1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1MarkSweep.hpp"
  46 #include "gc/g1/g1OopClosures.inline.hpp"
  47 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  48 #include "gc/g1/g1Policy.hpp"
  49 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc/g1/g1RemSet.inline.hpp"
  51 #include "gc/g1/g1RootClosures.hpp"
  52 #include "gc/g1/g1RootProcessor.hpp"
  53 #include "gc/g1/g1StringDedup.hpp"
  54 #include "gc/g1/g1YCTypes.hpp"
  55 #include "gc/g1/heapRegion.inline.hpp"
  56 #include "gc/g1/heapRegionRemSet.hpp"
  57 #include "gc/g1/heapRegionSet.inline.hpp"
  58 #include "gc/g1/suspendibleThreadSet.hpp"
  59 #include "gc/g1/vm_operations_g1.hpp"
  60 #include "gc/shared/gcHeapSummary.hpp"
  61 #include "gc/shared/gcId.hpp"
  62 #include "gc/shared/gcLocker.inline.hpp"
  63 #include "gc/shared/gcTimer.hpp"
  64 #include "gc/shared/gcTrace.hpp"
  65 #include "gc/shared/gcTraceTime.inline.hpp"
  66 #include "gc/shared/generationSpec.hpp"
  67 #include "gc/shared/isGCActiveMark.hpp"
  68 #include "gc/shared/preservedMarks.inline.hpp"
  69 #include "gc/shared/referenceProcessor.inline.hpp"
  70 #include "gc/shared/taskqueue.inline.hpp"
  71 #include "logging/log.hpp"
  72 #include "memory/allocation.hpp"
  73 #include "memory/iterator.hpp"
  74 #include "memory/resourceArea.hpp"
  75 #include "oops/oop.inline.hpp"
  76 #include "runtime/atomic.inline.hpp"
  77 #include "runtime/init.hpp"
  78 #include "runtime/orderAccess.inline.hpp"
  79 #include "runtime/vmThread.hpp"
  80 #include "utilities/globalDefinitions.hpp"
  81 #include "utilities/stack.inline.hpp"
  82 
  83 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  84 
  85 // INVARIANTS/NOTES
  86 //
  87 // All allocation activity covered by the G1CollectedHeap interface is
  88 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  89 // and allocate_new_tlab, which are the "entry" points to the
  90 // allocation code from the rest of the JVM.  (Note that this does not
  91 // apply to TLAB allocation, which is not part of this interface: it
  92 // is done by clients of this interface.)
  93 
  94 // Local to this file.
  95 
  96 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  97   bool _concurrent;
  98 public:
  99   RefineCardTableEntryClosure() : _concurrent(true) { }
 100 
 101   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 102     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, NULL);
 103     // This path is executed by the concurrent refine or mutator threads,
 104     // concurrently, and so we do not care if card_ptr contains references
 105     // that point into the collection set.
 106     assert(!oops_into_cset, "should be");
 107 
 108     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 109       // Caller will actually yield.
 110       return false;
 111     }
 112     // Otherwise, we finished successfully; return true.
 113     return true;
 114   }
 115 
 116   void set_concurrent(bool b) { _concurrent = b; }
 117 };
 118 
 119 
 120 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 121  private:
 122   size_t _num_dirtied;
 123   G1CollectedHeap* _g1h;
 124   G1SATBCardTableLoggingModRefBS* _g1_bs;
 125 
 126   HeapRegion* region_for_card(jbyte* card_ptr) const {
 127     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 128   }
 129 
 130   bool will_become_free(HeapRegion* hr) const {
 131     // A region will be freed by free_collection_set if the region is in the
 132     // collection set and has not had an evacuation failure.
 133     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 134   }
 135 
 136  public:
 137   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 138     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 139 
 140   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 141     HeapRegion* hr = region_for_card(card_ptr);
 142 
 143     // Should only dirty cards in regions that won't be freed.
 144     if (!will_become_free(hr)) {
 145       *card_ptr = CardTableModRefBS::dirty_card_val();
 146       _num_dirtied++;
 147     }
 148 
 149     return true;
 150   }
 151 
 152   size_t num_dirtied()   const { return _num_dirtied; }
 153 };
 154 
 155 
 156 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 157   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 158 }
 159 
 160 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 161   // The from card cache is not the memory that is actually committed. So we cannot
 162   // take advantage of the zero_filled parameter.
 163   reset_from_card_cache(start_idx, num_regions);
 164 }
 165 
 166 // Returns true if the reference points to an object that
 167 // can move in an incremental collection.
 168 bool G1CollectedHeap::is_scavengable(const void* p) {
 169   HeapRegion* hr = heap_region_containing(p);
 170   return !hr->is_pinned();
 171 }
 172 
 173 // Private methods.
 174 
 175 HeapRegion*
 176 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 177   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 178   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 179     if (!_secondary_free_list.is_empty()) {
 180       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 181                                       "secondary_free_list has %u entries",
 182                                       _secondary_free_list.length());
 183       // It looks as if there are free regions available on the
 184       // secondary_free_list. Let's move them to the free_list and try
 185       // again to allocate from it.
 186       append_secondary_free_list();
 187 
 188       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 189              "empty we should have moved at least one entry to the free_list");
 190       HeapRegion* res = _hrm.allocate_free_region(is_old);
 191       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 192                                       "allocated " HR_FORMAT " from secondary_free_list",
 193                                       HR_FORMAT_PARAMS(res));
 194       return res;
 195     }
 196 
 197     // Wait here until we get notified either when (a) there are no
 198     // more free regions coming or (b) some regions have been moved on
 199     // the secondary_free_list.
 200     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 201   }
 202 
 203   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 204                                   "could not allocate from secondary_free_list");
 205   return NULL;
 206 }
 207 
 208 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 209   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 210          "the only time we use this to allocate a humongous region is "
 211          "when we are allocating a single humongous region");
 212 
 213   HeapRegion* res;
 214   if (G1StressConcRegionFreeing) {
 215     if (!_secondary_free_list.is_empty()) {
 216       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 217                                       "forced to look at the secondary_free_list");
 218       res = new_region_try_secondary_free_list(is_old);
 219       if (res != NULL) {
 220         return res;
 221       }
 222     }
 223   }
 224 
 225   res = _hrm.allocate_free_region(is_old);
 226 
 227   if (res == NULL) {
 228     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 229                                     "res == NULL, trying the secondary_free_list");
 230     res = new_region_try_secondary_free_list(is_old);
 231   }
 232   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 233     // Currently, only attempts to allocate GC alloc regions set
 234     // do_expand to true. So, we should only reach here during a
 235     // safepoint. If this assumption changes we might have to
 236     // reconsider the use of _expand_heap_after_alloc_failure.
 237     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 238 
 239     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 240                               word_size * HeapWordSize);
 241 
 242     if (expand(word_size * HeapWordSize)) {
 243       // Given that expand() succeeded in expanding the heap, and we
 244       // always expand the heap by an amount aligned to the heap
 245       // region size, the free list should in theory not be empty.
 246       // In either case allocate_free_region() will check for NULL.
 247       res = _hrm.allocate_free_region(is_old);
 248     } else {
 249       _expand_heap_after_alloc_failure = false;
 250     }
 251   }
 252   return res;
 253 }
 254 
 255 HeapWord*
 256 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 257                                                            uint num_regions,
 258                                                            size_t word_size,
 259                                                            AllocationContext_t context) {
 260   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 261   assert(is_humongous(word_size), "word_size should be humongous");
 262   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 263 
 264   // Index of last region in the series.
 265   uint last = first + num_regions - 1;
 266 
 267   // We need to initialize the region(s) we just discovered. This is
 268   // a bit tricky given that it can happen concurrently with
 269   // refinement threads refining cards on these regions and
 270   // potentially wanting to refine the BOT as they are scanning
 271   // those cards (this can happen shortly after a cleanup; see CR
 272   // 6991377). So we have to set up the region(s) carefully and in
 273   // a specific order.
 274 
 275   // The word size sum of all the regions we will allocate.
 276   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 277   assert(word_size <= word_size_sum, "sanity");
 278 
 279   // This will be the "starts humongous" region.
 280   HeapRegion* first_hr = region_at(first);
 281   // The header of the new object will be placed at the bottom of
 282   // the first region.
 283   HeapWord* new_obj = first_hr->bottom();
 284   // This will be the new top of the new object.
 285   HeapWord* obj_top = new_obj + word_size;
 286 
 287   // First, we need to zero the header of the space that we will be
 288   // allocating. When we update top further down, some refinement
 289   // threads might try to scan the region. By zeroing the header we
 290   // ensure that any thread that will try to scan the region will
 291   // come across the zero klass word and bail out.
 292   //
 293   // NOTE: It would not have been correct to have used
 294   // CollectedHeap::fill_with_object() and make the space look like
 295   // an int array. The thread that is doing the allocation will
 296   // later update the object header to a potentially different array
 297   // type and, for a very short period of time, the klass and length
 298   // fields will be inconsistent. This could cause a refinement
 299   // thread to calculate the object size incorrectly.
 300   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 301 
 302   // How many words we use for filler objects.
 303   size_t word_fill_size = word_size_sum - word_size;
 304 
 305   // How many words memory we "waste" which cannot hold a filler object.
 306   size_t words_not_fillable = 0;
 307 
 308   if (word_fill_size >= min_fill_size()) {
 309     fill_with_objects(obj_top, word_fill_size);
 310   } else if (word_fill_size > 0) {
 311     // We have space to fill, but we cannot fit an object there.
 312     words_not_fillable = word_fill_size;
 313     word_fill_size = 0;
 314   }
 315 
 316   // We will set up the first region as "starts humongous". This
 317   // will also update the BOT covering all the regions to reflect
 318   // that there is a single object that starts at the bottom of the
 319   // first region.
 320   first_hr->set_starts_humongous(obj_top, word_fill_size);
 321   first_hr->set_allocation_context(context);
 322   // Then, if there are any, we will set up the "continues
 323   // humongous" regions.
 324   HeapRegion* hr = NULL;
 325   for (uint i = first + 1; i <= last; ++i) {
 326     hr = region_at(i);
 327     hr->set_continues_humongous(first_hr);
 328     hr->set_allocation_context(context);
 329   }
 330 
 331   // Up to this point no concurrent thread would have been able to
 332   // do any scanning on any region in this series. All the top
 333   // fields still point to bottom, so the intersection between
 334   // [bottom,top] and [card_start,card_end] will be empty. Before we
 335   // update the top fields, we'll do a storestore to make sure that
 336   // no thread sees the update to top before the zeroing of the
 337   // object header and the BOT initialization.
 338   OrderAccess::storestore();
 339 
 340   // Now, we will update the top fields of the "continues humongous"
 341   // regions except the last one.
 342   for (uint i = first; i < last; ++i) {
 343     hr = region_at(i);
 344     hr->set_top(hr->end());
 345   }
 346 
 347   hr = region_at(last);
 348   // If we cannot fit a filler object, we must set top to the end
 349   // of the humongous object, otherwise we cannot iterate the heap
 350   // and the BOT will not be complete.
 351   hr->set_top(hr->end() - words_not_fillable);
 352 
 353   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 354          "obj_top should be in last region");
 355 
 356   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 357 
 358   assert(words_not_fillable == 0 ||
 359          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 360          "Miscalculation in humongous allocation");
 361 
 362   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 363 
 364   for (uint i = first; i <= last; ++i) {
 365     hr = region_at(i);
 366     _humongous_set.add(hr);
 367     _hr_printer.alloc(hr);
 368   }
 369 
 370   return new_obj;
 371 }
 372 
 373 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 374   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 375   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 376 }
 377 
 378 // If could fit into free regions w/o expansion, try.
 379 // Otherwise, if can expand, do so.
 380 // Otherwise, if using ex regions might help, try with ex given back.
 381 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 382   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 383 
 384   _verifier->verify_region_sets_optional();
 385 
 386   uint first = G1_NO_HRM_INDEX;
 387   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 388 
 389   if (obj_regions == 1) {
 390     // Only one region to allocate, try to use a fast path by directly allocating
 391     // from the free lists. Do not try to expand here, we will potentially do that
 392     // later.
 393     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 394     if (hr != NULL) {
 395       first = hr->hrm_index();
 396     }
 397   } else {
 398     // We can't allocate humongous regions spanning more than one region while
 399     // cleanupComplete() is running, since some of the regions we find to be
 400     // empty might not yet be added to the free list. It is not straightforward
 401     // to know in which list they are on so that we can remove them. We only
 402     // need to do this if we need to allocate more than one region to satisfy the
 403     // current humongous allocation request. If we are only allocating one region
 404     // we use the one-region region allocation code (see above), that already
 405     // potentially waits for regions from the secondary free list.
 406     wait_while_free_regions_coming();
 407     append_secondary_free_list_if_not_empty_with_lock();
 408 
 409     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 410     // are lucky enough to find some.
 411     first = _hrm.find_contiguous_only_empty(obj_regions);
 412     if (first != G1_NO_HRM_INDEX) {
 413       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 414     }
 415   }
 416 
 417   if (first == G1_NO_HRM_INDEX) {
 418     // Policy: We could not find enough regions for the humongous object in the
 419     // free list. Look through the heap to find a mix of free and uncommitted regions.
 420     // If so, try expansion.
 421     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 422     if (first != G1_NO_HRM_INDEX) {
 423       // We found something. Make sure these regions are committed, i.e. expand
 424       // the heap. Alternatively we could do a defragmentation GC.
 425       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 426                                     word_size * HeapWordSize);
 427 
 428 
 429       _hrm.expand_at(first, obj_regions);
 430       g1_policy()->record_new_heap_size(num_regions());
 431 
 432 #ifdef ASSERT
 433       for (uint i = first; i < first + obj_regions; ++i) {
 434         HeapRegion* hr = region_at(i);
 435         assert(hr->is_free(), "sanity");
 436         assert(hr->is_empty(), "sanity");
 437         assert(is_on_master_free_list(hr), "sanity");
 438       }
 439 #endif
 440       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 441     } else {
 442       // Policy: Potentially trigger a defragmentation GC.
 443     }
 444   }
 445 
 446   HeapWord* result = NULL;
 447   if (first != G1_NO_HRM_INDEX) {
 448     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 449                                                        word_size, context);
 450     assert(result != NULL, "it should always return a valid result");
 451 
 452     // A successful humongous object allocation changes the used space
 453     // information of the old generation so we need to recalculate the
 454     // sizes and update the jstat counters here.
 455     g1mm()->update_sizes();
 456   }
 457 
 458   _verifier->verify_region_sets_optional();
 459 
 460   return result;
 461 }
 462 
 463 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 464   assert_heap_not_locked_and_not_at_safepoint();
 465   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 466 
 467   uint dummy_gc_count_before;
 468   uint dummy_gclocker_retry_count = 0;
 469   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 470 }
 471 
 472 HeapWord*
 473 G1CollectedHeap::mem_allocate(size_t word_size,
 474                               bool*  gc_overhead_limit_was_exceeded) {
 475   assert_heap_not_locked_and_not_at_safepoint();
 476 
 477   // Loop until the allocation is satisfied, or unsatisfied after GC.
 478   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 479     uint gc_count_before;
 480 
 481     HeapWord* result = NULL;
 482     if (!is_humongous(word_size)) {
 483       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 484     } else {
 485       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 486     }
 487     if (result != NULL) {
 488       return result;
 489     }
 490 
 491     // Create the garbage collection operation...
 492     VM_G1CollectForAllocation op(gc_count_before, word_size);
 493     op.set_allocation_context(AllocationContext::current());
 494 
 495     // ...and get the VM thread to execute it.
 496     VMThread::execute(&op);
 497 
 498     if (op.prologue_succeeded() && op.pause_succeeded()) {
 499       // If the operation was successful we'll return the result even
 500       // if it is NULL. If the allocation attempt failed immediately
 501       // after a Full GC, it's unlikely we'll be able to allocate now.
 502       HeapWord* result = op.result();
 503       if (result != NULL && !is_humongous(word_size)) {
 504         // Allocations that take place on VM operations do not do any
 505         // card dirtying and we have to do it here. We only have to do
 506         // this for non-humongous allocations, though.
 507         dirty_young_block(result, word_size);
 508       }
 509       return result;
 510     } else {
 511       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 512         return NULL;
 513       }
 514       assert(op.result() == NULL,
 515              "the result should be NULL if the VM op did not succeed");
 516     }
 517 
 518     // Give a warning if we seem to be looping forever.
 519     if ((QueuedAllocationWarningCount > 0) &&
 520         (try_count % QueuedAllocationWarningCount == 0)) {
 521       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 522     }
 523   }
 524 
 525   ShouldNotReachHere();
 526   return NULL;
 527 }
 528 
 529 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 530                                                    AllocationContext_t context,
 531                                                    uint* gc_count_before_ret,
 532                                                    uint* gclocker_retry_count_ret) {
 533   // Make sure you read the note in attempt_allocation_humongous().
 534 
 535   assert_heap_not_locked_and_not_at_safepoint();
 536   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 537          "be called for humongous allocation requests");
 538 
 539   // We should only get here after the first-level allocation attempt
 540   // (attempt_allocation()) failed to allocate.
 541 
 542   // We will loop until a) we manage to successfully perform the
 543   // allocation or b) we successfully schedule a collection which
 544   // fails to perform the allocation. b) is the only case when we'll
 545   // return NULL.
 546   HeapWord* result = NULL;
 547   for (int try_count = 1; /* we'll return */; try_count += 1) {
 548     bool should_try_gc;
 549     uint gc_count_before;
 550 
 551     {
 552       MutexLockerEx x(Heap_lock);
 553       result = _allocator->attempt_allocation_locked(word_size, context);
 554       if (result != NULL) {
 555         return result;
 556       }
 557 
 558       if (GCLocker::is_active_and_needs_gc()) {
 559         if (g1_policy()->can_expand_young_list()) {
 560           // No need for an ergo verbose message here,
 561           // can_expand_young_list() does this when it returns true.
 562           result = _allocator->attempt_allocation_force(word_size, context);
 563           if (result != NULL) {
 564             return result;
 565           }
 566         }
 567         should_try_gc = false;
 568       } else {
 569         // The GCLocker may not be active but the GCLocker initiated
 570         // GC may not yet have been performed (GCLocker::needs_gc()
 571         // returns true). In this case we do not try this GC and
 572         // wait until the GCLocker initiated GC is performed, and
 573         // then retry the allocation.
 574         if (GCLocker::needs_gc()) {
 575           should_try_gc = false;
 576         } else {
 577           // Read the GC count while still holding the Heap_lock.
 578           gc_count_before = total_collections();
 579           should_try_gc = true;
 580         }
 581       }
 582     }
 583 
 584     if (should_try_gc) {
 585       bool succeeded;
 586       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 587                                    GCCause::_g1_inc_collection_pause);
 588       if (result != NULL) {
 589         assert(succeeded, "only way to get back a non-NULL result");
 590         return result;
 591       }
 592 
 593       if (succeeded) {
 594         // If we get here we successfully scheduled a collection which
 595         // failed to allocate. No point in trying to allocate
 596         // further. We'll just return NULL.
 597         MutexLockerEx x(Heap_lock);
 598         *gc_count_before_ret = total_collections();
 599         return NULL;
 600       }
 601     } else {
 602       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 603         MutexLockerEx x(Heap_lock);
 604         *gc_count_before_ret = total_collections();
 605         return NULL;
 606       }
 607       // The GCLocker is either active or the GCLocker initiated
 608       // GC has not yet been performed. Stall until it is and
 609       // then retry the allocation.
 610       GCLocker::stall_until_clear();
 611       (*gclocker_retry_count_ret) += 1;
 612     }
 613 
 614     // We can reach here if we were unsuccessful in scheduling a
 615     // collection (because another thread beat us to it) or if we were
 616     // stalled due to the GC locker. In either can we should retry the
 617     // allocation attempt in case another thread successfully
 618     // performed a collection and reclaimed enough space. We do the
 619     // first attempt (without holding the Heap_lock) here and the
 620     // follow-on attempt will be at the start of the next loop
 621     // iteration (after taking the Heap_lock).
 622     result = _allocator->attempt_allocation(word_size, context);
 623     if (result != NULL) {
 624       return result;
 625     }
 626 
 627     // Give a warning if we seem to be looping forever.
 628     if ((QueuedAllocationWarningCount > 0) &&
 629         (try_count % QueuedAllocationWarningCount == 0)) {
 630       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 631                       "retries %d times", try_count);
 632     }
 633   }
 634 
 635   ShouldNotReachHere();
 636   return NULL;
 637 }
 638 
 639 void G1CollectedHeap::begin_archive_alloc_range() {
 640   assert_at_safepoint(true /* should_be_vm_thread */);
 641   if (_archive_allocator == NULL) {
 642     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 643   }
 644 }
 645 
 646 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 647   // Allocations in archive regions cannot be of a size that would be considered
 648   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 649   // may be different at archive-restore time.
 650   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 651 }
 652 
 653 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 654   assert_at_safepoint(true /* should_be_vm_thread */);
 655   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 656   if (is_archive_alloc_too_large(word_size)) {
 657     return NULL;
 658   }
 659   return _archive_allocator->archive_mem_allocate(word_size);
 660 }
 661 
 662 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 663                                               size_t end_alignment_in_bytes) {
 664   assert_at_safepoint(true /* should_be_vm_thread */);
 665   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 666 
 667   // Call complete_archive to do the real work, filling in the MemRegion
 668   // array with the archive regions.
