256     } else {
6257       // There are no other valid region types. Check for one invalid
6258       // one we can identify: pinned without old or humongous set.
6259       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6260       ShouldNotReachHere();
6261     }
6262     return false;
6263   }
6264 
6265   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6266     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6267     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6268               old_set->total_capacity_bytes(), _old_count.capacity());
6269 
6270     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6271     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6272               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6273 
6274     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6275     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6276               free_list->total_capacity_bytes(), _free_count.capacity());
6277   }
6278 };
6279 
6280 void G1CollectedHeap::verify_region_sets() {
6281   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6282 
6283   // First, check the explicit lists.
6284   _hrm.verify();
6285   {
6286     // Given that a concurrent operation might be adding regions to
6287     // the secondary free list we have to take the lock before
6288     // verifying it.
6289     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6290     _secondary_free_list.verify_list();
6291   }
6292 
6293   // If a concurrent region freeing operation is in progress it will
6294   // be difficult to correctly attributed any free regions we come
6295   // across to the correct free list given that they might belong to
6296   // one of several (free_list, secondary_free_list, any local lists,
6297   // etc.). So, if that's the case we will skip the rest of the
6298   // verification operation. Alternatively, waiting for the concurrent
6299   // operation to complete will have a non-trivial effect on the GC's
6300   // operation (no concurrent operation will last longer than the
6301   // interval between two calls to verification) and it might hide
6302   // any issues that we would like to catch during testing.
6303   if (free_regions_coming()) {
6304     return;
6305   }
6306 
6307   // Make sure we append the secondary_free_list on the free_list so
6308   // that all free regions we will come across can be safely
6309   // attributed to the free_list.
6310   append_secondary_free_list_if_not_empty_with_lock();
6311 
6312   // Finally, make sure that the region accounting in the lists is
6313   // consistent with what we see in the heap.
6314 
6315   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6316   heap_region_iterate(&cl);
6317   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6318 }
6319 
6320 // Optimized nmethod scanning
6321 
6322 class RegisterNMethodOopClosure: public OopClosure {
6323   G1CollectedHeap* _g1h;
6324   nmethod* _nm;
6325 
6326   template <class T> void do_oop_work(T* p) {
6327     T heap_oop = oopDesc::load_heap_oop(p);
6328     if (!oopDesc::is_null(heap_oop)) {
6329       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6330       HeapRegion* hr = _g1h->heap_region_containing(obj);
6331       assert(!hr->is_continues_humongous(),
6332              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6333              " starting at " HR_FORMAT,
6334              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6335 
6336       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6337       hr->add_strong_code_root_locked(_nm);
6338     }
6339   }
6340 
6341 public:
6342   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6343     _g1h(g1h), _nm(nm) {}
6344 
6345   void do_oop(oop* p)       { do_oop_work(p); }
6346   void do_oop(narrowOop* p) { do_oop_work(p); }
6347 };
6348 
6349 class UnregisterNMethodOopClosure: public OopClosure {
6350   G1CollectedHeap* _g1h;
6351   nmethod* _nm;
6352 
6353   template <class T> void do_oop_work(T* p) {
6354     T heap_oop = oopDesc::load_heap_oop(p);
6355     if (!oopDesc::is_null(heap_oop)) {
6356       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6357       HeapRegion* hr = _g1h->heap_region_containing(obj);
6358       assert(!hr->is_continues_humongous(),
6359              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6360              " starting at " HR_FORMAT,
6361              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6362 
6363       hr->remove_strong_code_root(_nm);
6364     }
6365   }
6366 
6367 public:
6368   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6369     _g1h(g1h), _nm(nm) {}
6370 
6371   void do_oop(oop* p)       { do_oop_work(p); }
6372   void do_oop(narrowOop* p) { do_oop_work(p); }
6373 };
6374 
6375 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6376   CollectedHeap::register_nmethod(nm);
6377 
6378   guarantee(nm != NULL, "sanity");
6379   RegisterNMethodOopClosure reg_cl(this, nm);
6380   nm->oops_do(&reg_cl);
6381 }
6382 
6383 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6384   CollectedHeap::unregister_nmethod(nm);
6385 
6386   guarantee(nm != NULL, "sanity");
6387   UnregisterNMethodOopClosure reg_cl(this, nm);
6388   nm->oops_do(&reg_cl, true);
6389 }
6390 
6391 void G1CollectedHeap::purge_code_root_memory() {
6392   double purge_start = os::elapsedTime();
6393   G1CodeRootSet::purge();
6394   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6395   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6396 }
6397 
6398 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6399   G1CollectedHeap* _g1h;
6400 
6401 public:
6402   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6403     _g1h(g1h) {}
6404 
6405   void do_code_blob(CodeBlob* cb) {
6406     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6407     if (nm == NULL) {
6408       return;
6409     }
6410 
6411     if (ScavengeRootsInCode) {
6412       _g1h->register_nmethod(nm);
6413     }
6414   }
6415 };
6416 
6417 void G1CollectedHeap::rebuild_strong_code_roots() {
6418   RebuildStrongCodeRootClosure blob_cl(this);
6419   CodeCache::blobs_do(&blob_cl);
6420 }