1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorPolicy.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/g1/suspendibleThreadSet.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/taskqueue.inline.hpp"
  49 #include "gc/shared/vmGCOperations.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/prefetch.inline.hpp"
  58 #include "services/memTracker.hpp"
  59 
  60 // Concurrent marking bit map wrapper
  61 
  62 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  63   _bm(),
  64   _shifter(shifter) {
  65   _bmStartWord = 0;
  66   _bmWordSize = 0;
  67 }
  68 
  69 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  70                                                  const HeapWord* limit) const {
  71   // First we must round addr *up* to a possible object boundary.
  72   addr = (HeapWord*)align_size_up((intptr_t)addr,
  73                                   HeapWordSize << _shifter);
  74   size_t addrOffset = heapWordToOffset(addr);
  75   assert(limit != NULL, "limit must not be NULL");
  76   size_t limitOffset = heapWordToOffset(limit);
  77   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  78   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  79   assert(nextAddr >= addr, "get_next_one postcondition");
  80   assert(nextAddr == limit || isMarked(nextAddr),
  81          "get_next_one postcondition");
  82   return nextAddr;
  83 }
  84 
  85 #ifndef PRODUCT
  86 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  87   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  88   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  89          "size inconsistency");
  90   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  91          _bmWordSize  == heap_rs.word_size();
  92 }
  93 #endif
  94 
  95 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  96   _bm.print_on_error(st, prefix);
  97 }
  98 
  99 size_t G1CMBitMap::compute_size(size_t heap_size) {
 100   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 101 }
 102 
 103 size_t G1CMBitMap::mark_distance() {
 104   return MinObjAlignmentInBytes * BitsPerByte;
 105 }
 106 
 107 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 108   _bmStartWord = heap.start();
 109   _bmWordSize = heap.word_size();
 110 
 111   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 112   _bm.set_size(_bmWordSize >> _shifter);
 113 
 114   storage->set_mapping_changed_listener(&_listener);
 115 }
 116 
 117 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 118   if (zero_filled) {
 119     return;
 120   }
 121   // We need to clear the bitmap on commit, removing any existing information.
 122   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 123   _bm->clear_range(mr);
 124 }
 125 
 126 void G1CMBitMap::clear_range(MemRegion mr) {
 127   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 128   assert(!mr.is_empty(), "unexpected empty region");
 129   // convert address range into offset range
 130   _bm.at_put_range(heapWordToOffset(mr.start()),
 131                    heapWordToOffset(mr.end()), false);
 132 }
 133 
 134 G1CMMarkStack::G1CMMarkStack(G1ConcurrentMark* cm) :
 135   _base(NULL), _cm(cm)
 136 {}
 137 
 138 bool G1CMMarkStack::allocate(size_t capacity) {
 139   // allocate a stack of the requisite depth
 140   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 141   if (!rs.is_reserved()) {
 142     warning("ConcurrentMark MarkStack allocation failure");
 143     return false;
 144   }
 145   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 146   if (!_virtual_space.initialize(rs, rs.size())) {
 147     warning("ConcurrentMark MarkStack backing store failure");
 148     // Release the virtual memory reserved for the marking stack
 149     rs.release();
 150     return false;
 151   }
 152   assert(_virtual_space.committed_size() == rs.size(),
 153          "Didn't reserve backing store for all of G1ConcurrentMark stack?");
 154   _base = (oop*) _virtual_space.low();
 155   setEmpty();
 156   _capacity = (jint) capacity;
 157   _saved_index = -1;
 158   _should_expand = false;
 159   return true;
 160 }
 161 
 162 void G1CMMarkStack::expand() {
 163   // Called, during remark, if we've overflown the marking stack during marking.
 164   assert(isEmpty(), "stack should been emptied while handling overflow");
 165   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 166   // Clear expansion flag
 167   _should_expand = false;
 168   if (_capacity == (jint) MarkStackSizeMax) {
 169     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 170     return;
 171   }
 172   // Double capacity if possible
 173   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 174   // Do not give up existing stack until we have managed to
 175   // get the double capacity that we desired.
 176   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 177                                                            sizeof(oop)));
 178   if (rs.is_reserved()) {
 179     // Release the backing store associated with old stack
 180     _virtual_space.release();
 181     // Reinitialize virtual space for new stack
 182     if (!_virtual_space.initialize(rs, rs.size())) {
 183       fatal("Not enough swap for expanded marking stack capacity");
 184     }
 185     _base = (oop*)(_virtual_space.low());
 186     _index = 0;
 187     _capacity = new_capacity;
 188   } else {
 189     // Failed to double capacity, continue;
 190     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 191                   _capacity / K, new_capacity / K);
 192   }
 193 }
 194 
 195 void G1CMMarkStack::set_should_expand() {
 196   // If we're resetting the marking state because of an
 197   // marking stack overflow, record that we should, if
 198   // possible, expand the stack.
 199   _should_expand = _cm->has_overflown();
 200 }
 201 
 202 G1CMMarkStack::~G1CMMarkStack() {
 203   if (_base != NULL) {
 204     _base = NULL;
 205     _virtual_space.release();
 206   }
 207 }
 208 
 209 void G1CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 210   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 211   jint start = _index;
 212   jint next_index = start + n;
 213   if (next_index > _capacity) {
 214     _overflow = true;
 215     return;
 216   }
 217   // Otherwise.
 218   _index = next_index;
 219   for (int i = 0; i < n; i++) {
 220     int ind = start + i;
 221     assert(ind < _capacity, "By overflow test above.");
 222     _base[ind] = ptr_arr[i];
 223   }
 224 }
 225 
 226 bool G1CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 227   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 228   jint index = _index;
 229   if (index == 0) {
 230     *n = 0;
 231     return false;
 232   } else {
 233     int k = MIN2(max, index);
 234     jint  new_ind = index - k;
 235     for (int j = 0; j < k; j++) {
 236       ptr_arr[j] = _base[new_ind + j];
 237     }
 238     _index = new_ind;
 239     *n = k;
 240     return true;
 241   }
 242 }
 243 
 244 void G1CMMarkStack::note_start_of_gc() {
 245   assert(_saved_index == -1,
 246          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 247   _saved_index = _index;
 248 }
 249 
 250 void G1CMMarkStack::note_end_of_gc() {
 251   // This is intentionally a guarantee, instead of an assert. If we
 252   // accidentally add something to the mark stack during GC, it
 253   // will be a correctness issue so it's better if we crash. we'll
 254   // only check this once per GC anyway, so it won't be a performance
 255   // issue in any way.
 256   guarantee(_saved_index == _index,
 257             "saved index: %d index: %d", _saved_index, _index);
 258   _saved_index = -1;
 259 }
 260 
 261 G1CMRootRegions::G1CMRootRegions() :
 262   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 263   _should_abort(false),  _next_survivor(NULL) { }
 264 
 265 void G1CMRootRegions::init(G1CollectedHeap* g1h, G1ConcurrentMark* cm) {
 266   _young_list = g1h->young_list();
 267   _cm = cm;
 268 }
 269 
 270 void G1CMRootRegions::prepare_for_scan() {
 271   assert(!scan_in_progress(), "pre-condition");
 272 
 273   // Currently, only survivors can be root regions.
 274   assert(_next_survivor == NULL, "pre-condition");
 275   _next_survivor = _young_list->first_survivor_region();
 276   _scan_in_progress = (_next_survivor != NULL);
 277   _should_abort = false;
 278 }
 279 
 280 HeapRegion* G1CMRootRegions::claim_next() {
 281   if (_should_abort) {
 282     // If someone has set the should_abort flag, we return NULL to
 283     // force the caller to bail out of their loop.
 284     return NULL;
 285   }
 286 
 287   // Currently, only survivors can be root regions.
 288   HeapRegion* res = _next_survivor;
 289   if (res != NULL) {
 290     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 291     // Read it again in case it changed while we were waiting for the lock.
 292     res = _next_survivor;
 293     if (res != NULL) {
 294       if (res == _young_list->last_survivor_region()) {
 295         // We just claimed the last survivor so store NULL to indicate
 296         // that we're done.
 297         _next_survivor = NULL;
 298       } else {
 299         _next_survivor = res->get_next_young_region();
 300       }
 301     } else {
 302       // Someone else claimed the last survivor while we were trying
 303       // to take the lock so nothing else to do.
 304     }
 305   }
 306   assert(res == NULL || res->is_survivor(), "post-condition");
 307 
 308   return res;
 309 }
 310 
 311 void G1CMRootRegions::notify_scan_done() {
 312   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 313   _scan_in_progress = false;
 314   RootRegionScan_lock->notify_all();
 315 }
 316 
 317 void G1CMRootRegions::cancel_scan() {
 318   notify_scan_done();
 319 }
 320 
 321 void G1CMRootRegions::scan_finished() {
 322   assert(scan_in_progress(), "pre-condition");
 323 
 324   // Currently, only survivors can be root regions.
 325   if (!_should_abort) {
 326     assert(_next_survivor == NULL, "we should have claimed all survivors");
 327   }
 328   _next_survivor = NULL;
 329 
 330   notify_scan_done();
 331 }
 332 
 333 bool G1CMRootRegions::wait_until_scan_finished() {
 334   if (!scan_in_progress()) return false;
 335 
 336   {
 337     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 338     while (scan_in_progress()) {
 339       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 340     }
 341   }
 342   return true;
 343 }
 344 
 345 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 346   return MAX2((n_par_threads + 2) / 4, 1U);
 347 }
 348 
 349 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 350   _g1h(g1h),
 351   _markBitMap1(),
 352   _markBitMap2(),
 353   _parallel_marking_threads(0),
 354   _max_parallel_marking_threads(0),
 355   _sleep_factor(0.0),
 356   _marking_task_overhead(1.0),
 357   _cleanup_list("Cleanup List"),
 358   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 359   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 360             CardTableModRefBS::card_shift,
 361             false /* in_resource_area*/),
 362 
 363   _prevMarkBitMap(&_markBitMap1),
 364   _nextMarkBitMap(&_markBitMap2),
 365 
 366   _markStack(this),
 367   // _finger set in set_non_marking_state
 368 
 369   _max_worker_id(ParallelGCThreads),
 370   // _active_tasks set in set_non_marking_state
 371   // _tasks set inside the constructor
 372   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 373   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 374 
 375   _has_overflown(false),
 376   _concurrent(false),
 377   _has_aborted(false),
 378   _restart_for_overflow(false),
 379   _concurrent_marking_in_progress(false),
 380   _concurrent_phase_status(ConcPhaseNotStarted),
 381 
 382   // _verbose_level set below
 383 
 384   _init_times(),
 385   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 386   _cleanup_times(),
 387   _total_counting_time(0.0),
 388   _total_rs_scrub_time(0.0),
 389 
 390   _parallel_workers(NULL),
 391 
 392   _count_card_bitmaps(NULL),
 393   _count_marked_bytes(NULL),
 394   _completed_initialization(false) {
 395 
 396   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 397   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 398 
 399   // Create & start a ConcurrentMark thread.
 400   _cmThread = new ConcurrentMarkThread(this);
 401   assert(cmThread() != NULL, "CM Thread should have been created");
 402   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 403   if (_cmThread->osthread() == NULL) {
 404       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 405   }
 406 
 407   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 408   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 409   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 410 
 411   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 412   satb_qs.set_buffer_size(G1SATBBufferSize);
 413 
 414   _root_regions.init(_g1h, this);
 415 
 416   if (ConcGCThreads > ParallelGCThreads) {
 417     warning("Can't have more ConcGCThreads (%u) "
 418             "than ParallelGCThreads (%u).",
 419             ConcGCThreads, ParallelGCThreads);
 420     return;
 421   }
 422   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 423     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 424     // if both are set
 425     _sleep_factor             = 0.0;
 426     _marking_task_overhead    = 1.0;
 427   } else if (G1MarkingOverheadPercent > 0) {
 428     // We will calculate the number of parallel marking threads based
 429     // on a target overhead with respect to the soft real-time goal
 430     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 431     double overall_cm_overhead =
 432       (double) MaxGCPauseMillis * marking_overhead /
 433       (double) GCPauseIntervalMillis;
 434     double cpu_ratio = 1.0 / (double) os::processor_count();
 435     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 436     double marking_task_overhead =
 437       overall_cm_overhead / marking_thread_num *
 438                                               (double) os::processor_count();
 439     double sleep_factor =
 440                        (1.0 - marking_task_overhead) / marking_task_overhead;
 441 
 442     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 443     _sleep_factor             = sleep_factor;
 444     _marking_task_overhead    = marking_task_overhead;
 445   } else {
 446     // Calculate the number of parallel marking threads by scaling
 447     // the number of parallel GC threads.
 448     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 449     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 450     _sleep_factor             = 0.0;
 451     _marking_task_overhead    = 1.0;
 452   }
 453 
 454   assert(ConcGCThreads > 0, "Should have been set");
 455   _parallel_marking_threads = ConcGCThreads;
 456   _max_parallel_marking_threads = _parallel_marking_threads;
 457 
 458   _parallel_workers = new WorkGang("G1 Marker",
 459        _max_parallel_marking_threads, false, true);
 460   if (_parallel_workers == NULL) {
 461     vm_exit_during_initialization("Failed necessary allocation.");
 462   } else {
 463     _parallel_workers->initialize_workers();
 464   }
 465 
 466   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 467     size_t mark_stack_size =
 468       MIN2(MarkStackSizeMax,
 469           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 470     // Verify that the calculated value for MarkStackSize is in range.
 471     // It would be nice to use the private utility routine from Arguments.
 472     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 473       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 474               "must be between 1 and " SIZE_FORMAT,
 475               mark_stack_size, MarkStackSizeMax);
 476       return;
 477     }
 478     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 479   } else {
 480     // Verify MarkStackSize is in range.
 481     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 482       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 483         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 484           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 485                   "must be between 1 and " SIZE_FORMAT,
 486                   MarkStackSize, MarkStackSizeMax);
 487           return;
 488         }
 489       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 490         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 491           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 492                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 493                   MarkStackSize, MarkStackSizeMax);
 494           return;
 495         }
 496       }
 497     }
 498   }
 499 
 500   if (!_markStack.allocate(MarkStackSize)) {
 501     warning("Failed to allocate CM marking stack");
 502     return;
 503   }
 504 
 505   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 506   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 507 
 508   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 509   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 510 
 511   BitMap::idx_t card_bm_size = _card_bm.size();
 512 
 513   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 514   _active_tasks = _max_worker_id;
 515 
 516   uint max_regions = _g1h->max_regions();
 517   for (uint i = 0; i < _max_worker_id; ++i) {
 518     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 519     task_queue->initialize();
 520     _task_queues->register_queue(i, task_queue);
 521 
 522     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 523     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 524 
 525     _tasks[i] = new G1CMTask(i, this,
 526                              _count_marked_bytes[i],
 527                              &_count_card_bitmaps[i],
 528                              task_queue, _task_queues);
 529 
 530     _accum_task_vtime[i] = 0.0;
 531   }
 532 
 533   // Calculate the card number for the bottom of the heap. Used
 534   // in biasing indexes into the accounting card bitmaps.
 535   _heap_bottom_card_num =
 536     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 537                                 CardTableModRefBS::card_shift);
 538 
 539   // Clear all the liveness counting data
 540   clear_all_count_data();
 541 
 542   // so that the call below can read a sensible value
 543   _heap_start = g1h->reserved_region().start();
 544   set_non_marking_state();
 545   _completed_initialization = true;
 546 }
 547 
 548 void G1ConcurrentMark::reset() {
 549   // Starting values for these two. This should be called in a STW
 550   // phase.