 669   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 670   delete _archive_allocator;
 671   _archive_allocator = NULL;
 672 }
 673 
 674 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 675   assert(ranges != NULL, "MemRegion array NULL");
 676   assert(count != 0, "No MemRegions provided");
 677   MemRegion reserved = _hrm.reserved();
 678   for (size_t i = 0; i < count; i++) {
 679     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 680       return false;
 681     }
 682   }
 683   return true;
 684 }
 685 
 686 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 687   assert(!is_init_completed(), "Expect to be called at JVM init time");
 688   assert(ranges != NULL, "MemRegion array NULL");
 689   assert(count != 0, "No MemRegions provided");
 690   MutexLockerEx x(Heap_lock);
 691 
 692   MemRegion reserved = _hrm.reserved();
 693   HeapWord* prev_last_addr = NULL;
 694   HeapRegion* prev_last_region = NULL;
 695 
 696   // Temporarily disable pretouching of heap pages. This interface is used
 697   // when mmap'ing archived heap data in, so pre-touching is wasted.
 698   FlagSetting fs(AlwaysPreTouch, false);
 699 
 700   // Enable archive object checking in G1MarkSweep. We have to let it know
 701   // about each archive range, so that objects in those ranges aren't marked.
 702   G1MarkSweep::enable_archive_object_check();
 703 
 704   // For each specified MemRegion range, allocate the corresponding G1
 705   // regions and mark them as archive regions. We expect the ranges in
 706   // ascending starting address order, without overlap.
 707   for (size_t i = 0; i < count; i++) {
 708     MemRegion curr_range = ranges[i];
 709     HeapWord* start_address = curr_range.start();
 710     size_t word_size = curr_range.word_size();
 711     HeapWord* last_address = curr_range.last();
 712     size_t commits = 0;
 713 
 714     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 715               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 716               p2i(start_address), p2i(last_address));
 717     guarantee(start_address > prev_last_addr,
 718               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 719               p2i(start_address), p2i(prev_last_addr));
 720     prev_last_addr = last_address;
 721 
 722     // Check for ranges that start in the same G1 region in which the previous
 723     // range ended, and adjust the start address so we don't try to allocate
 724     // the same region again. If the current range is entirely within that
 725     // region, skip it, just adjusting the recorded top.
 726     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 727     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 728       start_address = start_region->end();
 729       if (start_address > last_address) {
 730         increase_used(word_size * HeapWordSize);
 731         start_region->set_top(last_address + 1);
 732         continue;
 733       }
 734       start_region->set_top(start_address);
 735       curr_range = MemRegion(start_address, last_address + 1);
 736       start_region = _hrm.addr_to_region(start_address);
 737     }
 738 
 739     // Perform the actual region allocation, exiting if it fails.
 740     // Then note how much new space we have allocated.
 741     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 742       return false;
 743     }
 744     increase_used(word_size * HeapWordSize);
 745     if (commits != 0) {
 746       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 747                                 HeapRegion::GrainWords * HeapWordSize * commits);
 748 
 749     }
 750 
 751     // Mark each G1 region touched by the range as archive, add it to the old set,
 752     // and set the allocation context and top.
 753     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 754     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 755     prev_last_region = last_region;
 756 
 757     while (curr_region != NULL) {
 758       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 759              "Region already in use (index %u)", curr_region->hrm_index());
 760       curr_region->set_allocation_context(AllocationContext::system());
 761       curr_region->set_archive();
 762       _hr_printer.alloc(curr_region);
 763       _old_set.add(curr_region);
 764       if (curr_region != last_region) {
 765         curr_region->set_top(curr_region->end());
 766         curr_region = _hrm.next_region_in_heap(curr_region);
 767       } else {
 768         curr_region->set_top(last_address + 1);
 769         curr_region = NULL;
 770       }
 771     }
 772 
 773     // Notify mark-sweep of the archive range.
 774     G1MarkSweep::set_range_archive(curr_range, true);
 775   }
 776   return true;
 777 }
 778 
 779 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 780   assert(!is_init_completed(), "Expect to be called at JVM init time");
 781   assert(ranges != NULL, "MemRegion array NULL");
 782   assert(count != 0, "No MemRegions provided");
 783   MemRegion reserved = _hrm.reserved();
 784   HeapWord *prev_last_addr = NULL;
 785   HeapRegion* prev_last_region = NULL;
 786 
 787   // For each MemRegion, create filler objects, if needed, in the G1 regions
 788   // that contain the address range. The address range actually within the
 789   // MemRegion will not be modified. That is assumed to have been initialized
 790   // elsewhere, probably via an mmap of archived heap data.
 791   MutexLockerEx x(Heap_lock);
 792   for (size_t i = 0; i < count; i++) {
 793     HeapWord* start_address = ranges[i].start();
 794     HeapWord* last_address = ranges[i].last();
 795 
 796     assert(reserved.contains(start_address) && reserved.contains(last_address),
 797            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 798            p2i(start_address), p2i(last_address));
 799     assert(start_address > prev_last_addr,
 800            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 801            p2i(start_address), p2i(prev_last_addr));
 802 
 803     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 804     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 805     HeapWord* bottom_address = start_region->bottom();
 806 
 807     // Check for a range beginning in the same region in which the
 808     // previous one ended.
 809     if (start_region == prev_last_region) {
 810       bottom_address = prev_last_addr + 1;
 811     }
 812 
 813     // Verify that the regions were all marked as archive regions by
 814     // alloc_archive_regions.
 815     HeapRegion* curr_region = start_region;
 816     while (curr_region != NULL) {
 817       guarantee(curr_region->is_archive(),
 818                 "Expected archive region at index %u", curr_region->hrm_index());
 819       if (curr_region != last_region) {
 820         curr_region = _hrm.next_region_in_heap(curr_region);
 821       } else {
 822         curr_region = NULL;
 823       }
 824     }
 825 
 826     prev_last_addr = last_address;
 827     prev_last_region = last_region;
 828 
 829     // Fill the memory below the allocated range with dummy object(s),
 830     // if the region bottom does not match the range start, or if the previous
 831     // range ended within the same G1 region, and there is a gap.
 832     if (start_address != bottom_address) {
 833       size_t fill_size = pointer_delta(start_address, bottom_address);
 834       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 835       increase_used(fill_size * HeapWordSize);
 836     }
 837   }
 838 }
 839 
 840 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 841                                                      uint* gc_count_before_ret,
 842                                                      uint* gclocker_retry_count_ret) {
 843   assert_heap_not_locked_and_not_at_safepoint();
 844   assert(!is_humongous(word_size), "attempt_allocation() should not "
 845          "be called for humongous allocation requests");
 846 
 847   AllocationContext_t context = AllocationContext::current();
 848   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 849 
 850   if (result == NULL) {
 851     result = attempt_allocation_slow(word_size,
 852                                      context,
 853                                      gc_count_before_ret,
 854                                      gclocker_retry_count_ret);
 855   }
 856   assert_heap_not_locked();
 857   if (result != NULL) {
 858     dirty_young_block(result, word_size);
 859   }
 860   return result;
 861 }
 862 
 863 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 864   assert(!is_init_completed(), "Expect to be called at JVM init time");
 865   assert(ranges != NULL, "MemRegion array NULL");
 866   assert(count != 0, "No MemRegions provided");
 867   MemRegion reserved = _hrm.reserved();
 868   HeapWord* prev_last_addr = NULL;
 869   HeapRegion* prev_last_region = NULL;
 870   size_t size_used = 0;
 871   size_t uncommitted_regions = 0;
 872 
 873   // For each Memregion, free the G1 regions that constitute it, and
 874   // notify mark-sweep that the range is no longer to be considered 'archive.'
 875   MutexLockerEx x(Heap_lock);
 876   for (size_t i = 0; i < count; i++) {
 877     HeapWord* start_address = ranges[i].start();
 878     HeapWord* last_address = ranges[i].last();
 879 
 880     assert(reserved.contains(start_address) && reserved.contains(last_address),
 881            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 882            p2i(start_address), p2i(last_address));
 883     assert(start_address > prev_last_addr,
 884            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 885            p2i(start_address), p2i(prev_last_addr));
 886     size_used += ranges[i].byte_size();
 887     prev_last_addr = last_address;
 888 
 889     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 890     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 891 
 892     // Check for ranges that start in the same G1 region in which the previous
 893     // range ended, and adjust the start address so we don't try to free
 894     // the same region again. If the current range is entirely within that
 895     // region, skip it.
 896     if (start_region == prev_last_region) {
 897       start_address = start_region->end();
 898       if (start_address > last_address) {
 899         continue;
 900       }
 901       start_region = _hrm.addr_to_region(start_address);
 902     }
 903     prev_last_region = last_region;
 904 
 905     // After verifying that each region was marked as an archive region by
 906     // alloc_archive_regions, set it free and empty and uncommit it.
 907     HeapRegion* curr_region = start_region;
 908     while (curr_region != NULL) {
 909       guarantee(curr_region->is_archive(),
 910                 "Expected archive region at index %u", curr_region->hrm_index());
 911       uint curr_index = curr_region->hrm_index();
 912       _old_set.remove(curr_region);
 913       curr_region->set_free();
 914       curr_region->set_top(curr_region->bottom());
 915       if (curr_region != last_region) {
 916         curr_region = _hrm.next_region_in_heap(curr_region);
 917       } else {
 918         curr_region = NULL;
 919       }
 920       _hrm.shrink_at(curr_index, 1);
 921       uncommitted_regions++;
 922     }
 923 
 924     // Notify mark-sweep that this is no longer an archive range.
 925     G1MarkSweep::set_range_archive(ranges[i], false);
 926   }
 927 
 928   if (uncommitted_regions != 0) {
 929     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 930                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 931   }
 932   decrease_used(size_used);
 933 }
 934 
 935 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 936                                                         uint* gc_count_before_ret,
 937                                                         uint* gclocker_retry_count_ret) {
 938   // The structure of this method has a lot of similarities to
 939   // attempt_allocation_slow(). The reason these two were not merged
 940   // into a single one is that such a method would require several "if
 941   // allocation is not humongous do this, otherwise do that"
 942   // conditional paths which would obscure its flow. In fact, an early
 943   // version of this code did use a unified method which was harder to
 944   // follow and, as a result, it had subtle bugs that were hard to
 945   // track down. So keeping these two methods separate allows each to
 946   // be more readable. It will be good to keep these two in sync as
 947   // much as possible.
 948 
 949   assert_heap_not_locked_and_not_at_safepoint();
 950   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 951          "should only be called for humongous allocations");
 952 
 953   // Humongous objects can exhaust the heap quickly, so we should check if we
 954   // need to start a marking cycle at each humongous object allocation. We do
 955   // the check before we do the actual allocation. The reason for doing it
 956   // before the allocation is that we avoid having to keep track of the newly
 957   // allocated memory while we do a GC.
 958   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 959                                            word_size)) {
 960     collect(GCCause::_g1_humongous_allocation);
 961   }
 962 
 963   // We will loop until a) we manage to successfully perform the
 964   // allocation or b) we successfully schedule a collection which
 965   // fails to perform the allocation. b) is the only case when we'll
 966   // return NULL.
 967   HeapWord* result = NULL;
 968   for (int try_count = 1; /* we'll return */; try_count += 1) {
 969     bool should_try_gc;
 970     uint gc_count_before;
 971 
 972     {
 973       MutexLockerEx x(Heap_lock);
 974 
 975       // Given that humongous objects are not allocated in young
 976       // regions, we'll first try to do the allocation without doing a
 977       // collection hoping that there's enough space in the heap.
 978       result = humongous_obj_allocate(word_size, AllocationContext::current());
 979       if (result != NULL) {
 980         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 981         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 982         return result;
 983       }
 984 
 985       if (GCLocker::is_active_and_needs_gc()) {
 986         should_try_gc = false;
 987       } else {
 988          // The GCLocker may not be active but the GCLocker initiated
 989         // GC may not yet have been performed (GCLocker::needs_gc()
 990         // returns true). In this case we do not try this GC and
 991         // wait until the GCLocker initiated GC is performed, and
 992         // then retry the allocation.
 993         if (GCLocker::needs_gc()) {
 994           should_try_gc = false;
 995         } else {
 996           // Read the GC count while still holding the Heap_lock.
 997           gc_count_before = total_collections();
 998           should_try_gc = true;
 999         }
1000       }
1001     }
1002 
1003     if (should_try_gc) {
1004       // If we failed to allocate the humongous object, we should try to
1005       // do a collection pause (if we're allowed) in case it reclaims
1006       // enough space for the allocation to succeed after the pause.
1007 
1008       bool succeeded;
1009       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1010                                    GCCause::_g1_humongous_allocation);
1011       if (result != NULL) {
1012         assert(succeeded, "only way to get back a non-NULL result");
1013         return result;
1014       }
1015 
1016       if (succeeded) {
1017         // If we get here we successfully scheduled a collection which
1018         // failed to allocate. No point in trying to allocate
1019         // further. We'll just return NULL.
1020         MutexLockerEx x(Heap_lock);
1021         *gc_count_before_ret = total_collections();
1022         return NULL;
1023       }
1024     } else {
1025       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1026         MutexLockerEx x(Heap_lock);
1027         *gc_count_before_ret = total_collections();
1028         return NULL;
1029       }
1030       // The GCLocker is either active or the GCLocker initiated
1031       // GC has not yet been performed. Stall until it is and
1032       // then retry the allocation.
1033       GCLocker::stall_until_clear();
1034       (*gclocker_retry_count_ret) += 1;
1035     }
1036 
1037     // We can reach here if we were unsuccessful in scheduling a
1038     // collection (because another thread beat us to it) or if we were
1039     // stalled due to the GC locker. In either can we should retry the
1040     // allocation attempt in case another thread successfully
1041     // performed a collection and reclaimed enough space.  Give a
1042     // warning if we seem to be looping forever.
1043 
1044     if ((QueuedAllocationWarningCount > 0) &&
1045         (try_count % QueuedAllocationWarningCount == 0)) {
1046       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1047                       "retries %d times", try_count);
1048     }
1049   }
1050 
1051   ShouldNotReachHere();
1052   return NULL;
1053 }
1054 
1055 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1056                                                            AllocationContext_t context,
1057                                                            bool expect_null_mutator_alloc_region) {
1058   assert_at_safepoint(true /* should_be_vm_thread */);
1059   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1060          "the current alloc region was unexpectedly found to be non-NULL");
1061 
1062   if (!is_humongous(word_size)) {
1063     return _allocator->attempt_allocation_locked(word_size, context);
1064   } else {
1065     HeapWord* result = humongous_obj_allocate(word_size, context);
1066     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1067       collector_state()->set_initiate_conc_mark_if_possible(true);
1068     }
1069     return result;
1070   }
1071 
1072   ShouldNotReachHere();
1073 }
1074 
1075 class PostMCRemSetClearClosure: public HeapRegionClosure {
1076   G1CollectedHeap* _g1h;
1077   ModRefBarrierSet* _mr_bs;
1078 public:
1079   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1080     _g1h(g1h), _mr_bs(mr_bs) {}
1081 
1082   bool doHeapRegion(HeapRegion* r) {
1083     HeapRegionRemSet* hrrs = r->rem_set();
1084 
1085     _g1h->reset_gc_time_stamps(r);
1086 
1087     if (r->is_continues_humongous()) {
1088       // We'll assert that the strong code root list and RSet is empty
1089       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1090       assert(hrrs->occupied() == 0, "RSet should be empty");
1091     } else {
1092       hrrs->clear();
1093     }
1094     // You might think here that we could clear just the cards
1095     // corresponding to the used region.  But no: if we leave a dirty card
1096     // in a region we might allocate into, then it would prevent that card
1097     // from being enqueued, and cause it to be missed.
1098     // Re: the performance cost: we shouldn't be doing full GC anyway!
1099     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1100 
1101     return false;
1102   }
1103 };
1104 
1105 void G1CollectedHeap::clear_rsets_post_compaction() {
1106   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1107   heap_region_iterate(&rs_clear);
1108 }
1109 
1110 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1111   G1CollectedHeap*   _g1h;
1112   UpdateRSOopClosure _cl;
1113 public:
1114   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1115     _cl(g1->g1_rem_set(), worker_i),
1116     _g1h(g1)
1117   { }
1118 
1119   bool doHeapRegion(HeapRegion* r) {
1120     if (!r->is_continues_humongous()) {
1121       _cl.set_from(r);
1122       r->oop_iterate(&_cl);
1123     }
1124     return false;
1125   }
1126 };
1127 
1128 class ParRebuildRSTask: public AbstractGangTask {
1129   G1CollectedHeap* _g1;
1130   HeapRegionClaimer _hrclaimer;
1131 
1132 public:
1133   ParRebuildRSTask(G1CollectedHeap* g1) :
1134       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1135 
1136   void work(uint worker_id) {
1137     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1138     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1139   }
1140 };
1141 
1142 class PostCompactionPrinterClosure: public HeapRegionClosure {
1143 private:
1144   G1HRPrinter* _hr_printer;
1145 public:
1146   bool doHeapRegion(HeapRegion* hr) {
1147     assert(!hr->is_young(), "not expecting to find young regions");
1148     _hr_printer->post_compaction(hr);
1149     return false;
1150   }
1151 
1152   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1153     : _hr_printer(hr_printer) { }
1154 };
1155 
1156 void G1CollectedHeap::print_hrm_post_compaction() {
1157   if (_hr_printer.is_active()) {
1158     PostCompactionPrinterClosure cl(hr_printer());
1159     heap_region_iterate(&cl);
1160   }
1161 
1162 }
1163 
1164 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1165                                          bool clear_all_soft_refs) {
1166   assert_at_safepoint(true /* should_be_vm_thread */);
1167 
1168   if (GCLocker::check_active_before_gc()) {
1169     return false;
1170   }
1171 
1172   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1173   gc_timer->register_gc_start();
1174 
1175   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1176   GCIdMark gc_id_mark;
1177   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1178 
1179   SvcGCMarker sgcm(SvcGCMarker::FULL);
1180   ResourceMark rm;
1181 
1182   print_heap_before_gc();
1183   print_heap_regions();
1184   trace_heap_before_gc(gc_tracer);
1185 
1186   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1187 
1188   _verifier->verify_region_sets_optional();
1189 
1190   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1191                            collector_policy()->should_clear_all_soft_refs();
1192 
1193   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1194 
1195   {
1196     IsGCActiveMark x;
1197 
1198     // Timing
1199     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1200     GCTraceCPUTime tcpu;
1201 
1202     {
1203       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1204       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1205       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1206 
1207       G1HeapTransition heap_transition(this);
1208       g1_policy()->record_full_collection_start();
1209 
1210       // Note: When we have a more flexible GC logging framework that
1211       // allows us to add optional attributes to a GC log record we
1212       // could consider timing and reporting how long we wait in the
1213       // following two methods.
1214       wait_while_free_regions_coming();
1215       // If we start the compaction before the CM threads finish
1216       // scanning the root regions we might trip them over as we'll
1217       // be moving objects / updating references. So let's wait until
1218       // they are done. By telling them to abort, they should complete
1219       // early.
1220       _cm->root_regions()->abort();
1221       _cm->root_regions()->wait_until_scan_finished();
1222       append_secondary_free_list_if_not_empty_with_lock();
1223 
1224       gc_prologue(true);
1225       increment_total_collections(true /* full gc */);
1226       increment_old_marking_cycles_started();
1227 
1228       assert(used() == recalculate_used(), "Should be equal");
1229 
1230       _verifier->verify_before_gc();
1231 
1232       _verifier->check_bitmaps("Full GC Start");
1233       pre_full_gc_dump(gc_timer);
1234 
1235 #if defined(COMPILER2) || INCLUDE_JVMCI
1236       DerivedPointerTable::clear();
1237 #endif
1238 
1239       // Disable discovery and empty the discovered lists
1240       // for the CM ref processor.
1241       ref_processor_cm()->disable_discovery();
1242       ref_processor_cm()->abandon_partial_discovery();
1243       ref_processor_cm()->verify_no_references_recorded();
1244 
1245       // Abandon current iterations of concurrent marking and concurrent
1246       // refinement, if any are in progress.
1247       concurrent_mark()->abort();
1248 
1249       // Make sure we'll choose a new allocation region afterwards.
1250       _allocator->release_mutator_alloc_region();
1251       _allocator->abandon_gc_alloc_regions();
1252       g1_rem_set()->cleanupHRRS();
1253 
1254       // We may have added regions to the current incremental collection
1255       // set between the last GC or pause and now. We need to clear the
1256       // incremental collection set and then start rebuilding it afresh
1257       // after this full GC.
1258       abandon_collection_set(collection_set()->inc_head());
1259       collection_set()->clear_incremental();
1260       collection_set()->stop_incremental_building();
1261 
1262       tear_down_region_sets(false /* free_list_only */);
1263       collector_state()->set_gcs_are_young(true);
1264 
1265       // See the comments in g1CollectedHeap.hpp and
1266       // G1CollectedHeap::ref_processing_init() about
1267       // how reference processing currently works in G1.
1268 
1269       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1270       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1271 
1272       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1273       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1274 
1275       ref_processor_stw()->enable_discovery();
1276       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1277 
1278       // Do collection work
1279       {
1280         HandleMark hm;  // Discard invalid handles created during gc
1281         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1282       }
1283 
1284       assert(num_free_regions() == 0, "we should not have added any free regions");
1285       rebuild_region_sets(false /* free_list_only */);
1286 
1287       // Enqueue any discovered reference objects that have
1288       // not been removed from the discovered lists.
1289       ref_processor_stw()->enqueue_discovered_references();
1290 
1291 #if defined(COMPILER2) || INCLUDE_JVMCI
1292       DerivedPointerTable::update_pointers();
1293 #endif
1294 
1295       MemoryService::track_memory_usage();
1296 
1297       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1298       ref_processor_stw()->verify_no_references_recorded();
1299 
1300       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1301       ClassLoaderDataGraph::purge();
1302       MetaspaceAux::verify_metrics();
1303 
1304       // Note: since we've just done a full GC, concurrent
1305       // marking is no longer active. Therefore we need not
1306       // re-enable reference discovery for the CM ref processor.
