1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/cms/compactibleFreeListSpace.hpp"
  27 #include "gc/cms/concurrentMarkSweepGeneration.hpp"
  28 #include "gc/cms/parNewGeneration.inline.hpp"
  29 #include "gc/cms/parOopClosures.inline.hpp"
  30 #include "gc/serial/defNewGeneration.inline.hpp"
  31 #include "gc/shared/adaptiveSizePolicy.hpp"
  32 #include "gc/shared/ageTable.inline.hpp"
  33 #include "gc/shared/copyFailedInfo.hpp"
  34 #include "gc/shared/gcHeapSummary.hpp"
  35 #include "gc/shared/gcTimer.hpp"
  36 #include "gc/shared/gcTrace.hpp"
  37 #include "gc/shared/gcTraceTime.inline.hpp"
  38 #include "gc/shared/genCollectedHeap.hpp"
  39 #include "gc/shared/genOopClosures.inline.hpp"
  40 #include "gc/shared/generation.hpp"
  41 #include "gc/shared/plab.inline.hpp"
  42 #include "gc/shared/preservedMarks.inline.hpp"
  43 #include "gc/shared/referencePolicy.hpp"
  44 #include "gc/shared/space.hpp"
  45 #include "gc/shared/spaceDecorator.hpp"
  46 #include "gc/shared/strongRootsScope.hpp"
  47 #include "gc/shared/taskqueue.inline.hpp"
  48 #include "gc/shared/workgroup.hpp"
  49 #include "logging/log.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/objArrayOop.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "runtime/atomic.inline.hpp"
  54 #include "runtime/handles.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "utilities/copy.hpp"
  59 #include "utilities/globalDefinitions.hpp"
  60 #include "utilities/stack.inline.hpp"
  61 
  62 ParScanThreadState::ParScanThreadState(Space* to_space_,
  63                                        ParNewGeneration* young_gen_,
  64                                        Generation* old_gen_,
  65                                        int thread_num_,
  66                                        ObjToScanQueueSet* work_queue_set_,
  67                                        Stack<oop, mtGC>* overflow_stacks_,
  68                                        PreservedMarks* preserved_marks_,
  69                                        size_t desired_plab_sz_,
  70                                        ParallelTaskTerminator& term_) :
  71   _to_space(to_space_),
  72   _old_gen(old_gen_),
  73   _young_gen(young_gen_),
  74   _thread_num(thread_num_),
  75   _work_queue(work_queue_set_->queue(thread_num_)),
  76   _to_space_full(false),
  77   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  78   _preserved_marks(preserved_marks_),
  79   _ageTable(false), // false ==> not the global age table, no perf data.
  80   _to_space_alloc_buffer(desired_plab_sz_),
  81   _to_space_closure(young_gen_, this),
  82   _old_gen_closure(young_gen_, this),
  83   _to_space_root_closure(young_gen_, this),
  84   _old_gen_root_closure(young_gen_, this),
  85   _older_gen_closure(young_gen_, this),
  86   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  87                       &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
  88                       work_queue_set_, &term_),
  89   _is_alive_closure(young_gen_),
  90   _scan_weak_ref_closure(young_gen_, this),
  91   _keep_alive_closure(&_scan_weak_ref_closure),
  92   _strong_roots_time(0.0),
  93   _term_time(0.0)
  94 {
  95   #if TASKQUEUE_STATS
  96   _term_attempts = 0;
  97   _overflow_refills = 0;
  98   _overflow_refill_objs = 0;
  99   #endif // TASKQUEUE_STATS
 100 
 101   _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
 102   _hash_seed = 17;  // Might want to take time-based random value.
 103   _start = os::elapsedTime();
 104   _old_gen_closure.set_generation(old_gen_);
 105   _old_gen_root_closure.set_generation(old_gen_);
 106 }
 107 
 108 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 109                                               size_t plab_word_size) {
 110   ChunkArray* sca = survivor_chunk_array();
 111   if (sca != NULL) {
 112     // A non-null SCA implies that we want the PLAB data recorded.
 113     sca->record_sample(plab_start, plab_word_size);
 114   }
 115 }
 116 
 117 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 118   return new_obj->is_objArray() &&
 119          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 120          new_obj != old_obj;
 121 }
 122 
 123 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 124   assert(old->is_objArray(), "must be obj array");
 125   assert(old->is_forwarded(), "must be forwarded");
 126   assert(GenCollectedHeap::heap()->is_in_reserved(old), "must be in heap.");
 127   assert(!old_gen()->is_in(old), "must be in young generation.");
 128 
 129   objArrayOop obj = objArrayOop(old->forwardee());
 130   // Process ParGCArrayScanChunk elements now
 131   // and push the remainder back onto queue
 132   int start     = arrayOop(old)->length();
 133   int end       = obj->length();
 134   int remainder = end - start;
 135   assert(start <= end, "just checking");
 136   if (remainder > 2 * ParGCArrayScanChunk) {
 137     // Test above combines last partial chunk with a full chunk
 138     end = start + ParGCArrayScanChunk;
 139     arrayOop(old)->set_length(end);
 140     // Push remainder.
 141     bool ok = work_queue()->push(old);
 142     assert(ok, "just popped, push must be okay");
 143   } else {
 144     // Restore length so that it can be used if there
 145     // is a promotion failure and forwarding pointers
 146     // must be removed.
 147     arrayOop(old)->set_length(end);
 148   }
 149 
 150   // process our set of indices (include header in first chunk)
 151   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 152   if ((HeapWord *)obj < young_old_boundary()) {
 153     // object is in to_space
 154     obj->oop_iterate_range(&_to_space_closure, start, end);
 155   } else {
 156     // object is in old generation
 157     obj->oop_iterate_range(&_old_gen_closure, start, end);
 158   }
 159 }
 160 
 161 void ParScanThreadState::trim_queues(int max_size) {
 162   ObjToScanQueue* queue = work_queue();
 163   do {
 164     while (queue->size() > (juint)max_size) {
 165       oop obj_to_scan;
 166       if (queue->pop_local(obj_to_scan)) {
 167         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 168           if (obj_to_scan->is_objArray() &&
 169               obj_to_scan->is_forwarded() &&
 170               obj_to_scan->forwardee() != obj_to_scan) {
 171             scan_partial_array_and_push_remainder(obj_to_scan);
 172           } else {
 173             // object is in to_space
 174             obj_to_scan->oop_iterate(&_to_space_closure);
 175           }
 176         } else {
 177           // object is in old generation
 178           obj_to_scan->oop_iterate(&_old_gen_closure);
 179         }
 180       }
 181     }
 182     // For the  case of compressed oops, we have a private, non-shared
 183     // overflow stack, so we eagerly drain it so as to more evenly
 184     // distribute load early. Note: this may be good to do in
 185     // general rather than delay for the final stealing phase.