 551   MemRegion reserved = _g1h->g1_reserved();
 552   _heap_start = reserved.start();
 553   _heap_end   = reserved.end();
 554 
 555   // Separated the asserts so that we know which one fires.
 556   assert(_heap_start != NULL, "heap bounds should look ok");
 557   assert(_heap_end != NULL, "heap bounds should look ok");
 558   assert(_heap_start < _heap_end, "heap bounds should look ok");
 559 
 560   // Reset all the marking data structures and any necessary flags
 561   reset_marking_state();
 562 
 563   // We do reset all of them, since different phases will use
 564   // different number of active threads. So, it's easiest to have all
 565   // of them ready.
 566   for (uint i = 0; i < _max_worker_id; ++i) {
 567     _tasks[i]->reset(_nextMarkBitMap);
 568   }
 569 
 570   // we need this to make sure that the flag is on during the evac
 571   // pause with initial mark piggy-backed
 572   set_concurrent_marking_in_progress();
 573 }
 574 
 575 
 576 void G1ConcurrentMark::reset_marking_state(bool clear_overflow) {
 577   _markStack.set_should_expand();
 578   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 579   if (clear_overflow) {
 580     clear_has_overflown();
 581   } else {
 582     assert(has_overflown(), "pre-condition");
 583   }
 584   _finger = _heap_start;
 585 
 586   for (uint i = 0; i < _max_worker_id; ++i) {
 587     G1CMTaskQueue* queue = _task_queues->queue(i);
 588     queue->set_empty();
 589   }
 590 }
 591 
 592 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 593   assert(active_tasks <= _max_worker_id, "we should not have more");
 594 
 595   _active_tasks = active_tasks;
 596   // Need to update the three data structures below according to the
 597   // number of active threads for this phase.
 598   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 599   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 600   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 601 }
 602 
 603 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 604   set_concurrency(active_tasks);
 605 
 606   _concurrent = concurrent;
 607   // We propagate this to all tasks, not just the active ones.
 608   for (uint i = 0; i < _max_worker_id; ++i)
 609     _tasks[i]->set_concurrent(concurrent);
 610 
 611   if (concurrent) {
 612     set_concurrent_marking_in_progress();
 613   } else {
 614     // We currently assume that the concurrent flag has been set to
 615     // false before we start remark. At this point we should also be
 616     // in a STW phase.
 617     assert(!concurrent_marking_in_progress(), "invariant");
 618     assert(out_of_regions(),
 619            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 620            p2i(_finger), p2i(_heap_end));
 621   }
 622 }
 623 
 624 void G1ConcurrentMark::set_non_marking_state() {
 625   // We set the global marking state to some default values when we're
 626   // not doing marking.
 627   reset_marking_state();
 628   _active_tasks = 0;
 629   clear_concurrent_marking_in_progress();
 630 }
 631 
 632 G1ConcurrentMark::~G1ConcurrentMark() {
 633   // The G1ConcurrentMark instance is never freed.
 634   ShouldNotReachHere();
 635 }
 636 
 637 class G1ClearBitMapTask : public AbstractGangTask {
 638   // Heap region closure used for clearing the given mark bitmap.
 639   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 640   private:
 641     G1CMBitMap* _bitmap;
 642     G1ConcurrentMark* _cm;
 643   public:
 644     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 645     }
 646 
 647     virtual bool doHeapRegion(HeapRegion* r) {
 648       size_t const chunk_size_in_words = M / HeapWordSize;
 649 
 650       HeapWord* cur = r->bottom();
 651       HeapWord* const end = r->end();
 652 
 653       while (cur < end) {
 654         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 655         _bitmap->clear_range(mr);
 656 
 657         cur += chunk_size_in_words;
 658 
 659         // Abort iteration if after yielding the marking has been aborted.
 660         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 661           return true;
 662         }
 663         // Repeat the asserts from before the start of the closure. We will do them
 664         // as asserts here to minimize their overhead on the product. However, we
 665         // will have them as guarantees at the beginning / end of the bitmap
 666         // clearing to get some checking in the product.
 667         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 668         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 669       }
 670       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 671 
 672       return false;
 673     }
 674   };
 675   
 676   G1ClearBitmapHRClosure _cl;
 677   HeapRegionClaimer _hr_claimer;
 678   bool _suspendible; // If the task is suspendible, workers must join the STS.
 679 
 680 public:
 681   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 682     AbstractGangTask("Parallel Clear Bitmap Task"),
 683     _cl(bitmap, suspendible ? cm : NULL),
 684     _hr_claimer(n_workers),
 685     _suspendible(suspendible)
 686   { }
 687 
 688   void work(uint worker_id) {
 689     SuspendibleThreadSetJoiner sts_join(_suspendible);
 690     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer, true);
 691   }
 692 
 693   bool is_complete() {
 694     return _cl.complete();
 695   }
 696 };
 697 
 698 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 699   G1ClearBitMapTask task(bitmap, this, workers->active_workers(), may_yield);
 700   workers->run_task(&task);
 701   guarantee(!may_yield || task.is_complete(), "Must have completed iteration when not yielding.");
 702 }
 703 
 704 void G1ConcurrentMark::cleanup_for_next_mark() {
 705   // Make sure that the concurrent mark thread looks to still be in
 706   // the current cycle.
 707   guarantee(cmThread()->during_cycle(), "invariant");
 708 
 709   // We are finishing up the current cycle by clearing the next
 710   // marking bitmap and getting it ready for the next cycle. During
 711   // this time no other cycle can start. So, let's make sure that this
 712   // is the case.
 713   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 714 
 715   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 716 
 717   // Clear the liveness counting data. If the marking has been aborted, the abort()
 718   // call already did that.
 719   if (!has_aborted()) {
 720     clear_all_count_data();
 721   }
 722 
 723   // Repeat the asserts from above.
 724   guarantee(cmThread()->during_cycle(), "invariant");
 725   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 726 }
 727 
 728 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 729   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 730   clear_bitmap((G1CMBitMap*)_prevMarkBitMap, workers, false);
 731 }
 732 
 733 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 734   G1CMBitMap* _bitmap;
 735   bool _error;
 736  public:
 737   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 738   }
 739 
 740   virtual bool doHeapRegion(HeapRegion* r) {
 741     // This closure can be called concurrently to the mutator, so we must make sure
 742     // that the result of the getNextMarkedWordAddress() call is compared to the
 743     // value passed to it as limit to detect any found bits.
 744     // end never changes in G1.
 745     HeapWord* end = r->end();
 746     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 747   }
 748 };
 749 
 750 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 751   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 752   _g1h->heap_region_iterate(&cl);
 753   return cl.complete();
 754 }
 755 
 756 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 757 public:
 758   bool doHeapRegion(HeapRegion* r) {
 759     r->note_start_of_marking();
 760     return false;
 761   }
 762 };
 763 
 764 void G1ConcurrentMark::checkpointRootsInitialPre() {
 765   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 766   G1CollectorPolicy* g1p = g1h->g1_policy();
 767 
 768   _has_aborted = false;
 769 
 770   // Initialize marking structures. This has to be done in a STW phase.
 771   reset();
 772 
 773   // For each region note start of marking.
 774   NoteStartOfMarkHRClosure startcl;
 775   g1h->heap_region_iterate(&startcl);
 776 }
 777 
 778 
 779 void G1ConcurrentMark::checkpointRootsInitialPost() {
 780   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 781 
 782   // Start Concurrent Marking weak-reference discovery.
 783   ReferenceProcessor* rp = g1h->ref_processor_cm();
 784   // enable ("weak") refs discovery
 785   rp->enable_discovery();
 786   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 787 
 788   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 789   // This is the start of  the marking cycle, we're expected all
 790   // threads to have SATB queues with active set to false.
 791   satb_mq_set.set_active_all_threads(true, /* new active value */
 792                                      false /* expected_active */);
 793 
 794   _root_regions.prepare_for_scan();
 795 
 796   // update_g1_committed() will be called at the end of an evac pause
 797   // when marking is on. So, it's also called at the end of the
 798   // initial-mark pause to update the heap end, if the heap expands
 799   // during it. No need to call it here.
 800 }
 801 
 802 /*
 803  * Notice that in the next two methods, we actually leave the STS
 804  * during the barrier sync and join it immediately afterwards. If we
 805  * do not do this, the following deadlock can occur: one thread could
 806  * be in the barrier sync code, waiting for the other thread to also
 807  * sync up, whereas another one could be trying to yield, while also
 808  * waiting for the other threads to sync up too.
 809  *
 810  * Note, however, that this code is also used during remark and in
 811  * this case we should not attempt to leave / enter the STS, otherwise
 812  * we'll either hit an assert (debug / fastdebug) or deadlock
 813  * (product). So we should only leave / enter the STS if we are
 814  * operating concurrently.
 815  *
 816  * Because the thread that does the sync barrier has left the STS, it
 817  * is possible to be suspended for a Full GC or an evacuation pause
 818  * could occur. This is actually safe, since the entering the sync
 819  * barrier is one of the last things do_marking_step() does, and it
 820  * doesn't manipulate any data structures afterwards.
 821  */
 822 
 823 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 824   bool barrier_aborted;
 825   {
 826     SuspendibleThreadSetLeaver sts_leave(concurrent());
 827     barrier_aborted = !_first_overflow_barrier_sync.enter();
 828   }
 829 
 830   // at this point everyone should have synced up and not be doing any
 831   // more work
 832 
 833   if (barrier_aborted) {
 834     // If the barrier aborted we ignore the overflow condition and
 835     // just abort the whole marking phase as quickly as possible.
 836     return;
 837   }
 838 
 839   // If we're executing the concurrent phase of marking, reset the marking
 840   // state; otherwise the marking state is reset after reference processing,
 841   // during the remark pause.
 842   // If we reset here as a result of an overflow during the remark we will
 843   // see assertion failures from any subsequent set_concurrency_and_phase()
 844   // calls.
 845   if (concurrent()) {
 846     // let the task associated with with worker 0 do this
 847     if (worker_id == 0) {
 848       // task 0 is responsible for clearing the global data structures
 849       // We should be here because of an overflow. During STW we should
 850       // not clear the overflow flag since we rely on it being true when
 851       // we exit this method to abort the pause and restart concurrent
 852       // marking.
 853       reset_marking_state(true /* clear_overflow */);
 854 
 855       log_info(gc)("Concurrent Mark reset for overflow");
 856     }
 857   }
 858 
 859   // after this, each task should reset its own data structures then
 860   // then go into the second barrier
 861 }
 862 
 863 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 864   SuspendibleThreadSetLeaver sts_leave(concurrent());
 865   _second_overflow_barrier_sync.enter();
 866 
 867   // at this point everything should be re-initialized and ready to go
 868 }
 869 
 870 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 871 private:
 872   G1ConcurrentMark*     _cm;
 873   ConcurrentMarkThread* _cmt;
 874 
 875 public:
 876   void work(uint worker_id) {
 877     assert(Thread::current()->is_ConcurrentGC_thread(),
 878            "this should only be done by a conc GC thread");
 879     ResourceMark rm;
 880 
 881     double start_vtime = os::elapsedVTime();
 882 
 883     {
 884       SuspendibleThreadSetJoiner sts_join;
 885 
 886       assert(worker_id < _cm->active_tasks(), "invariant");
 887       G1CMTask* the_task = _cm->task(worker_id);
 888       the_task->record_start_time();
 889       if (!_cm->has_aborted()) {
 890         do {
 891           double start_vtime_sec = os::elapsedVTime();
 892           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 893 
 894           the_task->do_marking_step(mark_step_duration_ms,
 895                                     true  /* do_termination */,
 896                                     false /* is_serial*/);
 897 
 898           double end_vtime_sec = os::elapsedVTime();
 899           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 900           _cm->clear_has_overflown();
 901 
 902           _cm->do_yield_check(worker_id);
 903 
 904           jlong sleep_time_ms;
 905           if (!_cm->has_aborted() && the_task->has_aborted()) {
 906             sleep_time_ms =
 907               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 908             {
 909               SuspendibleThreadSetLeaver sts_leave;
 910               os::sleep(Thread::current(), sleep_time_ms, false);
 911             }
 912           }
 913         } while (!_cm->has_aborted() && the_task->has_aborted());
 914       }
 915       the_task->record_end_time();
 916       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 917     }
 918 
 919     double end_vtime = os::elapsedVTime();
 920     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 921   }
 922 
 923   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 924                             ConcurrentMarkThread* cmt) :
 925       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 926 
 927   ~G1CMConcurrentMarkingTask() { }
 928 };
 929 
 930 // Calculates the number of active workers for a concurrent
 931 // phase.
 932 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 933   uint n_conc_workers = 0;
 934   if (!UseDynamicNumberOfGCThreads ||
 935       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 936        !ForceDynamicNumberOfGCThreads)) {
 937     n_conc_workers = max_parallel_marking_threads();
 938   } else {
 939     n_conc_workers =
 940       AdaptiveSizePolicy::calc_default_active_workers(
 941                                    max_parallel_marking_threads(),
 942                                    1, /* Minimum workers */
 943                                    parallel_marking_threads(),
 944                                    Threads::number_of_non_daemon_threads());
 945     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 946     // that scaling has already gone into "_max_parallel_marking_threads".
 947   }
 948   assert(n_conc_workers > 0, "Always need at least 1");
 949   return n_conc_workers;
 950 }
 951 
 952 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
 953   // Currently, only survivors can be root regions.
 954   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 955   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 956 
 957   const uintx interval = PrefetchScanIntervalInBytes;
 958   HeapWord* curr = hr->bottom();
 959   const HeapWord* end = hr->top();
 960   while (curr < end) {
 961     Prefetch::read(curr, interval);
 962     oop obj = oop(curr);
 963     int size = obj->oop_iterate_size(&cl);
 964     assert(size == obj->size(), "sanity");
 965     curr += size;
 966   }
 967 }
 968 
 969 class G1CMRootRegionScanTask : public AbstractGangTask {
 970 private:
 971   G1ConcurrentMark* _cm;
 972 
 973 public:
 974   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 975     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 976 
 977   void work(uint worker_id) {
 978     assert(Thread::current()->is_ConcurrentGC_thread(),
 979            "this should only be done by a conc GC thread");
 980 
 981     G1CMRootRegions* root_regions = _cm->root_regions();
 982     HeapRegion* hr = root_regions->claim_next();
 983     while (hr != NULL) {
 984       _cm->scanRootRegion(hr, worker_id);
 985       hr = root_regions->claim_next();
 986     }
 987   }
 988 };
 989 
 990 void G1ConcurrentMark::scanRootRegions() {
 991   // scan_in_progress() will have been set to true only if there was
 992   // at least one root region to scan. So, if it's false, we
 993   // should not attempt to do any further work.
 994   if (root_regions()->scan_in_progress()) {
 995     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 996     GCTraceConcTime(Info, gc) tt("Concurrent Root Region Scan");
 997 
 998     _parallel_marking_threads = calc_parallel_marking_threads();
 999     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1000            "Maximum number of marking threads exceeded");
1001     uint active_workers = MAX2(1U, parallel_marking_threads());
1002 
1003     G1CMRootRegionScanTask task(this);
1004     _parallel_workers->set_active_workers(active_workers);
1005     _parallel_workers->run_task(&task);
1006 
1007     // It's possible that has_aborted() is true here without actually
1008     // aborting the survivor scan earlier. This is OK as it's
1009     // mainly used for sanity checking.