1307       // That will be done at the start of the next marking cycle.
1308       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1309       ref_processor_cm()->verify_no_references_recorded();
1310 
1311       reset_gc_time_stamp();
1312       // Since everything potentially moved, we will clear all remembered
1313       // sets, and clear all cards.  Later we will rebuild remembered
1314       // sets. We will also reset the GC time stamps of the regions.
1315       clear_rsets_post_compaction();
1316       check_gc_time_stamps();
1317 
1318       resize_if_necessary_after_full_collection();
1319 
1320       // We should do this after we potentially resize the heap so
1321       // that all the COMMIT / UNCOMMIT events are generated before
1322       // the compaction events.
1323       print_hrm_post_compaction();
1324 
1325       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1326       if (hot_card_cache->use_cache()) {
1327         hot_card_cache->reset_card_counts();
1328         hot_card_cache->reset_hot_cache();
1329       }
1330 
1331       // Rebuild remembered sets of all regions.
1332       uint n_workers =
1333         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1334                                                 workers()->active_workers(),
1335                                                 Threads::number_of_non_daemon_threads());
1336       workers()->set_active_workers(n_workers);
1337 
1338       ParRebuildRSTask rebuild_rs_task(this);
1339       workers()->run_task(&rebuild_rs_task);
1340 
1341       // Rebuild the strong code root lists for each region
1342       rebuild_strong_code_roots();
1343 
1344       if (true) { // FIXME
1345         MetaspaceGC::compute_new_size();
1346       }
1347 
1348 #ifdef TRACESPINNING
1349       ParallelTaskTerminator::print_termination_counts();
1350 #endif
1351 
1352       // Discard all rset updates
1353       JavaThread::dirty_card_queue_set().abandon_logs();
1354       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1355 
1356       // At this point there should be no regions in the
1357       // entire heap tagged as young.
1358       assert(check_young_list_empty(true /* check_heap */),
1359              "young list should be empty at this point");
1360 
1361       // Update the number of full collections that have been completed.
1362       increment_old_marking_cycles_completed(false /* concurrent */);
1363 
1364       _hrm.verify_optional();
1365       _verifier->verify_region_sets_optional();
1366 
1367       _verifier->verify_after_gc();
1368 
1369       // Clear the previous marking bitmap, if needed for bitmap verification.
1370       // Note we cannot do this when we clear the next marking bitmap in
1371       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1372       // objects marked during a full GC against the previous bitmap.
1373       // But we need to clear it before calling check_bitmaps below since
1374       // the full GC has compacted objects and updated TAMS but not updated
1375       // the prev bitmap.
1376       if (G1VerifyBitmaps) {
1377         GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1378         _cm->clear_prev_bitmap(workers());
1379       }
1380       _verifier->check_bitmaps("Full GC End");
1381 
1382       // Start a new incremental collection set for the next pause
1383       assert(collection_set()->head() == NULL, "must be");
1384       collection_set()->start_incremental_building();
1385 
1386       clear_cset_fast_test();
1387 
1388       _allocator->init_mutator_alloc_region();
1389 
1390       g1_policy()->record_full_collection_end();
1391 
1392       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1393       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1394       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1395       // before any GC notifications are raised.
1396       g1mm()->update_sizes();
1397 
1398       gc_epilogue(true);
1399 
1400       heap_transition.print();
1401 
1402       print_heap_after_gc();
1403       print_heap_regions();
1404       trace_heap_after_gc(gc_tracer);
1405 
1406       post_full_gc_dump(gc_timer);
1407     }
1408 
1409     gc_timer->register_gc_end();
1410     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1411   }
1412 
1413   return true;
1414 }
1415 
1416 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1417   // Currently, there is no facility in the do_full_collection(bool) API to notify
1418   // the caller that the collection did not succeed (e.g., because it was locked
1419   // out by the GC locker). So, right now, we'll ignore the return value.
1420   bool dummy = do_full_collection(true,                /* explicit_gc */
1421                                   clear_all_soft_refs);
1422 }
1423 
1424 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1425   // Include bytes that will be pre-allocated to support collections, as "used".
1426   const size_t used_after_gc = used();
1427   const size_t capacity_after_gc = capacity();
1428   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1429 
1430   // This is enforced in arguments.cpp.
1431   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1432          "otherwise the code below doesn't make sense");
1433 
1434   // We don't have floating point command-line arguments
1435   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1436   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1437   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1438   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1439 
1440   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1441   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1442 
1443   // We have to be careful here as these two calculations can overflow
1444   // 32-bit size_t's.
1445   double used_after_gc_d = (double) used_after_gc;
1446   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1447   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1448 
1449   // Let's make sure that they are both under the max heap size, which
1450   // by default will make them fit into a size_t.
1451   double desired_capacity_upper_bound = (double) max_heap_size;
1452   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1453                                     desired_capacity_upper_bound);
1454   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1455                                     desired_capacity_upper_bound);
1456 
1457   // We can now safely turn them into size_t's.
1458   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1459   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1460 
1461   // This assert only makes sense here, before we adjust them
1462   // with respect to the min and max heap size.
1463   assert(minimum_desired_capacity <= maximum_desired_capacity,
1464          "minimum_desired_capacity = " SIZE_FORMAT ", "
1465          "maximum_desired_capacity = " SIZE_FORMAT,
1466          minimum_desired_capacity, maximum_desired_capacity);
1467 
1468   // Should not be greater than the heap max size. No need to adjust
1469   // it with respect to the heap min size as it's a lower bound (i.e.,
1470   // we'll try to make the capacity larger than it, not smaller).
1471   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1472   // Should not be less than the heap min size. No need to adjust it
1473   // with respect to the heap max size as it's an upper bound (i.e.,
1474   // we'll try to make the capacity smaller than it, not greater).
1475   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1476 
1477   if (capacity_after_gc < minimum_desired_capacity) {
1478     // Don't expand unless it's significant
1479     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1480 
1481     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1482                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1483                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1484 
1485     expand(expand_bytes);
1486 
1487     // No expansion, now see if we want to shrink
1488   } else if (capacity_after_gc > maximum_desired_capacity) {
1489     // Capacity too large, compute shrinking size
1490     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1491 
1492     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1493                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1494                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1495 
1496     shrink(shrink_bytes);
1497   }
1498 }
1499 
1500 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1501                                                             AllocationContext_t context,
1502                                                             bool do_gc,
1503                                                             bool clear_all_soft_refs,
1504                                                             bool expect_null_mutator_alloc_region,
1505                                                             bool* gc_succeeded) {
1506   *gc_succeeded = true;
1507   // Let's attempt the allocation first.
1508   HeapWord* result =
1509     attempt_allocation_at_safepoint(word_size,
1510                                     context,
1511                                     expect_null_mutator_alloc_region);
1512   if (result != NULL) {
1513     assert(*gc_succeeded, "sanity");
1514     return result;
1515   }
1516 
1517   // In a G1 heap, we're supposed to keep allocation from failing by
1518   // incremental pauses.  Therefore, at least for now, we'll favor
1519   // expansion over collection.  (This might change in the future if we can
1520   // do something smarter than full collection to satisfy a failed alloc.)
1521   result = expand_and_allocate(word_size, context);
1522   if (result != NULL) {
1523     assert(*gc_succeeded, "sanity");
1524     return result;
1525   }
1526 
1527   if (do_gc) {
1528     // Expansion didn't work, we'll try to do a Full GC.
1529     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1530                                        clear_all_soft_refs);
1531   }
1532 
1533   return NULL;
1534 }
1535 
1536 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1537                                                      AllocationContext_t context,
1538                                                      bool* succeeded) {
1539   assert_at_safepoint(true /* should_be_vm_thread */);
1540 
1541   // Attempts to allocate followed by Full GC.
1542   HeapWord* result =
1543     satisfy_failed_allocation_helper(word_size,
1544                                      context,
1545                                      true,  /* do_gc */
1546                                      false, /* clear_all_soft_refs */
1547                                      false, /* expect_null_mutator_alloc_region */
1548                                      succeeded);
1549 
1550   if (result != NULL || !*succeeded) {
1551     return result;
1552   }
1553 
1554   // Attempts to allocate followed by Full GC that will collect all soft references.
1555   result = satisfy_failed_allocation_helper(word_size,
1556                                             context,
1557                                             true, /* do_gc */
1558                                             true, /* clear_all_soft_refs */
1559                                             true, /* expect_null_mutator_alloc_region */
1560                                             succeeded);
1561 
1562   if (result != NULL || !*succeeded) {
1563     return result;
1564   }
1565 
1566   // Attempts to allocate, no GC
1567   result = satisfy_failed_allocation_helper(word_size,
1568                                             context,
1569                                             false, /* do_gc */
1570                                             false, /* clear_all_soft_refs */
1571                                             true,  /* expect_null_mutator_alloc_region */
1572                                             succeeded);
1573 
1574   if (result != NULL) {
1575     assert(*succeeded, "sanity");
1576     return result;
1577   }
1578 
1579   assert(!collector_policy()->should_clear_all_soft_refs(),
1580          "Flag should have been handled and cleared prior to this point");
1581 
1582   // What else?  We might try synchronous finalization later.  If the total
1583   // space available is large enough for the allocation, then a more
1584   // complete compaction phase than we've tried so far might be
1585   // appropriate.
1586   assert(*succeeded, "sanity");
1587   return NULL;
1588 }
1589 
1590 // Attempting to expand the heap sufficiently
1591 // to support an allocation of the given "word_size".  If
1592 // successful, perform the allocation and return the address of the
1593 // allocated block, or else "NULL".
1594 
1595 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1596   assert_at_safepoint(true /* should_be_vm_thread */);
1597 
1598   _verifier->verify_region_sets_optional();
1599 
1600   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1601   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1602                             word_size * HeapWordSize);
1603 
1604 
1605   if (expand(expand_bytes)) {
1606     _hrm.verify_optional();
1607     _verifier->verify_region_sets_optional();
1608     return attempt_allocation_at_safepoint(word_size,
1609                                            context,
1610                                            false /* expect_null_mutator_alloc_region */);
1611   }
1612   return NULL;
1613 }
1614 
1615 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1616   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1617   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1618                                        HeapRegion::GrainBytes);
1619 
1620   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1621                             expand_bytes, aligned_expand_bytes);
1622 
1623   if (is_maximal_no_gc()) {
1624     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1625     return false;
1626   }
1627 
1628   double expand_heap_start_time_sec = os::elapsedTime();
1629   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1630   assert(regions_to_expand > 0, "Must expand by at least one region");
1631 
1632   uint expanded_by = _hrm.expand_by(regions_to_expand);
1633   if (expand_time_ms != NULL) {
1634     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1635   }
1636 
1637   if (expanded_by > 0) {
1638     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1639     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1640     g1_policy()->record_new_heap_size(num_regions());
1641   } else {
1642     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1643 
1644     // The expansion of the virtual storage space was unsuccessful.
1645     // Let's see if it was because we ran out of swap.
1646     if (G1ExitOnExpansionFailure &&
1647         _hrm.available() >= regions_to_expand) {
1648       // We had head room...
1649       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1650     }
1651   }
1652   return regions_to_expand > 0;
1653 }
1654 
1655 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1656   size_t aligned_shrink_bytes =
1657     ReservedSpace::page_align_size_down(shrink_bytes);
1658   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1659                                          HeapRegion::GrainBytes);
1660   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1661 
1662   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1663   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1664 
1665 
1666   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1667                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1668   if (num_regions_removed > 0) {
1669     g1_policy()->record_new_heap_size(num_regions());
1670   } else {
1671     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1672   }
1673 }
1674 
1675 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1676   _verifier->verify_region_sets_optional();
1677 
1678   // We should only reach here at the end of a Full GC which means we
1679   // should not not be holding to any GC alloc regions. The method
1680   // below will make sure of that and do any remaining clean up.
1681   _allocator->abandon_gc_alloc_regions();
1682 
1683   // Instead of tearing down / rebuilding the free lists here, we
1684   // could instead use the remove_all_pending() method on free_list to
1685   // remove only the ones that we need to remove.
1686   tear_down_region_sets(true /* free_list_only */);
1687   shrink_helper(shrink_bytes);
1688   rebuild_region_sets(true /* free_list_only */);
1689 
1690   _hrm.verify_optional();
1691   _verifier->verify_region_sets_optional();
1692 }
1693 
1694 // Public methods.
1695 
1696 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1697   CollectedHeap(),
1698   _collector_policy(collector_policy),
1699   _g1_policy(create_g1_policy()),
1700   _collection_set(this, _g1_policy),
1701   _dirty_card_queue_set(false),
1702   _is_alive_closure_cm(this),
1703   _is_alive_closure_stw(this),
1704   _ref_processor_cm(NULL),
1705   _ref_processor_stw(NULL),
1706   _bot(NULL),
1707   _cg1r(NULL),
1708   _g1mm(NULL),
1709   _refine_cte_cl(NULL),
1710   _preserved_marks_set(true /* in_c_heap */),
1711   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1712   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1713   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1714   _humongous_reclaim_candidates(),
1715   _has_humongous_reclaim_candidates(false),
1716   _archive_allocator(NULL),
1717   _free_regions_coming(false),
1718   _young_list(new YoungList(this)),
1719   _gc_time_stamp(0),
1720   _summary_bytes_used(0),
1721   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1722   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1723   _expand_heap_after_alloc_failure(true),
1724   _old_marking_cycles_started(0),
1725   _old_marking_cycles_completed(0),
1726   _in_cset_fast_test(),
1727   _worker_cset_start_region(NULL),
1728   _worker_cset_start_region_time_stamp(NULL),
1729   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1730   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1731 
1732   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1733                           /* are_GC_task_threads */true,
1734                           /* are_ConcurrentGC_threads */false);
1735   _workers->initialize_workers();
1736   _verifier = new G1HeapVerifier(this);
1737 
1738   _allocator = G1Allocator::create_allocator(this);
1739 
1740   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1741 
1742   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1743 
1744   // Override the default _filler_array_max_size so that no humongous filler
1745   // objects are created.
1746   _filler_array_max_size = _humongous_object_threshold_in_words;
1747 
1748   uint n_queues = ParallelGCThreads;
1749   _task_queues = new RefToScanQueueSet(n_queues);
1750 
1751   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1752   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1753   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1754 
1755   for (uint i = 0; i < n_queues; i++) {
1756     RefToScanQueue* q = new RefToScanQueue();
1757     q->initialize();
1758     _task_queues->register_queue(i, q);
1759     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1760   }
1761   clear_cset_start_regions();
1762 
1763   // Initialize the G1EvacuationFailureALot counters and flags.
1764   NOT_PRODUCT(reset_evacuation_should_fail();)
1765 
1766   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1767 }
1768 
1769 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1770                                                                  size_t size,
1771                                                                  size_t translation_factor) {
1772   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1773   // Allocate a new reserved space, preferring to use large pages.
1774   ReservedSpace rs(size, preferred_page_size);
1775   G1RegionToSpaceMapper* result  =
1776     G1RegionToSpaceMapper::create_mapper(rs,
1777                                          size,
1778                                          rs.alignment(),
1779                                          HeapRegion::GrainBytes,
1780                                          translation_factor,
1781                                          mtGC);
1782 
1783   os::trace_page_sizes_for_requested_size(description,
1784                                           size,
1785                                           preferred_page_size,
1786                                           rs.alignment(),
1787                                           rs.base(),
1788                                           rs.size());
1789 
1790   return result;
1791 }
1792 
1793 jint G1CollectedHeap::initialize() {
1794   CollectedHeap::pre_initialize();
1795   os::enable_vtime();
1796 
1797   // Necessary to satisfy locking discipline assertions.
1798 
1799   MutexLocker x(Heap_lock);
1800 
1801   // While there are no constraints in the GC code that HeapWordSize
1802   // be any particular value, there are multiple other areas in the
1803   // system which believe this to be true (e.g. oop->object_size in some
1804   // cases incorrectly returns the size in wordSize units rather than
1805   // HeapWordSize).
1806   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1807 
1808   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1809   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1810   size_t heap_alignment = collector_policy()->heap_alignment();
1811 
1812   // Ensure that the sizes are properly aligned.
1813   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1814   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1815   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1816 
1817   _refine_cte_cl = new RefineCardTableEntryClosure();
1818 
1819   jint ecode = JNI_OK;
1820   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1821   if (_cg1r == NULL) {
1822     return ecode;
1823   }
1824 
1825   // Reserve the maximum.
1826 
1827   // When compressed oops are enabled, the preferred heap base
1828   // is calculated by subtracting the requested size from the
1829   // 32Gb boundary and using the result as the base address for
1830   // heap reservation. If the requested size is not aligned to
1831   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1832   // into the ReservedHeapSpace constructor) then the actual
1833   // base of the reserved heap may end up differing from the
1834   // address that was requested (i.e. the preferred heap base).
1835   // If this happens then we could end up using a non-optimal
1836   // compressed oops mode.
1837 
1838   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1839                                                  heap_alignment);
1840 
1841   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1842 
1843   // Create the barrier set for the entire reserved region.
1844   G1SATBCardTableLoggingModRefBS* bs
1845     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1846   bs->initialize();
1847   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1848   set_barrier_set(bs);
1849 
1850   // Also create a G1 rem set.
1851   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1852 
1853   // Carve out the G1 part of the heap.
1854   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1855   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1856   G1RegionToSpaceMapper* heap_storage =
1857     G1RegionToSpaceMapper::create_mapper(g1_rs,
1858                                          g1_rs.size(),
1859                                          page_size,
1860                                          HeapRegion::GrainBytes,
1861                                          1,
1862                                          mtJavaHeap);
1863   os::trace_page_sizes("Heap",
1864                        collector_policy()->min_heap_byte_size(),
1865                        max_byte_size,
1866                        page_size,
1867                        heap_rs.base(),
1868                        heap_rs.size());
1869   heap_storage->set_mapping_changed_listener(&_listener);
1870 
1871   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1872   G1RegionToSpaceMapper* bot_storage =
1873     create_aux_memory_mapper("Block Offset Table",
1874                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1875                              G1BlockOffsetTable::heap_map_factor());
1876 
1877   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1878   G1RegionToSpaceMapper* cardtable_storage =
1879     create_aux_memory_mapper("Card Table",
1880                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1881                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1882 
1883   G1RegionToSpaceMapper* card_counts_storage =
1884     create_aux_memory_mapper("Card Counts Table",
1885                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1886                              G1CardCounts::heap_map_factor());
1887 
1888   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1889   G1RegionToSpaceMapper* prev_bitmap_storage =
1890     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1891   G1RegionToSpaceMapper* next_bitmap_storage =
1892     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1893 
1894   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1895   g1_barrier_set()->initialize(cardtable_storage);
1896    // Do later initialization work for concurrent refinement.
1897   _cg1r->init(card_counts_storage);
1898 
1899   // 6843694 - ensure that the maximum region index can fit
1900   // in the remembered set structures.
1901   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1902   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1903 
1904   g1_rem_set()->initialize(max_capacity(), max_regions());
1905 
1906   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1907   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1908   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1909             "too many cards per region");
1910 
1911   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1912 
1913   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1914 
1915   {
1916     HeapWord* start = _hrm.reserved().start();
1917     HeapWord* end = _hrm.reserved().end();
1918     size_t granularity = HeapRegion::GrainBytes;
1919 
1920     _in_cset_fast_test.initialize(start, end, granularity);
1921     _humongous_reclaim_candidates.initialize(start, end, granularity);
1922   }
1923 
1924   // Create the G1ConcurrentMark data structure and thread.
1925   // (Must do this late, so that "max_regions" is defined.)
1926   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1927   if (_cm == NULL || !_cm->completed_initialization()) {
1928     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1929     return JNI_ENOMEM;
1930   }
1931   _cmThread = _cm->cmThread();
1932 
1933   // Now expand into the initial heap size.
1934   if (!expand(init_byte_size)) {
1935     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1936     return JNI_ENOMEM;
1937   }
1938 
1939   // Perform any initialization actions delegated to the policy.
1940   g1_policy()->init(this, &_collection_set);
1941 
1942   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1943                                                SATB_Q_FL_lock,
1944                                                G1SATBProcessCompletedThreshold,
1945                                                Shared_SATB_Q_lock);
1946 
1947   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1948                                                 DirtyCardQ_CBL_mon,
1949                                                 DirtyCardQ_FL_lock,
1950                                                 (int)concurrent_g1_refine()->yellow_zone(),
1951                                                 (int)concurrent_g1_refine()->red_zone(),
1952                                                 Shared_DirtyCardQ_lock,
1953                                                 NULL,  // fl_owner
1954                                                 true); // init_free_ids
1955 
1956   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1957                                     DirtyCardQ_CBL_mon,
1958                                     DirtyCardQ_FL_lock,
1959                                     -1, // never trigger processing
1960                                     -1, // no limit on length
1961                                     Shared_DirtyCardQ_lock,
1962                                     &JavaThread::dirty_card_queue_set());
1963 
1964   // Here we allocate the dummy HeapRegion that is required by the
1965   // G1AllocRegion class.
1966   HeapRegion* dummy_region = _hrm.get_dummy_region();
1967 
1968   // We'll re-use the same region whether the alloc region will
1969   // require BOT updates or not and, if it doesn't, then a non-young
1970   // region will complain that it cannot support allocations without
1971   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1972   dummy_region->set_eden();
1973   // Make sure it's full.