 186     // If applicable, we'll transfer a set of objects over to our
 187     // work queue, allowing them to be stolen and draining our
 188     // private overflow stack.
 189   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 190 }
 191 
 192 bool ParScanThreadState::take_from_overflow_stack() {
 193   assert(ParGCUseLocalOverflow, "Else should not call");
 194   assert(young_gen()->overflow_list() == NULL, "Error");
 195   ObjToScanQueue* queue = work_queue();
 196   Stack<oop, mtGC>* const of_stack = overflow_stack();
 197   const size_t num_overflow_elems = of_stack->size();
 198   const size_t space_available = queue->max_elems() - queue->size();
 199   const size_t num_take_elems = MIN3(space_available / 4,
 200                                      ParGCDesiredObjsFromOverflowList,
 201                                      num_overflow_elems);
 202   // Transfer the most recent num_take_elems from the overflow
 203   // stack to our work queue.
 204   for (size_t i = 0; i != num_take_elems; i++) {
 205     oop cur = of_stack->pop();
 206     oop obj_to_push = cur->forwardee();
 207     assert(GenCollectedHeap::heap()->is_in_reserved(cur), "Should be in heap");
 208     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 209     assert(GenCollectedHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 210     if (should_be_partially_scanned(obj_to_push, cur)) {
 211       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 212       obj_to_push = cur;
 213     }
 214     bool ok = queue->push(obj_to_push);
 215     assert(ok, "Should have succeeded");
 216   }
 217   assert(young_gen()->overflow_list() == NULL, "Error");
 218   return num_take_elems > 0;  // was something transferred?
 219 }
 220 
 221 void ParScanThreadState::push_on_overflow_stack(oop p) {
 222   assert(ParGCUseLocalOverflow, "Else should not call");
 223   overflow_stack()->push(p);
 224   assert(young_gen()->overflow_list() == NULL, "Error");
 225 }
 226 
 227 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 228   // If the object is small enough, try to reallocate the buffer.
 229   HeapWord* obj = NULL;
 230   if (!_to_space_full) {
 231     PLAB* const plab = to_space_alloc_buffer();
 232     Space* const sp  = to_space();
 233     if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
 234       // Is small enough; abandon this buffer and start a new one.
 235       plab->retire();
 236       size_t buf_size = plab->word_sz();
 237       HeapWord* buf_space = sp->par_allocate(buf_size);
 238       if (buf_space == NULL) {
 239         const size_t min_bytes =
 240           PLAB::min_size() << LogHeapWordSize;
 241         size_t free_bytes = sp->free();
 242         while(buf_space == NULL && free_bytes >= min_bytes) {
 243           buf_size = free_bytes >> LogHeapWordSize;
 244           assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
 245           buf_space  = sp->par_allocate(buf_size);
 246           free_bytes = sp->free();
 247         }
 248       }
 249       if (buf_space != NULL) {
 250         plab->set_buf(buf_space, buf_size);
 251         record_survivor_plab(buf_space, buf_size);
 252         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 253         // Note that we cannot compare buf_size < word_sz below
 254         // because of AlignmentReserve (see PLAB::allocate()).
 255         assert(obj != NULL || plab->words_remaining() < word_sz,
 256                "Else should have been able to allocate");
 257         // It's conceivable that we may be able to use the
 258         // buffer we just grabbed for subsequent small requests
 259         // even if not for this one.
 260       } else {
 261         // We're used up.
 262         _to_space_full = true;
 263       }
 264     } else {
 265       // Too large; allocate the object individually.
 266       obj = sp->par_allocate(word_sz);
 267     }
 268   }
 269   return obj;
 270 }
 271 
 272 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
 273   to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 274 }
 275 
 276 void ParScanThreadState::print_promotion_failure_size() {
 277   if (_promotion_failed_info.has_failed()) {
 278     log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 279                              _thread_num, _promotion_failed_info.first_size());
 280   }
 281 }
 282 
 283 class ParScanThreadStateSet: private ResourceArray {
 284 public:
 285   // Initializes states for the specified number of threads;
 286   ParScanThreadStateSet(int                     num_threads,
 287                         Space&                  to_space,
 288                         ParNewGeneration&       young_gen,
 289                         Generation&             old_gen,
 290                         ObjToScanQueueSet&      queue_set,
 291                         Stack<oop, mtGC>*       overflow_stacks_,
 292                         PreservedMarksSet&      preserved_marks_set,
 293                         size_t                  desired_plab_sz,
 294                         ParallelTaskTerminator& term);
 295 
 296   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 297 
 298   inline ParScanThreadState& thread_state(int i);
 299 
 300   void trace_promotion_failed(const YoungGCTracer* gc_tracer);
 301   void reset(uint active_workers, bool promotion_failed);
 302   void flush();
 303 
 304   #if TASKQUEUE_STATS
 305   static void
 306     print_termination_stats_hdr(outputStream* const st);
 307   void print_termination_stats();
 308   static void
 309     print_taskqueue_stats_hdr(outputStream* const st);
 310   void print_taskqueue_stats();
 311   void reset_stats();
 312   #endif // TASKQUEUE_STATS
 313 
 314 private:
 315   ParallelTaskTerminator& _term;
 316   ParNewGeneration&       _young_gen;
 317   Generation&             _old_gen;
 318  public:
 319   bool is_valid(int id) const { return id < length(); }
 320   ParallelTaskTerminator* terminator() { return &_term; }
 321 };
 322 
 323 ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
 324                                              Space& to_space,
 325                                              ParNewGeneration& young_gen,
 326                                              Generation& old_gen,
 327                                              ObjToScanQueueSet& queue_set,
 328                                              Stack<oop, mtGC>* overflow_stacks,
 329                                              PreservedMarksSet& preserved_marks_set,
 330                                              size_t desired_plab_sz,
 331                                              ParallelTaskTerminator& term)
 332   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 333     _young_gen(young_gen),
 334     _old_gen(old_gen),
 335     _term(term)
 336 {
 337   assert(num_threads > 0, "sanity check!");
 338   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 339          "overflow_stack allocation mismatch");
 340   // Initialize states.