1010     root_regions()->scan_finished();
1011   }
1012 }
1013 
1014 void G1ConcurrentMark::register_concurrent_phase_start(const char* title) {
1015   uint old_val = 0;
1016   do {
1017     old_val = Atomic::cmpxchg(ConcPhaseStarted, &_concurrent_phase_status, ConcPhaseNotStarted);
1018   } while (old_val != ConcPhaseNotStarted);
1019   _g1h->gc_timer_cm()->register_gc_concurrent_start(title);
1020 }
1021 
1022 void G1ConcurrentMark::register_concurrent_phase_end_common(bool end_timer) {
1023   if (_concurrent_phase_status == ConcPhaseNotStarted) {
1024     return;
1025   }
1026 
1027   uint old_val = Atomic::cmpxchg(ConcPhaseStopping, &_concurrent_phase_status, ConcPhaseStarted);
1028   if (old_val == ConcPhaseStarted) {
1029     _g1h->gc_timer_cm()->register_gc_concurrent_end();
1030     // If 'end_timer' is true, we came here to end timer which needs concurrent phase ended.
1031     // We need to end it before changing the status to 'ConcPhaseNotStarted' to prevent
1032     // starting a new concurrent phase by 'ConcurrentMarkThread'.
1033     if (end_timer) {
1034       _g1h->gc_timer_cm()->register_gc_end();
1035     }
1036     old_val = Atomic::cmpxchg(ConcPhaseNotStarted, &_concurrent_phase_status, ConcPhaseStopping);
1037     assert(old_val == ConcPhaseStopping, "Should not have changed since we entered this scope.");
1038   } else {
1039     do {
1040       // Let other thread finish changing '_concurrent_phase_status' to 'ConcPhaseNotStarted'.
1041       os::naked_short_sleep(1);
1042     } while (_concurrent_phase_status != ConcPhaseNotStarted);
1043   }
1044 }
1045 
1046 void G1ConcurrentMark::register_concurrent_phase_end() {
1047   register_concurrent_phase_end_common(false);
1048 }
1049 
1050 void G1ConcurrentMark::register_concurrent_gc_end_and_stop_timer() {
1051   register_concurrent_phase_end_common(true);
1052 }
1053 
1054 void G1ConcurrentMark::markFromRoots() {
1055   // we might be tempted to assert that:
1056   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1057   //        "inconsistent argument?");
1058   // However that wouldn't be right, because it's possible that
1059   // a safepoint is indeed in progress as a younger generation
1060   // stop-the-world GC happens even as we mark in this generation.
1061 
1062   _restart_for_overflow = false;
1063 
1064   // _g1h has _n_par_threads
1065   _parallel_marking_threads = calc_parallel_marking_threads();
1066   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1067     "Maximum number of marking threads exceeded");
1068 
1069   uint active_workers = MAX2(1U, parallel_marking_threads());
1070   assert(active_workers > 0, "Should have been set");
1071 
1072   // Parallel task terminator is set in "set_concurrency_and_phase()"
1073   set_concurrency_and_phase(active_workers, true /* concurrent */);
1074 
1075   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1076   _parallel_workers->set_active_workers(active_workers);
1077   _parallel_workers->run_task(&markingTask);
1078   print_stats();
1079 }
1080 
1081 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1082   // world is stopped at this checkpoint
1083   assert(SafepointSynchronize::is_at_safepoint(),
1084          "world should be stopped");
1085 
1086   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1087 
1088   // If a full collection has happened, we shouldn't do this.
1089   if (has_aborted()) {
1090     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1091     return;
1092   }
1093 
1094   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1095 
1096   if (VerifyDuringGC) {
1097     HandleMark hm;  // handle scope
1098     g1h->prepare_for_verify();
1099     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1100   }
1101   g1h->verifier()->check_bitmaps("Remark Start");
1102 
1103   G1CollectorPolicy* g1p = g1h->g1_policy();
1104   g1p->record_concurrent_mark_remark_start();
1105 
1106   double start = os::elapsedTime();
1107 
1108   checkpointRootsFinalWork();
1109 
1110   double mark_work_end = os::elapsedTime();
1111 
1112   weakRefsWork(clear_all_soft_refs);
1113 
1114   if (has_overflown()) {
1115     // Oops.  We overflowed.  Restart concurrent marking.
1116     _restart_for_overflow = true;
1117     log_develop_trace(gc)("Remark led to restart for overflow.");
1118 
1119     // Verify the heap w.r.t. the previous marking bitmap.
1120     if (VerifyDuringGC) {
1121       HandleMark hm;  // handle scope
1122       g1h->prepare_for_verify();
1123       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1124     }
1125 
1126     // Clear the marking state because we will be restarting
1127     // marking due to overflowing the global mark stack.
1128     reset_marking_state();
1129   } else {
1130     {
1131       GCTraceTime(Debug, gc) trace("Aggregate Data", g1h->gc_timer_cm());
1132 
1133       // Aggregate the per-task counting data that we have accumulated
1134       // while marking.
1135       aggregate_count_data();
1136     }
1137 
1138     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1139     // We're done with marking.
1140     // This is the end of  the marking cycle, we're expected all
1141     // threads to have SATB queues with active set to true.
1142     satb_mq_set.set_active_all_threads(false, /* new active value */
1143                                        true /* expected_active */);
1144 
1145     if (VerifyDuringGC) {
1146       HandleMark hm;  // handle scope
1147       g1h->prepare_for_verify();
1148       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1149     }
1150     g1h->verifier()->check_bitmaps("Remark End");
1151     assert(!restart_for_overflow(), "sanity");
1152     // Completely reset the marking state since marking completed
1153     set_non_marking_state();
1154   }
1155 
1156   // Expand the marking stack, if we have to and if we can.
1157   if (_markStack.should_expand()) {
1158     _markStack.expand();
1159   }
1160 
1161   // Statistics
1162   double now = os::elapsedTime();
1163   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1164   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1165   _remark_times.add((now - start) * 1000.0);
1166 
1167   g1p->record_concurrent_mark_remark_end();
1168 
1169   G1CMIsAliveClosure is_alive(g1h);
1170   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1171 }
1172 
1173 // Base class of the closures that finalize and verify the
1174 // liveness counting data.
1175 class G1CMCountDataClosureBase: public HeapRegionClosure {
1176 protected:
1177   G1CollectedHeap* _g1h;
1178   G1ConcurrentMark* _cm;
1179   CardTableModRefBS* _ct_bs;
1180 
1181   BitMap* _region_bm;
1182   BitMap* _card_bm;
1183 
1184   // Takes a region that's not empty (i.e., it has at least one
1185   // live object in it and sets its corresponding bit on the region
1186   // bitmap to 1.
1187   void set_bit_for_region(HeapRegion* hr) {
1188     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1189     _region_bm->par_at_put(index, true);
1190   }
1191 
1192 public:
1193   G1CMCountDataClosureBase(G1CollectedHeap* g1h,
1194                            BitMap* region_bm, BitMap* card_bm):
1195     _g1h(g1h), _cm(g1h->concurrent_mark()),
1196     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1197     _region_bm(region_bm), _card_bm(card_bm) { }
1198 };
1199 
1200 // Closure that calculates the # live objects per region. Used
1201 // for verification purposes during the cleanup pause.
1202 class CalcLiveObjectsClosure: public G1CMCountDataClosureBase {
1203   G1CMBitMapRO* _bm;
1204   size_t _region_marked_bytes;
1205 
1206 public:
1207   CalcLiveObjectsClosure(G1CMBitMapRO *bm, G1CollectedHeap* g1h,
1208                          BitMap* region_bm, BitMap* card_bm) :
1209     G1CMCountDataClosureBase(g1h, region_bm, card_bm),
1210     _bm(bm), _region_marked_bytes(0) { }
1211 
1212   bool doHeapRegion(HeapRegion* hr) {
1213     HeapWord* ntams = hr->next_top_at_mark_start();
1214     HeapWord* start = hr->bottom();
1215 
1216     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1217            "Preconditions not met - "
1218            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1219            p2i(start), p2i(ntams), p2i(hr->end()));
1220 
1221     // Find the first marked object at or after "start".
1222     start = _bm->getNextMarkedWordAddress(start, ntams);
1223 
1224     size_t marked_bytes = 0;
1225 
1226     while (start < ntams) {
1227       oop obj = oop(start);
1228       int obj_sz = obj->size();
1229       HeapWord* obj_end = start + obj_sz;
1230 
1231       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1232       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1233 
1234       // Note: if we're looking at the last region in heap - obj_end
1235       // could be actually just beyond the end of the heap; end_idx
1236       // will then correspond to a (non-existent) card that is also
1237       // just beyond the heap.
1238       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1239         // end of object is not card aligned - increment to cover
1240         // all the cards spanned by the object
1241         end_idx += 1;
1242       }
1243 
1244       // Set the bits in the card BM for the cards spanned by this object.
1245       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1246 
1247       // Add the size of this object to the number of marked bytes.
1248       marked_bytes += (size_t)obj_sz * HeapWordSize;
1249 
1250       // This will happen if we are handling a humongous object that spans
1251       // several heap regions.
1252       if (obj_end > hr->end()) {
1253         break;
1254       }
1255       // Find the next marked object after this one.
1256       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1257     }
1258 
1259     // Mark the allocated-since-marking portion...
1260     HeapWord* top = hr->top();
1261     if (ntams < top) {
1262       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1263       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1264 
1265       // Note: if we're looking at the last region in heap - top
1266       // could be actually just beyond the end of the heap; end_idx
1267       // will then correspond to a (non-existent) card that is also
1268       // just beyond the heap.
1269       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1270         // end of object is not card aligned - increment to cover
1271         // all the cards spanned by the object
1272         end_idx += 1;
1273       }
1274       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1275 
1276       // This definitely means the region has live objects.
1277       set_bit_for_region(hr);
1278     }
1279 
1280     // Update the live region bitmap.
1281     if (marked_bytes > 0) {
1282       set_bit_for_region(hr);
1283     }
1284 
1285     // Set the marked bytes for the current region so that
1286     // it can be queried by a calling verification routine
1287     _region_marked_bytes = marked_bytes;
1288 
1289     return false;
1290   }
1291 
1292   size_t region_marked_bytes() const { return _region_marked_bytes; }
1293 };
1294 
1295 // Heap region closure used for verifying the counting data
1296 // that was accumulated concurrently and aggregated during
1297 // the remark pause. This closure is applied to the heap
1298 // regions during the STW cleanup pause.
1299 
1300 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1301   G1CollectedHeap* _g1h;
1302   G1ConcurrentMark* _cm;
1303   CalcLiveObjectsClosure _calc_cl;
1304   BitMap* _region_bm;   // Region BM to be verified
1305   BitMap* _card_bm;     // Card BM to be verified
1306 
1307   BitMap* _exp_region_bm; // Expected Region BM values
1308   BitMap* _exp_card_bm;   // Expected card BM values
1309 
1310   int _failures;
1311 
1312 public:
1313   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1314                                 BitMap* region_bm,
1315                                 BitMap* card_bm,
1316                                 BitMap* exp_region_bm,
1317                                 BitMap* exp_card_bm) :
1318     _g1h(g1h), _cm(g1h->concurrent_mark()),
1319     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1320     _region_bm(region_bm), _card_bm(card_bm),
1321     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1322     _failures(0) { }
1323 
1324   int failures() const { return _failures; }
1325 
1326   bool doHeapRegion(HeapRegion* hr) {
1327     int failures = 0;
1328 
1329     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1330     // this region and set the corresponding bits in the expected region
1331     // and card bitmaps.
1332     bool res = _calc_cl.doHeapRegion(hr);
1333     assert(res == false, "should be continuing");
1334 
1335     // Verify the marked bytes for this region.
1336     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1337     size_t act_marked_bytes = hr->next_marked_bytes();
1338 
1339     if (exp_marked_bytes > act_marked_bytes) {
1340       if (hr->is_starts_humongous()) {
1341         // For start_humongous regions, the size of the whole object will be
1342         // in exp_marked_bytes.
1343         HeapRegion* region = hr;
1344         int num_regions;
1345         for (num_regions = 0; region != NULL; num_regions++) {
1346           region = _g1h->next_region_in_humongous(region);
1347         }
1348         if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
1349           failures += 1;
1350         } else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
1351           failures += 1;
1352         }
1353       } else {
1354         // We're not OK if expected marked bytes > actual marked bytes. It means
1355         // we have missed accounting some objects during the actual marking.
1356         failures += 1;
1357       }
1358     }
1359 
1360     // Verify the bit, for this region, in the actual and expected
1361     // (which was just calculated) region bit maps.
1362     // We're not OK if the bit in the calculated expected region
1363     // bitmap is set and the bit in the actual region bitmap is not.
1364     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1365 
1366     bool expected = _exp_region_bm->at(index);
1367     bool actual = _region_bm->at(index);
1368     if (expected && !actual) {
1369       failures += 1;
1370     }
1371 
1372     // Verify that the card bit maps for the cards spanned by the current
1373     // region match. We have an error if we have a set bit in the expected
1374     // bit map and the corresponding bit in the actual bitmap is not set.
1375 
1376     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1377     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1378 
1379     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1380       expected = _exp_card_bm->at(i);
1381       actual = _card_bm->at(i);
1382 
1383       if (expected && !actual) {
1384         failures += 1;
1385       }
1386     }
1387 
1388     _failures += failures;
1389 
1390     // We could stop iteration over the heap when we
1391     // find the first violating region by returning true.
1392     return false;
1393   }
1394 };
1395 
1396 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1397 protected:
1398   G1CollectedHeap* _g1h;
1399   G1ConcurrentMark* _cm;
1400   BitMap* _actual_region_bm;
1401   BitMap* _actual_card_bm;
1402 
1403   uint    _n_workers;
1404 
1405   BitMap* _expected_region_bm;
1406   BitMap* _expected_card_bm;
1407 
1408   int  _failures;
1409 
1410   HeapRegionClaimer _hrclaimer;
1411 
1412 public:
1413   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1414                             BitMap* region_bm, BitMap* card_bm,
1415                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1416     : AbstractGangTask("G1 verify final counting"),
1417       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1418       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1419       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1420       _failures(0),
1421       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1422     assert(VerifyDuringGC, "don't call this otherwise");
1423     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1424     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1425   }
1426 
1427   void work(uint worker_id) {
1428     assert(worker_id < _n_workers, "invariant");
1429 
1430     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1431                                             _actual_region_bm, _actual_card_bm,
1432                                             _expected_region_bm,
1433                                             _expected_card_bm);
1434 
1435     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1436 
1437     Atomic::add(verify_cl.failures(), &_failures);
1438   }
1439 
1440   int failures() const { return _failures; }
1441 };
1442 
1443 // Closure that finalizes the liveness counting data.
1444 // Used during the cleanup pause.
1445 // Sets the bits corresponding to the interval [NTAMS, top]
1446 // (which contains the implicitly live objects) in the
1447 // card liveness bitmap. Also sets the bit for each region,
1448 // containing live data, in the region liveness bitmap.
1449 
1450 class FinalCountDataUpdateClosure: public G1CMCountDataClosureBase {
1451  public:
1452   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1453                               BitMap* region_bm,
1454                               BitMap* card_bm) :
1455     G1CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1456 
1457   bool doHeapRegion(HeapRegion* hr) {
1458     HeapWord* ntams = hr->next_top_at_mark_start();
1459     HeapWord* top   = hr->top();
1460 
1461     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1462 
1463     // Mark the allocated-since-marking portion...