1974   dummy_region->set_top(dummy_region->end());
1975   G1AllocRegion::setup(this, dummy_region);
1976 
1977   _allocator->init_mutator_alloc_region();
1978 
1979   // Do create of the monitoring and management support so that
1980   // values in the heap have been properly initialized.
1981   _g1mm = new G1MonitoringSupport(this);
1982 
1983   G1StringDedup::initialize();
1984 
1985   _preserved_marks_set.init(ParallelGCThreads);
1986 
1987   return JNI_OK;
1988 }
1989 
1990 void G1CollectedHeap::stop() {
1991   // Stop all concurrent threads. We do this to make sure these threads
1992   // do not continue to execute and access resources (e.g. logging)
1993   // that are destroyed during shutdown.
1994   _cg1r->stop();
1995   _cmThread->stop();
1996   if (G1StringDedup::is_enabled()) {
1997     G1StringDedup::stop();
1998   }
1999 }
2000 
2001 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2002   return HeapRegion::max_region_size();
2003 }
2004 
2005 void G1CollectedHeap::post_initialize() {
2006   ref_processing_init();
2007 }
2008 
2009 void G1CollectedHeap::ref_processing_init() {
2010   // Reference processing in G1 currently works as follows:
2011   //
2012   // * There are two reference processor instances. One is
2013   //   used to record and process discovered references
2014   //   during concurrent marking; the other is used to
2015   //   record and process references during STW pauses
2016   //   (both full and incremental).
2017   // * Both ref processors need to 'span' the entire heap as
2018   //   the regions in the collection set may be dotted around.
2019   //
2020   // * For the concurrent marking ref processor:
2021   //   * Reference discovery is enabled at initial marking.
2022   //   * Reference discovery is disabled and the discovered
2023   //     references processed etc during remarking.
2024   //   * Reference discovery is MT (see below).
2025   //   * Reference discovery requires a barrier (see below).
2026   //   * Reference processing may or may not be MT
2027   //     (depending on the value of ParallelRefProcEnabled
2028   //     and ParallelGCThreads).
2029   //   * A full GC disables reference discovery by the CM
2030   //     ref processor and abandons any entries on it's
2031   //     discovered lists.
2032   //
2033   // * For the STW processor:
2034   //   * Non MT discovery is enabled at the start of a full GC.
2035   //   * Processing and enqueueing during a full GC is non-MT.
2036   //   * During a full GC, references are processed after marking.
2037   //
2038   //   * Discovery (may or may not be MT) is enabled at the start
2039   //     of an incremental evacuation pause.
2040   //   * References are processed near the end of a STW evacuation pause.
2041   //   * For both types of GC:
2042   //     * Discovery is atomic - i.e. not concurrent.
2043   //     * Reference discovery will not need a barrier.
2044 
2045   MemRegion mr = reserved_region();
2046 
2047   // Concurrent Mark ref processor
2048   _ref_processor_cm =
2049     new ReferenceProcessor(mr,    // span
2050                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2051                                 // mt processing
2052                            ParallelGCThreads,
2053                                 // degree of mt processing
2054                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2055                                 // mt discovery
2056                            MAX2(ParallelGCThreads, ConcGCThreads),
2057                                 // degree of mt discovery
2058                            false,
2059                                 // Reference discovery is not atomic
2060                            &_is_alive_closure_cm);
2061                                 // is alive closure
2062                                 // (for efficiency/performance)
2063 
2064   // STW ref processor
2065   _ref_processor_stw =
2066     new ReferenceProcessor(mr,    // span
2067                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2068                                 // mt processing
2069                            ParallelGCThreads,
2070                                 // degree of mt processing
2071                            (ParallelGCThreads > 1),
2072                                 // mt discovery
2073                            ParallelGCThreads,
2074                                 // degree of mt discovery
2075                            true,
2076                                 // Reference discovery is atomic
2077                            &_is_alive_closure_stw);
2078                                 // is alive closure
2079                                 // (for efficiency/performance)
2080 }
2081 
2082 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2083   return _collector_policy;
2084 }
2085 
2086 size_t G1CollectedHeap::capacity() const {
2087   return _hrm.length() * HeapRegion::GrainBytes;
2088 }
2089 
2090 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2091   hr->reset_gc_time_stamp();
2092 }
2093 
2094 #ifndef PRODUCT
2095 
2096 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2097 private:
2098   unsigned _gc_time_stamp;
2099   bool _failures;
2100 
2101 public:
2102   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2103     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2104 
2105   virtual bool doHeapRegion(HeapRegion* hr) {
2106     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2107     if (_gc_time_stamp != region_gc_time_stamp) {
2108       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2109                             region_gc_time_stamp, _gc_time_stamp);
2110       _failures = true;
2111     }
2112     return false;
2113   }
2114 
2115   bool failures() { return _failures; }
2116 };
2117 
2118 void G1CollectedHeap::check_gc_time_stamps() {
2119   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2120   heap_region_iterate(&cl);
2121   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2122 }
2123 #endif // PRODUCT
2124 
2125 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2126   _cg1r->hot_card_cache()->drain(cl, worker_i);
2127 }
2128 
2129 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2130   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2131   size_t n_completed_buffers = 0;
2132   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2133     n_completed_buffers++;
2134   }
2135   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2136   dcqs.clear_n_completed_buffers();
2137   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2138 }
2139 
2140 // Computes the sum of the storage used by the various regions.
2141 size_t G1CollectedHeap::used() const {
2142   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2143   if (_archive_allocator != NULL) {
2144     result += _archive_allocator->used();
2145   }
2146   return result;
2147 }
2148 
2149 size_t G1CollectedHeap::used_unlocked() const {
2150   return _summary_bytes_used;
2151 }
2152 
2153 class SumUsedClosure: public HeapRegionClosure {
2154   size_t _used;
2155 public:
2156   SumUsedClosure() : _used(0) {}
2157   bool doHeapRegion(HeapRegion* r) {
2158     _used += r->used();
2159     return false;
2160   }
2161   size_t result() { return _used; }
2162 };
2163 
2164 size_t G1CollectedHeap::recalculate_used() const {
2165   double recalculate_used_start = os::elapsedTime();
2166 
2167   SumUsedClosure blk;
2168   heap_region_iterate(&blk);
2169 
2170   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2171   return blk.result();
2172 }
2173 
2174 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2175   switch (cause) {
2176     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2177     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2178     case GCCause::_update_allocation_context_stats_inc: return true;
2179     case GCCause::_wb_conc_mark:                        return true;
2180     default :                                           return false;
2181   }
2182 }
2183 
2184 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2185   switch (cause) {
2186     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2187     case GCCause::_g1_humongous_allocation: return true;
2188     default:                                return is_user_requested_concurrent_full_gc(cause);
2189   }
2190 }
2191 
2192 #ifndef PRODUCT
2193 void G1CollectedHeap::allocate_dummy_regions() {
2194   // Let's fill up most of the region
2195   size_t word_size = HeapRegion::GrainWords - 1024;
2196   // And as a result the region we'll allocate will be humongous.
2197   guarantee(is_humongous(word_size), "sanity");
2198 
2199   // _filler_array_max_size is set to humongous object threshold
2200   // but temporarily change it to use CollectedHeap::fill_with_object().
2201   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2202 
2203   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2204     // Let's use the existing mechanism for the allocation
2205     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2206                                                  AllocationContext::system());
2207     if (dummy_obj != NULL) {
2208       MemRegion mr(dummy_obj, word_size);
2209       CollectedHeap::fill_with_object(mr);
2210     } else {
2211       // If we can't allocate once, we probably cannot allocate
2212       // again. Let's get out of the loop.
2213       break;
2214     }
2215   }
2216 }
2217 #endif // !PRODUCT
2218 
2219 void G1CollectedHeap::increment_old_marking_cycles_started() {
2220   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2221          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2222          "Wrong marking cycle count (started: %d, completed: %d)",
2223          _old_marking_cycles_started, _old_marking_cycles_completed);
2224 
2225   _old_marking_cycles_started++;
2226 }
2227 
2228 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2229   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2230 
2231   // We assume that if concurrent == true, then the caller is a
2232   // concurrent thread that was joined the Suspendible Thread
2233   // Set. If there's ever a cheap way to check this, we should add an
2234   // assert here.
2235 
2236   // Given that this method is called at the end of a Full GC or of a
2237   // concurrent cycle, and those can be nested (i.e., a Full GC can
2238   // interrupt a concurrent cycle), the number of full collections
2239   // completed should be either one (in the case where there was no
2240   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2241   // behind the number of full collections started.
2242 
2243   // This is the case for the inner caller, i.e. a Full GC.
2244   assert(concurrent ||
2245          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2246          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2247          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2248          "is inconsistent with _old_marking_cycles_completed = %u",
2249          _old_marking_cycles_started, _old_marking_cycles_completed);
2250 
2251   // This is the case for the outer caller, i.e. the concurrent cycle.
2252   assert(!concurrent ||
2253          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2254          "for outer caller (concurrent cycle): "
2255          "_old_marking_cycles_started = %u "
2256          "is inconsistent with _old_marking_cycles_completed = %u",
2257          _old_marking_cycles_started, _old_marking_cycles_completed);
2258 
2259   _old_marking_cycles_completed += 1;
2260 
2261   // We need to clear the "in_progress" flag in the CM thread before
2262   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2263   // is set) so that if a waiter requests another System.gc() it doesn't
2264   // incorrectly see that a marking cycle is still in progress.
2265   if (concurrent) {
2266     _cmThread->set_idle();
2267   }
2268 
2269   // This notify_all() will ensure that a thread that called
2270   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2271   // and it's waiting for a full GC to finish will be woken up. It is
2272   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2273   FullGCCount_lock->notify_all();
2274 }
2275 
2276 void G1CollectedHeap::collect(GCCause::Cause cause) {
2277   assert_heap_not_locked();
2278 
2279   uint gc_count_before;
2280   uint old_marking_count_before;
2281   uint full_gc_count_before;
2282   bool retry_gc;
2283 
2284   do {
2285     retry_gc = false;
2286 
2287     {
2288       MutexLocker ml(Heap_lock);
2289 
2290       // Read the GC count while holding the Heap_lock
2291       gc_count_before = total_collections();
2292       full_gc_count_before = total_full_collections();
2293       old_marking_count_before = _old_marking_cycles_started;
2294     }
2295 
2296     if (should_do_concurrent_full_gc(cause)) {
2297       // Schedule an initial-mark evacuation pause that will start a
2298       // concurrent cycle. We're setting word_size to 0 which means that
2299       // we are not requesting a post-GC allocation.
2300       VM_G1IncCollectionPause op(gc_count_before,
2301                                  0,     /* word_size */
2302                                  true,  /* should_initiate_conc_mark */
2303                                  g1_policy()->max_pause_time_ms(),
2304                                  cause);
2305       op.set_allocation_context(AllocationContext::current());
2306 
2307       VMThread::execute(&op);
2308       if (!op.pause_succeeded()) {
2309         if (old_marking_count_before == _old_marking_cycles_started) {
2310           retry_gc = op.should_retry_gc();
2311         } else {
2312           // A Full GC happened while we were trying to schedule the
2313           // initial-mark GC. No point in starting a new cycle given
2314           // that the whole heap was collected anyway.
2315         }
2316 
2317         if (retry_gc) {
2318           if (GCLocker::is_active_and_needs_gc()) {
2319             GCLocker::stall_until_clear();
2320           }
2321         }
2322       }
2323     } else {
2324       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2325           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2326 
2327         // Schedule a standard evacuation pause. We're setting word_size
2328         // to 0 which means that we are not requesting a post-GC allocation.
2329         VM_G1IncCollectionPause op(gc_count_before,
2330                                    0,     /* word_size */
2331                                    false, /* should_initiate_conc_mark */
2332                                    g1_policy()->max_pause_time_ms(),
2333                                    cause);
2334         VMThread::execute(&op);
2335       } else {
2336         // Schedule a Full GC.
2337         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2338         VMThread::execute(&op);
2339       }
2340     }
2341   } while (retry_gc);
2342 }
2343 
2344 bool G1CollectedHeap::is_in(const void* p) const {
2345   if (_hrm.reserved().contains(p)) {
2346     // Given that we know that p is in the reserved space,
2347     // heap_region_containing() should successfully
2348     // return the containing region.
2349     HeapRegion* hr = heap_region_containing(p);
2350     return hr->is_in(p);
2351   } else {
2352     return false;
2353   }
2354 }
2355 
2356 #ifdef ASSERT
2357 bool G1CollectedHeap::is_in_exact(const void* p) const {
2358   bool contains = reserved_region().contains(p);
2359   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2360   if (contains && available) {
2361     return true;
2362   } else {
2363     return false;
2364   }
2365 }
2366 #endif
2367 
2368 bool G1CollectedHeap::obj_in_cs(oop obj) {
2369   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2370   return r != NULL && r->in_collection_set();
2371 }
2372 
2373 // Iteration functions.
2374 
2375 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2376 
2377 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2378   ExtendedOopClosure* _cl;
2379 public:
2380   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2381   bool doHeapRegion(HeapRegion* r) {
2382     if (!r->is_continues_humongous()) {
2383       r->oop_iterate(_cl);
2384     }
2385     return false;
2386   }
2387 };
2388 
2389 // Iterates an ObjectClosure over all objects within a HeapRegion.
2390 
2391 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2392   ObjectClosure* _cl;
2393 public:
2394   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2395   bool doHeapRegion(HeapRegion* r) {
2396     if (!r->is_continues_humongous()) {
2397       r->object_iterate(_cl);
2398     }
2399     return false;
2400   }
2401 };
2402 
2403 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2404   IterateObjectClosureRegionClosure blk(cl);
2405   heap_region_iterate(&blk);
2406 }
2407 
2408 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2409   _hrm.iterate(cl);
2410 }
2411 
2412 void
2413 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2414                                          uint worker_id,
2415                                          HeapRegionClaimer *hrclaimer,
2416                                          bool concurrent) const {
2417   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2418 }
2419 
2420 // Clear the cached CSet starting regions and (more importantly)
2421 // the time stamps. Called when we reset the GC time stamp.
2422 void G1CollectedHeap::clear_cset_start_regions() {
2423   assert(_worker_cset_start_region != NULL, "sanity");
2424   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2425 
2426   for (uint i = 0; i < ParallelGCThreads; i++) {
2427     _worker_cset_start_region[i] = NULL;
2428     _worker_cset_start_region_time_stamp[i] = 0;
2429   }
2430 }
2431 
2432 // Given the id of a worker, obtain or calculate a suitable
2433 // starting region for iterating over the current collection set.
2434 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2435   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2436 
2437   HeapRegion* result = NULL;
2438   unsigned gc_time_stamp = get_gc_time_stamp();
2439 
2440   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2441     // Cached starting region for current worker was set
2442     // during the current pause - so it's valid.
2443     // Note: the cached starting heap region may be NULL
2444     // (when the collection set is empty).
2445     result = _worker_cset_start_region[worker_i];
2446     assert(result == NULL || result->in_collection_set(), "sanity");
2447     return result;
2448   }
2449 
2450   // The cached entry was not valid so let's calculate
2451   // a suitable starting heap region for this worker.
2452 
2453   // We want the parallel threads to start their collection
2454   // set iteration at different collection set regions to
2455   // avoid contention.
2456   // If we have:
2457   //          n collection set regions
2458   //          p threads
2459   // Then thread t will start at region floor ((t * n) / p)
2460 
2461   result = collection_set()->head();
2462   uint cs_size = collection_set()->region_length();
2463   uint active_workers = workers()->active_workers();
2464 
2465   uint end_ind   = (cs_size * worker_i) / active_workers;
2466   uint start_ind = 0;
2467 
2468   if (worker_i > 0 &&
2469       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2470     // Previous workers starting region is valid
2471     // so let's iterate from there
2472     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2473     OrderAccess::loadload();
2474     result = _worker_cset_start_region[worker_i - 1];
2475   }
2476 
2477   for (uint i = start_ind; i < end_ind; i++) {
2478     result = result->next_in_collection_set();
2479   }
2480 
2481   // Note: the calculated starting heap region may be NULL
2482   // (when the collection set is empty).
2483   assert(result == NULL || result->in_collection_set(), "sanity");
2484   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2485          "should be updated only once per pause");
2486   _worker_cset_start_region[worker_i] = result;
2487   OrderAccess::storestore();
2488   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2489   return result;
2490 }
2491 
2492 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2493   HeapRegion* r = collection_set()->head();
2494   while (r != NULL) {
2495     HeapRegion* next = r->next_in_collection_set();
2496     if (cl->doHeapRegion(r)) {
2497       cl->incomplete();
2498       return;
2499     }
2500     r = next;
2501   }
2502 }
2503 
2504 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2505                                                   HeapRegionClosure *cl) {
2506   if (r == NULL) {
2507     // The CSet is empty so there's nothing to do.
2508     return;
2509   }
2510 
2511   assert(r->in_collection_set(),
2512          "Start region must be a member of the collection set.");
2513   HeapRegion* cur = r;
2514   while (cur != NULL) {
2515     HeapRegion* next = cur->next_in_collection_set();
2516     if (cl->doHeapRegion(cur) && false) {
2517       cl->incomplete();
2518       return;
2519     }
2520     cur = next;
2521   }
2522   cur = collection_set()->head();
2523   while (cur != r) {
2524     HeapRegion* next = cur->next_in_collection_set();
2525     if (cl->doHeapRegion(cur) && false) {
2526       cl->incomplete();
2527       return;
2528     }
2529     cur = next;
2530   }
2531 }
2532 
2533 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2534   HeapRegion* result = _hrm.next_region_in_heap(from);
2535   while (result != NULL && result->is_pinned()) {
2536     result = _hrm.next_region_in_heap(result);
2537   }
2538   return result;
2539 }
2540 
2541 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2542   HeapRegion* hr = heap_region_containing(addr);
2543   return hr->block_start(addr);
2544 }
2545 
2546 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2547   HeapRegion* hr = heap_region_containing(addr);
2548   return hr->block_size(addr);
2549 }
2550 
2551 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2552   HeapRegion* hr = heap_region_containing(addr);
2553   return hr->block_is_obj(addr);
2554 }
2555 
2556 bool G1CollectedHeap::supports_tlab_allocation() const {
2557   return true;
2558 }
2559 
2560 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2561   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2562 }
2563 
2564 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2565   return young_list()->eden_used_bytes();
2566 }
2567 
2568 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2569 // must be equal to the humongous object limit.
2570 size_t G1CollectedHeap::max_tlab_size() const {
2571   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2572 }
2573 
2574 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2575   AllocationContext_t context = AllocationContext::current();
2576   return _allocator->unsafe_max_tlab_alloc(context);
2577 }
2578 
2579 size_t G1CollectedHeap::max_capacity() const {
2580   return _hrm.reserved().byte_size();
2581 }
2582 
2583 jlong G1CollectedHeap::millis_since_last_gc() {
2584   // assert(false, "NYI");
2585   return 0;
2586 }
2587 
2588 void G1CollectedHeap::prepare_for_verify() {
2589   _verifier->prepare_for_verify();
2590 }
2591 
2592 void G1CollectedHeap::verify(VerifyOption vo) {
2593   _verifier->verify(vo);
2594 }
2595 
2596 class PrintRegionClosure: public HeapRegionClosure {
2597   outputStream* _st;
2598 public:
2599   PrintRegionClosure(outputStream* st) : _st(st) {}
2600   bool doHeapRegion(HeapRegion* r) {
2601     r->print_on(_st);
2602     return false;
2603   }
2604 };
2605 
2606 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2607                                        const HeapRegion* hr,
2608                                        const VerifyOption vo) const {
2609   switch (vo) {
2610   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2611   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2612   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2613   default:                            ShouldNotReachHere();
2614   }
2615   return false; // keep some compilers happy
2616 }
2617 
2618 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2619                                        const VerifyOption vo) const {
2620   switch (vo) {
2621   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2622   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2623   case VerifyOption_G1UseMarkWord: {
2624     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2625     return !obj->is_gc_marked() && !hr->is_archive();
2626   }
2627   default:                            ShouldNotReachHere();
2628   }
2629   return false; // keep some compilers happy
2630 }
2631 
2632 void G1CollectedHeap::print_heap_regions() const {
2633   Log(gc, heap, region) log;
2634   if (log.is_trace()) {
2635     ResourceMark rm;
2636     print_regions_on(log.trace_stream());
2637   }
2638 }
2639 
2640 void G1CollectedHeap::print_on(outputStream* st) const {
2641   st->print(" %-20s", "garbage-first heap");
2642   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2643             capacity()/K, used_unlocked()/K);
2644   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2645             p2i(_hrm.reserved().start()),
2646             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2647             p2i(_hrm.reserved().end()));
2648   st->cr();
2649   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2650   uint young_regions = _young_list->length();
2651   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2652             (size_t) young_regions * HeapRegion::GrainBytes / K);
2653   uint survivor_regions = _young_list->survivor_length();
2654   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2655             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2656   st->cr();
2657   MetaspaceAux::print_on(st);
2658 }
2659 
2660 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2661   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2662                "HS=humongous(starts), HC=humongous(continues), "
2663                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2664                "AC=allocation context, "
2665                "TAMS=top-at-mark-start (previous, next)");
2666   PrintRegionClosure blk(st);
2667   heap_region_iterate(&blk);
2668 }
2669 
2670 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2671   print_on(st);
2672 
2673   // Print the per-region information.