 341   for (int i = 0; i < num_threads; ++i) {
 342     new ((ParScanThreadState*)_data + i)
 343         ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
 344                            overflow_stacks, preserved_marks_set.get(i),
 345                            desired_plab_sz, term);
 346   }
 347 }
 348 
 349 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
 350   assert(i >= 0 && i < length(), "sanity check!");
 351   return ((ParScanThreadState*)_data)[i];
 352 }
 353 
 354 void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
 355   for (int i = 0; i < length(); ++i) {
 356     if (thread_state(i).promotion_failed()) {
 357       gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
 358       thread_state(i).promotion_failed_info().reset();
 359     }
 360   }
 361 }
 362 
 363 void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
 364   _term.reset_for_reuse(active_threads);
 365   if (promotion_failed) {
 366     for (int i = 0; i < length(); ++i) {
 367       thread_state(i).print_promotion_failure_size();
 368     }
 369   }
 370 }
 371 
 372 #if TASKQUEUE_STATS
 373 void ParScanThreadState::reset_stats() {
 374   taskqueue_stats().reset();
 375   _term_attempts = 0;
 376   _overflow_refills = 0;
 377   _overflow_refill_objs = 0;
 378 }
 379 
 380 void ParScanThreadStateSet::reset_stats() {
 381   for (int i = 0; i < length(); ++i) {
 382     thread_state(i).reset_stats();
 383   }
 384 }
 385 
 386 void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
 387   st->print_raw_cr("GC Termination Stats");
 388   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
 389   st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
 390   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
 391 }
 392 
 393 void ParScanThreadStateSet::print_termination_stats() {
 394   LogHandle(gc, task, stats) log;
 395   if (!log.is_debug()) {
 396     return;
 397   }
 398 
 399   ResourceMark rm;
 400   outputStream* st = log.debug_stream();
 401 
 402   print_termination_stats_hdr(st);
 403 
 404   for (int i = 0; i < length(); ++i) {
 405     const ParScanThreadState & pss = thread_state(i);
 406     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 407     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 408     const double term_ms = pss.term_time() * 1000.0;
 409     st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
 410                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 411                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 412   }
 413 }
 414 
 415 // Print stats related to work queue activity.
 416 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
 417   st->print_raw_cr("GC Task Stats");
 418   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 419   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 420 }
 421 
 422 void ParScanThreadStateSet::print_taskqueue_stats() {
 423   if (!log_develop_is_enabled(Trace, gc, task, stats)) {
 424     return;
 425   }
 426   LogHandle(gc, task, stats) log;
 427   ResourceMark rm;
 428   outputStream* st = log.trace_stream();
 429   print_taskqueue_stats_hdr(st);
 430 
 431   TaskQueueStats totals;
 432   for (int i = 0; i < length(); ++i) {
 433     const ParScanThreadState & pss = thread_state(i);
 434     const TaskQueueStats & stats = pss.taskqueue_stats();
 435     st->print("%3d ", i); stats.print(st); st->cr();
 436     totals += stats;
 437 
 438     if (pss.overflow_refills() > 0) {
 439       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 440                    SIZE_FORMAT_W(10) " overflow objects",
 441                    pss.overflow_refills(), pss.overflow_refill_objs());
 442     }
 443   }
 444   st->print("tot "); totals.print(st); st->cr();
 445 
 446   DEBUG_ONLY(totals.verify());
 447 }
 448 #endif // TASKQUEUE_STATS
 449 
 450 void ParScanThreadStateSet::flush() {
 451   // Work in this loop should be kept as lightweight as
 452   // possible since this might otherwise become a bottleneck
 453   // to scaling. Should we add heavy-weight work into this
 454   // loop, consider parallelizing the loop into the worker threads.
 455   for (int i = 0; i < length(); ++i) {
 456     ParScanThreadState& par_scan_state = thread_state(i);
 457 
 458     // Flush stats related to To-space PLAB activity and
 459     // retire the last buffer.
 460     par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
 461 
 462     // Every thread has its own age table.  We need to merge
 463     // them all into one.
 464     AgeTable *local_table = par_scan_state.age_table();
 465     _young_gen.age_table()->merge(local_table);
 466 
 467     // Inform old gen that we're done.
 468     _old_gen.par_promote_alloc_done(i);
 469     _old_gen.par_oop_since_save_marks_iterate_done(i);
 470   }
 471 
 472   if (UseConcMarkSweepGC) {
 473     // We need to call this even when ResizeOldPLAB is disabled
 474     // so as to avoid breaking some asserts. While we may be able
 475     // to avoid this by reorganizing the code a bit, I am loathe
 476     // to do that unless we find cases where ergo leads to bad
 477     // performance.
 478     CompactibleFreeListSpaceLAB::compute_desired_plab_size();
 479   }
 480 }
 481 
 482 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 483                                ParScanThreadState* par_scan_state) :
 484   OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
 485   _boundary = _g->reserved().end();
 486 }
 487 
 488 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 489 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 490 
 491 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 492 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 493 
 494 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 495 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 496 
 497 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 498 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 499 
 500 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 501                                              ParScanThreadState* par_scan_state)
 502   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 503 {}
 504 
 505 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 506 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 507 
 508 #ifdef WIN32
 509 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 510 #endif
 511 
 512 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 513     ParScanThreadState* par_scan_state_,
 514     ParScanWithoutBarrierClosure* to_space_closure_,
 515     ParScanWithBarrierClosure* old_gen_closure_,
 516     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 517     ParNewGeneration* par_gen_,
 518     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 519     ObjToScanQueueSet* task_queues_,
 520     ParallelTaskTerminator* terminator_) :
 521 
 522     _par_scan_state(par_scan_state_),
 523     _to_space_closure(to_space_closure_),
 524     _old_gen_closure(old_gen_closure_),
 525     _to_space_root_closure(to_space_root_closure_),
 526     _old_gen_root_closure(old_gen_root_closure_),
 527     _par_gen(par_gen_),
 528     _task_queues(task_queues_),
 529     _terminator(terminator_)
 530 {}
 531 
 532 void ParEvacuateFollowersClosure::do_void() {
 533   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 534 
 535   while (true) {
 536     // Scan to-space and old-gen objs until we run out of both.
 537     oop obj_to_scan;
 538     par_scan_state()->trim_queues(0);
 539 
 540     // We have no local work, attempt to steal from other threads.
 541 
 542     // Attempt to steal work from promoted.