1464     if (ntams < top) {
1465       // This definitely means the region has live objects.
1466       set_bit_for_region(hr);
1467 
1468       // Now set the bits in the card bitmap for [ntams, top)
1469       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1470       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1471 
1472       // Note: if we're looking at the last region in heap - top
1473       // could be actually just beyond the end of the heap; end_idx
1474       // will then correspond to a (non-existent) card that is also
1475       // just beyond the heap.
1476       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1477         // end of object is not card aligned - increment to cover
1478         // all the cards spanned by the object
1479         end_idx += 1;
1480       }
1481 
1482       assert(end_idx <= _card_bm->size(),
1483              "oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1484              end_idx, _card_bm->size());
1485       assert(start_idx < _card_bm->size(),
1486              "oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1487              start_idx, _card_bm->size());
1488 
1489       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1490     }
1491 
1492     // Set the bit for the region if it contains live data
1493     if (hr->next_marked_bytes() > 0) {
1494       set_bit_for_region(hr);
1495     }
1496 
1497     return false;
1498   }
1499 };
1500 
1501 class G1ParFinalCountTask: public AbstractGangTask {
1502 protected:
1503   G1CollectedHeap* _g1h;
1504   G1ConcurrentMark* _cm;
1505   BitMap* _actual_region_bm;
1506   BitMap* _actual_card_bm;
1507 
1508   uint    _n_workers;
1509   HeapRegionClaimer _hrclaimer;
1510 
1511 public:
1512   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1513     : AbstractGangTask("G1 final counting"),
1514       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1515       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1516       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1517   }
1518 
1519   void work(uint worker_id) {
1520     assert(worker_id < _n_workers, "invariant");
1521 
1522     FinalCountDataUpdateClosure final_update_cl(_g1h,
1523                                                 _actual_region_bm,
1524                                                 _actual_card_bm);
1525 
1526     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1527   }
1528 };
1529 
1530 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1531   G1CollectedHeap* _g1;
1532   size_t _freed_bytes;
1533   FreeRegionList* _local_cleanup_list;
1534   uint _old_regions_removed;
1535   uint _humongous_regions_removed;
1536   HRRSCleanupTask* _hrrs_cleanup_task;
1537 
1538 public:
1539   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1540                              FreeRegionList* local_cleanup_list,
1541                              HRRSCleanupTask* hrrs_cleanup_task) :
1542     _g1(g1),
1543     _freed_bytes(0),
1544     _local_cleanup_list(local_cleanup_list),
1545     _old_regions_removed(0),
1546     _humongous_regions_removed(0),
1547     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1548 
1549   size_t freed_bytes() { return _freed_bytes; }
1550   const uint old_regions_removed() { return _old_regions_removed; }
1551   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1552 
1553   bool doHeapRegion(HeapRegion *hr) {
1554     if (hr->is_archive()) {
1555       return false;
1556     }
1557     // We use a claim value of zero here because all regions
1558     // were claimed with value 1 in the FinalCount task.
1559     _g1->reset_gc_time_stamps(hr);
1560     hr->note_end_of_marking();
1561 
1562     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1563       _freed_bytes += hr->used();
1564       hr->set_containing_set(NULL);
1565       if (hr->is_humongous()) {
1566         _humongous_regions_removed++;
1567         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1568       } else {
1569         _old_regions_removed++;
1570         _g1->free_region(hr, _local_cleanup_list, true);
1571       }
1572     } else {
1573       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1574     }
1575 
1576     return false;
1577   }
1578 };
1579 
1580 class G1ParNoteEndTask: public AbstractGangTask {
1581   friend class G1NoteEndOfConcMarkClosure;
1582 
1583 protected:
1584   G1CollectedHeap* _g1h;
1585   FreeRegionList* _cleanup_list;
1586   HeapRegionClaimer _hrclaimer;
1587 
1588 public:
1589   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1590       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1591   }
1592 
1593   void work(uint worker_id) {
1594     FreeRegionList local_cleanup_list("Local Cleanup List");
1595     HRRSCleanupTask hrrs_cleanup_task;
1596     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1597                                            &hrrs_cleanup_task);
1598     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1599     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1600 
1601     // Now update the lists
1602     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1603     {
1604       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1605       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1606 
1607       // If we iterate over the global cleanup list at the end of
1608       // cleanup to do this printing we will not guarantee to only
1609       // generate output for the newly-reclaimed regions (the list
1610       // might not be empty at the beginning of cleanup; we might
1611       // still be working on its previous contents). So we do the
1612       // printing here, before we append the new regions to the global
1613       // cleanup list.
1614 
1615       G1HRPrinter* hr_printer = _g1h->hr_printer();
1616       if (hr_printer->is_active()) {
1617         FreeRegionListIterator iter(&local_cleanup_list);
1618         while (iter.more_available()) {
1619           HeapRegion* hr = iter.get_next();
1620           hr_printer->cleanup(hr);
1621         }
1622       }
1623 
1624       _cleanup_list->add_ordered(&local_cleanup_list);
1625       assert(local_cleanup_list.is_empty(), "post-condition");
1626 
1627       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1628     }
1629   }
1630 };
1631 
1632 void G1ConcurrentMark::cleanup() {
1633   // world is stopped at this checkpoint
1634   assert(SafepointSynchronize::is_at_safepoint(),
1635          "world should be stopped");
1636   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1637 
1638   // If a full collection has happened, we shouldn't do this.
1639   if (has_aborted()) {
1640     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1641     return;
1642   }
1643 
1644   g1h->verifier()->verify_region_sets_optional();
1645 
1646   if (VerifyDuringGC) {
1647     HandleMark hm;  // handle scope
1648     g1h->prepare_for_verify();
1649     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1650   }
1651   g1h->verifier()->check_bitmaps("Cleanup Start");
1652 
1653   G1CollectorPolicy* g1p = g1h->g1_policy();
1654   g1p->record_concurrent_mark_cleanup_start();
1655 
1656   double start = os::elapsedTime();
1657 
1658   HeapRegionRemSet::reset_for_cleanup_tasks();
1659 
1660   // Do counting once more with the world stopped for good measure.
1661   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1662 
1663   g1h->workers()->run_task(&g1_par_count_task);
1664 
1665   if (VerifyDuringGC) {
1666     // Verify that the counting data accumulated during marking matches
1667     // that calculated by walking the marking bitmap.
1668 
1669     // Bitmaps to hold expected values
1670     BitMap expected_region_bm(_region_bm.size(), true);
1671     BitMap expected_card_bm(_card_bm.size(), true);
1672 
1673     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1674                                                  &_region_bm,
1675                                                  &_card_bm,
1676                                                  &expected_region_bm,
1677                                                  &expected_card_bm);
1678 
1679     g1h->workers()->run_task(&g1_par_verify_task);
1680 
1681     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1682   }
1683 
1684   size_t start_used_bytes = g1h->used();
1685   g1h->collector_state()->set_mark_in_progress(false);
1686 
1687   double count_end = os::elapsedTime();
1688   double this_final_counting_time = (count_end - start);
1689   _total_counting_time += this_final_counting_time;
1690 
1691   if (log_is_enabled(Trace, gc, liveness)) {
1692     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1693     _g1h->heap_region_iterate(&cl);
1694   }
1695 
1696   // Install newly created mark bitMap as "prev".
1697   swapMarkBitMaps();
1698 
1699   g1h->reset_gc_time_stamp();
1700 
1701   uint n_workers = _g1h->workers()->active_workers();
1702 
1703   // Note end of marking in all heap regions.
1704   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1705   g1h->workers()->run_task(&g1_par_note_end_task);
1706   g1h->check_gc_time_stamps();
1707 
1708   if (!cleanup_list_is_empty()) {
1709     // The cleanup list is not empty, so we'll have to process it
1710     // concurrently. Notify anyone else that might be wanting free
1711     // regions that there will be more free regions coming soon.
1712     g1h->set_free_regions_coming();
1713   }
1714 
1715   // call below, since it affects the metric by which we sort the heap
1716   // regions.
1717   if (G1ScrubRemSets) {
1718     double rs_scrub_start = os::elapsedTime();
1719     g1h->scrub_rem_set(&_region_bm, &_card_bm);
1720     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1721   }
1722 
1723   // this will also free any regions totally full of garbage objects,
1724   // and sort the regions.
1725   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1726 
1727   // Statistics.
1728   double end = os::elapsedTime();
1729   _cleanup_times.add((end - start) * 1000.0);
1730 
1731   // Clean up will have freed any regions completely full of garbage.
1732   // Update the soft reference policy with the new heap occupancy.
1733   Universe::update_heap_info_at_gc();
1734 
1735   if (VerifyDuringGC) {
1736     HandleMark hm;  // handle scope
1737     g1h->prepare_for_verify();
1738     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1739   }
1740 
1741   g1h->verifier()->check_bitmaps("Cleanup End");
1742 
1743   g1h->verifier()->verify_region_sets_optional();
1744 
1745   // We need to make this be a "collection" so any collection pause that
1746   // races with it goes around and waits for completeCleanup to finish.
1747   g1h->increment_total_collections();
1748 
1749   // Clean out dead classes and update Metaspace sizes.
1750   if (ClassUnloadingWithConcurrentMark) {
1751     ClassLoaderDataGraph::purge();
1752   }
1753   MetaspaceGC::compute_new_size();
1754 
1755   // We reclaimed old regions so we should calculate the sizes to make
1756   // sure we update the old gen/space data.
1757   g1h->g1mm()->update_sizes();
1758   g1h->allocation_context_stats().update_after_mark();
1759 
1760   g1h->trace_heap_after_concurrent_cycle();
1761 }
1762 
1763 void G1ConcurrentMark::completeCleanup() {
1764   if (has_aborted()) return;
1765 
1766   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1767 
1768   _cleanup_list.verify_optional();
1769   FreeRegionList tmp_free_list("Tmp Free List");
1770 
1771   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1772                                   "cleanup list has %u entries",
1773                                   _cleanup_list.length());
1774 
1775   // No one else should be accessing the _cleanup_list at this point,
1776   // so it is not necessary to take any locks
1777   while (!_cleanup_list.is_empty()) {
1778     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1779     assert(hr != NULL, "Got NULL from a non-empty list");
1780     hr->par_clear();
1781     tmp_free_list.add_ordered(hr);
1782 
1783     // Instead of adding one region at a time to the secondary_free_list,
1784     // we accumulate them in the local list and move them a few at a
1785     // time. This also cuts down on the number of notify_all() calls
1786     // we do during this process. We'll also append the local list when
1787     // _cleanup_list is empty (which means we just removed the last
1788     // region from the _cleanup_list).
1789     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1790         _cleanup_list.is_empty()) {
1791       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1792                                       "appending %u entries to the secondary_free_list, "
1793                                       "cleanup list still has %u entries",
1794                                       tmp_free_list.length(),
1795                                       _cleanup_list.length());
1796 
1797       {
1798         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1799         g1h->secondary_free_list_add(&tmp_free_list);
1800         SecondaryFreeList_lock->notify_all();
1801       }
1802 #ifndef PRODUCT
1803       if (G1StressConcRegionFreeing) {
1804         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1805           os::sleep(Thread::current(), (jlong) 1, false);
1806         }
1807       }
1808 #endif
1809     }
1810   }
1811   assert(tmp_free_list.is_empty(), "post-condition");
1812 }
1813 
1814 // Supporting Object and Oop closures for reference discovery
1815 // and processing in during marking
1816 
1817 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1818   HeapWord* addr = (HeapWord*)obj;
1819   return addr != NULL &&
1820          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1821 }
1822 
1823 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1824 // Uses the G1CMTask associated with a worker thread (for serial reference
1825 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1826 // trace referent objects.
1827 //
1828 // Using the G1CMTask and embedded local queues avoids having the worker
1829 // threads operating on the global mark stack. This reduces the risk
1830 // of overflowing the stack - which we would rather avoid at this late
1831 // state. Also using the tasks' local queues removes the potential
1832 // of the workers interfering with each other that could occur if
1833 // operating on the global stack.
1834 
1835 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1836   G1ConcurrentMark* _cm;
1837   G1CMTask*         _task;
1838   int               _ref_counter_limit;
1839   int               _ref_counter;
1840   bool              _is_serial;
1841  public:
1842   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1843     _cm(cm), _task(task), _is_serial(is_serial),
1844     _ref_counter_limit(G1RefProcDrainInterval) {
1845     assert(_ref_counter_limit > 0, "sanity");
1846     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1847     _ref_counter = _ref_counter_limit;
1848   }
1849 
1850   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1851   virtual void do_oop(      oop* p) { do_oop_work(p); }
1852 
1853   template <class T> void do_oop_work(T* p) {
1854     if (!_cm->has_overflown()) {
1855       oop obj = oopDesc::load_decode_heap_oop(p);
1856       _task->deal_with_reference(obj);
1857       _ref_counter--;
1858 
1859       if (_ref_counter == 0) {
1860         // We have dealt with _ref_counter_limit references, pushing them
1861         // and objects reachable from them on to the local stack (and
1862         // possibly the global stack). Call G1CMTask::do_marking_step() to
1863         // process these entries.
1864         //
1865         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1866         // there's nothing more to do (i.e. we're done with the entries that
1867         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1868         // above) or we overflow.
1869         //
1870         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1871         // flag while there may still be some work to do. (See the comment at
1872         // the beginning of G1CMTask::do_marking_step() for those conditions -
1873         // one of which is reaching the specified time target.) It is only
1874         // when G1CMTask::do_marking_step() returns without setting the
1875         // has_aborted() flag that the marking step has completed.
1876         do {
1877           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1878           _task->do_marking_step(mark_step_duration_ms,
1879                                  false      /* do_termination */,
1880                                  _is_serial);
1881         } while (_task->has_aborted() && !_cm->has_overflown());
1882         _ref_counter = _ref_counter_limit;
1883       }
1884     }
1885   }
1886 };
1887 
1888 // 'Drain' oop closure used by both serial and parallel reference processing.
1889 // Uses the G1CMTask associated with a given worker thread (for serial
1890 // reference processing the G1CMtask for worker 0 is used). Calls the
1891 // do_marking_step routine, with an unbelievably large timeout value,
1892 // to drain the marking data structures of the remaining entries
1893 // added by the 'keep alive' oop closure above.
1894 
1895 class G1CMDrainMarkingStackClosure: public VoidClosure {
1896   G1ConcurrentMark* _cm;
1897   G1CMTask*         _task;
1898   bool              _is_serial;
1899  public:
1900   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1901     _cm(cm), _task(task), _is_serial(is_serial) {
1902     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1903   }
1904 
1905   void do_void() {
1906     do {
1907       // We call G1CMTask::do_marking_step() to completely drain the local
1908       // and global marking stacks of entries pushed by the 'keep alive'
1909       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1910       //
1911       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1912       // if there's nothing more to do (i.e. we've completely drained the
1913       // entries that were pushed as a a result of applying the 'keep alive'
1914       // closure to the entries on the discovered ref lists) or we overflow
1915       // the global marking stack.
1916       //
1917       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1918       // flag while there may still be some work to do. (See the comment at
1919       // the beginning of G1CMTask::do_marking_step() for those conditions -
1920       // one of which is reaching the specified time target.) It is only
1921       // when G1CMTask::do_marking_step() returns without setting the
1922       // has_aborted() flag that the marking step has completed.