2674   print_regions_on(st);
2675 }
2676 
2677 void G1CollectedHeap::print_on_error(outputStream* st) const {
2678   this->CollectedHeap::print_on_error(st);
2679 
2680   if (_cm != NULL) {
2681     st->cr();
2682     _cm->print_on_error(st);
2683   }
2684 }
2685 
2686 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2687   workers()->print_worker_threads_on(st);
2688   _cmThread->print_on(st);
2689   st->cr();
2690   _cm->print_worker_threads_on(st);
2691   _cg1r->print_worker_threads_on(st); // also prints the sample thread
2692   if (G1StringDedup::is_enabled()) {
2693     G1StringDedup::print_worker_threads_on(st);
2694   }
2695 }
2696 
2697 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2698   workers()->threads_do(tc);
2699   tc->do_thread(_cmThread);
2700   _cm->threads_do(tc);
2701   _cg1r->threads_do(tc); // also iterates over the sample thread
2702   if (G1StringDedup::is_enabled()) {
2703     G1StringDedup::threads_do(tc);
2704   }
2705 }
2706 
2707 void G1CollectedHeap::print_tracing_info() const {
2708   g1_rem_set()->print_summary_info();
2709   concurrent_mark()->print_summary_info();
2710   g1_policy()->print_yg_surv_rate_info();
2711 }
2712 
2713 #ifndef PRODUCT
2714 // Helpful for debugging RSet issues.
2715 
2716 class PrintRSetsClosure : public HeapRegionClosure {
2717 private:
2718   const char* _msg;
2719   size_t _occupied_sum;
2720 
2721 public:
2722   bool doHeapRegion(HeapRegion* r) {
2723     HeapRegionRemSet* hrrs = r->rem_set();
2724     size_t occupied = hrrs->occupied();
2725     _occupied_sum += occupied;
2726 
2727     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2728     if (occupied == 0) {
2729       tty->print_cr("  RSet is empty");
2730     } else {
2731       hrrs->print();
2732     }
2733     tty->print_cr("----------");
2734     return false;
2735   }
2736 
2737   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2738     tty->cr();
2739     tty->print_cr("========================================");
2740     tty->print_cr("%s", msg);
2741     tty->cr();
2742   }
2743 
2744   ~PrintRSetsClosure() {
2745     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2746     tty->print_cr("========================================");
2747     tty->cr();
2748   }
2749 };
2750 
2751 void G1CollectedHeap::print_cset_rsets() {
2752   PrintRSetsClosure cl("Printing CSet RSets");
2753   collection_set_iterate(&cl);
2754 }
2755 
2756 void G1CollectedHeap::print_all_rsets() {
2757   PrintRSetsClosure cl("Printing All RSets");;
2758   heap_region_iterate(&cl);
2759 }
2760 #endif // PRODUCT
2761 
2762 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2763   YoungList* young_list = heap()->young_list();
2764 
2765   size_t eden_used_bytes = young_list->eden_used_bytes();
2766   size_t survivor_used_bytes = young_list->survivor_used_bytes();
2767   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2768 
2769   size_t eden_capacity_bytes =
2770     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2771 
2772   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2773   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2774                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2775 }
2776 
2777 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2778   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2779                        stats->unused(), stats->used(), stats->region_end_waste(),
2780                        stats->regions_filled(), stats->direct_allocated(),
2781                        stats->failure_used(), stats->failure_waste());
2782 }
2783 
2784 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2785   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2786   gc_tracer->report_gc_heap_summary(when, heap_summary);
2787 
2788   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2789   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2790 }
2791 
2792 G1CollectedHeap* G1CollectedHeap::heap() {
2793   CollectedHeap* heap = Universe::heap();
2794   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2795   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2796   return (G1CollectedHeap*)heap;
2797 }
2798 
2799 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2800   // always_do_update_barrier = false;
2801   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2802   // Fill TLAB's and such
2803   accumulate_statistics_all_tlabs();
2804   ensure_parsability(true);
2805 
2806   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2807 }
2808 
2809 void G1CollectedHeap::gc_epilogue(bool full) {
2810   // we are at the end of the GC. Total collections has already been increased.
2811   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2812 
2813   // FIXME: what is this about?
2814   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2815   // is set.
2816 #if defined(COMPILER2) || INCLUDE_JVMCI
2817   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2818 #endif
2819   // always_do_update_barrier = true;
2820 
2821   resize_all_tlabs();
2822   allocation_context_stats().update(full);
2823 
2824   // We have just completed a GC. Update the soft reference
2825   // policy with the new heap occupancy
2826   Universe::update_heap_info_at_gc();
2827 }
2828 
2829 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2830                                                uint gc_count_before,
2831                                                bool* succeeded,
2832                                                GCCause::Cause gc_cause) {
2833   assert_heap_not_locked_and_not_at_safepoint();
2834   VM_G1IncCollectionPause op(gc_count_before,
2835                              word_size,
2836                              false, /* should_initiate_conc_mark */
2837                              g1_policy()->max_pause_time_ms(),
2838                              gc_cause);
2839 
2840   op.set_allocation_context(AllocationContext::current());
2841   VMThread::execute(&op);
2842 
2843   HeapWord* result = op.result();
2844   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2845   assert(result == NULL || ret_succeeded,
2846          "the result should be NULL if the VM did not succeed");
2847   *succeeded = ret_succeeded;
2848 
2849   assert_heap_not_locked();
2850   return result;
2851 }
2852 
2853 void
2854 G1CollectedHeap::doConcurrentMark() {
2855   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2856   if (!_cmThread->in_progress()) {
2857     _cmThread->set_started();
2858     CGC_lock->notify();
2859   }
2860 }
2861 
2862 size_t G1CollectedHeap::pending_card_num() {
2863   size_t extra_cards = 0;
2864   JavaThread *curr = Threads::first();
2865   while (curr != NULL) {
2866     DirtyCardQueue& dcq = curr->dirty_card_queue();
2867     extra_cards += dcq.size();
2868     curr = curr->next();
2869   }
2870   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2871   size_t buffer_size = dcqs.buffer_size();
2872   size_t buffer_num = dcqs.completed_buffers_num();
2873 
2874   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2875   // in bytes - not the number of 'entries'. We need to convert
2876   // into a number of cards.
2877   return (buffer_size * buffer_num + extra_cards) / oopSize;
2878 }
2879 
2880 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2881  private:
2882   size_t _total_humongous;
2883   size_t _candidate_humongous;
2884 
2885   DirtyCardQueue _dcq;
2886 
2887   // We don't nominate objects with many remembered set entries, on
2888   // the assumption that such objects are likely still live.
2889   bool is_remset_small(HeapRegion* region) const {
2890     HeapRegionRemSet* const rset = region->rem_set();
2891     return G1EagerReclaimHumongousObjectsWithStaleRefs
2892       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2893       : rset->is_empty();
2894   }
2895 
2896   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2897     assert(region->is_starts_humongous(), "Must start a humongous object");
2898 
2899     oop obj = oop(region->bottom());
2900 
2901     // Dead objects cannot be eager reclaim candidates. Due to class
2902     // unloading it is unsafe to query their classes so we return early.
2903     if (heap->is_obj_dead(obj, region)) {
2904       return false;
2905     }
2906 
2907     // Candidate selection must satisfy the following constraints
2908     // while concurrent marking is in progress:
2909     //
2910     // * In order to maintain SATB invariants, an object must not be
2911     // reclaimed if it was allocated before the start of marking and
2912     // has not had its references scanned.  Such an object must have
2913     // its references (including type metadata) scanned to ensure no
2914     // live objects are missed by the marking process.  Objects
2915     // allocated after the start of concurrent marking don't need to
2916     // be scanned.
2917     //
2918     // * An object must not be reclaimed if it is on the concurrent
2919     // mark stack.  Objects allocated after the start of concurrent
2920     // marking are never pushed on the mark stack.
2921     //
2922     // Nominating only objects allocated after the start of concurrent
2923     // marking is sufficient to meet both constraints.  This may miss
2924     // some objects that satisfy the constraints, but the marking data
2925     // structures don't support efficiently performing the needed
2926     // additional tests or scrubbing of the mark stack.
2927     //
2928     // However, we presently only nominate is_typeArray() objects.
2929     // A humongous object containing references induces remembered
2930     // set entries on other regions.  In order to reclaim such an
2931     // object, those remembered sets would need to be cleaned up.
2932     //
2933     // We also treat is_typeArray() objects specially, allowing them
2934     // to be reclaimed even if allocated before the start of
2935     // concurrent mark.  For this we rely on mark stack insertion to
2936     // exclude is_typeArray() objects, preventing reclaiming an object
2937     // that is in the mark stack.  We also rely on the metadata for
2938     // such objects to be built-in and so ensured to be kept live.
2939     // Frequent allocation and drop of large binary blobs is an
2940     // important use case for eager reclaim, and this special handling
2941     // may reduce needed headroom.
2942 
2943     return obj->is_typeArray() && is_remset_small(region);
2944   }
2945 
2946  public:
2947   RegisterHumongousWithInCSetFastTestClosure()
2948   : _total_humongous(0),
2949     _candidate_humongous(0),
2950     _dcq(&JavaThread::dirty_card_queue_set()) {
2951   }
2952 
2953   virtual bool doHeapRegion(HeapRegion* r) {
2954     if (!r->is_starts_humongous()) {
2955       return false;
2956     }
2957     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2958 
2959     bool is_candidate = humongous_region_is_candidate(g1h, r);
2960     uint rindex = r->hrm_index();
2961     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2962     if (is_candidate) {
2963       _candidate_humongous++;
2964       g1h->register_humongous_region_with_cset(rindex);
2965       // Is_candidate already filters out humongous object with large remembered sets.
2966       // If we have a humongous object with a few remembered sets, we simply flush these
2967       // remembered set entries into the DCQS. That will result in automatic
2968       // re-evaluation of their remembered set entries during the following evacuation
2969       // phase.
2970       if (!r->rem_set()->is_empty()) {
2971         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2972                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2973         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2974         HeapRegionRemSetIterator hrrs(r->rem_set());
2975         size_t card_index;
2976         while (hrrs.has_next(card_index)) {
2977           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2978           // The remembered set might contain references to already freed
2979           // regions. Filter out such entries to avoid failing card table
2980           // verification.
2981           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2982             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2983               *card_ptr = CardTableModRefBS::dirty_card_val();
2984               _dcq.enqueue(card_ptr);
2985             }
2986           }
2987         }
2988         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2989                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2990                hrrs.n_yielded(), r->rem_set()->occupied());
2991         r->rem_set()->clear_locked();
2992       }
2993       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2994     }
2995     _total_humongous++;
2996 
2997     return false;
2998   }
2999 
3000   size_t total_humongous() const { return _total_humongous; }
3001   size_t candidate_humongous() const { return _candidate_humongous; }
3002 
3003   void flush_rem_set_entries() { _dcq.flush(); }
3004 };
3005 
3006 void G1CollectedHeap::register_humongous_regions_with_cset() {
3007   if (!G1EagerReclaimHumongousObjects) {
3008     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3009     return;
3010   }
3011   double time = os::elapsed_counter();
3012 
3013   // Collect reclaim candidate information and register candidates with cset.
3014   RegisterHumongousWithInCSetFastTestClosure cl;
3015   heap_region_iterate(&cl);
3016 
3017   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3018   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3019                                                                   cl.total_humongous(),
3020                                                                   cl.candidate_humongous());
3021   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3022 
3023   // Finally flush all remembered set entries to re-check into the global DCQS.
3024   cl.flush_rem_set_entries();
3025 }
3026 
3027 class VerifyRegionRemSetClosure : public HeapRegionClosure {
3028   public:
3029     bool doHeapRegion(HeapRegion* hr) {
3030       if (!hr->is_archive() && !hr->is_continues_humongous()) {
3031         hr->verify_rem_set();
3032       }
3033       return false;
3034     }
3035 };
3036 
3037 uint G1CollectedHeap::num_task_queues() const {
3038   return _task_queues->size();
3039 }
3040 
3041 #if TASKQUEUE_STATS
3042 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3043   st->print_raw_cr("GC Task Stats");
3044   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3045   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3046 }
3047 
3048 void G1CollectedHeap::print_taskqueue_stats() const {
3049   if (!log_is_enabled(Trace, gc, task, stats)) {
3050     return;
3051   }
3052   Log(gc, task, stats) log;
3053   ResourceMark rm;
3054   outputStream* st = log.trace_stream();
3055 
3056   print_taskqueue_stats_hdr(st);
3057 
3058   TaskQueueStats totals;
3059   const uint n = num_task_queues();
3060   for (uint i = 0; i < n; ++i) {
3061     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3062     totals += task_queue(i)->stats;
3063   }
3064   st->print_raw("tot "); totals.print(st); st->cr();
3065 
3066   DEBUG_ONLY(totals.verify());
3067 }
3068 
3069 void G1CollectedHeap::reset_taskqueue_stats() {
3070   const uint n = num_task_queues();
3071   for (uint i = 0; i < n; ++i) {
3072     task_queue(i)->stats.reset();
3073   }
3074 }
3075 #endif // TASKQUEUE_STATS
3076 
3077 void G1CollectedHeap::wait_for_root_region_scanning() {
3078   double scan_wait_start = os::elapsedTime();
3079   // We have to wait until the CM threads finish scanning the
3080   // root regions as it's the only way to ensure that all the
3081   // objects on them have been correctly scanned before we start
3082   // moving them during the GC.
3083   bool waited = _cm->root_regions()->wait_until_scan_finished();
3084   double wait_time_ms = 0.0;
3085   if (waited) {
3086     double scan_wait_end = os::elapsedTime();
3087     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3088   }
3089   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3090 }
3091 
3092 bool
3093 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3094   assert_at_safepoint(true /* should_be_vm_thread */);
3095   guarantee(!is_gc_active(), "collection is not reentrant");
3096 
3097   if (GCLocker::check_active_before_gc()) {
3098     return false;
3099   }
3100 
3101   _gc_timer_stw->register_gc_start();
3102 
3103   GCIdMark gc_id_mark;
3104   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3105 
3106   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3107   ResourceMark rm;
3108 
3109   wait_for_root_region_scanning();
3110 
3111   print_heap_before_gc();
3112   print_heap_regions();
3113   trace_heap_before_gc(_gc_tracer_stw);
3114 
3115   _verifier->verify_region_sets_optional();
3116   _verifier->verify_dirty_young_regions();
3117 
3118   // We should not be doing initial mark unless the conc mark thread is running
3119   if (!_cmThread->should_terminate()) {
3120     // This call will decide whether this pause is an initial-mark
3121     // pause. If it is, during_initial_mark_pause() will return true
3122     // for the duration of this pause.
3123     g1_policy()->decide_on_conc_mark_initiation();
3124   }
3125 
3126   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3127   assert(!collector_state()->during_initial_mark_pause() ||
3128           collector_state()->gcs_are_young(), "sanity");
3129 
3130   // We also do not allow mixed GCs during marking.
3131   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3132 
3133   // Record whether this pause is an initial mark. When the current
3134   // thread has completed its logging output and it's safe to signal
3135   // the CM thread, the flag's value in the policy has been reset.
3136   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3137 
3138   // Inner scope for scope based logging, timers, and stats collection
3139   {
3140     EvacuationInfo evacuation_info;
3141 
3142     if (collector_state()->during_initial_mark_pause()) {
3143       // We are about to start a marking cycle, so we increment the
3144       // full collection counter.
3145       increment_old_marking_cycles_started();
3146       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3147     }
3148 
3149     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3150 
3151     GCTraceCPUTime tcpu;
3152 
3153     FormatBuffer<> gc_string("Pause ");
3154     if (collector_state()->during_initial_mark_pause()) {
3155       gc_string.append("Initial Mark");
3156     } else if (collector_state()->gcs_are_young()) {
3157       gc_string.append("Young");
3158     } else {
3159       gc_string.append("Mixed");
3160     }
3161     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3162 
3163     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3164                                                                   workers()->active_workers(),
3165                                                                   Threads::number_of_non_daemon_threads());
3166     workers()->set_active_workers(active_workers);
3167 
3168     g1_policy()->note_gc_start();
3169 
3170     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3171     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3172 
3173     // If the secondary_free_list is not empty, append it to the
3174     // free_list. No need to wait for the cleanup operation to finish;
3175     // the region allocation code will check the secondary_free_list
3176     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3177     // set, skip this step so that the region allocation code has to
3178     // get entries from the secondary_free_list.
3179     if (!G1StressConcRegionFreeing) {
3180       append_secondary_free_list_if_not_empty_with_lock();
3181     }
3182 
3183     G1HeapTransition heap_transition(this);
3184     size_t heap_used_bytes_before_gc = used();
3185 
3186     assert(check_young_list_well_formed(), "young list should be well formed");
3187 
3188     // Don't dynamically change the number of GC threads this early.  A value of
3189     // 0 is used to indicate serial work.  When parallel work is done,
3190     // it will be set.
3191 
3192     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3193       IsGCActiveMark x;
3194 
3195       gc_prologue(false);
3196       increment_total_collections(false /* full gc */);
3197       increment_gc_time_stamp();
3198 
3199       if (VerifyRememberedSets) {
3200         log_info(gc, verify)("[Verifying RemSets before GC]");
3201         VerifyRegionRemSetClosure v_cl;
3202         heap_region_iterate(&v_cl);
3203       }
3204 
3205       _verifier->verify_before_gc();
3206 
3207       _verifier->check_bitmaps("GC Start");
3208 
3209 #if defined(COMPILER2) || INCLUDE_JVMCI
3210       DerivedPointerTable::clear();
3211 #endif
3212 
3213       // Please see comment in g1CollectedHeap.hpp and
3214       // G1CollectedHeap::ref_processing_init() to see how
3215       // reference processing currently works in G1.
3216 
3217       // Enable discovery in the STW reference processor
3218       if (g1_policy()->should_process_references()) {
3219         ref_processor_stw()->enable_discovery();
3220       } else {
3221         ref_processor_stw()->disable_discovery();
3222       }
3223 
3224       {
3225         // We want to temporarily turn off discovery by the
3226         // CM ref processor, if necessary, and turn it back on
3227         // on again later if we do. Using a scoped
3228         // NoRefDiscovery object will do this.
3229         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3230 
3231         // Forget the current alloc region (we might even choose it to be part
3232         // of the collection set!).
3233         _allocator->release_mutator_alloc_region();
3234 
3235         // This timing is only used by the ergonomics to handle our pause target.
3236         // It is unclear why this should not include the full pause. We will
3237         // investigate this in CR 7178365.
3238         //
3239         // Preserving the old comment here if that helps the investigation:
3240         //
3241         // The elapsed time induced by the start time below deliberately elides
3242         // the possible verification above.
3243         double sample_start_time_sec = os::elapsedTime();
3244 
3245         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3246 
3247         if (collector_state()->during_initial_mark_pause()) {
3248           concurrent_mark()->checkpointRootsInitialPre();
3249         }
3250 
3251         g1_policy()->finalize_collection_set(target_pause_time_ms);
3252 
3253         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3254 
3255         // Make sure the remembered sets are up to date. This needs to be
3256         // done before register_humongous_regions_with_cset(), because the
3257         // remembered sets are used there to choose eager reclaim candidates.
3258         // If the remembered sets are not up to date we might miss some
3259         // entries that need to be handled.
3260         g1_rem_set()->cleanupHRRS();
3261 
3262         register_humongous_regions_with_cset();
3263 
3264         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3265 
3266         _cm->note_start_of_gc();
3267         // We call this after finalize_cset() to
3268         // ensure that the CSet has been finalized.
3269         _cm->verify_no_cset_oops();
3270 
3271         if (_hr_printer.is_active()) {
3272           HeapRegion* hr = collection_set()->head();
3273           while (hr != NULL) {
3274             _hr_printer.cset(hr);
3275             hr = hr->next_in_collection_set();
3276           }
3277         }
3278 
3279         // Initialize the GC alloc regions.
3280         _allocator->init_gc_alloc_regions(evacuation_info);
3281 
3282         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3283         pre_evacuate_collection_set();
3284 
3285         // Actually do the work...
3286         evacuate_collection_set(evacuation_info, &per_thread_states);
3287 
3288         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3289 
3290         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3291         free_collection_set(collection_set()->head(), evacuation_info, surviving_young_words);
3292 
3293         eagerly_reclaim_humongous_regions();
3294 
3295         collection_set()->clear_head();
3296 
3297         record_obj_copy_mem_stats();
3298         _survivor_evac_stats.adjust_desired_plab_sz();
3299         _old_evac_stats.adjust_desired_plab_sz();
3300 
3301         // Start a new incremental collection set for the next pause.
3302         collection_set()->start_incremental_building();
3303 
3304         clear_cset_fast_test();
3305 
3306         // Don't check the whole heap at this point as the
3307         // GC alloc regions from this pause have been tagged
3308         // as survivors and moved on to the survivor list.
3309         // Survivor regions will fail the !is_young() check.
3310         assert(check_young_list_empty(false /* check_heap */),
3311           "young list should be empty");
3312 
3313         _young_list->reset_auxilary_lists();
3314 
3315         if (evacuation_failed()) {
3316           set_used(recalculate_used());
3317           if (_archive_allocator != NULL) {
3318             _archive_allocator->clear_used();
3319           }
3320           for (uint i = 0; i < ParallelGCThreads; i++) {
3321             if (_evacuation_failed_info_array[i].has_failed()) {
3322               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3323             }
3324           }
3325         } else {
3326           // The "used" of the the collection set have already been subtracted
3327           // when they were freed.  Add in the bytes evacuated.
3328           increase_used(g1_policy()->bytes_copied_during_gc());
3329         }
3330 
3331         if (collector_state()->during_initial_mark_pause()) {
3332           // We have to do this before we notify the CM threads that
3333           // they can start working to make sure that all the
3334           // appropriate initialization is done on the CM object.
3335           concurrent_mark()->checkpointRootsInitialPost();
3336           collector_state()->set_mark_in_progress(true);
3337           // Note that we don't actually trigger the CM thread at
3338           // this point. We do that later when we're sure that
3339           // the current thread has completed its logging output.
