1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP
  27 
  28 #include "gc/g1/g1CodeCacheRemSet.hpp"
  29 #include "gc/g1/g1FromCardCache.hpp"
  30 #include "gc/g1/sparsePRT.hpp"
  31 
  32 // Remembered set for a heap region.  Represent a set of "cards" that
  33 // contain pointers into the owner heap region.  Cards are defined somewhat
  34 // abstractly, in terms of what the "BlockOffsetTable" in use can parse.
  35 
  36 class G1CollectedHeap;
  37 class G1BlockOffsetTable;
  38 class G1CardLiveData;
  39 class HeapRegion;
  40 class HeapRegionRemSetIterator;
  41 class PerRegionTable;
  42 class SparsePRT;
  43 class nmethod;
  44 
  45 // Essentially a wrapper around SparsePRTCleanupTask. See
  46 // sparsePRT.hpp for more details.
  47 class HRRSCleanupTask : public SparsePRTCleanupTask {
  48 };
  49 
  50 // The "_coarse_map" is a bitmap with one bit for each region, where set
  51 // bits indicate that the corresponding region may contain some pointer
  52 // into the owning region.
  53 
  54 // The "_fine_grain_entries" array is an open hash table of PerRegionTables
  55 // (PRTs), indicating regions for which we're keeping the RS as a set of
  56 // cards.  The strategy is to cap the size of the fine-grain table,
  57 // deleting an entry and setting the corresponding coarse-grained bit when
  58 // we would overflow this cap.
  59 
  60 // We use a mixture of locking and lock-free techniques here.  We allow
  61 // threads to locate PRTs without locking, but threads attempting to alter
  62 // a bucket list obtain a lock.  This means that any failing attempt to
  63 // find a PRT must be retried with the lock.  It might seem dangerous that
  64 // a read can find a PRT that is concurrently deleted.  This is all right,
  65 // because:
  66 //
  67 //   1) We only actually free PRT's at safe points (though we reuse them at
  68 //      other times).
  69 //   2) We find PRT's in an attempt to add entries.  If a PRT is deleted,
  70 //      it's _coarse_map bit is set, so the that we were attempting to add
  71 //      is represented.  If a deleted PRT is re-used, a thread adding a bit,
  72 //      thinking the PRT is for a different region, does no harm.
  73 
  74 class OtherRegionsTable VALUE_OBJ_CLASS_SPEC {
  75   friend class HeapRegionRemSetIterator;
  76 
  77   G1CollectedHeap* _g1h;
  78   Mutex*           _m;
  79   HeapRegion*      _hr;
  80 
  81   // These are protected by "_m".
  82   bool        _coarse_dirty;
  83   BitMap      _coarse_map;
  84   size_t      _n_coarse_entries;
  85   static jint _n_coarsenings;
  86 
  87   PerRegionTable** _fine_grain_regions;
  88   size_t           _n_fine_entries;
  89 
  90   // The fine grain remembered sets are doubly linked together using
  91   // their 'next' and 'prev' fields.
  92   // This allows fast bulk freeing of all the fine grain remembered
  93   // set entries, and fast finding of all of them without iterating
  94   // over the _fine_grain_regions table.
  95   PerRegionTable * _first_all_fine_prts;
  96   PerRegionTable * _last_all_fine_prts;
  97 
  98   // Used to sample a subset of the fine grain PRTs to determine which
  99   // PRT to evict and coarsen.
 100   size_t        _fine_eviction_start;
 101   static size_t _fine_eviction_stride;
 102   static size_t _fine_eviction_sample_size;
 103 
 104   SparsePRT   _sparse_table;
 105 
 106   // These are static after init.
 107   static size_t _max_fine_entries;
 108   static size_t _mod_max_fine_entries_mask;
 109 
 110   // Requires "prt" to be the first element of the bucket list appropriate
 111   // for "hr".  If this list contains an entry for "hr", return it,
 112   // otherwise return "NULL".
 113   PerRegionTable* find_region_table(size_t ind, HeapRegion* hr) const;
 114 
 115   // Find, delete, and return a candidate PerRegionTable, if any exists,
 116   // adding the deleted region to the coarse bitmap.  Requires the caller
 117   // to hold _m, and the fine-grain table to be full.