 543     if (task_queues()->steal(par_scan_state()->thread_num(),
 544                              par_scan_state()->hash_seed(),
 545                              obj_to_scan)) {
 546       bool res = work_q->push(obj_to_scan);
 547       assert(res, "Empty queue should have room for a push.");
 548 
 549       // If successful, goto Start.
 550       continue;
 551 
 552       // Try global overflow list.
 553     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 554       continue;
 555     }
 556 
 557     // Otherwise, offer termination.
 558     par_scan_state()->start_term_time();
 559     if (terminator()->offer_termination()) break;
 560     par_scan_state()->end_term_time();
 561   }
 562   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 563          "Broken overflow list?");
 564   // Finish the last termination pause.
 565   par_scan_state()->end_term_time();
 566 }
 567 
 568 ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
 569                              Generation* old_gen,
 570                              HeapWord* young_old_boundary,
 571                              ParScanThreadStateSet* state_set,
 572                              StrongRootsScope* strong_roots_scope) :
 573     AbstractGangTask("ParNewGeneration collection"),
 574     _young_gen(young_gen), _old_gen(old_gen),
 575     _young_old_boundary(young_old_boundary),
 576     _state_set(state_set),
 577     _strong_roots_scope(strong_roots_scope)
 578 {}
 579 
 580 void ParNewGenTask::work(uint worker_id) {
 581   GenCollectedHeap* gch = GenCollectedHeap::heap();
 582   // Since this is being done in a separate thread, need new resource
 583   // and handle marks.
 584   ResourceMark rm;
 585   HandleMark hm;
 586 
 587   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 588   assert(_state_set->is_valid(worker_id), "Should not have been called");
 589 
 590   par_scan_state.set_young_old_boundary(_young_old_boundary);
 591 
 592   KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
 593                                       gch->rem_set()->klass_rem_set());
 594   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 595                                            &par_scan_state.to_space_root_closure(),
 596                                            false);
 597 
 598   par_scan_state.start_strong_roots();
 599   gch->gen_process_roots(_strong_roots_scope,
 600                          GenCollectedHeap::YoungGen,
 601                          true,  // Process younger gens, if any, as strong roots.
 602                          GenCollectedHeap::SO_ScavengeCodeCache,
 603                          GenCollectedHeap::StrongAndWeakRoots,
 604                          &par_scan_state.to_space_root_closure(),
 605                          &par_scan_state.older_gen_closure(),
 606                          &cld_scan_closure);
 607 
 608   par_scan_state.end_strong_roots();
 609 
 610   // "evacuate followers".
 611   par_scan_state.evacuate_followers_closure().do_void();
 612 }
 613 
 614 ParNewGeneration::ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
 615   : DefNewGeneration(rs, initial_byte_size, "PCopy"),
 616   _overflow_list(NULL),
 617   _is_alive_closure(this),
 618   _plab_stats(YoungPLABSize, PLABWeight)
 619 {
 620   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 621   NOT_PRODUCT(_num_par_pushes = 0;)
 622   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 623   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 624 
 625   for (uint i = 0; i < ParallelGCThreads; i++) {
 626     ObjToScanQueue *q = new ObjToScanQueue();
 627     guarantee(q != NULL, "work_queue Allocation failure.");
 628     _task_queues->register_queue(i, q);
 629   }
 630 
 631   for (uint i = 0; i < ParallelGCThreads; i++) {
 632     _task_queues->queue(i)->initialize();
 633   }
 634 
 635   _overflow_stacks = NULL;
 636   if (ParGCUseLocalOverflow) {
 637     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
 638     typedef Stack<oop, mtGC> GCOopStack;
 639 
 640     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 641     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 642       new (_overflow_stacks + i) Stack<oop, mtGC>();
 643     }
 644   }
 645 
 646   if (UsePerfData) {
 647     EXCEPTION_MARK;
 648     ResourceMark rm;
 649 
 650     const char* cname =
 651          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 652     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 653                                      ParallelGCThreads, CHECK);
 654   }
 655 }
 656 
 657 // ParNewGeneration::
 658 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 659   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 660 
 661 template <class T>
 662 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 663 #ifdef ASSERT
 664   {
 665     assert(!oopDesc::is_null(*p), "expected non-null ref");
 666     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 667     // We never expect to see a null reference being processed
 668     // as a weak reference.
 669     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 670   }
 671 #endif // ASSERT
 672 
 673   _par_cl->do_oop_nv(p);
 674 
 675   if (GenCollectedHeap::heap()->is_in_reserved(p)) {
 676     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 677     _rs->write_ref_field_gc_par(p, obj);
 678   }
 679 }
 680 
 681 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 682 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 683 
 684 // ParNewGeneration::
 685 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 686   DefNewGeneration::KeepAliveClosure(cl) {}
 687 
 688 template <class T>
 689 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 690 #ifdef ASSERT
 691   {
 692     assert(!oopDesc::is_null(*p), "expected non-null ref");
 693     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 694     // We never expect to see a null reference being processed
 695     // as a weak reference.
 696     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 697   }
 698 #endif // ASSERT
 699 
 700   _cl->do_oop_nv(p);
 701 
 702   if (GenCollectedHeap::heap()->is_in_reserved(p)) {
 703     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 704     _rs->write_ref_field_gc_par(p, obj);
 705   }
 706 }
 707 
 708 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 709 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 710 
 711 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 712   T heap_oop = oopDesc::load_heap_oop(p);
 713   if (!oopDesc::is_null(heap_oop)) {
 714     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 715     if ((HeapWord*)obj < _boundary) {
 716       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 717       oop new_obj = obj->is_forwarded()
 718                       ? obj->forwardee()
 719                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 720       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 721     }
 722     if (_gc_barrier) {
 723       // If p points to a younger generation, mark the card.