3340         }
3341 
3342         allocate_dummy_regions();
3343 
3344         _allocator->init_mutator_alloc_region();
3345 
3346         {
3347           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3348           if (expand_bytes > 0) {
3349             size_t bytes_before = capacity();
3350             // No need for an ergo logging here,
3351             // expansion_amount() does this when it returns a value > 0.
3352             double expand_ms;
3353             if (!expand(expand_bytes, &expand_ms)) {
3354               // We failed to expand the heap. Cannot do anything about it.
3355             }
3356             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3357           }
3358         }
3359 
3360         // We redo the verification but now wrt to the new CSet which
3361         // has just got initialized after the previous CSet was freed.
3362         _cm->verify_no_cset_oops();
3363         _cm->note_end_of_gc();
3364 
3365         // This timing is only used by the ergonomics to handle our pause target.
3366         // It is unclear why this should not include the full pause. We will
3367         // investigate this in CR 7178365.
3368         double sample_end_time_sec = os::elapsedTime();
3369         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3370         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3371         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3372 
3373         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3374         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3375 
3376         MemoryService::track_memory_usage();
3377 
3378         // In prepare_for_verify() below we'll need to scan the deferred
3379         // update buffers to bring the RSets up-to-date if
3380         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3381         // the update buffers we'll probably need to scan cards on the
3382         // regions we just allocated to (i.e., the GC alloc
3383         // regions). However, during the last GC we called
3384         // set_saved_mark() on all the GC alloc regions, so card
3385         // scanning might skip the [saved_mark_word()...top()] area of
3386         // those regions (i.e., the area we allocated objects into
3387         // during the last GC). But it shouldn't. Given that
3388         // saved_mark_word() is conditional on whether the GC time stamp
3389         // on the region is current or not, by incrementing the GC time
3390         // stamp here we invalidate all the GC time stamps on all the
3391         // regions and saved_mark_word() will simply return top() for
3392         // all the regions. This is a nicer way of ensuring this rather
3393         // than iterating over the regions and fixing them. In fact, the
3394         // GC time stamp increment here also ensures that
3395         // saved_mark_word() will return top() between pauses, i.e.,
3396         // during concurrent refinement. So we don't need the
3397         // is_gc_active() check to decided which top to use when
3398         // scanning cards (see CR 7039627).
3399         increment_gc_time_stamp();
3400 
3401         if (VerifyRememberedSets) {
3402           log_info(gc, verify)("[Verifying RemSets after GC]");
3403           VerifyRegionRemSetClosure v_cl;
3404           heap_region_iterate(&v_cl);
3405         }
3406 
3407         _verifier->verify_after_gc();
3408         _verifier->check_bitmaps("GC End");
3409 
3410         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3411         ref_processor_stw()->verify_no_references_recorded();
3412 
3413         // CM reference discovery will be re-enabled if necessary.
3414       }
3415 
3416 #ifdef TRACESPINNING
3417       ParallelTaskTerminator::print_termination_counts();
3418 #endif
3419 
3420       gc_epilogue(false);
3421     }
3422 
3423     // Print the remainder of the GC log output.
3424     if (evacuation_failed()) {
3425       log_info(gc)("To-space exhausted");
3426     }
3427 
3428     g1_policy()->print_phases();
3429     heap_transition.print();
3430 
3431     // It is not yet to safe to tell the concurrent mark to
3432     // start as we have some optional output below. We don't want the
3433     // output from the concurrent mark thread interfering with this
3434     // logging output either.
3435 
3436     _hrm.verify_optional();
3437     _verifier->verify_region_sets_optional();
3438 
3439     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3440     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3441 
3442     print_heap_after_gc();
3443     print_heap_regions();
3444     trace_heap_after_gc(_gc_tracer_stw);
3445 
3446     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3447     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3448     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3449     // before any GC notifications are raised.
3450     g1mm()->update_sizes();
3451 
3452     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3453     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3454     _gc_timer_stw->register_gc_end();
3455     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3456   }
3457   // It should now be safe to tell the concurrent mark thread to start
3458   // without its logging output interfering with the logging output
3459   // that came from the pause.
3460 
3461   if (should_start_conc_mark) {
3462     // CAUTION: after the doConcurrentMark() call below,
3463     // the concurrent marking thread(s) could be running
3464     // concurrently with us. Make sure that anything after
3465     // this point does not assume that we are the only GC thread
3466     // running. Note: of course, the actual marking work will
3467     // not start until the safepoint itself is released in
3468     // SuspendibleThreadSet::desynchronize().
3469     doConcurrentMark();
3470   }
3471 
3472   return true;
3473 }
3474 
3475 void G1CollectedHeap::remove_self_forwarding_pointers() {
3476   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3477   workers()->run_task(&rsfp_task);
3478 }
3479 
3480 void G1CollectedHeap::restore_after_evac_failure() {
3481   double remove_self_forwards_start = os::elapsedTime();
3482 
3483   remove_self_forwarding_pointers();
3484   _preserved_marks_set.restore(workers());
3485 
3486   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3487 }
3488 
3489 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3490   if (!_evacuation_failed) {
3491     _evacuation_failed = true;
3492   }
3493 
3494   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3495   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3496 }
3497 
3498 bool G1ParEvacuateFollowersClosure::offer_termination() {
3499   G1ParScanThreadState* const pss = par_scan_state();
3500   start_term_time();
3501   const bool res = terminator()->offer_termination();
3502   end_term_time();
3503   return res;
3504 }
3505 
3506 void G1ParEvacuateFollowersClosure::do_void() {
3507   G1ParScanThreadState* const pss = par_scan_state();
3508   pss->trim_queue();
3509   do {
3510     pss->steal_and_trim_queue(queues());
3511   } while (!offer_termination());
3512 }
3513 
3514 class G1ParTask : public AbstractGangTask {
3515 protected:
3516   G1CollectedHeap*         _g1h;
3517   G1ParScanThreadStateSet* _pss;
3518   RefToScanQueueSet*       _queues;
3519   G1RootProcessor*         _root_processor;
3520   ParallelTaskTerminator   _terminator;
3521   uint                     _n_workers;
3522 
3523 public:
3524   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3525     : AbstractGangTask("G1 collection"),
3526       _g1h(g1h),
3527       _pss(per_thread_states),
3528       _queues(task_queues),
3529       _root_processor(root_processor),
3530       _terminator(n_workers, _queues),
3531       _n_workers(n_workers)
3532   {}
3533 
3534   void work(uint worker_id) {
3535     if (worker_id >= _n_workers) return;  // no work needed this round
3536 
3537     double start_sec = os::elapsedTime();
3538     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3539 
3540     {
3541       ResourceMark rm;
3542       HandleMark   hm;
3543 
3544       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3545 
3546       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3547       pss->set_ref_processor(rp);
3548 
3549       double start_strong_roots_sec = os::elapsedTime();
3550 
3551       _root_processor->evacuate_roots(pss->closures(), worker_id);
3552 
3553       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3554 
3555       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3556       // treating the nmethods visited to act as roots for concurrent marking.
3557       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3558       // objects copied by the current evacuation.
3559       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3560                                                                              pss->closures()->weak_codeblobs(),
3561                                                                              worker_id);
3562 
3563       _pss->add_cards_scanned(worker_id, cards_scanned);
3564 
3565       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3566 
3567       double term_sec = 0.0;
3568       size_t evac_term_attempts = 0;
3569       {
3570         double start = os::elapsedTime();
3571         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3572         evac.do_void();
3573 
3574         evac_term_attempts = evac.term_attempts();
3575         term_sec = evac.term_time();
3576         double elapsed_sec = os::elapsedTime() - start;
3577         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3578         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3579         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3580       }
3581 
3582       assert(pss->queue_is_empty(), "should be empty");
3583 
3584       if (log_is_enabled(Debug, gc, task, stats)) {
3585         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3586         size_t lab_waste;
3587         size_t lab_undo_waste;
3588         pss->waste(lab_waste, lab_undo_waste);
3589         _g1h->print_termination_stats(worker_id,
3590                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3591                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3592                                       term_sec * 1000.0,                          /* evac term time */
3593                                       evac_term_attempts,                         /* evac term attempts */
3594                                       lab_waste,                                  /* alloc buffer waste */
3595                                       lab_undo_waste                              /* undo waste */
3596                                       );
3597       }
3598 
3599       // Close the inner scope so that the ResourceMark and HandleMark
3600       // destructors are executed here and are included as part of the
3601       // "GC Worker Time".
3602     }
3603     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3604   }
3605 };
3606 
3607 void G1CollectedHeap::print_termination_stats_hdr() {
3608   log_debug(gc, task, stats)("GC Termination Stats");
3609   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3610   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3611   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3612 }
3613 
3614 void G1CollectedHeap::print_termination_stats(uint worker_id,
3615                                               double elapsed_ms,
3616                                               double strong_roots_ms,
3617                                               double term_ms,
3618                                               size_t term_attempts,
3619                                               size_t alloc_buffer_waste,
3620                                               size_t undo_waste) const {
3621   log_debug(gc, task, stats)
3622               ("%3d %9.2f %9.2f %6.2f "
3623                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3624                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3625                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3626                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3627                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3628                alloc_buffer_waste * HeapWordSize / K,
3629                undo_waste * HeapWordSize / K);
3630 }
3631 
3632 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
3633 private:
3634   BoolObjectClosure* _is_alive;
3635   int _initial_string_table_size;
3636   int _initial_symbol_table_size;
3637 
3638   bool  _process_strings;
3639   int _strings_processed;
3640   int _strings_removed;
3641 
3642   bool  _process_symbols;
3643   int _symbols_processed;
3644   int _symbols_removed;
3645 
3646 public:
3647   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
3648     AbstractGangTask("String/Symbol Unlinking"),
3649     _is_alive(is_alive),
3650     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3651     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
3652 
3653     _initial_string_table_size = StringTable::the_table()->table_size();
3654     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3655     if (process_strings) {
3656       StringTable::clear_parallel_claimed_index();
3657     }
3658     if (process_symbols) {
3659       SymbolTable::clear_parallel_claimed_index();
3660     }
3661   }
3662 
3663   ~G1StringSymbolTableUnlinkTask() {
3664     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3665               "claim value %d after unlink less than initial string table size %d",
3666               StringTable::parallel_claimed_index(), _initial_string_table_size);
3667     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3668               "claim value %d after unlink less than initial symbol table size %d",
3669               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3670 
3671     log_info(gc, stringtable)(
3672         "Cleaned string and symbol table, "
3673         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3674         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3675         strings_processed(), strings_removed(),
3676         symbols_processed(), symbols_removed());
3677   }
3678 
3679   void work(uint worker_id) {
3680     int strings_processed = 0;
3681     int strings_removed = 0;
3682     int symbols_processed = 0;
3683     int symbols_removed = 0;
3684     if (_process_strings) {
3685       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3686       Atomic::add(strings_processed, &_strings_processed);
3687       Atomic::add(strings_removed, &_strings_removed);
3688     }
3689     if (_process_symbols) {
3690       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3691       Atomic::add(symbols_processed, &_symbols_processed);
3692       Atomic::add(symbols_removed, &_symbols_removed);
3693     }
3694   }
3695 
3696   size_t strings_processed() const { return (size_t)_strings_processed; }
3697   size_t strings_removed()   const { return (size_t)_strings_removed; }
3698 
3699   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3700   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3701 };
3702 
3703 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3704 private:
3705   static Monitor* _lock;
3706 
3707   BoolObjectClosure* const _is_alive;
3708   const bool               _unloading_occurred;
3709   const uint               _num_workers;
3710 
3711   // Variables used to claim nmethods.
3712   nmethod* _first_nmethod;
3713   volatile nmethod* _claimed_nmethod;
3714 
3715   // The list of nmethods that need to be processed by the second pass.
3716   volatile nmethod* _postponed_list;
3717   volatile uint     _num_entered_barrier;
3718 
3719  public:
3720   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3721       _is_alive(is_alive),
3722       _unloading_occurred(unloading_occurred),
3723       _num_workers(num_workers),
3724       _first_nmethod(NULL),
3725       _claimed_nmethod(NULL),
3726       _postponed_list(NULL),
3727       _num_entered_barrier(0)
3728   {
3729     nmethod::increase_unloading_clock();
3730     // Get first alive nmethod
3731     NMethodIterator iter = NMethodIterator();
3732     if(iter.next_alive()) {
3733       _first_nmethod = iter.method();
3734     }
3735     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
3736   }
3737 
3738   ~G1CodeCacheUnloadingTask() {
3739     CodeCache::verify_clean_inline_caches();
3740 
3741     CodeCache::set_needs_cache_clean(false);
3742     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3743 
3744     CodeCache::verify_icholder_relocations();
3745   }
3746 
3747  private:
3748   void add_to_postponed_list(nmethod* nm) {
3749       nmethod* old;
3750       do {
3751         old = (nmethod*)_postponed_list;
3752         nm->set_unloading_next(old);
3753       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3754   }
3755 
3756   void clean_nmethod(nmethod* nm) {
3757     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3758 
3759     if (postponed) {
3760       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3761       add_to_postponed_list(nm);
3762     }
3763 
3764     // Mark that this thread has been cleaned/unloaded.
3765     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3766     nm->set_unloading_clock(nmethod::global_unloading_clock());
3767   }
3768 
3769   void clean_nmethod_postponed(nmethod* nm) {
3770     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3771   }
3772 
3773   static const int MaxClaimNmethods = 16;
3774 
3775   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
3776     nmethod* first;
3777     NMethodIterator last;
3778 
3779     do {
3780       *num_claimed_nmethods = 0;
3781 
3782       first = (nmethod*)_claimed_nmethod;
3783       last = NMethodIterator(first);
3784 
3785       if (first != NULL) {
3786 
3787         for (int i = 0; i < MaxClaimNmethods; i++) {
3788           if (!last.next_alive()) {
3789             break;
3790           }
3791           claimed_nmethods[i] = last.method();
3792           (*num_claimed_nmethods)++;
3793         }
3794       }
3795 
3796     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3797   }
3798 
3799   nmethod* claim_postponed_nmethod() {
3800     nmethod* claim;
3801     nmethod* next;
3802 
3803     do {
3804       claim = (nmethod*)_postponed_list;
3805       if (claim == NULL) {
3806         return NULL;
3807       }
3808 
3809       next = claim->unloading_next();
3810 
3811     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3812 
3813     return claim;
3814   }
3815 
3816  public:
3817   // Mark that we're done with the first pass of nmethod cleaning.
3818   void barrier_mark(uint worker_id) {
3819     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3820     _num_entered_barrier++;
3821     if (_num_entered_barrier == _num_workers) {
3822       ml.notify_all();
3823     }
3824   }
3825 
3826   // See if we have to wait for the other workers to
3827   // finish their first-pass nmethod cleaning work.
3828   void barrier_wait(uint worker_id) {
3829     if (_num_entered_barrier < _num_workers) {
3830       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3831       while (_num_entered_barrier < _num_workers) {
3832           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3833       }
3834     }
3835   }
3836 
3837   // Cleaning and unloading of nmethods. Some work has to be postponed
3838   // to the second pass, when we know which nmethods survive.
3839   void work_first_pass(uint worker_id) {
3840     // The first nmethods is claimed by the first worker.
3841     if (worker_id == 0 && _first_nmethod != NULL) {
3842       clean_nmethod(_first_nmethod);
3843       _first_nmethod = NULL;
3844     }
3845 
3846     int num_claimed_nmethods;
3847     nmethod* claimed_nmethods[MaxClaimNmethods];
3848 
3849     while (true) {
3850       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3851 
3852       if (num_claimed_nmethods == 0) {
3853         break;
3854       }
3855 
3856       for (int i = 0; i < num_claimed_nmethods; i++) {
3857         clean_nmethod(claimed_nmethods[i]);
3858       }
3859     }
3860   }
3861 
3862   void work_second_pass(uint worker_id) {
3863     nmethod* nm;
3864     // Take care of postponed nmethods.
3865     while ((nm = claim_postponed_nmethod()) != NULL) {
3866       clean_nmethod_postponed(nm);
3867     }
3868   }
3869 };
3870 
3871 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3872 
3873 class G1KlassCleaningTask : public StackObj {
3874   BoolObjectClosure*                      _is_alive;
3875   volatile jint                           _clean_klass_tree_claimed;
3876   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3877 
3878  public:
3879   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3880       _is_alive(is_alive),
3881       _clean_klass_tree_claimed(0),
3882       _klass_iterator() {
3883   }
3884 
3885  private:
3886   bool claim_clean_klass_tree_task() {
3887     if (_clean_klass_tree_claimed) {
3888       return false;
3889     }
3890 
3891     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3892   }
3893 
3894   InstanceKlass* claim_next_klass() {
3895     Klass* klass;
3896     do {
3897       klass =_klass_iterator.next_klass();
3898     } while (klass != NULL && !klass->is_instance_klass());
3899 
3900     // this can be null so don't call InstanceKlass::cast
3901     return static_cast<InstanceKlass*>(klass);
3902   }
3903 
3904 public:
3905 
3906   void clean_klass(InstanceKlass* ik) {
3907     ik->clean_weak_instanceklass_links(_is_alive);
3908   }
3909 
3910   void work() {
3911     ResourceMark rm;
3912 
3913     // One worker will clean the subklass/sibling klass tree.
3914     if (claim_clean_klass_tree_task()) {
3915       Klass::clean_subklass_tree(_is_alive);
3916     }
3917 
3918     // All workers will help cleaning the classes,
3919     InstanceKlass* klass;
3920     while ((klass = claim_next_klass()) != NULL) {
3921       clean_klass(klass);
3922     }
3923   }
3924 };
3925 
3926 // To minimize the remark pause times, the tasks below are done in parallel.
3927 class G1ParallelCleaningTask : public AbstractGangTask {
3928 private:
3929   G1StringSymbolTableUnlinkTask _string_symbol_task;
3930   G1CodeCacheUnloadingTask      _code_cache_task;
3931   G1KlassCleaningTask           _klass_cleaning_task;
3932 
3933 public:
3934   // The constructor is run in the VMThread.
3935   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
3936       AbstractGangTask("Parallel Cleaning"),
3937       _string_symbol_task(is_alive, process_strings, process_symbols),
3938       _code_cache_task(num_workers, is_alive, unloading_occurred),
3939       _klass_cleaning_task(is_alive) {
3940   }
3941 
3942   // The parallel work done by all worker threads.
3943   void work(uint worker_id) {
3944     // Do first pass of code cache cleaning.
3945     _code_cache_task.work_first_pass(worker_id);
3946 
3947     // Let the threads mark that the first pass is done.
3948     _code_cache_task.barrier_mark(worker_id);
3949 
3950     // Clean the Strings and Symbols.
3951     _string_symbol_task.work(worker_id);
3952 
3953     // Wait for all workers to finish the first code cache cleaning pass.
3954     _code_cache_task.barrier_wait(worker_id);
3955 
3956     // Do the second code cache cleaning work, which realize on
3957     // the liveness information gathered during the first pass.
3958     _code_cache_task.work_second_pass(worker_id);
3959 
3960     // Clean all klasses that were not unloaded.
3961     _klass_cleaning_task.work();
3962   }
3963 };
3964 
3965 
3966 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
3967                                         bool process_strings,
3968                                         bool process_symbols,
3969                                         bool class_unloading_occurred) {
3970   uint n_workers = workers()->active_workers();
3971 
3972   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
3973                                         n_workers, class_unloading_occurred);
3974   workers()->run_task(&g1_unlink_task);
3975 }
3976 
3977 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
3978                                                      bool process_strings, bool process_symbols) {
3979   { // Timing scope
3980     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
3981     workers()->run_task(&g1_unlink_task);
3982   }
3983 }
3984 
3985 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3986  private:
3987   DirtyCardQueueSet* _queue;
3988   G1CollectedHeap* _g1h;
3989  public:
3990   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3991     _queue(queue), _g1h(g1h) { }
3992 
3993   virtual void work(uint worker_id) {
3994     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3995     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3996 
3997     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3998     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3999 
4000     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4001   }
4002 };
4003 
4004 void G1CollectedHeap::redirty_logged_cards() {
4005   double redirty_logged_cards_start = os::elapsedTime();
4006 
4007   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4008   dirty_card_queue_set().reset_for_par_iteration();
4009   workers()->run_task(&redirty_task);
4010 
4011   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4012   dcq.merge_bufferlists(&dirty_card_queue_set());
4013   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4014 
4015   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4016 }
4017 
4018 // Weak Reference Processing support
4019 
4020 // An always "is_alive" closure that is used to preserve referents.
4021 // If the object is non-null then it's alive.  Used in the preservation
4022 // of referent objects that are pointed to by reference objects
4023 // discovered by the CM ref processor.
4024 class G1AlwaysAliveClosure: public BoolObjectClosure {
4025   G1CollectedHeap* _g1;
4026 public:
4027   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4028   bool do_object_b(oop p) {
4029     if (p != NULL) {
4030       return true;
4031     }
4032     return false;
4033   }
4034 };
4035 
4036 bool G1STWIsAliveClosure::do_object_b(oop p) {
4037   // An object is reachable if it is outside the collection set,
4038   // or is inside and copied.