1923 
1924       _task->do_marking_step(1000000000.0 /* something very large */,
1925                              true         /* do_termination */,
1926                              _is_serial);
1927     } while (_task->has_aborted() && !_cm->has_overflown());
1928   }
1929 };
1930 
1931 // Implementation of AbstractRefProcTaskExecutor for parallel
1932 // reference processing at the end of G1 concurrent marking
1933 
1934 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1935 private:
1936   G1CollectedHeap*  _g1h;
1937   G1ConcurrentMark* _cm;
1938   WorkGang*         _workers;
1939   uint              _active_workers;
1940 
1941 public:
1942   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1943                           G1ConcurrentMark* cm,
1944                           WorkGang* workers,
1945                           uint n_workers) :
1946     _g1h(g1h), _cm(cm),
1947     _workers(workers), _active_workers(n_workers) { }
1948 
1949   // Executes the given task using concurrent marking worker threads.
1950   virtual void execute(ProcessTask& task);
1951   virtual void execute(EnqueueTask& task);
1952 };
1953 
1954 class G1CMRefProcTaskProxy: public AbstractGangTask {
1955   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1956   ProcessTask&      _proc_task;
1957   G1CollectedHeap*  _g1h;
1958   G1ConcurrentMark* _cm;
1959 
1960 public:
1961   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1962                        G1CollectedHeap* g1h,
1963                        G1ConcurrentMark* cm) :
1964     AbstractGangTask("Process reference objects in parallel"),
1965     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1966     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1967     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1968   }
1969 
1970   virtual void work(uint worker_id) {
1971     ResourceMark rm;
1972     HandleMark hm;
1973     G1CMTask* task = _cm->task(worker_id);
1974     G1CMIsAliveClosure g1_is_alive(_g1h);
1975     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1976     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1977 
1978     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1979   }
1980 };
1981 
1982 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1983   assert(_workers != NULL, "Need parallel worker threads.");
1984   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1985 
1986   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1987 
1988   // We need to reset the concurrency level before each
1989   // proxy task execution, so that the termination protocol
1990   // and overflow handling in G1CMTask::do_marking_step() knows
1991   // how many workers to wait for.
1992   _cm->set_concurrency(_active_workers);
1993   _workers->run_task(&proc_task_proxy);
1994 }
1995 
1996 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1997   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1998   EnqueueTask& _enq_task;
1999 
2000 public:
2001   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2002     AbstractGangTask("Enqueue reference objects in parallel"),
2003     _enq_task(enq_task) { }
2004 
2005   virtual void work(uint worker_id) {
2006     _enq_task.work(worker_id);
2007   }
2008 };
2009 
2010 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2011   assert(_workers != NULL, "Need parallel worker threads.");
2012   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2013 
2014   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2015 
2016   // Not strictly necessary but...
2017   //
2018   // We need to reset the concurrency level before each
2019   // proxy task execution, so that the termination protocol
2020   // and overflow handling in G1CMTask::do_marking_step() knows
2021   // how many workers to wait for.
2022   _cm->set_concurrency(_active_workers);
2023   _workers->run_task(&enq_task_proxy);
2024 }
2025 
2026 void G1ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2027   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2028 }
2029 
2030 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2031   if (has_overflown()) {
2032     // Skip processing the discovered references if we have
2033     // overflown the global marking stack. Reference objects
2034     // only get discovered once so it is OK to not
2035     // de-populate the discovered reference lists. We could have,
2036     // but the only benefit would be that, when marking restarts,
2037     // less reference objects are discovered.
2038     return;
2039   }
2040 
2041   ResourceMark rm;
2042   HandleMark   hm;
2043 
2044   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2045 
2046   // Is alive closure.
2047   G1CMIsAliveClosure g1_is_alive(g1h);
2048 
2049   // Inner scope to exclude the cleaning of the string and symbol
2050   // tables from the displayed time.
2051   {
2052     GCTraceTime(Debug, gc) trace("Reference Processing", g1h->gc_timer_cm());
2053 
2054     ReferenceProcessor* rp = g1h->ref_processor_cm();
2055 
2056     // See the comment in G1CollectedHeap::ref_processing_init()
2057     // about how reference processing currently works in G1.
2058 
2059     // Set the soft reference policy
2060     rp->setup_policy(clear_all_soft_refs);
2061     assert(_markStack.isEmpty(), "mark stack should be empty");
2062 
2063     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2064     // in serial reference processing. Note these closures are also
2065     // used for serially processing (by the the current thread) the
2066     // JNI references during parallel reference processing.
2067     //
2068     // These closures do not need to synchronize with the worker
2069     // threads involved in parallel reference processing as these
2070     // instances are executed serially by the current thread (e.g.
2071     // reference processing is not multi-threaded and is thus
2072     // performed by the current thread instead of a gang worker).
2073     //
2074     // The gang tasks involved in parallel reference processing create
2075     // their own instances of these closures, which do their own
2076     // synchronization among themselves.
2077     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2078     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2079 
2080     // We need at least one active thread. If reference processing
2081     // is not multi-threaded we use the current (VMThread) thread,
2082     // otherwise we use the work gang from the G1CollectedHeap and
2083     // we utilize all the worker threads we can.
2084     bool processing_is_mt = rp->processing_is_mt();
2085     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2086     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2087 
2088     // Parallel processing task executor.
2089     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2090                                               g1h->workers(), active_workers);
2091     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2092 
2093     // Set the concurrency level. The phase was already set prior to
2094     // executing the remark task.
2095     set_concurrency(active_workers);
2096 
2097     // Set the degree of MT processing here.  If the discovery was done MT,
2098     // the number of threads involved during discovery could differ from
2099     // the number of active workers.  This is OK as long as the discovered
2100     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2101     rp->set_active_mt_degree(active_workers);
2102 
2103     // Process the weak references.
2104     const ReferenceProcessorStats& stats =
2105         rp->process_discovered_references(&g1_is_alive,
2106                                           &g1_keep_alive,
2107                                           &g1_drain_mark_stack,
2108                                           executor,
2109                                           g1h->gc_timer_cm());
2110     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2111 
2112     // The do_oop work routines of the keep_alive and drain_marking_stack
2113     // oop closures will set the has_overflown flag if we overflow the
2114     // global marking stack.
2115 
2116     assert(_markStack.overflow() || _markStack.isEmpty(),
2117             "mark stack should be empty (unless it overflowed)");
2118 
2119     if (_markStack.overflow()) {
2120       // This should have been done already when we tried to push an
2121       // entry on to the global mark stack. But let's do it again.
2122       set_has_overflown();
2123     }
2124 
2125     assert(rp->num_q() == active_workers, "why not");
2126 
2127     rp->enqueue_discovered_references(executor);
2128 
2129     rp->verify_no_references_recorded();
2130     assert(!rp->discovery_enabled(), "Post condition");
2131   }
2132 
2133   if (has_overflown()) {
2134     // We can not trust g1_is_alive if the marking stack overflowed
2135     return;
2136   }
2137 
2138   assert(_markStack.isEmpty(), "Marking should have completed");
2139 
2140   // Unload Klasses, String, Symbols, Code Cache, etc.
2141   {
2142     GCTraceTime(Debug, gc) trace("Unloading", g1h->gc_timer_cm());
2143 
2144     if (ClassUnloadingWithConcurrentMark) {
2145       bool purged_classes;
2146 
2147       {
2148         GCTraceTime(Trace, gc) trace("System Dictionary Unloading", g1h->gc_timer_cm());
2149         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2150       }
2151 
2152       {
2153         GCTraceTime(Trace, gc) trace("Parallel Unloading", g1h->gc_timer_cm());
2154         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2155       }
2156     }
2157 
2158     if (G1StringDedup::is_enabled()) {
2159       GCTraceTime(Trace, gc) trace("String Deduplication Unlink", g1h->gc_timer_cm());
2160       G1StringDedup::unlink(&g1_is_alive);
2161     }
2162   }
2163 }
2164 
2165 void G1ConcurrentMark::swapMarkBitMaps() {
2166   G1CMBitMapRO* temp = _prevMarkBitMap;
2167   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
2168   _nextMarkBitMap    = (G1CMBitMap*)  temp;
2169 }
2170 
2171 // Closure for marking entries in SATB buffers.
2172 class G1CMSATBBufferClosure : public SATBBufferClosure {
2173 private:
2174   G1CMTask* _task;
2175   G1CollectedHeap* _g1h;
2176 
2177   // This is very similar to G1CMTask::deal_with_reference, but with
2178   // more relaxed requirements for the argument, so this must be more
2179   // circumspect about treating the argument as an object.
2180   void do_entry(void* entry) const {
2181     _task->increment_refs_reached();
2182     HeapRegion* hr = _g1h->heap_region_containing(entry);
2183     if (entry < hr->next_top_at_mark_start()) {
2184       // Until we get here, we don't know whether entry refers to a valid
2185       // object; it could instead have been a stale reference.
2186       oop obj = static_cast<oop>(entry);
2187       assert(obj->is_oop(true /* ignore mark word */),
2188              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2189       _task->make_reference_grey(obj, hr);
2190     }
2191   }
2192 
2193 public:
2194   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
2195     : _task(task), _g1h(g1h) { }
2196 
2197   virtual void do_buffer(void** buffer, size_t size) {
2198     for (size_t i = 0; i < size; ++i) {
2199       do_entry(buffer[i]);
2200     }
2201   }
2202 };
2203 
2204 class G1RemarkThreadsClosure : public ThreadClosure {
2205   G1CMSATBBufferClosure _cm_satb_cl;
2206   G1CMOopClosure _cm_cl;
2207   MarkingCodeBlobClosure _code_cl;
2208   int _thread_parity;
2209 
2210  public:
2211   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
2212     _cm_satb_cl(task, g1h),
2213     _cm_cl(g1h, g1h->concurrent_mark(), task),
2214     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2215     _thread_parity(Threads::thread_claim_parity()) {}
2216 
2217   void do_thread(Thread* thread) {
2218     if (thread->is_Java_thread()) {
2219       if (thread->claim_oops_do(true, _thread_parity)) {
2220         JavaThread* jt = (JavaThread*)thread;
2221 
2222         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2223         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2224         // * Alive if on the stack of an executing method
2225         // * Weakly reachable otherwise
2226         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2227         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2228         jt->nmethods_do(&_code_cl);
2229 
2230         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2231       }
2232     } else if (thread->is_VM_thread()) {
2233       if (thread->claim_oops_do(true, _thread_parity)) {
2234         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2235       }
2236     }
2237   }
2238 };
2239 
2240 class G1CMRemarkTask: public AbstractGangTask {
2241 private:
2242   G1ConcurrentMark* _cm;
2243 public:
2244   void work(uint worker_id) {
2245     // Since all available tasks are actually started, we should
2246     // only proceed if we're supposed to be active.
2247     if (worker_id < _cm->active_tasks()) {
2248       G1CMTask* task = _cm->task(worker_id);
2249       task->record_start_time();
2250       {
2251         ResourceMark rm;
2252         HandleMark hm;
2253 
2254         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2255         Threads::threads_do(&threads_f);
2256       }
2257 
2258       do {
2259         task->do_marking_step(1000000000.0 /* something very large */,
2260                               true         /* do_termination       */,
2261                               false        /* is_serial            */);
2262       } while (task->has_aborted() && !_cm->has_overflown());
2263       // If we overflow, then we do not want to restart. We instead
2264       // want to abort remark and do concurrent marking again.
2265       task->record_end_time();
2266     }
2267   }
2268 
2269   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
2270     AbstractGangTask("Par Remark"), _cm(cm) {
2271     _cm->terminator()->reset_for_reuse(active_workers);
2272   }
2273 };
2274 
2275 void G1ConcurrentMark::checkpointRootsFinalWork() {
2276   ResourceMark rm;
2277   HandleMark   hm;
2278   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2279 
2280   GCTraceTime(Debug, gc) trace("Finalize Marking", g1h->gc_timer_cm());
2281 
2282   g1h->ensure_parsability(false);
2283 
2284   // this is remark, so we'll use up all active threads
2285   uint active_workers = g1h->workers()->active_workers();
2286   set_concurrency_and_phase(active_workers, false /* concurrent */);
2287   // Leave _parallel_marking_threads at it's
2288   // value originally calculated in the G1ConcurrentMark
2289   // constructor and pass values of the active workers
2290   // through the gang in the task.
2291 
2292   {
2293     StrongRootsScope srs(active_workers);
2294 
2295     G1CMRemarkTask remarkTask(this, active_workers);
2296     // We will start all available threads, even if we decide that the
2297     // active_workers will be fewer. The extra ones will just bail out
2298     // immediately.
2299     g1h->workers()->run_task(&remarkTask);
2300   }
2301 
2302   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2303   guarantee(has_overflown() ||
2304             satb_mq_set.completed_buffers_num() == 0,
2305             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
2306             BOOL_TO_STR(has_overflown()),
2307             satb_mq_set.completed_buffers_num());
2308 
2309   print_stats();
2310 }
2311 
2312 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2313   // Note we are overriding the read-only view of the prev map here, via
2314   // the cast.
2315   ((G1CMBitMap*)_prevMarkBitMap)->clear_range(mr);
2316 }
2317 
2318 HeapRegion*
2319 G1ConcurrentMark::claim_region(uint worker_id) {
2320   // "checkpoint" the finger
2321   HeapWord* finger = _finger;
2322 
2323   // _heap_end will not change underneath our feet; it only changes at
2324   // yield points.
2325   while (finger < _heap_end) {
2326     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2327 
2328     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2329 
2330     // Above heap_region_containing may return NULL as we always scan claim
2331     // until the end of the heap. In this case, just jump to the next region.
2332     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2333 
2334     // Is the gap between reading the finger and doing the CAS too long?
2335     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2336     if (res == finger && curr_region != NULL) {
2337       // we succeeded
2338       HeapWord*   bottom        = curr_region->bottom();
2339       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2340 
2341       // notice that _finger == end cannot be guaranteed here since,
2342       // someone else might have moved the finger even further
2343       assert(_finger >= end, "the finger should have moved forward");
2344 
2345       if (limit > bottom) {
2346         return curr_region;
2347       } else {
2348         assert(limit == bottom,
2349                "the region limit should be at bottom");
2350         // we return NULL and the caller should try calling
2351         // claim_region() again.
2352         return NULL;
2353       }
2354     } else {
2355       assert(_finger > finger, "the finger should have moved forward");
2356       // read it again
2357       finger = _finger;
2358     }
2359   }
2360 
2361   return NULL;
2362 }
2363 
2364 #ifndef PRODUCT
2365 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2366 private:
2367   G1CollectedHeap* _g1h;
2368   const char* _phase;
2369   int _info;
2370 
2371 public:
2372   VerifyNoCSetOops(const char* phase, int info = -1) :
2373     _g1h(G1CollectedHeap::heap()),
2374     _phase(phase),
2375     _info(info)
2376   { }
2377 
2378   void operator()(oop obj) const {
2379     guarantee(obj->is_oop(),
2380               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2381               p2i(obj), _phase, _info);
2382     guarantee(!_g1h->obj_in_cs(obj),
2383               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2384               p2i(obj), _phase, _info);
2385   }
2386 };
2387 
2388 void G1ConcurrentMark::verify_no_cset_oops() {
2389   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2390   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2391     return;
2392   }
2393 
2394   // Verify entries on the global mark stack
2395   _markStack.iterate(VerifyNoCSetOops("Stack"));
2396 
2397   // Verify entries on the task queues
2398   for (uint i = 0; i < _max_worker_id; ++i) {
2399     G1CMTaskQueue* queue = _task_queues->queue(i);
2400     queue->iterate(VerifyNoCSetOops("Queue", i));
2401   }
2402 
2403   // Verify the global finger
2404   HeapWord* global_finger = finger();
2405   if (global_finger != NULL && global_finger < _heap_end) {
2406     // Since we always iterate over all regions, we might get a NULL HeapRegion
2407     // here.