 724       if ((HeapWord*)obj < _gen_boundary) {
 725         _rs->write_ref_field_gc_par(p, obj);
 726       }
 727     }
 728   }
 729 }
 730 
 731 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 732 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 733 
 734 class ParNewRefProcTaskProxy: public AbstractGangTask {
 735   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 736 public:
 737   ParNewRefProcTaskProxy(ProcessTask& task,
 738                          ParNewGeneration& young_gen,
 739                          Generation& old_gen,
 740                          HeapWord* young_old_boundary,
 741                          ParScanThreadStateSet& state_set);
 742 
 743 private:
 744   virtual void work(uint worker_id);
 745 private:
 746   ParNewGeneration&      _young_gen;
 747   ProcessTask&           _task;
 748   Generation&            _old_gen;
 749   HeapWord*              _young_old_boundary;
 750   ParScanThreadStateSet& _state_set;
 751 };
 752 
 753 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
 754                                                ParNewGeneration& young_gen,
 755                                                Generation& old_gen,
 756                                                HeapWord* young_old_boundary,
 757                                                ParScanThreadStateSet& state_set)
 758   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 759     _young_gen(young_gen),
 760     _task(task),
 761     _old_gen(old_gen),
 762     _young_old_boundary(young_old_boundary),
 763     _state_set(state_set)
 764 { }
 765 
 766 void ParNewRefProcTaskProxy::work(uint worker_id) {
 767   ResourceMark rm;
 768   HandleMark hm;
 769   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 770   par_scan_state.set_young_old_boundary(_young_old_boundary);
 771   _task.work(worker_id, par_scan_state.is_alive_closure(),
 772              par_scan_state.keep_alive_closure(),
 773              par_scan_state.evacuate_followers_closure());
 774 }
 775 
 776 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 777   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 778   EnqueueTask& _task;
 779 
 780 public:
 781   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 782     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 783       _task(task)
 784   { }
 785 
 786   virtual void work(uint worker_id) {
 787     _task.work(worker_id);
 788   }
 789 };
 790 
 791 void ParNewRefProcTaskExecutor::execute(ProcessTask& task) {
 792   GenCollectedHeap* gch = GenCollectedHeap::heap();
 793   WorkGang* workers = gch->workers();
 794   assert(workers != NULL, "Need parallel worker threads.");
 795   _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
 796   ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
 797                                  _young_gen.reserved().end(), _state_set);
 798   workers->run_task(&rp_task);
 799   _state_set.reset(0 /* bad value in debug if not reset */,
 800                    _young_gen.promotion_failed());
 801 }
 802 
 803 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task) {
 804   GenCollectedHeap* gch = GenCollectedHeap::heap();
 805   WorkGang* workers = gch->workers();
 806   assert(workers != NULL, "Need parallel worker threads.");
 807   ParNewRefEnqueueTaskProxy enq_task(task);
 808   workers->run_task(&enq_task);
 809 }
 810 
 811 void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
 812   _state_set.flush();
 813   GenCollectedHeap* gch = GenCollectedHeap::heap();
 814   gch->save_marks();
 815 }
 816 
 817 ScanClosureWithParBarrier::
 818 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 819   ScanClosure(g, gc_barrier)
 820 { }
 821 
 822 EvacuateFollowersClosureGeneral::
 823 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch,
 824                                 OopsInGenClosure* cur,
 825                                 OopsInGenClosure* older) :
 826   _gch(gch),
 827   _scan_cur_or_nonheap(cur), _scan_older(older)
 828 { }
 829 
 830 void EvacuateFollowersClosureGeneral::do_void() {
 831   do {
 832     // Beware: this call will lead to closure applications via virtual
 833     // calls.
 834     _gch->oop_since_save_marks_iterate(GenCollectedHeap::YoungGen,
 835                                        _scan_cur_or_nonheap,
 836                                        _scan_older);
 837   } while (!_gch->no_allocs_since_save_marks());
 838 }
 839 
 840 // A Generation that does parallel young-gen collection.
 841 
 842 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
 843   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 844   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 845 
 846   remove_forwarding_pointers();
 847   log_info(gc, promotion)("Promotion failed");
 848   // All the spaces are in play for mark-sweep.
 849   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 850   from()->set_next_compaction_space(to());
 851   gch->set_incremental_collection_failed();
 852   // Inform the next generation that a promotion failure occurred.
 853   _old_gen->promotion_failure_occurred();
 854 
 855   // Trace promotion failure in the parallel GC threads
 856   thread_state_set.trace_promotion_failed(gc_tracer());
 857   // Single threaded code may have reported promotion failure to the global state
 858   if (_promotion_failed_info.has_failed()) {
 859     _gc_tracer.report_promotion_failed(_promotion_failed_info);
 860   }
 861   // Reset the PromotionFailureALot counters.
 862   NOT_PRODUCT(gch->reset_promotion_should_fail();)
 863 }
 864 
 865 void ParNewGeneration::collect(bool   full,
 866                                bool   clear_all_soft_refs,
 867                                size_t size,
 868                                bool   is_tlab) {
 869   assert(full || size > 0, "otherwise we don't want to collect");
 870 
 871   GenCollectedHeap* gch = GenCollectedHeap::heap();
 872 
 873   _gc_timer->register_gc_start();
 874 
 875   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 876   WorkGang* workers = gch->workers();
 877   assert(workers != NULL, "Need workgang for parallel work");
 878   uint active_workers =
 879        AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 880                                                workers->active_workers(),
 881                                                Threads::number_of_non_daemon_threads());
 882   workers->set_active_workers(active_workers);
 883   _old_gen = gch->old_gen();
 884 
 885   // If the next generation is too full to accommodate worst-case promotion
 886   // from this generation, pass on collection; let the next generation
 887   // do it.
 888   if (!collection_attempt_is_safe()) {
 889     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 890     return;
 891   }
 892   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 893 
 894   _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 895   gch->trace_heap_before_gc(gc_tracer());
 896 
 897   init_assuming_no_promotion_failure();
 898 
 899   if (UseAdaptiveSizePolicy) {
 900     set_survivor_overflow(false);
 901     size_policy->minor_collection_begin();
 902   }
 903 
 904   GCTraceTime(Trace, gc) t1("ParNew", NULL, gch->gc_cause());
 905 
 906   age_table()->clear();
 907   to()->clear(SpaceDecorator::Mangle);
 908 
 909   gch->save_marks();
 910 
 911   // Set the correct parallelism (number of queues) in the reference processor
 912   ref_processor()->set_active_mt_degree(active_workers);
 913 
 914   // Need to initialize the preserved marks before the ThreadStateSet c'tor.
 915   _preserved_marks_set.init(active_workers);
 916 
 917   // Always set the terminator for the active number of workers
 918   // because only those workers go through the termination protocol.
 919   ParallelTaskTerminator _term(active_workers, task_queues());
 920   ParScanThreadStateSet thread_state_set(active_workers,
 921                                          *to(), *this, *_old_gen, *task_queues(),
 922                                          _overflow_stacks, _preserved_marks_set,
 923                                          desired_plab_sz(), _term);
 924 
 925   thread_state_set.reset(active_workers, promotion_failed());
 926 
 927   {
 928     StrongRootsScope srs(active_workers);
 929 
 930     ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
 931     gch->rem_set()->prepare_for_younger_refs_iterate(true);
 932     // It turns out that even when we're using 1 thread, doing the work in a
 933     // separate thread causes wide variance in run times.  We can't help this
 934     // in the multi-threaded case, but we special-case n=1 here to get
 935     // repeatable measurements of the 1-thread overhead of the parallel code.