4039   return !_g1->is_in_cset(p) || p->is_forwarded();
4040 }
4041 
4042 // Non Copying Keep Alive closure
4043 class G1KeepAliveClosure: public OopClosure {
4044   G1CollectedHeap* _g1;
4045 public:
4046   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4047   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4048   void do_oop(oop* p) {
4049     oop obj = *p;
4050     assert(obj != NULL, "the caller should have filtered out NULL values");
4051 
4052     const InCSetState cset_state = _g1->in_cset_state(obj);
4053     if (!cset_state.is_in_cset_or_humongous()) {
4054       return;
4055     }
4056     if (cset_state.is_in_cset()) {
4057       assert( obj->is_forwarded(), "invariant" );
4058       *p = obj->forwardee();
4059     } else {
4060       assert(!obj->is_forwarded(), "invariant" );
4061       assert(cset_state.is_humongous(),
4062              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4063       _g1->set_humongous_is_live(obj);
4064     }
4065   }
4066 };
4067 
4068 // Copying Keep Alive closure - can be called from both
4069 // serial and parallel code as long as different worker
4070 // threads utilize different G1ParScanThreadState instances
4071 // and different queues.
4072 
4073 class G1CopyingKeepAliveClosure: public OopClosure {
4074   G1CollectedHeap*         _g1h;
4075   OopClosure*              _copy_non_heap_obj_cl;
4076   G1ParScanThreadState*    _par_scan_state;
4077 
4078 public:
4079   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4080                             OopClosure* non_heap_obj_cl,
4081                             G1ParScanThreadState* pss):
4082     _g1h(g1h),
4083     _copy_non_heap_obj_cl(non_heap_obj_cl),
4084     _par_scan_state(pss)
4085   {}
4086 
4087   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4088   virtual void do_oop(      oop* p) { do_oop_work(p); }
4089 
4090   template <class T> void do_oop_work(T* p) {
4091     oop obj = oopDesc::load_decode_heap_oop(p);
4092 
4093     if (_g1h->is_in_cset_or_humongous(obj)) {
4094       // If the referent object has been forwarded (either copied
4095       // to a new location or to itself in the event of an
4096       // evacuation failure) then we need to update the reference
4097       // field and, if both reference and referent are in the G1
4098       // heap, update the RSet for the referent.
4099       //
4100       // If the referent has not been forwarded then we have to keep
4101       // it alive by policy. Therefore we have copy the referent.
4102       //
4103       // If the reference field is in the G1 heap then we can push
4104       // on the PSS queue. When the queue is drained (after each
4105       // phase of reference processing) the object and it's followers
4106       // will be copied, the reference field set to point to the
4107       // new location, and the RSet updated. Otherwise we need to
4108       // use the the non-heap or metadata closures directly to copy
4109       // the referent object and update the pointer, while avoiding
4110       // updating the RSet.
4111 
4112       if (_g1h->is_in_g1_reserved(p)) {
4113         _par_scan_state->push_on_queue(p);
4114       } else {
4115         assert(!Metaspace::contains((const void*)p),
4116                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4117         _copy_non_heap_obj_cl->do_oop(p);
4118       }
4119     }
4120   }
4121 };
4122 
4123 // Serial drain queue closure. Called as the 'complete_gc'
4124 // closure for each discovered list in some of the
4125 // reference processing phases.
4126 
4127 class G1STWDrainQueueClosure: public VoidClosure {
4128 protected:
4129   G1CollectedHeap* _g1h;
4130   G1ParScanThreadState* _par_scan_state;
4131 
4132   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4133 
4134 public:
4135   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4136     _g1h(g1h),
4137     _par_scan_state(pss)
4138   { }
4139 
4140   void do_void() {
4141     G1ParScanThreadState* const pss = par_scan_state();
4142     pss->trim_queue();
4143   }
4144 };
4145 
4146 // Parallel Reference Processing closures
4147 
4148 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4149 // processing during G1 evacuation pauses.
4150 
4151 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4152 private:
4153   G1CollectedHeap*          _g1h;
4154   G1ParScanThreadStateSet*  _pss;
4155   RefToScanQueueSet*        _queues;
4156   WorkGang*                 _workers;
4157   uint                      _active_workers;
4158 
4159 public:
4160   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4161                            G1ParScanThreadStateSet* per_thread_states,
4162                            WorkGang* workers,
4163                            RefToScanQueueSet *task_queues,
4164                            uint n_workers) :
4165     _g1h(g1h),
4166     _pss(per_thread_states),
4167     _queues(task_queues),
4168     _workers(workers),
4169     _active_workers(n_workers)
4170   {
4171     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4172   }
4173 
4174   // Executes the given task using concurrent marking worker threads.
4175   virtual void execute(ProcessTask& task);
4176   virtual void execute(EnqueueTask& task);
4177 };
4178 
4179 // Gang task for possibly parallel reference processing
4180 
4181 class G1STWRefProcTaskProxy: public AbstractGangTask {
4182   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4183   ProcessTask&     _proc_task;
4184   G1CollectedHeap* _g1h;
4185   G1ParScanThreadStateSet* _pss;
4186   RefToScanQueueSet* _task_queues;
4187   ParallelTaskTerminator* _terminator;
4188 
4189 public:
4190   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4191                         G1CollectedHeap* g1h,
4192                         G1ParScanThreadStateSet* per_thread_states,
4193                         RefToScanQueueSet *task_queues,
4194                         ParallelTaskTerminator* terminator) :
4195     AbstractGangTask("Process reference objects in parallel"),
4196     _proc_task(proc_task),
4197     _g1h(g1h),
4198     _pss(per_thread_states),
4199     _task_queues(task_queues),
4200     _terminator(terminator)
4201   {}
4202 
4203   virtual void work(uint worker_id) {
4204     // The reference processing task executed by a single worker.
4205     ResourceMark rm;
4206     HandleMark   hm;
4207 
4208     G1STWIsAliveClosure is_alive(_g1h);
4209 
4210     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4211     pss->set_ref_processor(NULL);
4212 
4213     // Keep alive closure.
4214     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4215 
4216     // Complete GC closure
4217     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4218 
4219     // Call the reference processing task's work routine.
4220     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4221 
4222     // Note we cannot assert that the refs array is empty here as not all
4223     // of the processing tasks (specifically phase2 - pp2_work) execute
4224     // the complete_gc closure (which ordinarily would drain the queue) so
4225     // the queue may not be empty.
4226   }
4227 };
4228 
4229 // Driver routine for parallel reference processing.
4230 // Creates an instance of the ref processing gang
4231 // task and has the worker threads execute it.
4232 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4233   assert(_workers != NULL, "Need parallel worker threads.");
4234 
4235   ParallelTaskTerminator terminator(_active_workers, _queues);
4236   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4237 
4238   _workers->run_task(&proc_task_proxy);
4239 }
4240 
4241 // Gang task for parallel reference enqueueing.
4242 
4243 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4244   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4245   EnqueueTask& _enq_task;
4246 
4247 public:
4248   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4249     AbstractGangTask("Enqueue reference objects in parallel"),
4250     _enq_task(enq_task)
4251   { }
4252 
4253   virtual void work(uint worker_id) {
4254     _enq_task.work(worker_id);
4255   }
4256 };
4257 
4258 // Driver routine for parallel reference enqueueing.
4259 // Creates an instance of the ref enqueueing gang
4260 // task and has the worker threads execute it.
4261 
4262 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4263   assert(_workers != NULL, "Need parallel worker threads.");
4264 
4265   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4266 
4267   _workers->run_task(&enq_task_proxy);
4268 }
4269 
4270 // End of weak reference support closures
4271 
4272 // Abstract task used to preserve (i.e. copy) any referent objects
4273 // that are in the collection set and are pointed to by reference
4274 // objects discovered by the CM ref processor.
4275 
4276 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4277 protected:
4278   G1CollectedHeap*         _g1h;
4279   G1ParScanThreadStateSet* _pss;
4280   RefToScanQueueSet*       _queues;
4281   ParallelTaskTerminator   _terminator;
4282   uint                     _n_workers;
4283 
4284 public:
4285   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4286     AbstractGangTask("ParPreserveCMReferents"),
4287     _g1h(g1h),
4288     _pss(per_thread_states),
4289     _queues(task_queues),
4290     _terminator(workers, _queues),
4291     _n_workers(workers)
4292   {
4293     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4294   }
4295 
4296   void work(uint worker_id) {
4297     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4298 
4299     ResourceMark rm;
4300     HandleMark   hm;
4301 
4302     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4303     pss->set_ref_processor(NULL);
4304     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4305 
4306     // Is alive closure
4307     G1AlwaysAliveClosure always_alive(_g1h);
4308 
4309     // Copying keep alive closure. Applied to referent objects that need
4310     // to be copied.
4311     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4312 
4313     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4314 
4315     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4316     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4317 
4318     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4319     // So this must be true - but assert just in case someone decides to
4320     // change the worker ids.
4321     assert(worker_id < limit, "sanity");
4322     assert(!rp->discovery_is_atomic(), "check this code");
4323 
4324     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4325     for (uint idx = worker_id; idx < limit; idx += stride) {
4326       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4327 
4328       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4329       while (iter.has_next()) {
4330         // Since discovery is not atomic for the CM ref processor, we
4331         // can see some null referent objects.
4332         iter.load_ptrs(DEBUG_ONLY(true));
4333         oop ref = iter.obj();
4334 
4335         // This will filter nulls.
4336         if (iter.is_referent_alive()) {
4337           iter.make_referent_alive();
4338         }
4339         iter.move_to_next();
4340       }
4341     }
4342 
4343     // Drain the queue - which may cause stealing
4344     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4345     drain_queue.do_void();
4346     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4347     assert(pss->queue_is_empty(), "should be");
4348   }
4349 };
4350 
4351 void G1CollectedHeap::process_weak_jni_handles() {
4352   double ref_proc_start = os::elapsedTime();
4353 
4354   G1STWIsAliveClosure is_alive(this);
4355   G1KeepAliveClosure keep_alive(this);
4356   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4357 
4358   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4359   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4360 }
4361 
4362 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4363   // Any reference objects, in the collection set, that were 'discovered'
4364   // by the CM ref processor should have already been copied (either by
4365   // applying the external root copy closure to the discovered lists, or
4366   // by following an RSet entry).
4367   //
4368   // But some of the referents, that are in the collection set, that these
4369   // reference objects point to may not have been copied: the STW ref
4370   // processor would have seen that the reference object had already
4371   // been 'discovered' and would have skipped discovering the reference,
4372   // but would not have treated the reference object as a regular oop.
4373   // As a result the copy closure would not have been applied to the
4374   // referent object.
4375   //
4376   // We need to explicitly copy these referent objects - the references
4377   // will be processed at the end of remarking.
4378   //
4379   // We also need to do this copying before we process the reference
4380   // objects discovered by the STW ref processor in case one of these
4381   // referents points to another object which is also referenced by an
4382   // object discovered by the STW ref processor.
4383   double preserve_cm_referents_time = 0.0;
4384 
4385   // To avoid spawning task when there is no work to do, check that
4386   // a concurrent cycle is active and that some references have been
4387   // discovered.
4388   if (concurrent_mark()->cmThread()->during_cycle() &&
4389       ref_processor_cm()->has_discovered_references()) {
4390     double preserve_cm_referents_start = os::elapsedTime();
4391     uint no_of_gc_workers = workers()->active_workers();
4392     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4393                                                    per_thread_states,
4394                                                    no_of_gc_workers,
4395                                                    _task_queues);
4396     workers()->run_task(&keep_cm_referents);
4397     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4398   }
4399 
4400   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4401 }
4402 
4403 // Weak Reference processing during an evacuation pause (part 1).
4404 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4405   double ref_proc_start = os::elapsedTime();
4406 
4407   ReferenceProcessor* rp = _ref_processor_stw;
4408   assert(rp->discovery_enabled(), "should have been enabled");
4409 
4410   // Closure to test whether a referent is alive.
4411   G1STWIsAliveClosure is_alive(this);
4412 
4413   // Even when parallel reference processing is enabled, the processing
4414   // of JNI refs is serial and performed serially by the current thread
4415   // rather than by a worker. The following PSS will be used for processing
4416   // JNI refs.
4417 
4418   // Use only a single queue for this PSS.
4419   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4420   pss->set_ref_processor(NULL);
4421   assert(pss->queue_is_empty(), "pre-condition");
4422 
4423   // Keep alive closure.
4424   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4425 
4426   // Serial Complete GC closure
4427   G1STWDrainQueueClosure drain_queue(this, pss);
4428 
4429   // Setup the soft refs policy...
4430   rp->setup_policy(false);
4431 
4432   ReferenceProcessorStats stats;
4433   if (!rp->processing_is_mt()) {
4434     // Serial reference processing...
4435     stats = rp->process_discovered_references(&is_alive,
4436                                               &keep_alive,
4437                                               &drain_queue,
4438                                               NULL,
4439                                               _gc_timer_stw);
4440   } else {
4441     uint no_of_gc_workers = workers()->active_workers();
4442 
4443     // Parallel reference processing
4444     assert(no_of_gc_workers <= rp->max_num_q(),
4445            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4446            no_of_gc_workers,  rp->max_num_q());
4447 
4448     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4449     stats = rp->process_discovered_references(&is_alive,
4450                                               &keep_alive,
4451                                               &drain_queue,
4452                                               &par_task_executor,
4453                                               _gc_timer_stw);
4454   }
4455 
4456   _gc_tracer_stw->report_gc_reference_stats(stats);
4457 
4458   // We have completed copying any necessary live referent objects.
4459   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4460 
4461   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4462   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4463 }
4464 
4465 // Weak Reference processing during an evacuation pause (part 2).
4466 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4467   double ref_enq_start = os::elapsedTime();
4468 
4469   ReferenceProcessor* rp = _ref_processor_stw;
4470   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4471 
4472   // Now enqueue any remaining on the discovered lists on to
4473   // the pending list.
4474   if (!rp->processing_is_mt()) {
4475     // Serial reference processing...
4476     rp->enqueue_discovered_references();
4477   } else {
4478     // Parallel reference enqueueing
4479 
4480     uint n_workers = workers()->active_workers();
4481 
4482     assert(n_workers <= rp->max_num_q(),
4483            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4484            n_workers,  rp->max_num_q());
4485 
4486     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4487     rp->enqueue_discovered_references(&par_task_executor);
4488   }
4489 
4490   rp->verify_no_references_recorded();
4491   assert(!rp->discovery_enabled(), "should have been disabled");
4492 
4493   // FIXME
4494   // CM's reference processing also cleans up the string and symbol tables.
4495   // Should we do that here also? We could, but it is a serial operation
4496   // and could significantly increase the pause time.
4497 
4498   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4499   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4500 }
4501 
4502 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4503   double merge_pss_time_start = os::elapsedTime();
4504   per_thread_states->flush();
4505   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4506 }
4507 
4508 void G1CollectedHeap::pre_evacuate_collection_set() {
4509   _expand_heap_after_alloc_failure = true;
4510   _evacuation_failed = false;
4511 
4512   // Disable the hot card cache.
4513   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
4514   hot_card_cache->reset_hot_cache_claimed_index();
4515   hot_card_cache->set_use_cache(false);
4516 
4517   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4518   _preserved_marks_set.assert_empty();
4519 }
4520 
4521 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4522   // Should G1EvacuationFailureALot be in effect for this GC?
4523   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4524 
4525   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4526   double start_par_time_sec = os::elapsedTime();
4527   double end_par_time_sec;
4528 
4529   {
4530     const uint n_workers = workers()->active_workers();
4531     G1RootProcessor root_processor(this, n_workers);
4532     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4533     // InitialMark needs claim bits to keep track of the marked-through CLDs.
4534     if (collector_state()->during_initial_mark_pause()) {
4535       ClassLoaderDataGraph::clear_claimed_marks();
4536     }
4537 
4538     print_termination_stats_hdr();
4539 
4540     workers()->run_task(&g1_par_task);
4541     end_par_time_sec = os::elapsedTime();
4542 
4543     // Closing the inner scope will execute the destructor
4544     // for the G1RootProcessor object. We record the current
4545     // elapsed time before closing the scope so that time
4546     // taken for the destructor is NOT included in the
4547     // reported parallel time.
4548   }
4549 
4550   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4551 
4552   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4553   phase_times->record_par_time(par_time_ms);
4554 
4555   double code_root_fixup_time_ms =
4556         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4557   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4558 }
4559 
4560 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4561   // Process any discovered reference objects - we have
4562   // to do this _before_ we retire the GC alloc regions
4563   // as we may have to copy some 'reachable' referent
4564   // objects (and their reachable sub-graphs) that were
4565   // not copied during the pause.
4566   if (g1_policy()->should_process_references()) {
4567     preserve_cm_referents(per_thread_states);
4568     process_discovered_references(per_thread_states);
4569   } else {
4570     ref_processor_stw()->verify_no_references_recorded();
4571     process_weak_jni_handles();
4572   }
4573 
4574   if (G1StringDedup::is_enabled()) {
4575     double fixup_start = os::elapsedTime();
4576 
4577     G1STWIsAliveClosure is_alive(this);
4578     G1KeepAliveClosure keep_alive(this);
4579     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4580 
4581     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4582     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4583   }
4584 
4585   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4586 
4587   if (evacuation_failed()) {
4588     restore_after_evac_failure();
4589 
4590     // Reset the G1EvacuationFailureALot counters and flags
4591     // Note: the values are reset only when an actual
4592     // evacuation failure occurs.
4593     NOT_PRODUCT(reset_evacuation_should_fail();)
4594   }
4595 
4596   _preserved_marks_set.assert_empty();
4597 
4598   // Enqueue any remaining references remaining on the STW
4599   // reference processor's discovered lists. We need to do
4600   // this after the card table is cleaned (and verified) as
4601   // the act of enqueueing entries on to the pending list
4602   // will log these updates (and dirty their associated
4603   // cards). We need these updates logged to update any
4604   // RSets.
4605   if (g1_policy()->should_process_references()) {
4606     enqueue_discovered_references(per_thread_states);
4607   } else {
4608     g1_policy()->phase_times()->record_ref_enq_time(0);
4609   }
4610 
4611   _allocator->release_gc_alloc_regions(evacuation_info);
4612 
4613   merge_per_thread_state_info(per_thread_states);
4614 
4615   // Reset and re-enable the hot card cache.
4616   // Note the counts for the cards in the regions in the
4617   // collection set are reset when the collection set is freed.
4618   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
4619   hot_card_cache->reset_hot_cache();
4620   hot_card_cache->set_use_cache(true);
4621 
4622   purge_code_root_memory();
4623 
4624   redirty_logged_cards();
4625 #if defined(COMPILER2) || INCLUDE_JVMCI
4626   DerivedPointerTable::update_pointers();
4627 #endif
4628 }
4629 
4630 void G1CollectedHeap::record_obj_copy_mem_stats() {
4631   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4632 
4633   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4634                                                create_g1_evac_summary(&_old_evac_stats));
4635 }
4636 
4637 void G1CollectedHeap::free_region(HeapRegion* hr,
4638                                   FreeRegionList* free_list,
4639                                   bool par,
4640                                   bool locked) {
4641   assert(!hr->is_free(), "the region should not be free");
4642   assert(!hr->is_empty(), "the region should not be empty");
4643   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4644   assert(free_list != NULL, "pre-condition");
4645 
4646   if (G1VerifyBitmaps) {
4647     MemRegion mr(hr->bottom(), hr->end());
4648     concurrent_mark()->clearRangePrevBitmap(mr);
4649   }
4650 
4651   // Clear the card counts for this region.
4652   // Note: we only need to do this if the region is not young
4653   // (since we don't refine cards in young regions).
4654   if (!hr->is_young()) {
4655     _cg1r->hot_card_cache()->reset_card_counts(hr);
4656   }
4657   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
4658   free_list->add_ordered(hr);
4659 }
4660 
4661 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4662                                             FreeRegionList* free_list,
4663                                             bool par) {
4664   assert(hr->is_humongous(), "this is only for humongous regions");
4665   assert(free_list != NULL, "pre-condition");
4666   hr->clear_humongous();
4667   free_region(hr, free_list, par);
4668 }
4669 
4670 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4671                                            const uint humongous_regions_removed) {
4672   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4673     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4674     _old_set.bulk_remove(old_regions_removed);
4675     _humongous_set.bulk_remove(humongous_regions_removed);
4676   }
4677 
4678 }
4679 
4680 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4681   assert(list != NULL, "list can't be null");
4682   if (!list->is_empty()) {
4683     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4684     _hrm.insert_list_into_free_list(list);
4685   }
4686 }
4687 
4688 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4689   decrease_used(bytes);
4690 }
4691 
4692 class G1ParScrubRemSetTask: public AbstractGangTask {
4693 protected:
4694   G1RemSet* _g1rs;
4695   HeapRegionClaimer _hrclaimer;
4696 
4697 public:
4698   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4699     AbstractGangTask("G1 ScrubRS"),
4700     _g1rs(g1_rs),
4701     _hrclaimer(num_workers) {
4702   }
4703 
4704   void work(uint worker_id) {
4705     _g1rs->scrub(worker_id, &_hrclaimer);
4706   }
4707 };
4708 
4709 void G1CollectedHeap::scrub_rem_set() {
4710   uint num_workers = workers()->active_workers();
4711   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4712   workers()->run_task(&g1_par_scrub_rs_task);
4713 }
4714 
4715 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4716   size_t pre_used = 0;
4717   FreeRegionList local_free_list("Local List for CSet Freeing");
4718 
4719   double young_time_ms     = 0.0;
4720   double non_young_time_ms = 0.0;
4721 
4722   // Since the collection set is a superset of the the young list,
4723   // all we need to do to clear the young list is clear its
4724   // head and length, and unlink any young regions in the code below
4725   _young_list->clear();
4726 
4727   G1Policy* policy = g1_policy();
4728 
4729   double start_sec = os::elapsedTime();
4730   bool non_young = true;
4731 
4732   HeapRegion* cur = cs_head;
4733   int age_bound = -1;
4734   size_t rs_lengths = 0;
4735 
4736   while (cur != NULL) {
4737     assert(!is_on_master_free_list(cur), "sanity");
4738     if (non_young) {
4739       if (cur->is_young()) {
4740         double end_sec = os::elapsedTime();
4741         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4742         non_young_time_ms += elapsed_ms;
4743 
4744         start_sec = os::elapsedTime();
4745         non_young = false;
4746       }
4747     } else {
4748       if (!cur->is_young()) {
4749         double end_sec = os::elapsedTime();
4750         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4751         young_time_ms += elapsed_ms;
4752 
4753         start_sec = os::elapsedTime();
4754         non_young = true;
4755       }
4756     }
4757 
4758     rs_lengths += cur->rem_set()->occupied_locked();
4759 
4760     HeapRegion* next = cur->next_in_collection_set();
4761     assert(cur->in_collection_set(), "bad CS");
4762     cur->set_next_in_collection_set(NULL);
4763     clear_in_cset(cur);
4764 
4765     if (cur->is_young()) {
4766       int index = cur->young_index_in_cset();
4767       assert(index != -1, "invariant");
4768       assert((uint) index < collection_set()->young_region_length(), "invariant");
4769       size_t words_survived = surviving_young_words[index];
4770       cur->record_surv_words_in_group(words_survived);
4771 
4772       // At this point the we have 'popped' cur from the collection set
4773       // (linked via next_in_collection_set()) but it is still in the
4774       // young list (linked via next_young_region()). Clear the
4775       // _next_young_region field.