2408     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2409     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2410               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2411               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2412   }
2413 
2414   // Verify the task fingers
2415   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2416   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2417     G1CMTask* task = _tasks[i];
2418     HeapWord* task_finger = task->finger();
2419     if (task_finger != NULL && task_finger < _heap_end) {
2420       // See above note on the global finger verification.
2421       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2422       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2423                 !task_hr->in_collection_set(),
2424                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2425                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2426     }
2427   }
2428 }
2429 #endif // PRODUCT
2430 
2431 // Aggregate the counting data that was constructed concurrently
2432 // with marking.
2433 class AggregateCountDataHRClosure: public HeapRegionClosure {
2434   G1CollectedHeap* _g1h;
2435   G1ConcurrentMark* _cm;
2436   CardTableModRefBS* _ct_bs;
2437   BitMap* _cm_card_bm;
2438   uint _max_worker_id;
2439 
2440  public:
2441   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2442                               BitMap* cm_card_bm,
2443                               uint max_worker_id) :
2444     _g1h(g1h), _cm(g1h->concurrent_mark()),
2445     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2446     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2447 
2448   bool doHeapRegion(HeapRegion* hr) {
2449     HeapWord* start = hr->bottom();
2450     HeapWord* limit = hr->next_top_at_mark_start();
2451     HeapWord* end = hr->end();
2452 
2453     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2454            "Preconditions not met - "
2455            "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2456            "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2457            p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
2458 
2459     assert(hr->next_marked_bytes() == 0, "Precondition");
2460 
2461     if (start == limit) {
2462       // NTAMS of this region has not been set so nothing to do.
2463       return false;
2464     }
2465 
2466     // 'start' should be in the heap.
2467     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2468     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2469     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2470 
2471     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2472     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2473     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2474 
2475     // If ntams is not card aligned then we bump card bitmap index
2476     // for limit so that we get the all the cards spanned by
2477     // the object ending at ntams.
2478     // Note: if this is the last region in the heap then ntams
2479     // could be actually just beyond the end of the the heap;
2480     // limit_idx will then  correspond to a (non-existent) card
2481     // that is also outside the heap.
2482     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2483       limit_idx += 1;
2484     }
2485 
2486     assert(limit_idx <= end_idx, "or else use atomics");
2487 
2488     // Aggregate the "stripe" in the count data associated with hr.
2489     uint hrm_index = hr->hrm_index();
2490     size_t marked_bytes = 0;
2491 
2492     for (uint i = 0; i < _max_worker_id; i += 1) {
2493       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2494       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2495 
2496       // Fetch the marked_bytes in this region for task i and
2497       // add it to the running total for this region.
2498       marked_bytes += marked_bytes_array[hrm_index];
2499 
2500       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2501       // into the global card bitmap.
2502       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2503 
2504       while (scan_idx < limit_idx) {
2505         assert(task_card_bm->at(scan_idx) == true, "should be");
2506         _cm_card_bm->set_bit(scan_idx);
2507         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2508 
2509         // BitMap::get_next_one_offset() can handle the case when
2510         // its left_offset parameter is greater than its right_offset
2511         // parameter. It does, however, have an early exit if
2512         // left_offset == right_offset. So let's limit the value
2513         // passed in for left offset here.
2514         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2515         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2516       }
2517     }
2518 
2519     // Update the marked bytes for this region.
2520     hr->add_to_marked_bytes(marked_bytes);
2521 
2522     // Next heap region
2523     return false;
2524   }
2525 };
2526 
2527 class G1AggregateCountDataTask: public AbstractGangTask {
2528 protected:
2529   G1CollectedHeap* _g1h;
2530   G1ConcurrentMark* _cm;
2531   BitMap* _cm_card_bm;
2532   uint _max_worker_id;
2533   uint _active_workers;
2534   HeapRegionClaimer _hrclaimer;
2535 
2536 public:
2537   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2538                            G1ConcurrentMark* cm,
2539                            BitMap* cm_card_bm,
2540                            uint max_worker_id,
2541                            uint n_workers) :
2542       AbstractGangTask("Count Aggregation"),
2543       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2544       _max_worker_id(max_worker_id),
2545       _active_workers(n_workers),
2546       _hrclaimer(_active_workers) {
2547   }
2548 
2549   void work(uint worker_id) {
2550     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2551 
2552     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2553   }
2554 };
2555 
2556 
2557 void G1ConcurrentMark::aggregate_count_data() {
2558   uint n_workers = _g1h->workers()->active_workers();
2559 
2560   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2561                                            _max_worker_id, n_workers);
2562 
2563   _g1h->workers()->run_task(&g1_par_agg_task);
2564 }
2565 
2566 // Clear the per-worker arrays used to store the per-region counting data
2567 void G1ConcurrentMark::clear_all_count_data() {
2568   // Clear the global card bitmap - it will be filled during
2569   // liveness count aggregation (during remark) and the
2570   // final counting task.
2571   _card_bm.clear();
2572 
2573   // Clear the global region bitmap - it will be filled as part
2574   // of the final counting task.
2575   _region_bm.clear();
2576 
2577   uint max_regions = _g1h->max_regions();
2578   assert(_max_worker_id > 0, "uninitialized");
2579 
2580   for (uint i = 0; i < _max_worker_id; i += 1) {
2581     BitMap* task_card_bm = count_card_bitmap_for(i);
2582     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2583 
2584     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2585     assert(marked_bytes_array != NULL, "uninitialized");
2586 
2587     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2588     task_card_bm->clear();
2589   }
2590 }
2591 
2592 void G1ConcurrentMark::print_stats() {
2593   if (!log_is_enabled(Debug, gc, stats)) {
2594     return;
2595   }
2596   log_debug(gc, stats)("---------------------------------------------------------------------");
2597   for (size_t i = 0; i < _active_tasks; ++i) {
2598     _tasks[i]->print_stats();
2599     log_debug(gc, stats)("---------------------------------------------------------------------");
2600   }
2601 }
2602 
2603 // abandon current marking iteration due to a Full GC
2604 void G1ConcurrentMark::abort() {
2605   if (!cmThread()->during_cycle() || _has_aborted) {
2606     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2607     return;
2608   }
2609 
2610   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2611   // concurrent bitmap clearing.
2612   clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
2613 
2614   // Note we cannot clear the previous marking bitmap here
2615   // since VerifyDuringGC verifies the objects marked during
2616   // a full GC against the previous bitmap.
2617 
2618   // Clear the liveness counting data
2619   clear_all_count_data();
2620   // Empty mark stack
2621   reset_marking_state();
2622   for (uint i = 0; i < _max_worker_id; ++i) {
2623     _tasks[i]->clear_region_fields();
2624   }
2625   _first_overflow_barrier_sync.abort();
2626   _second_overflow_barrier_sync.abort();
2627   _has_aborted = true;
2628 
2629   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2630   satb_mq_set.abandon_partial_marking();
2631   // This can be called either during or outside marking, we'll read
2632   // the expected_active value from the SATB queue set.
2633   satb_mq_set.set_active_all_threads(
2634                                  false, /* new active value */
2635                                  satb_mq_set.is_active() /* expected_active */);
2636 
2637   _g1h->trace_heap_after_concurrent_cycle();
2638 
2639   _g1h->register_concurrent_cycle_end();
2640 }
2641 
2642 static void print_ms_time_info(const char* prefix, const char* name,
2643                                NumberSeq& ns) {
2644   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2645                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2646   if (ns.num() > 0) {
2647     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2648                            prefix, ns.sd(), ns.maximum());
2649   }
2650 }
2651 
2652 void G1ConcurrentMark::print_summary_info() {
2653   LogHandle(gc, marking) log;
2654   if (!log.is_trace()) {
2655     return;
2656   }
2657 
2658   log.trace(" Concurrent marking:");
2659   print_ms_time_info("  ", "init marks", _init_times);
2660   print_ms_time_info("  ", "remarks", _remark_times);
2661   {
2662     print_ms_time_info("     ", "final marks", _remark_mark_times);
2663     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2664 
2665   }
2666   print_ms_time_info("  ", "cleanups", _cleanup_times);
2667   log.trace("    Final counting total time = %8.2f s (avg = %8.2f ms).",
2668             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2669   if (G1ScrubRemSets) {
2670     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2671               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2672   }
2673   log.trace("  Total stop_world time = %8.2f s.",
2674             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2675   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2676             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2677 }
2678 
2679 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2680   _parallel_workers->print_worker_threads_on(st);
2681 }
2682 
2683 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2684   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2685       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2686   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2687   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2688 }
2689 
2690 // We take a break if someone is trying to stop the world.
2691 bool G1ConcurrentMark::do_yield_check(uint worker_id) {
2692   if (SuspendibleThreadSet::should_yield()) {
2693     SuspendibleThreadSet::yield();
2694     return true;
2695   } else {
2696     return false;
2697   }
2698 }
2699 
2700 // Closure for iteration over bitmaps
2701 class G1CMBitMapClosure : public BitMapClosure {
2702 private:
2703   // the bitmap that is being iterated over
2704   G1CMBitMap*                 _nextMarkBitMap;
2705   G1ConcurrentMark*           _cm;
2706   G1CMTask*                   _task;
2707 
2708 public:
2709   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2710     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2711 
2712   bool do_bit(size_t offset) {
2713     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2714     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2715     assert( addr < _cm->finger(), "invariant");
2716     assert(addr >= _task->finger(), "invariant");
2717 
2718     // We move that task's local finger along.
2719     _task->move_finger_to(addr);
2720 
2721     _task->scan_object(oop(addr));
2722     // we only partially drain the local queue and global stack
2723     _task->drain_local_queue(true);
2724     _task->drain_global_stack(true);
2725 
2726     // if the has_aborted flag has been raised, we need to bail out of
2727     // the iteration
2728     return !_task->has_aborted();
2729   }
2730 };
2731 
2732 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2733   ReferenceProcessor* result = g1h->ref_processor_cm();
2734   assert(result != NULL, "CM reference processor should not be NULL");
2735   return result;
2736 }
2737 
2738 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2739                                G1ConcurrentMark* cm,
2740                                G1CMTask* task)
2741   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2742     _g1h(g1h), _cm(cm), _task(task)
2743 { }
2744 
2745 void G1CMTask::setup_for_region(HeapRegion* hr) {
2746   assert(hr != NULL,
2747         "claim_region() should have filtered out NULL regions");
2748   _curr_region  = hr;
2749   _finger       = hr->bottom();
2750   update_region_limit();
2751 }
2752 
2753 void G1CMTask::update_region_limit() {
2754   HeapRegion* hr            = _curr_region;
2755   HeapWord* bottom          = hr->bottom();
2756   HeapWord* limit           = hr->next_top_at_mark_start();
2757 
2758   if (limit == bottom) {
2759     // The region was collected underneath our feet.
2760     // We set the finger to bottom to ensure that the bitmap
2761     // iteration that will follow this will not do anything.
2762     // (this is not a condition that holds when we set the region up,
2763     // as the region is not supposed to be empty in the first place)
2764     _finger = bottom;
2765   } else if (limit >= _region_limit) {
2766     assert(limit >= _finger, "peace of mind");
2767   } else {
2768     assert(limit < _region_limit, "only way to get here");
2769     // This can happen under some pretty unusual circumstances.  An
2770     // evacuation pause empties the region underneath our feet (NTAMS
2771     // at bottom). We then do some allocation in the region (NTAMS
2772     // stays at bottom), followed by the region being used as a GC
2773     // alloc region (NTAMS will move to top() and the objects
2774     // originally below it will be grayed). All objects now marked in
2775     // the region are explicitly grayed, if below the global finger,
2776     // and we do not need in fact to scan anything else. So, we simply
2777     // set _finger to be limit to ensure that the bitmap iteration
2778     // doesn't do anything.
2779     _finger = limit;
2780   }
2781 
2782   _region_limit = limit;
2783 }
2784 
2785 void G1CMTask::giveup_current_region() {
2786   assert(_curr_region != NULL, "invariant");
2787   clear_region_fields();
2788 }
2789 
2790 void G1CMTask::clear_region_fields() {
2791   // Values for these three fields that indicate that we're not
2792   // holding on to a region.
2793   _curr_region   = NULL;
2794   _finger        = NULL;
2795   _region_limit  = NULL;
2796 }
2797 
2798 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2799   if (cm_oop_closure == NULL) {
2800     assert(_cm_oop_closure != NULL, "invariant");
2801   } else {
2802     assert(_cm_oop_closure == NULL, "invariant");
2803   }
2804   _cm_oop_closure = cm_oop_closure;
2805 }
2806 
2807 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2808   guarantee(nextMarkBitMap != NULL, "invariant");
2809   _nextMarkBitMap                = nextMarkBitMap;
2810   clear_region_fields();
2811 
2812   _calls                         = 0;
2813   _elapsed_time_ms               = 0.0;
2814   _termination_time_ms           = 0.0;
2815   _termination_start_time_ms     = 0.0;
2816 }
2817 
2818 bool G1CMTask::should_exit_termination() {
2819   regular_clock_call();
2820   // This is called when we are in the termination protocol. We should
2821   // quit if, for some reason, this task wants to abort or the global
2822   // stack is not empty (this means that we can get work from it).
2823   return !_cm->mark_stack_empty() || has_aborted();
2824 }
2825 
2826 void G1CMTask::reached_limit() {
2827   assert(_words_scanned >= _words_scanned_limit ||
2828          _refs_reached >= _refs_reached_limit ,
2829          "shouldn't have been called otherwise");
2830   regular_clock_call();
2831 }
2832 
2833 void G1CMTask::regular_clock_call() {
2834   if (has_aborted()) return;
2835 
2836   // First, we need to recalculate the words scanned and refs reached
2837   // limits for the next clock call.
2838   recalculate_limits();
2839 
2840   // During the regular clock call we do the following
2841 
2842   // (1) If an overflow has been flagged, then we abort.
2843   if (_cm->has_overflown()) {
2844     set_has_aborted();
2845     return;
2846   }
2847 
2848   // If we are not concurrent (i.e. we're doing remark) we don't need
2849   // to check anything else. The other steps are only needed during
2850   // the concurrent marking phase.
2851   if (!concurrent()) return;
2852 
2853   // (2) If marking has been aborted for Full GC, then we also abort.
2854   if (_cm->has_aborted()) {
2855     set_has_aborted();
2856     return;
2857   }
2858 
2859   double curr_time_ms = os::elapsedVTime() * 1000.0;
2860 
2861   // (4) We check whether we should yield. If we have to, then we abort.
2862   if (SuspendibleThreadSet::should_yield()) {
2863     // We should yield. To do this we abort the task. The caller is
2864     // responsible for yielding.
2865     set_has_aborted();
2866     return;
2867   }
2868 
2869   // (5) We check whether we've reached our time quota. If we have,
2870   // then we abort.
2871   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2872   if (elapsed_time_ms > _time_target_ms) {
2873     set_has_aborted();
2874     _has_timed_out = true;
2875     return;
2876   }
2877 
2878   // (6) Finally, we check whether there are enough completed STAB
2879   // buffers available for processing. If there are, we abort.