 936     if (active_workers > 1) {
 937       workers->run_task(&tsk);
 938     } else {
 939       tsk.work(0);
 940     }
 941   }
 942 
 943   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 944                          promotion_failed());
 945 
 946   // Trace and reset failed promotion info.
 947   if (promotion_failed()) {
 948     thread_state_set.trace_promotion_failed(gc_tracer());
 949   }
 950 
 951   // Process (weak) reference objects found during scavenge.
 952   ReferenceProcessor* rp = ref_processor();
 953   IsAliveClosure is_alive(this);
 954   ScanWeakRefClosure scan_weak_ref(this);
 955   KeepAliveClosure keep_alive(&scan_weak_ref);
 956   ScanClosure               scan_without_gc_barrier(this, false);
 957   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
 958   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
 959   EvacuateFollowersClosureGeneral evacuate_followers(gch,
 960     &scan_without_gc_barrier, &scan_with_gc_barrier);
 961   rp->setup_policy(clear_all_soft_refs);
 962   // Can  the mt_degree be set later (at run_task() time would be best)?
 963   rp->set_active_mt_degree(active_workers);
 964   ReferenceProcessorStats stats;
 965   if (rp->processing_is_mt()) {
 966     ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
 967     stats = rp->process_discovered_references(&is_alive, &keep_alive,
 968                                               &evacuate_followers, &task_executor,
 969                                               _gc_timer);
 970   } else {
 971     thread_state_set.flush();
 972     gch->save_marks();
 973     stats = rp->process_discovered_references(&is_alive, &keep_alive,
 974                                               &evacuate_followers, NULL,
 975                                               _gc_timer);
 976   }
 977   _gc_tracer.report_gc_reference_stats(stats);
 978   _gc_tracer.report_tenuring_threshold(tenuring_threshold());
 979 
 980   if (!promotion_failed()) {
 981     // Swap the survivor spaces.
 982     eden()->clear(SpaceDecorator::Mangle);
 983     from()->clear(SpaceDecorator::Mangle);
 984     if (ZapUnusedHeapArea) {
 985       // This is now done here because of the piece-meal mangling which
 986       // can check for valid mangling at intermediate points in the
 987       // collection(s).  When a young collection fails to collect
 988       // sufficient space resizing of the young generation can occur
 989       // and redistribute the spaces in the young generation.  Mangle
 990       // here so that unzapped regions don't get distributed to
 991       // other spaces.
 992       to()->mangle_unused_area();
 993     }
 994     swap_spaces();
 995 
 996     // A successful scavenge should restart the GC time limit count which is
 997     // for full GC's.
 998     size_policy->reset_gc_overhead_limit_count();
 999 
1000     assert(to()->is_empty(), "to space should be empty now");
1001 
1002     adjust_desired_tenuring_threshold();
1003   } else {
1004     handle_promotion_failed(gch, thread_state_set);
1005   }
1006   _preserved_marks_set.reclaim();
1007   // set new iteration safe limit for the survivor spaces
1008   from()->set_concurrent_iteration_safe_limit(from()->top());
1009   to()->set_concurrent_iteration_safe_limit(to()->top());
1010 
1011   if (ResizePLAB) {
1012     plab_stats()->adjust_desired_plab_sz();
1013   }
1014 
1015   TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1016   TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1017 
1018   if (UseAdaptiveSizePolicy) {
1019     size_policy->minor_collection_end(gch->gc_cause());
1020     size_policy->avg_survived()->sample(from()->used());
1021   }
1022 
1023   // We need to use a monotonically non-decreasing time in ms
1024   // or we will see time-warp warnings and os::javaTimeMillis()
1025   // does not guarantee monotonicity.
1026   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1027   update_time_of_last_gc(now);
1028 
1029   rp->set_enqueuing_is_done(true);
1030   if (rp->processing_is_mt()) {
1031     ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
1032     rp->enqueue_discovered_references(&task_executor);
1033   } else {
1034     rp->enqueue_discovered_references(NULL);
1035   }
1036   rp->verify_no_references_recorded();
1037 
1038   gch->trace_heap_after_gc(gc_tracer());
1039 
1040   _gc_timer->register_gc_end();
1041 
1042   _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1043 }
1044 
1045 size_t ParNewGeneration::desired_plab_sz() {
1046   return _plab_stats.desired_plab_sz(GenCollectedHeap::heap()->workers()->active_workers());
1047 }
1048 
1049 static int sum;
1050 void ParNewGeneration::waste_some_time() {
1051   for (int i = 0; i < 100; i++) {
1052     sum += i;
1053   }
1054 }
1055 
1056 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1057 
1058 // Because of concurrency, there are times where an object for which
1059 // "is_forwarded()" is true contains an "interim" forwarding pointer
1060 // value.  Such a value will soon be overwritten with a real value.
1061 // This method requires "obj" to have a forwarding pointer, and waits, if
1062 // necessary for a real one to be inserted, and returns it.
1063 
1064 oop ParNewGeneration::real_forwardee(oop obj) {
1065   oop forward_ptr = obj->forwardee();
1066   if (forward_ptr != ClaimedForwardPtr) {
1067     return forward_ptr;
1068   } else {
1069     return real_forwardee_slow(obj);
1070   }
1071 }
1072 
1073 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1074   // Spin-read if it is claimed but not yet written by another thread.
1075   oop forward_ptr = obj->forwardee();
1076   while (forward_ptr == ClaimedForwardPtr) {
1077     waste_some_time();
1078     assert(obj->is_forwarded(), "precondition");
1079     forward_ptr = obj->forwardee();
1080   }
1081   return forward_ptr;
1082 }
1083 
1084 // Multiple GC threads may try to promote an object.  If the object
1085 // is successfully promoted, a forwarding pointer will be installed in
1086 // the object in the young generation.  This method claims the right
1087 // to install the forwarding pointer before it copies the object,
1088 // thus avoiding the need to undo the copy as in
1089 // copy_to_survivor_space_avoiding_with_undo.
1090 
1091 oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
1092                                              oop old,
1093                                              size_t sz,
1094                                              markOop m) {
1095   // In the sequential version, this assert also says that the object is
1096   // not forwarded.  That might not be the case here.  It is the case that
1097   // the caller observed it to be not forwarded at some time in the past.