4776       cur->set_next_young_region(NULL);
4777     } else {
4778       int index = cur->young_index_in_cset();
4779       assert(index == -1, "invariant");
4780     }
4781 
4782     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4783             (!cur->is_young() && cur->young_index_in_cset() == -1),
4784             "invariant" );
4785 
4786     if (!cur->evacuation_failed()) {
4787       MemRegion used_mr = cur->used_region();
4788 
4789       // And the region is empty.
4790       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
4791       pre_used += cur->used();
4792       free_region(cur, &local_free_list, false /* par */, true /* locked */);
4793     } else {
4794       cur->uninstall_surv_rate_group();
4795       if (cur->is_young()) {
4796         cur->set_young_index_in_cset(-1);
4797       }
4798       cur->set_evacuation_failed(false);
4799       // When moving a young gen region to old gen, we "allocate" that whole region
4800       // there. This is in addition to any already evacuated objects. Notify the
4801       // policy about that.
4802       // Old gen regions do not cause an additional allocation: both the objects
4803       // still in the region and the ones already moved are accounted for elsewhere.
4804       if (cur->is_young()) {
4805         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
4806       }
4807       // The region is now considered to be old.
4808       cur->set_old();
4809       // Do some allocation statistics accounting. Regions that failed evacuation
4810       // are always made old, so there is no need to update anything in the young
4811       // gen statistics, but we need to update old gen statistics.
4812       size_t used_words = cur->marked_bytes() / HeapWordSize;
4813       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
4814       _old_set.add(cur);
4815       evacuation_info.increment_collectionset_used_after(cur->used());
4816     }
4817     cur = next;
4818   }
4819 
4820   evacuation_info.set_regions_freed(local_free_list.length());
4821   policy->record_max_rs_lengths(rs_lengths);
4822   policy->cset_regions_freed();
4823 
4824   double end_sec = os::elapsedTime();
4825   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4826 
4827   if (non_young) {
4828     non_young_time_ms += elapsed_ms;
4829   } else {
4830     young_time_ms += elapsed_ms;
4831   }
4832 
4833   prepend_to_freelist(&local_free_list);
4834   decrement_summary_bytes(pre_used);
4835   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
4836   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
4837 }
4838 
4839 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4840  private:
4841   FreeRegionList* _free_region_list;
4842   HeapRegionSet* _proxy_set;
4843   uint _humongous_regions_removed;
4844   size_t _freed_bytes;
4845  public:
4846 
4847   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4848     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
4849   }
4850 
4851   virtual bool doHeapRegion(HeapRegion* r) {
4852     if (!r->is_starts_humongous()) {
4853       return false;
4854     }
4855 
4856     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4857 
4858     oop obj = (oop)r->bottom();
4859     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4860 
4861     // The following checks whether the humongous object is live are sufficient.
4862     // The main additional check (in addition to having a reference from the roots
4863     // or the young gen) is whether the humongous object has a remembered set entry.
4864     //
4865     // A humongous object cannot be live if there is no remembered set for it
4866     // because:
4867     // - there can be no references from within humongous starts regions referencing
4868     // the object because we never allocate other objects into them.
4869     // (I.e. there are no intra-region references that may be missed by the
4870     // remembered set)
4871     // - as soon there is a remembered set entry to the humongous starts region
4872     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4873     // until the end of a concurrent mark.
4874     //
4875     // It is not required to check whether the object has been found dead by marking
4876     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4877     // all objects allocated during that time are considered live.
4878     // SATB marking is even more conservative than the remembered set.
4879     // So if at this point in the collection there is no remembered set entry,
4880     // nobody has a reference to it.
4881     // At the start of collection we flush all refinement logs, and remembered sets
4882     // are completely up-to-date wrt to references to the humongous object.
4883     //
4884     // Other implementation considerations:
4885     // - never consider object arrays at this time because they would pose
4886     // considerable effort for cleaning up the the remembered sets. This is
4887     // required because stale remembered sets might reference locations that
4888     // are currently allocated into.
4889     uint region_idx = r->hrm_index();
4890     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4891         !r->rem_set()->is_empty()) {
4892       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4893                                region_idx,
4894                                (size_t)obj->size() * HeapWordSize,
4895                                p2i(r->bottom()),
4896                                r->rem_set()->occupied(),
4897                                r->rem_set()->strong_code_roots_list_length(),
4898                                next_bitmap->isMarked(r->bottom()),
4899                                g1h->is_humongous_reclaim_candidate(region_idx),
4900                                obj->is_typeArray()
4901                               );
4902       return false;
4903     }
4904 
4905     guarantee(obj->is_typeArray(),
4906               "Only eagerly reclaiming type arrays is supported, but the object "
4907               PTR_FORMAT " is not.", p2i(r->bottom()));
4908 
4909     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4910                              region_idx,
4911                              (size_t)obj->size() * HeapWordSize,
4912                              p2i(r->bottom()),
4913                              r->rem_set()->occupied(),
4914                              r->rem_set()->strong_code_roots_list_length(),
4915                              next_bitmap->isMarked(r->bottom()),
4916                              g1h->is_humongous_reclaim_candidate(region_idx),
4917                              obj->is_typeArray()
4918                             );
4919 
4920     // Need to clear mark bit of the humongous object if already set.
4921     if (next_bitmap->isMarked(r->bottom())) {
4922       next_bitmap->clear(r->bottom());
4923     }
4924     do {
4925       HeapRegion* next = g1h->next_region_in_humongous(r);
4926       _freed_bytes += r->used();
4927       r->set_containing_set(NULL);
4928       _humongous_regions_removed++;
4929       g1h->free_humongous_region(r, _free_region_list, false);
4930       r = next;
4931     } while (r != NULL);
4932 
4933     return false;
4934   }
4935 
4936   uint humongous_free_count() {
4937     return _humongous_regions_removed;
4938   }
4939 
4940   size_t bytes_freed() const {
4941     return _freed_bytes;
4942   }
4943 };
4944 
4945 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4946   assert_at_safepoint(true);
4947 
4948   if (!G1EagerReclaimHumongousObjects ||
4949       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4950     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4951     return;
4952   }
4953 
4954   double start_time = os::elapsedTime();
4955 
4956   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4957 
4958   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4959   heap_region_iterate(&cl);
4960 
4961   remove_from_old_sets(0, cl.humongous_free_count());
4962 
4963   G1HRPrinter* hrp = hr_printer();
4964   if (hrp->is_active()) {
4965     FreeRegionListIterator iter(&local_cleanup_list);
4966     while (iter.more_available()) {
4967       HeapRegion* hr = iter.get_next();
4968       hrp->cleanup(hr);
4969     }
4970   }
4971 
4972   prepend_to_freelist(&local_cleanup_list);
4973   decrement_summary_bytes(cl.bytes_freed());
4974 
4975   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4976                                                                     cl.humongous_free_count());
4977 }
4978 
4979 // This routine is similar to the above but does not record
4980 // any policy statistics or update free lists; we are abandoning
4981 // the current incremental collection set in preparation of a
4982 // full collection. After the full GC we will start to build up
4983 // the incremental collection set again.
4984 // This is only called when we're doing a full collection
4985 // and is immediately followed by the tearing down of the young list.
4986 
4987 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
4988   HeapRegion* cur = cs_head;
4989 
4990   while (cur != NULL) {
4991     HeapRegion* next = cur->next_in_collection_set();
4992     assert(cur->in_collection_set(), "bad CS");
4993     cur->set_next_in_collection_set(NULL);
4994     clear_in_cset(cur);
4995     cur->set_young_index_in_cset(-1);
4996     cur = next;
4997   }
4998 }
4999 
5000 void G1CollectedHeap::set_free_regions_coming() {
5001   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5002 
5003   assert(!free_regions_coming(), "pre-condition");
5004   _free_regions_coming = true;
5005 }
5006 
5007 void G1CollectedHeap::reset_free_regions_coming() {
5008   assert(free_regions_coming(), "pre-condition");
5009 
5010   {
5011     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5012     _free_regions_coming = false;
5013     SecondaryFreeList_lock->notify_all();
5014   }
5015 
5016   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5017 }
5018 
5019 void G1CollectedHeap::wait_while_free_regions_coming() {
5020   // Most of the time we won't have to wait, so let's do a quick test
5021   // first before we take the lock.
5022   if (!free_regions_coming()) {
5023     return;
5024   }
5025 
5026   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5027 
5028   {
5029     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5030     while (free_regions_coming()) {
5031       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5032     }
5033   }
5034 
5035   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5036 }
5037 
5038 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5039   return _allocator->is_retained_old_region(hr);
5040 }
5041 
5042 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5043   _young_list->push_region(hr);
5044 }
5045 
5046 class NoYoungRegionsClosure: public HeapRegionClosure {
5047 private:
5048   bool _success;
5049 public:
5050   NoYoungRegionsClosure() : _success(true) { }
5051   bool doHeapRegion(HeapRegion* r) {
5052     if (r->is_young()) {
5053       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5054                             p2i(r->bottom()), p2i(r->end()));
5055       _success = false;
5056     }
5057     return false;
5058   }
5059   bool success() { return _success; }
5060 };
5061 
5062 bool G1CollectedHeap::check_young_list_empty(bool check_heap) {
5063   bool ret = _young_list->check_list_empty();
5064 
5065   if (check_heap) {
5066     NoYoungRegionsClosure closure;
5067     heap_region_iterate(&closure);
5068     ret = ret && closure.success();
5069   }
5070 
5071   return ret;
5072 }
5073 
5074 class TearDownRegionSetsClosure : public HeapRegionClosure {
5075 private:
5076   HeapRegionSet *_old_set;
5077 
5078 public:
5079   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5080 
5081   bool doHeapRegion(HeapRegion* r) {
5082     if (r->is_old()) {
5083       _old_set->remove(r);
5084     } else {
5085       // We ignore free regions, we'll empty the free list afterwards.
5086       // We ignore young regions, we'll empty the young list afterwards.
5087       // We ignore humongous regions, we're not tearing down the
5088       // humongous regions set.
5089       assert(r->is_free() || r->is_young() || r->is_humongous(),
5090              "it cannot be another type");
5091     }
5092     return false;
5093   }
5094 
5095   ~TearDownRegionSetsClosure() {
5096     assert(_old_set->is_empty(), "post-condition");
5097   }
5098 };
5099 
5100 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5101   assert_at_safepoint(true /* should_be_vm_thread */);
5102 
5103   if (!free_list_only) {
5104     TearDownRegionSetsClosure cl(&_old_set);
5105     heap_region_iterate(&cl);
5106 
5107     // Note that emptying the _young_list is postponed and instead done as
5108     // the first step when rebuilding the regions sets again. The reason for
5109     // this is that during a full GC string deduplication needs to know if
5110     // a collected region was young or old when the full GC was initiated.
5111   }
5112   _hrm.remove_all_free_regions();
5113 }
5114 
5115 void G1CollectedHeap::increase_used(size_t bytes) {
5116   _summary_bytes_used += bytes;
5117 }
5118 
5119 void G1CollectedHeap::decrease_used(size_t bytes) {
5120   assert(_summary_bytes_used >= bytes,
5121          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5122          _summary_bytes_used, bytes);
5123   _summary_bytes_used -= bytes;
5124 }
5125 
5126 void G1CollectedHeap::set_used(size_t bytes) {
5127   _summary_bytes_used = bytes;
5128 }
5129 
5130 class RebuildRegionSetsClosure : public HeapRegionClosure {
5131 private:
5132   bool            _free_list_only;
5133   HeapRegionSet*   _old_set;
5134   HeapRegionManager*   _hrm;
5135   size_t          _total_used;
5136 
5137 public:
5138   RebuildRegionSetsClosure(bool free_list_only,
5139                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5140     _free_list_only(free_list_only),
5141     _old_set(old_set), _hrm(hrm), _total_used(0) {
5142     assert(_hrm->num_free_regions() == 0, "pre-condition");
5143     if (!free_list_only) {
5144       assert(_old_set->is_empty(), "pre-condition");
5145     }
5146   }
5147 
5148   bool doHeapRegion(HeapRegion* r) {
5149     if (r->is_empty()) {
5150       // Add free regions to the free list
5151       r->set_free();
5152       r->set_allocation_context(AllocationContext::system());
5153       _hrm->insert_into_free_list(r);
5154     } else if (!_free_list_only) {
5155       assert(!r->is_young(), "we should not come across young regions");
5156 
5157       if (r->is_humongous()) {
5158         // We ignore humongous regions. We left the humongous set unchanged.
5159       } else {
5160         // Objects that were compacted would have ended up on regions
5161         // that were previously old or free.  Archive regions (which are
5162         // old) will not have been touched.
5163         assert(r->is_free() || r->is_old(), "invariant");
5164         // We now consider them old, so register as such. Leave
5165         // archive regions set that way, however, while still adding
5166         // them to the old set.
5167         if (!r->is_archive()) {
5168           r->set_old();
5169         }
5170         _old_set->add(r);
5171       }
5172       _total_used += r->used();
5173     }
5174 
5175     return false;
5176   }
5177 
5178   size_t total_used() {
5179     return _total_used;
5180   }
5181 };
5182 
5183 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5184   assert_at_safepoint(true /* should_be_vm_thread */);
5185 
5186   if (!free_list_only) {
5187     _young_list->empty_list();
5188   }
5189 
5190   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5191   heap_region_iterate(&cl);
5192 
5193   if (!free_list_only) {
5194     set_used(cl.total_used());
5195     if (_archive_allocator != NULL) {
5196       _archive_allocator->clear_used();
5197     }
5198   }
5199   assert(used_unlocked() == recalculate_used(),
5200          "inconsistent used_unlocked(), "
5201          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5202          used_unlocked(), recalculate_used());
5203 }
5204 
5205 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5206   _refine_cte_cl->set_concurrent(concurrent);
5207 }
5208 
5209 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5210   HeapRegion* hr = heap_region_containing(p);
5211   return hr->is_in(p);
5212 }
5213 
5214 // Methods for the mutator alloc region
5215 
5216 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5217                                                       bool force) {
5218   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5219   assert(!force || g1_policy()->can_expand_young_list(),
5220          "if force is true we should be able to expand the young list");
5221   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5222   if (force || should_allocate) {
5223     HeapRegion* new_alloc_region = new_region(word_size,
5224                                               false /* is_old */,
5225                                               false /* do_expand */);
5226     if (new_alloc_region != NULL) {
5227       set_region_short_lived_locked(new_alloc_region);
5228       _hr_printer.alloc(new_alloc_region, !should_allocate);
5229       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5230       return new_alloc_region;
5231     }
5232   }
5233   return NULL;
5234 }
5235 
5236 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5237                                                   size_t allocated_bytes) {
5238   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5239   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5240 
5241   collection_set()->add_eden_region(alloc_region);
5242   increase_used(allocated_bytes);
5243   _hr_printer.retire(alloc_region);
5244   // We update the eden sizes here, when the region is retired,
5245   // instead of when it's allocated, since this is the point that its
5246   // used space has been recored in _summary_bytes_used.
5247   g1mm()->update_eden_size();
5248 }
5249 
5250 // Methods for the GC alloc regions
5251 
5252 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5253   if (dest.is_old()) {
5254     return true;
5255   } else {
5256     return young_list()->survivor_length() < g1_policy()->max_survivor_regions();
5257   }
5258 }
5259 
5260 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5261   assert(FreeList_lock->owned_by_self(), "pre-condition");
5262 
5263   if (!has_more_regions(dest)) {
5264     return NULL;
5265   }
5266 
5267   const bool is_survivor = dest.is_young();
5268 
5269   HeapRegion* new_alloc_region = new_region(word_size,
5270                                             !is_survivor,
5271                                             true /* do_expand */);
5272   if (new_alloc_region != NULL) {
5273     // We really only need to do this for old regions given that we
5274     // should never scan survivors. But it doesn't hurt to do it
5275     // for survivors too.
5276     new_alloc_region->record_timestamp();
5277     if (is_survivor) {
5278       new_alloc_region->set_survivor();
5279       young_list()->add_survivor_region(new_alloc_region);
5280       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5281     } else {
5282       new_alloc_region->set_old();
5283       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5284     }
5285     _hr_printer.alloc(new_alloc_region);
5286     bool during_im = collector_state()->during_initial_mark_pause();
5287     new_alloc_region->note_start_of_copying(during_im);
5288     return new_alloc_region;
5289   }
5290   return NULL;
5291 }
5292 
5293 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5294                                              size_t allocated_bytes,
5295                                              InCSetState dest) {
5296   bool during_im = collector_state()->during_initial_mark_pause();
5297   alloc_region->note_end_of_copying(during_im);
5298   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5299   if (dest.is_old()) {
5300     _old_set.add(alloc_region);
5301   }
5302   _hr_printer.retire(alloc_region);
5303 }
5304 
5305 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5306   bool expanded = false;
5307   uint index = _hrm.find_highest_free(&expanded);
5308 
5309   if (index != G1_NO_HRM_INDEX) {
5310     if (expanded) {
5311       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5312                                 HeapRegion::GrainWords * HeapWordSize);
5313     }
5314     _hrm.allocate_free_regions_starting_at(index, 1);
5315     return region_at(index);
5316   }
5317   return NULL;
5318 }
5319 
5320 // Optimized nmethod scanning
5321 
5322 class RegisterNMethodOopClosure: public OopClosure {
5323   G1CollectedHeap* _g1h;
5324   nmethod* _nm;
5325 
5326   template <class T> void do_oop_work(T* p) {
5327     T heap_oop = oopDesc::load_heap_oop(p);
5328     if (!oopDesc::is_null(heap_oop)) {
5329       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5330       HeapRegion* hr = _g1h->heap_region_containing(obj);
5331       assert(!hr->is_continues_humongous(),
5332              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5333              " starting at " HR_FORMAT,
5334              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5335 
5336       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5337       hr->add_strong_code_root_locked(_nm);
5338     }
5339   }
5340 
5341 public:
5342   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5343     _g1h(g1h), _nm(nm) {}
5344 
5345   void do_oop(oop* p)       { do_oop_work(p); }
5346   void do_oop(narrowOop* p) { do_oop_work(p); }
5347 };
5348 
5349 class UnregisterNMethodOopClosure: public OopClosure {
5350   G1CollectedHeap* _g1h;
5351   nmethod* _nm;
5352 
5353   template <class T> void do_oop_work(T* p) {
5354     T heap_oop = oopDesc::load_heap_oop(p);
5355     if (!oopDesc::is_null(heap_oop)) {
5356       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5357       HeapRegion* hr = _g1h->heap_region_containing(obj);
5358       assert(!hr->is_continues_humongous(),
5359              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5360              " starting at " HR_FORMAT,
5361              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5362 
5363       hr->remove_strong_code_root(_nm);
5364     }
5365   }
5366 
5367 public:
5368   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5369     _g1h(g1h), _nm(nm) {}
5370 
5371   void do_oop(oop* p)       { do_oop_work(p); }
5372   void do_oop(narrowOop* p) { do_oop_work(p); }
5373 };
5374 
5375 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5376   CollectedHeap::register_nmethod(nm);
5377 
5378   guarantee(nm != NULL, "sanity");
5379   RegisterNMethodOopClosure reg_cl(this, nm);
5380   nm->oops_do(&reg_cl);
5381 }
5382 
5383 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5384   CollectedHeap::unregister_nmethod(nm);
5385 
5386   guarantee(nm != NULL, "sanity");
5387   UnregisterNMethodOopClosure reg_cl(this, nm);
5388   nm->oops_do(&reg_cl, true);
5389 }
5390 
5391 void G1CollectedHeap::purge_code_root_memory() {
5392   double purge_start = os::elapsedTime();
5393   G1CodeRootSet::purge();
5394   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5395   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5396 }
5397 
5398 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5399   G1CollectedHeap* _g1h;
5400 
5401 public:
5402   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5403     _g1h(g1h) {}
5404 
5405   void do_code_blob(CodeBlob* cb) {
5406     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5407     if (nm == NULL) {
5408       return;
5409     }
5410 
5411     if (ScavengeRootsInCode) {
5412       _g1h->register_nmethod(nm);
5413     }
5414   }
5415 };
5416 
5417 void G1CollectedHeap::rebuild_strong_code_roots() {
5418   RebuildStrongCodeRootClosure blob_cl(this);
5419   CodeCache::blobs_do(&blob_cl);
5420 }