2880   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2881   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2882     // we do need to process SATB buffers, we'll abort and restart
2883     // the marking task to do so
2884     set_has_aborted();
2885     return;
2886   }
2887 }
2888 
2889 void G1CMTask::recalculate_limits() {
2890   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2891   _words_scanned_limit      = _real_words_scanned_limit;
2892 
2893   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2894   _refs_reached_limit       = _real_refs_reached_limit;
2895 }
2896 
2897 void G1CMTask::decrease_limits() {
2898   // This is called when we believe that we're going to do an infrequent
2899   // operation which will increase the per byte scanned cost (i.e. move
2900   // entries to/from the global stack). It basically tries to decrease the
2901   // scanning limit so that the clock is called earlier.
2902 
2903   _words_scanned_limit = _real_words_scanned_limit -
2904     3 * words_scanned_period / 4;
2905   _refs_reached_limit  = _real_refs_reached_limit -
2906     3 * refs_reached_period / 4;
2907 }
2908 
2909 void G1CMTask::move_entries_to_global_stack() {
2910   // local array where we'll store the entries that will be popped
2911   // from the local queue
2912   oop buffer[global_stack_transfer_size];
2913 
2914   int n = 0;
2915   oop obj;
2916   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2917     buffer[n] = obj;
2918     ++n;
2919   }
2920 
2921   if (n > 0) {
2922     // we popped at least one entry from the local queue
2923 
2924     if (!_cm->mark_stack_push(buffer, n)) {
2925       set_has_aborted();
2926     }
2927   }
2928 
2929   // this operation was quite expensive, so decrease the limits
2930   decrease_limits();
2931 }
2932 
2933 void G1CMTask::get_entries_from_global_stack() {
2934   // local array where we'll store the entries that will be popped
2935   // from the global stack.
2936   oop buffer[global_stack_transfer_size];
2937   int n;
2938   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2939   assert(n <= global_stack_transfer_size,
2940          "we should not pop more than the given limit");
2941   if (n > 0) {
2942     // yes, we did actually pop at least one entry
2943     for (int i = 0; i < n; ++i) {
2944       bool success = _task_queue->push(buffer[i]);
2945       // We only call this when the local queue is empty or under a
2946       // given target limit. So, we do not expect this push to fail.
2947       assert(success, "invariant");
2948     }
2949   }
2950 
2951   // this operation was quite expensive, so decrease the limits
2952   decrease_limits();
2953 }
2954 
2955 void G1CMTask::drain_local_queue(bool partially) {
2956   if (has_aborted()) return;
2957 
2958   // Decide what the target size is, depending whether we're going to
2959   // drain it partially (so that other tasks can steal if they run out
2960   // of things to do) or totally (at the very end).
2961   size_t target_size;
2962   if (partially) {
2963     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2964   } else {
2965     target_size = 0;
2966   }
2967 
2968   if (_task_queue->size() > target_size) {
2969     oop obj;
2970     bool ret = _task_queue->pop_local(obj);
2971     while (ret) {
2972       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2973       assert(!_g1h->is_on_master_free_list(
2974                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2975 
2976       scan_object(obj);
2977 
2978       if (_task_queue->size() <= target_size || has_aborted()) {
2979         ret = false;
2980       } else {
2981         ret = _task_queue->pop_local(obj);
2982       }
2983     }
2984   }
2985 }
2986 
2987 void G1CMTask::drain_global_stack(bool partially) {
2988   if (has_aborted()) return;
2989 
2990   // We have a policy to drain the local queue before we attempt to
2991   // drain the global stack.
2992   assert(partially || _task_queue->size() == 0, "invariant");
2993 
2994   // Decide what the target size is, depending whether we're going to
2995   // drain it partially (so that other tasks can steal if they run out
2996   // of things to do) or totally (at the very end).  Notice that,
2997   // because we move entries from the global stack in chunks or
2998   // because another task might be doing the same, we might in fact
2999   // drop below the target. But, this is not a problem.
3000   size_t target_size;
3001   if (partially) {
3002     target_size = _cm->partial_mark_stack_size_target();
3003   } else {
3004     target_size = 0;
3005   }
3006 
3007   if (_cm->mark_stack_size() > target_size) {
3008     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3009       get_entries_from_global_stack();
3010       drain_local_queue(partially);
3011     }
3012   }
3013 }
3014 
3015 // SATB Queue has several assumptions on whether to call the par or
3016 // non-par versions of the methods. this is why some of the code is
3017 // replicated. We should really get rid of the single-threaded version
3018 // of the code to simplify things.
3019 void G1CMTask::drain_satb_buffers() {
3020   if (has_aborted()) return;
3021 
3022   // We set this so that the regular clock knows that we're in the
3023   // middle of draining buffers and doesn't set the abort flag when it
3024   // notices that SATB buffers are available for draining. It'd be
3025   // very counter productive if it did that. :-)
3026   _draining_satb_buffers = true;
3027 
3028   G1CMSATBBufferClosure satb_cl(this, _g1h);
3029   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3030 
3031   // This keeps claiming and applying the closure to completed buffers
3032   // until we run out of buffers or we need to abort.
3033   while (!has_aborted() &&
3034          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3035     regular_clock_call();
3036   }
3037 
3038   _draining_satb_buffers = false;
3039 
3040   assert(has_aborted() ||
3041          concurrent() ||
3042          satb_mq_set.completed_buffers_num() == 0, "invariant");
3043 
3044   // again, this was a potentially expensive operation, decrease the
3045   // limits to get the regular clock call early
3046   decrease_limits();
3047 }
3048 
3049 void G1CMTask::print_stats() {
3050   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
3051                        _worker_id, _calls);
3052   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3053                        _elapsed_time_ms, _termination_time_ms);
3054   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3055                        _step_times_ms.num(), _step_times_ms.avg(),
3056                        _step_times_ms.sd());
3057   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
3058                        _step_times_ms.maximum(), _step_times_ms.sum());
3059 }
3060 
3061 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3062   return _task_queues->steal(worker_id, hash_seed, obj);
3063 }
3064 
3065 /*****************************************************************************
3066 
3067     The do_marking_step(time_target_ms, ...) method is the building
3068     block of the parallel marking framework. It can be called in parallel
3069     with other invocations of do_marking_step() on different tasks
3070     (but only one per task, obviously) and concurrently with the
3071     mutator threads, or during remark, hence it eliminates the need
3072     for two versions of the code. When called during remark, it will
3073     pick up from where the task left off during the concurrent marking
3074     phase. Interestingly, tasks are also claimable during evacuation
3075     pauses too, since do_marking_step() ensures that it aborts before
3076     it needs to yield.
3077 
3078     The data structures that it uses to do marking work are the
3079     following:
3080 
3081       (1) Marking Bitmap. If there are gray objects that appear only
3082       on the bitmap (this happens either when dealing with an overflow
3083       or when the initial marking phase has simply marked the roots
3084       and didn't push them on the stack), then tasks claim heap
3085       regions whose bitmap they then scan to find gray objects. A
3086       global finger indicates where the end of the last claimed region
3087       is. A local finger indicates how far into the region a task has
3088       scanned. The two fingers are used to determine how to gray an
3089       object (i.e. whether simply marking it is OK, as it will be
3090       visited by a task in the future, or whether it needs to be also
3091       pushed on a stack).
3092 
3093       (2) Local Queue. The local queue of the task which is accessed
3094       reasonably efficiently by the task. Other tasks can steal from
3095       it when they run out of work. Throughout the marking phase, a
3096       task attempts to keep its local queue short but not totally
3097       empty, so that entries are available for stealing by other
3098       tasks. Only when there is no more work, a task will totally
3099       drain its local queue.
3100 
3101       (3) Global Mark Stack. This handles local queue overflow. During
3102       marking only sets of entries are moved between it and the local
3103       queues, as access to it requires a mutex and more fine-grain
3104       interaction with it which might cause contention. If it
3105       overflows, then the marking phase should restart and iterate
3106       over the bitmap to identify gray objects. Throughout the marking
3107       phase, tasks attempt to keep the global mark stack at a small
3108       length but not totally empty, so that entries are available for
3109       popping by other tasks. Only when there is no more work, tasks
3110       will totally drain the global mark stack.
3111 
3112       (4) SATB Buffer Queue. This is where completed SATB buffers are
3113       made available. Buffers are regularly removed from this queue
3114       and scanned for roots, so that the queue doesn't get too
3115       long. During remark, all completed buffers are processed, as
3116       well as the filled in parts of any uncompleted buffers.
3117 
3118     The do_marking_step() method tries to abort when the time target
3119     has been reached. There are a few other cases when the
3120     do_marking_step() method also aborts:
3121 
3122       (1) When the marking phase has been aborted (after a Full GC).
3123 
3124       (2) When a global overflow (on the global stack) has been
3125       triggered. Before the task aborts, it will actually sync up with
3126       the other tasks to ensure that all the marking data structures
3127       (local queues, stacks, fingers etc.)  are re-initialized so that
3128       when do_marking_step() completes, the marking phase can
3129       immediately restart.
3130 
3131       (3) When enough completed SATB buffers are available. The
3132       do_marking_step() method only tries to drain SATB buffers right
3133       at the beginning. So, if enough buffers are available, the
3134       marking step aborts and the SATB buffers are processed at
3135       the beginning of the next invocation.
3136 
3137       (4) To yield. when we have to yield then we abort and yield
3138       right at the end of do_marking_step(). This saves us from a lot
3139       of hassle as, by yielding we might allow a Full GC. If this
3140       happens then objects will be compacted underneath our feet, the
3141       heap might shrink, etc. We save checking for this by just
3142       aborting and doing the yield right at the end.
3143 
3144     From the above it follows that the do_marking_step() method should
3145     be called in a loop (or, otherwise, regularly) until it completes.
3146 
3147     If a marking step completes without its has_aborted() flag being
3148     true, it means it has completed the current marking phase (and
3149     also all other marking tasks have done so and have all synced up).
3150 
3151     A method called regular_clock_call() is invoked "regularly" (in
3152     sub ms intervals) throughout marking. It is this clock method that
3153     checks all the abort conditions which were mentioned above and
3154     decides when the task should abort. A work-based scheme is used to
3155     trigger this clock method: when the number of object words the
3156     marking phase has scanned or the number of references the marking
3157     phase has visited reach a given limit. Additional invocations to
3158     the method clock have been planted in a few other strategic places
3159     too. The initial reason for the clock method was to avoid calling
3160     vtime too regularly, as it is quite expensive. So, once it was in
3161     place, it was natural to piggy-back all the other conditions on it
3162     too and not constantly check them throughout the code.
3163 
3164     If do_termination is true then do_marking_step will enter its
3165     termination protocol.
3166 
3167     The value of is_serial must be true when do_marking_step is being
3168     called serially (i.e. by the VMThread) and do_marking_step should
3169     skip any synchronization in the termination and overflow code.
3170     Examples include the serial remark code and the serial reference
3171     processing closures.
3172 
3173     The value of is_serial must be false when do_marking_step is
3174     being called by any of the worker threads in a work gang.
3175     Examples include the concurrent marking code (CMMarkingTask),
3176     the MT remark code, and the MT reference processing closures.
3177 
3178  *****************************************************************************/
3179 
3180 void G1CMTask::do_marking_step(double time_target_ms,
3181                                bool do_termination,
3182                                bool is_serial) {
3183   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3184   assert(concurrent() == _cm->concurrent(), "they should be the same");
3185 
3186   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3187   assert(_task_queues != NULL, "invariant");
3188   assert(_task_queue != NULL, "invariant");
3189   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3190 
3191   assert(!_claimed,
3192          "only one thread should claim this task at any one time");
3193 
3194   // OK, this doesn't safeguard again all possible scenarios, as it is
3195   // possible for two threads to set the _claimed flag at the same
3196   // time. But it is only for debugging purposes anyway and it will
3197   // catch most problems.
3198   _claimed = true;
3199 
3200   _start_time_ms = os::elapsedVTime() * 1000.0;
3201 
3202   // If do_stealing is true then do_marking_step will attempt to
3203   // steal work from the other G1CMTasks. It only makes sense to
3204   // enable stealing when the termination protocol is enabled
3205   // and do_marking_step() is not being called serially.
3206   bool do_stealing = do_termination && !is_serial;
3207 
3208   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3209   _time_target_ms = time_target_ms - diff_prediction_ms;
3210 
3211   // set up the variables that are used in the work-based scheme to
3212   // call the regular clock method
3213   _words_scanned = 0;
3214   _refs_reached  = 0;
3215   recalculate_limits();
3216 
3217   // clear all flags
3218   clear_has_aborted();
3219   _has_timed_out = false;
3220   _draining_satb_buffers = false;
3221 
3222   ++_calls;
3223 
3224   // Set up the bitmap and oop closures. Anything that uses them is
3225   // eventually called from this method, so it is OK to allocate these
3226   // statically.
3227   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3228   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
3229   set_cm_oop_closure(&cm_oop_closure);
3230 
3231   if (_cm->has_overflown()) {
3232     // This can happen if the mark stack overflows during a GC pause
3233     // and this task, after a yield point, restarts. We have to abort
3234     // as we need to get into the overflow protocol which happens
3235     // right at the end of this task.
3236     set_has_aborted();
3237   }
3238 
3239   // First drain any available SATB buffers. After this, we will not
3240   // look at SATB buffers before the next invocation of this method.
3241   // If enough completed SATB buffers are queued up, the regular clock
3242   // will abort this task so that it restarts.
3243   drain_satb_buffers();
3244   // ...then partially drain the local queue and the global stack
3245   drain_local_queue(true);
3246   drain_global_stack(true);
3247 
3248   do {
3249     if (!has_aborted() && _curr_region != NULL) {
3250       // This means that we're already holding on to a region.
3251       assert(_finger != NULL, "if region is not NULL, then the finger "
3252              "should not be NULL either");
3253 
3254       // We might have restarted this task after an evacuation pause
3255       // which might have evacuated the region we're holding on to
3256       // underneath our feet. Let's read its limit again to make sure
3257       // that we do not iterate over a region of the heap that
3258       // contains garbage (update_region_limit() will also move
3259       // _finger to the start of the region if it is found empty).
3260       update_region_limit();
3261       // We will start from _finger not from the start of the region,
3262       // as we might be restarting this task after aborting half-way
3263       // through scanning this region. In this case, _finger points to
3264       // the address where we last found a marked object. If this is a
3265       // fresh region, _finger points to start().
3266       MemRegion mr = MemRegion(_finger, _region_limit);
3267 
3268       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3269              "humongous regions should go around loop once only");
3270 
3271       // Some special cases:
3272       // If the memory region is empty, we can just give up the region.
3273       // If the current region is humongous then we only need to check
3274       // the bitmap for the bit associated with the start of the object,
3275       // scan the object if it's live, and give up the region.
3276       // Otherwise, let's iterate over the bitmap of the part of the region
3277       // that is left.
3278       // If the iteration is successful, give up the region.
3279       if (mr.is_empty()) {
3280         giveup_current_region();
3281         regular_clock_call();
3282       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3283         if (_nextMarkBitMap->isMarked(mr.start())) {
3284           // The object is marked - apply the closure
3285           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3286           bitmap_closure.do_bit(offset);
3287         }
3288         // Even if this task aborted while scanning the humongous object
3289         // we can (and should) give up the current region.