1098   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1099 
1100   // The sequential code read "old->age()" below.  That doesn't work here,
1101   // since the age is in the mark word, and that might be overwritten with
1102   // a forwarding pointer by a parallel thread.  So we must save the mark
1103   // word in a local and then analyze it.
1104   oopDesc dummyOld;
1105   dummyOld.set_mark(m);
1106   assert(!dummyOld.is_forwarded(),
1107          "should not be called with forwarding pointer mark word.");
1108 
1109   oop new_obj = NULL;
1110   oop forward_ptr;
1111 
1112   // Try allocating obj in to-space (unless too old)
1113   if (dummyOld.age() < tenuring_threshold()) {
1114     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1115     if (new_obj == NULL) {
1116       set_survivor_overflow(true);
1117     }
1118   }
1119 
1120   if (new_obj == NULL) {
1121     // Either to-space is full or we decided to promote try allocating obj tenured
1122 
1123     // Attempt to install a null forwarding pointer (atomically),
1124     // to claim the right to install the real forwarding pointer.
1125     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1126     if (forward_ptr != NULL) {
1127       // someone else beat us to it.
1128         return real_forwardee(old);
1129     }
1130 
1131     if (!_promotion_failed) {
1132       new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1133                                       old, m, sz);
1134     }
1135 
1136     if (new_obj == NULL) {
1137       // promotion failed, forward to self
1138       _promotion_failed = true;
1139       new_obj = old;
1140 
1141       par_scan_state->preserved_marks()->push_if_necessary(old, m);
1142       par_scan_state->register_promotion_failure(sz);
1143     }
1144 
1145     old->forward_to(new_obj);
1146     forward_ptr = NULL;
1147   } else {
1148     // Is in to-space; do copying ourselves.
1149     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1150     assert(GenCollectedHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1151     forward_ptr = old->forward_to_atomic(new_obj);
1152     // Restore the mark word copied above.
1153     new_obj->set_mark(m);
1154     // Increment age if obj still in new generation
1155     new_obj->incr_age();
1156     par_scan_state->age_table()->add(new_obj, sz);
1157   }
1158   assert(new_obj != NULL, "just checking");
1159 
1160   // This code must come after the CAS test, or it will print incorrect
1161   // information.
1162   log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1163                                   is_in_reserved(new_obj) ? "copying" : "tenuring",
1164                                   new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1165 
1166   if (forward_ptr == NULL) {
1167     oop obj_to_push = new_obj;
1168     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1169       // Length field used as index of next element to be scanned.
1170       // Real length can be obtained from real_forwardee()
1171       arrayOop(old)->set_length(0);
1172       obj_to_push = old;
1173       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1174              "push forwarded object");
1175     }
1176     // Push it on one of the queues of to-be-scanned objects.
1177     bool simulate_overflow = false;
1178     NOT_PRODUCT(
1179       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1180         // simulate a stack overflow
1181         simulate_overflow = true;
1182       }
1183     )
1184     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1185       // Add stats for overflow pushes.
1186       log_develop_trace(gc)("Queue Overflow");
1187       push_on_overflow_list(old, par_scan_state);
1188       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1189     }
1190 
1191     return new_obj;
1192   }
1193 
1194   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1195   // allocate it?
1196   if (is_in_reserved(new_obj)) {
1197     // Must be in to_space.
1198     assert(to()->is_in_reserved(new_obj), "Checking");
1199     if (forward_ptr == ClaimedForwardPtr) {
1200       // Wait to get the real forwarding pointer value.
1201       forward_ptr = real_forwardee(old);
1202     }
1203     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1204   }
1205 
1206   return forward_ptr;
1207 }
1208 
1209 #ifndef PRODUCT
1210 // It's OK to call this multi-threaded;  the worst thing
1211 // that can happen is that we'll get a bunch of closely
1212 // spaced simulated overflows, but that's OK, in fact
1213 // probably good as it would exercise the overflow code
1214 // under contention.
1215 bool ParNewGeneration::should_simulate_overflow() {
1216   if (_overflow_counter-- <= 0) { // just being defensive
1217     _overflow_counter = ParGCWorkQueueOverflowInterval;
1218     return true;
1219   } else {
1220     return false;
1221   }
1222 }
1223 #endif
1224 
1225 // In case we are using compressed oops, we need to be careful.
1226 // If the object being pushed is an object array, then its length
1227 // field keeps track of the "grey boundary" at which the next
1228 // incremental scan will be done (see ParGCArrayScanChunk).
1229 // When using compressed oops, this length field is kept in the
1230 // lower 32 bits of the erstwhile klass word and cannot be used
1231 // for the overflow chaining pointer (OCP below). As such the OCP
1232 // would itself need to be compressed into the top 32-bits in this
1233 // case. Unfortunately, see below, in the event that we have a
1234 // promotion failure, the node to be pushed on the list can be
1235 // outside of the Java heap, so the heap-based pointer compression
1236 // would not work (we would have potential aliasing between C-heap
1237 // and Java-heap pointers). For this reason, when using compressed
1238 // oops, we simply use a worker-thread-local, non-shared overflow
1239 // list in the form of a growable array, with a slightly different
1240 // overflow stack draining strategy. If/when we start using fat
1241 // stacks here, we can go back to using (fat) pointer chains
1242 // (although some performance comparisons would be useful since
1243 // single global lists have their own performance disadvantages
1244 // as we were made painfully aware not long ago, see 6786503).
1245 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1246 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1247   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1248   if (ParGCUseLocalOverflow) {
1249     // In the case of compressed oops, we use a private, not-shared
1250     // overflow stack.
1251     par_scan_state->push_on_overflow_stack(from_space_obj);
1252   } else {
1253     assert(!UseCompressedOops, "Error");
1254     // if the object has been forwarded to itself, then we cannot
1255     // use the klass pointer for the linked list.  Instead we have
1256     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1257     // XXX This is horribly inefficient when a promotion failure occurs
1258     // and should be fixed. XXX FIX ME !!!
1259 #ifndef PRODUCT
1260     Atomic::inc_ptr(&_num_par_pushes);
1261     assert(_num_par_pushes > 0, "Tautology");
1262 #endif
1263     if (from_space_obj->forwardee() == from_space_obj) {
1264       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1265       listhead->forward_to(from_space_obj);
1266       from_space_obj = listhead;
1267     }
1268     oop observed_overflow_list = _overflow_list;
1269     oop cur_overflow_list;
1270     do {
1271       cur_overflow_list = observed_overflow_list;
1272       if (cur_overflow_list != BUSY) {
1273         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1274       } else {
1275         from_space_obj->set_klass_to_list_ptr(NULL);
1276       }
1277       observed_overflow_list =
1278         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1279     } while (cur_overflow_list != observed_overflow_list);
1280   }
1281 }
1282 
1283 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1284   bool res;
1285 
1286   if (ParGCUseLocalOverflow) {
1287     res = par_scan_state->take_from_overflow_stack();
1288   } else {
1289     assert(!UseCompressedOops, "Error");
1290     res = take_from_overflow_list_work(par_scan_state);
1291   }
1292   return res;
1293 }
1294 
1295 
1296 // *NOTE*: The overflow list manipulation code here and
1297 // in CMSCollector:: are very similar in shape,
1298 // except that in the CMS case we thread the objects
1299 // directly into the list via their mark word, and do
1300 // not need to deal with special cases below related
1301 // to chunking of object arrays and promotion failure
1302 // handling.
1303 // CR 6797058 has been filed to attempt consolidation of
1304 // the common code.
1305 // Because of the common code, if you make any changes in
1306 // the code below, please check the CMS version to see if
1307 // similar changes might be needed.
1308 // See CMSCollector::par_take_from_overflow_list() for
1309 // more extensive documentation comments.
1310 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1311   ObjToScanQueue* work_q = par_scan_state->work_queue();
1312   // How many to take?
1313   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1314                                  (size_t)ParGCDesiredObjsFromOverflowList);
1315 
1316   assert(!UseCompressedOops, "Error");
1317   assert(par_scan_state->overflow_stack() == NULL, "Error");
1318   if (_overflow_list == NULL) return false;
1319 
1320   // Otherwise, there was something there; try claiming the list.
1321   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1322   // Trim off a prefix of at most objsFromOverflow items
1323   Thread* tid = Thread::current();
1324   size_t spin_count = ParallelGCThreads;
1325   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1326   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1327     // someone grabbed it before we did ...
1328     // ... we spin for a short while...
1329     os::sleep(tid, sleep_time_millis, false);
1330     if (_overflow_list == NULL) {
1331       // nothing left to take
1332       return false;
1333     } else if (_overflow_list != BUSY) {
1334      // try and grab the prefix
1335      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1336     }
1337   }
1338   if (prefix == NULL || prefix == BUSY) {
1339      // Nothing to take or waited long enough
1340      if (prefix == NULL) {
1341        // Write back the NULL in case we overwrote it with BUSY above
1342        // and it is still the same value.
1343        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1344      }
1345      return false;
1346   }
1347   assert(prefix != NULL && prefix != BUSY, "Error");
1348   size_t i = 1;
1349   oop cur = prefix;
1350   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1351     i++; cur = cur->list_ptr_from_klass();
1352   }
1353 
1354   // Reattach remaining (suffix) to overflow list
1355   if (cur->klass_or_null() == NULL) {
1356     // Write back the NULL in lieu of the BUSY we wrote
1357     // above and it is still the same value.
1358     if (_overflow_list == BUSY) {
1359       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1360     }
1361   } else {
1362     assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1363     oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1364     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1365     // It's possible that the list is still in the empty(busy) state
1366     // we left it in a short while ago; in that case we may be
1367     // able to place back the suffix.
1368     oop observed_overflow_list = _overflow_list;
1369     oop cur_overflow_list = observed_overflow_list;
1370     bool attached = false;
1371     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1372       observed_overflow_list =
1373         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1374       if (cur_overflow_list == observed_overflow_list) {
1375         attached = true;
1376         break;
1377       } else cur_overflow_list = observed_overflow_list;
1378     }
1379     if (!attached) {
1380       // Too bad, someone else got in in between; we'll need to do a splice.
1381       // Find the last item of suffix list
1382       oop last = suffix;
1383       while (last->klass_or_null() != NULL) {
1384         last = last->list_ptr_from_klass();
1385       }
1386       // Atomically prepend suffix to current overflow list
1387       observed_overflow_list = _overflow_list;
1388       do {
1389         cur_overflow_list = observed_overflow_list;
1390         if (cur_overflow_list != BUSY) {
1391           // Do the splice ...
1392           last->set_klass_to_list_ptr(cur_overflow_list);
1393         } else { // cur_overflow_list == BUSY
1394           last->set_klass_to_list_ptr(NULL);
1395         }
1396         observed_overflow_list =
1397           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1398       } while (cur_overflow_list != observed_overflow_list);
1399     }
1400   }
1401 
1402   // Push objects on prefix list onto this thread's work queue
1403   assert(prefix != NULL && prefix != BUSY, "program logic");
1404   cur = prefix;
1405   ssize_t n = 0;
1406   while (cur != NULL) {
1407     oop obj_to_push = cur->forwardee();
1408     oop next        = cur->list_ptr_from_klass();
1409     cur->set_klass(obj_to_push->klass());
1410     // This may be an array object that is self-forwarded. In that case, the list pointer
1411     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1412     if (!is_in_reserved(cur)) {
1413       // This can become a scaling bottleneck when there is work queue overflow coincident
1414       // with promotion failure.
1415       oopDesc* f = cur;
1416       FREE_C_HEAP_ARRAY(oopDesc, f);
1417     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1418       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1419       obj_to_push = cur;
1420     }
1421     bool ok = work_q->push(obj_to_push);
1422     assert(ok, "Should have succeeded");
1423     cur = next;
1424     n++;
1425   }
1426   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1427 #ifndef PRODUCT
1428   assert(_num_par_pushes >= n, "Too many pops?");
1429   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1430 #endif
1431   return true;
1432 }
1433 #undef BUSY
1434 
1435 void ParNewGeneration::ref_processor_init() {
1436   if (_ref_processor == NULL) {
1437     // Allocate and initialize a reference processor
1438     _ref_processor =
1439       new ReferenceProcessor(_reserved,                  // span
1440                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1441                              ParallelGCThreads,          // mt processing degree
1442                              refs_discovery_is_mt(),     // mt discovery
1443                              ParallelGCThreads,          // mt discovery degree
1444                              refs_discovery_is_atomic(), // atomic_discovery
1445                              NULL);                      // is_alive_non_header
1446   }
1447 }
1448 
1449 const char* ParNewGeneration::name() const {
1450   return "par new generation";
1451 }