3290         giveup_current_region();
3291         regular_clock_call();
3292       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3293         giveup_current_region();
3294         regular_clock_call();
3295       } else {
3296         assert(has_aborted(), "currently the only way to do so");
3297         // The only way to abort the bitmap iteration is to return
3298         // false from the do_bit() method. However, inside the
3299         // do_bit() method we move the _finger to point to the
3300         // object currently being looked at. So, if we bail out, we
3301         // have definitely set _finger to something non-null.
3302         assert(_finger != NULL, "invariant");
3303 
3304         // Region iteration was actually aborted. So now _finger
3305         // points to the address of the object we last scanned. If we
3306         // leave it there, when we restart this task, we will rescan
3307         // the object. It is easy to avoid this. We move the finger by
3308         // enough to point to the next possible object header (the
3309         // bitmap knows by how much we need to move it as it knows its
3310         // granularity).
3311         assert(_finger < _region_limit, "invariant");
3312         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3313         // Check if bitmap iteration was aborted while scanning the last object
3314         if (new_finger >= _region_limit) {
3315           giveup_current_region();
3316         } else {
3317           move_finger_to(new_finger);
3318         }
3319       }
3320     }
3321     // At this point we have either completed iterating over the
3322     // region we were holding on to, or we have aborted.
3323 
3324     // We then partially drain the local queue and the global stack.
3325     // (Do we really need this?)
3326     drain_local_queue(true);
3327     drain_global_stack(true);
3328 
3329     // Read the note on the claim_region() method on why it might
3330     // return NULL with potentially more regions available for
3331     // claiming and why we have to check out_of_regions() to determine
3332     // whether we're done or not.
3333     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3334       // We are going to try to claim a new region. We should have
3335       // given up on the previous one.
3336       // Separated the asserts so that we know which one fires.
3337       assert(_curr_region  == NULL, "invariant");
3338       assert(_finger       == NULL, "invariant");
3339       assert(_region_limit == NULL, "invariant");
3340       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3341       if (claimed_region != NULL) {
3342         // Yes, we managed to claim one
3343         setup_for_region(claimed_region);
3344         assert(_curr_region == claimed_region, "invariant");
3345       }
3346       // It is important to call the regular clock here. It might take
3347       // a while to claim a region if, for example, we hit a large
3348       // block of empty regions. So we need to call the regular clock
3349       // method once round the loop to make sure it's called
3350       // frequently enough.
3351       regular_clock_call();
3352     }
3353 
3354     if (!has_aborted() && _curr_region == NULL) {
3355       assert(_cm->out_of_regions(),
3356              "at this point we should be out of regions");
3357     }
3358   } while ( _curr_region != NULL && !has_aborted());
3359 
3360   if (!has_aborted()) {
3361     // We cannot check whether the global stack is empty, since other
3362     // tasks might be pushing objects to it concurrently.
3363     assert(_cm->out_of_regions(),
3364            "at this point we should be out of regions");
3365     // Try to reduce the number of available SATB buffers so that
3366     // remark has less work to do.
3367     drain_satb_buffers();
3368   }
3369 
3370   // Since we've done everything else, we can now totally drain the
3371   // local queue and global stack.
3372   drain_local_queue(false);
3373   drain_global_stack(false);
3374 
3375   // Attempt at work stealing from other task's queues.
3376   if (do_stealing && !has_aborted()) {
3377     // We have not aborted. This means that we have finished all that
3378     // we could. Let's try to do some stealing...
3379 
3380     // We cannot check whether the global stack is empty, since other
3381     // tasks might be pushing objects to it concurrently.
3382     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3383            "only way to reach here");
3384     while (!has_aborted()) {
3385       oop obj;
3386       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3387         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3388                "any stolen object should be marked");
3389         scan_object(obj);
3390 
3391         // And since we're towards the end, let's totally drain the
3392         // local queue and global stack.
3393         drain_local_queue(false);
3394         drain_global_stack(false);
3395       } else {
3396         break;
3397       }
3398     }
3399   }
3400 
3401   // We still haven't aborted. Now, let's try to get into the
3402   // termination protocol.
3403   if (do_termination && !has_aborted()) {
3404     // We cannot check whether the global stack is empty, since other
3405     // tasks might be concurrently pushing objects on it.
3406     // Separated the asserts so that we know which one fires.
3407     assert(_cm->out_of_regions(), "only way to reach here");
3408     assert(_task_queue->size() == 0, "only way to reach here");
3409     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3410 
3411     // The G1CMTask class also extends the TerminatorTerminator class,
3412     // hence its should_exit_termination() method will also decide
3413     // whether to exit the termination protocol or not.
3414     bool finished = (is_serial ||
3415                      _cm->terminator()->offer_termination(this));
3416     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3417     _termination_time_ms +=
3418       termination_end_time_ms - _termination_start_time_ms;
3419 
3420     if (finished) {
3421       // We're all done.
3422 
3423       if (_worker_id == 0) {
3424         // let's allow task 0 to do this
3425         if (concurrent()) {
3426           assert(_cm->concurrent_marking_in_progress(), "invariant");
3427           // we need to set this to false before the next
3428           // safepoint. This way we ensure that the marking phase
3429           // doesn't observe any more heap expansions.
3430           _cm->clear_concurrent_marking_in_progress();
3431         }
3432       }
3433 
3434       // We can now guarantee that the global stack is empty, since
3435       // all other tasks have finished. We separated the guarantees so
3436       // that, if a condition is false, we can immediately find out
3437       // which one.
3438       guarantee(_cm->out_of_regions(), "only way to reach here");
3439       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3440       guarantee(_task_queue->size() == 0, "only way to reach here");
3441       guarantee(!_cm->has_overflown(), "only way to reach here");
3442       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3443     } else {
3444       // Apparently there's more work to do. Let's abort this task. It
3445       // will restart it and we can hopefully find more things to do.
3446       set_has_aborted();
3447     }
3448   }
3449 
3450   // Mainly for debugging purposes to make sure that a pointer to the
3451   // closure which was statically allocated in this frame doesn't
3452   // escape it by accident.
3453   set_cm_oop_closure(NULL);
3454   double end_time_ms = os::elapsedVTime() * 1000.0;
3455   double elapsed_time_ms = end_time_ms - _start_time_ms;
3456   // Update the step history.
3457   _step_times_ms.add(elapsed_time_ms);
3458 
3459   if (has_aborted()) {
3460     // The task was aborted for some reason.
3461     if (_has_timed_out) {
3462       double diff_ms = elapsed_time_ms - _time_target_ms;
3463       // Keep statistics of how well we did with respect to hitting
3464       // our target only if we actually timed out (if we aborted for
3465       // other reasons, then the results might get skewed).
3466       _marking_step_diffs_ms.add(diff_ms);
3467     }
3468 
3469     if (_cm->has_overflown()) {
3470       // This is the interesting one. We aborted because a global
3471       // overflow was raised. This means we have to restart the
3472       // marking phase and start iterating over regions. However, in
3473       // order to do this we have to make sure that all tasks stop
3474       // what they are doing and re-initialize in a safe manner. We
3475       // will achieve this with the use of two barrier sync points.
3476 
3477       if (!is_serial) {
3478         // We only need to enter the sync barrier if being called
3479         // from a parallel context
3480         _cm->enter_first_sync_barrier(_worker_id);
3481 
3482         // When we exit this sync barrier we know that all tasks have
3483         // stopped doing marking work. So, it's now safe to
3484         // re-initialize our data structures. At the end of this method,
3485         // task 0 will clear the global data structures.
3486       }
3487 
3488       // We clear the local state of this task...
3489       clear_region_fields();
3490 
3491       if (!is_serial) {
3492         // ...and enter the second barrier.
3493         _cm->enter_second_sync_barrier(_worker_id);
3494       }
3495       // At this point, if we're during the concurrent phase of
3496       // marking, everything has been re-initialized and we're
3497       // ready to restart.
3498     }
3499   }
3500 
3501   _claimed = false;
3502 }
3503 
3504 G1CMTask::G1CMTask(uint worker_id,
3505                    G1ConcurrentMark* cm,
3506                    size_t* marked_bytes,
3507                    BitMap* card_bm,
3508                    G1CMTaskQueue* task_queue,
3509                    G1CMTaskQueueSet* task_queues)
3510   : _g1h(G1CollectedHeap::heap()),
3511     _worker_id(worker_id), _cm(cm),
3512     _claimed(false),
3513     _nextMarkBitMap(NULL), _hash_seed(17),
3514     _task_queue(task_queue),
3515     _task_queues(task_queues),
3516     _cm_oop_closure(NULL),
3517     _marked_bytes_array(marked_bytes),
3518     _card_bm(card_bm) {
3519   guarantee(task_queue != NULL, "invariant");
3520   guarantee(task_queues != NULL, "invariant");
3521 
3522   _marking_step_diffs_ms.add(0.5);
3523 }
3524 
3525 // These are formatting macros that are used below to ensure
3526 // consistent formatting. The *_H_* versions are used to format the
3527 // header for a particular value and they should be kept consistent
3528 // with the corresponding macro. Also note that most of the macros add
3529 // the necessary white space (as a prefix) which makes them a bit
3530 // easier to compose.
3531 
3532 // All the output lines are prefixed with this string to be able to
3533 // identify them easily in a large log file.
3534 #define G1PPRL_LINE_PREFIX            "###"
3535 
3536 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3537 #ifdef _LP64
3538 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3539 #else // _LP64
3540 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3541 #endif // _LP64
3542 
3543 // For per-region info
3544 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3545 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3546 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3547 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3548 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3549 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3550 
3551 // For summary info
3552 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3553 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3554 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3555 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3556 
3557 G1PrintRegionLivenessInfoClosure::
3558 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3559   : _total_used_bytes(0), _total_capacity_bytes(0),
3560     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3561     _hum_used_bytes(0), _hum_capacity_bytes(0),
3562     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
3563     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3564   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3565   MemRegion g1_reserved = g1h->g1_reserved();
3566   double now = os::elapsedTime();
3567 
3568   // Print the header of the output.
3569   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3570   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3571                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3572                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3573                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3574                           HeapRegion::GrainBytes);
3575   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3576   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3577                           G1PPRL_TYPE_H_FORMAT
3578                           G1PPRL_ADDR_BASE_H_FORMAT
3579                           G1PPRL_BYTE_H_FORMAT
3580                           G1PPRL_BYTE_H_FORMAT
3581                           G1PPRL_BYTE_H_FORMAT
3582                           G1PPRL_DOUBLE_H_FORMAT
3583                           G1PPRL_BYTE_H_FORMAT
3584                           G1PPRL_BYTE_H_FORMAT,
3585                           "type", "address-range",
3586                           "used", "prev-live", "next-live", "gc-eff",
3587                           "remset", "code-roots");
3588   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3589                           G1PPRL_TYPE_H_FORMAT
3590                           G1PPRL_ADDR_BASE_H_FORMAT
3591                           G1PPRL_BYTE_H_FORMAT
3592                           G1PPRL_BYTE_H_FORMAT
3593                           G1PPRL_BYTE_H_FORMAT
3594                           G1PPRL_DOUBLE_H_FORMAT
3595                           G1PPRL_BYTE_H_FORMAT
3596                           G1PPRL_BYTE_H_FORMAT,
3597                           "", "",
3598                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3599                           "(bytes)", "(bytes)");
3600 }
3601 
3602 // It takes as a parameter a reference to one of the _hum_* fields, it
3603 // deduces the corresponding value for a region in a humongous region
3604 // series (either the region size, or what's left if the _hum_* field
3605 // is < the region size), and updates the _hum_* field accordingly.
3606 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
3607   size_t bytes = 0;
3608   // The > 0 check is to deal with the prev and next live bytes which
3609   // could be 0.
3610   if (*hum_bytes > 0) {
3611     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
3612     *hum_bytes -= bytes;
3613   }
3614   return bytes;
3615 }
3616 
3617 // It deduces the values for a region in a humongous region series
3618 // from the _hum_* fields and updates those accordingly. It assumes
3619 // that that _hum_* fields have already been set up from the "starts
3620 // humongous" region and we visit the regions in address order.
3621 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
3622                                                      size_t* capacity_bytes,
3623                                                      size_t* prev_live_bytes,
3624                                                      size_t* next_live_bytes) {
3625   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
3626   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
3627   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
3628   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
3629   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
3630 }
3631 
3632 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3633   const char* type       = r->get_type_str();
3634   HeapWord* bottom       = r->bottom();
3635   HeapWord* end          = r->end();
3636   size_t capacity_bytes  = r->capacity();
3637   size_t used_bytes      = r->used();
3638   size_t prev_live_bytes = r->live_bytes();
3639   size_t next_live_bytes = r->next_live_bytes();
3640   double gc_eff          = r->gc_efficiency();
3641   size_t remset_bytes    = r->rem_set()->mem_size();
3642   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3643 
3644   if (r->is_starts_humongous()) {
3645     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
3646            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
3647            "they should have been zeroed after the last time we used them");
3648     // Set up the _hum_* fields.
3649     _hum_capacity_bytes  = capacity_bytes;
3650     _hum_used_bytes      = used_bytes;
3651     _hum_prev_live_bytes = prev_live_bytes;
3652     _hum_next_live_bytes = next_live_bytes;
3653     get_hum_bytes(&used_bytes, &capacity_bytes,
3654                   &prev_live_bytes, &next_live_bytes);
3655     end = bottom + HeapRegion::GrainWords;
3656   } else if (r->is_continues_humongous()) {
3657     get_hum_bytes(&used_bytes, &capacity_bytes,
3658                   &prev_live_bytes, &next_live_bytes);
3659     assert(end == bottom + HeapRegion::GrainWords, "invariant");
3660   }
3661 
3662   _total_used_bytes      += used_bytes;
3663   _total_capacity_bytes  += capacity_bytes;
3664   _total_prev_live_bytes += prev_live_bytes;
3665   _total_next_live_bytes += next_live_bytes;
3666   _total_remset_bytes    += remset_bytes;
3667   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3668 
3669   // Print a line for this particular region.
3670   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3671                           G1PPRL_TYPE_FORMAT
3672                           G1PPRL_ADDR_BASE_FORMAT
3673                           G1PPRL_BYTE_FORMAT
3674                           G1PPRL_BYTE_FORMAT
3675                           G1PPRL_BYTE_FORMAT
3676                           G1PPRL_DOUBLE_FORMAT
3677                           G1PPRL_BYTE_FORMAT
3678                           G1PPRL_BYTE_FORMAT,
3679                           type, p2i(bottom), p2i(end),
3680                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3681                           remset_bytes, strong_code_roots_bytes);
3682 
3683   return false;
3684 }
3685 
3686 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3687   // add static memory usages to remembered set sizes
3688   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3689   // Print the footer of the output.
3690   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3691   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3692                          " SUMMARY"
3693                          G1PPRL_SUM_MB_FORMAT("capacity")
3694                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3695                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3696                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3697                          G1PPRL_SUM_MB_FORMAT("remset")
3698                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3699                          bytes_to_mb(_total_capacity_bytes),
3700                          bytes_to_mb(_total_used_bytes),
3701                          perc(_total_used_bytes, _total_capacity_bytes),
3702                          bytes_to_mb(_total_prev_live_bytes),
3703                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3704                          bytes_to_mb(_total_next_live_bytes),
3705                          perc(_total_next_live_bytes, _total_capacity_bytes),
3706                          bytes_to_mb(_total_remset_bytes),
3707                          bytes_to_mb(_total_strong_code_roots_bytes));
3708 }