 118   PerRegionTable* delete_region_table();
 119 
 120   // link/add the given fine grain remembered set into the "all" list
 121   void link_to_all(PerRegionTable * prt);
 122   // unlink/remove the given fine grain remembered set into the "all" list
 123   void unlink_from_all(PerRegionTable * prt);
 124 
 125   bool contains_reference_locked(OopOrNarrowOopStar from) const;
 126 
 127   // Clear the from_card_cache entries for this region.
 128   void clear_fcc();
 129 public:
 130   // Create a new remembered set for the given heap region. The given mutex should
 131   // be used to ensure consistency.
 132   OtherRegionsTable(HeapRegion* hr, Mutex* m);
 133 
 134   // For now.  Could "expand" some tables in the future, so that this made
 135   // sense.
 136   void add_reference(OopOrNarrowOopStar from, uint tid);
 137 
 138   // Returns whether the remembered set contains the given reference.
 139   bool contains_reference(OopOrNarrowOopStar from) const;
 140 
 141   // Returns whether this remembered set (and all sub-sets) have an occupancy
 142   // that is less or equal than the given occupancy.
 143   bool occupancy_less_or_equal_than(size_t limit) const;
 144 
 145   // Removes any entries shown by the given bitmaps to contain only dead
 146   // objects. Not thread safe.
 147   // Set bits in the bitmaps indicate that the given region or card is live.
 148   void scrub(G1CardLiveData* live_data);
 149 
 150   // Returns whether this remembered set (and all sub-sets) does not contain any entry.
 151   bool is_empty() const;
 152 
 153   // Returns the number of cards contained in this remembered set.
 154   size_t occupied() const;
 155   size_t occ_fine() const;
 156   size_t occ_coarse() const;
 157   size_t occ_sparse() const;
 158 
 159   static jint n_coarsenings() { return _n_coarsenings; }
 160 
 161   // Returns size of the actual remembered set containers in bytes.
 162   size_t mem_size() const;
 163   // Returns the size of static data in bytes.
 164   static size_t static_mem_size();
 165   // Returns the size of the free list content in bytes.
 166   static size_t fl_mem_size();
 167 
 168   // Clear the entire contents of this remembered set.
 169   void clear();
 170 
 171   void do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task);
 172 };
 173 
 174 class HeapRegionRemSet : public CHeapObj<mtGC> {
 175   friend class VMStructs;
 176   friend class HeapRegionRemSetIterator;
 177 
 178 private:
 179   G1BlockOffsetTable* _bot;
 180 
 181   // A set of code blobs (nmethods) whose code contains pointers into
 182   // the region that owns this RSet.
 183   G1CodeRootSet _code_roots;
 184 
 185   Mutex _m;
 186 
 187   OtherRegionsTable _other_regions;
 188 
 189 public:
 190   HeapRegionRemSet(G1BlockOffsetTable* bot, HeapRegion* hr);
 191 
 192   static void setup_remset_size();
 193 
 194   bool is_empty() const {
 195     return (strong_code_roots_list_length() == 0) && _other_regions.is_empty();
 196   }
 197 
 198   bool occupancy_less_or_equal_than(size_t occ) const {
 199     return (strong_code_roots_list_length() == 0) && _other_regions.occupancy_less_or_equal_than(occ);
 200   }
 201 
 202   size_t occupied() {
 203     MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
 204     return occupied_locked();
 205   }
 206   size_t occupied_locked() {
 207     return _other_regions.occupied();
 208   }
 209   size_t occ_fine() const {
 210     return _other_regions.occ_fine();
 211   }
 212   size_t occ_coarse() const {
 213     return _other_regions.occ_coarse();
 214   }
 215   size_t occ_sparse() const {
 216     return _other_regions.occ_sparse();
 217   }
 218 
 219   static jint n_coarsenings() { return OtherRegionsTable::n_coarsenings(); }
 220 
 221   // Used in the sequential case.
 222   void add_reference(OopOrNarrowOopStar from) {
 223     _other_regions.add_reference(from, 0);
 224   }
 225 
 226   // Used in the parallel case.
 227   void add_reference(OopOrNarrowOopStar from, uint tid) {
 228     _other_regions.add_reference(from, tid);
 229   }
 230 
 231   // Removes any entries in the remembered set shown by the given card live data to
 232   // contain only dead objects. Not thread safe.
 233   void scrub(G1CardLiveData* live_data);
 234 
 235   // The region is being reclaimed; clear its remset, and any mention of
 236   // entries for this region in other remsets.
 237   void clear();
 238   void clear_locked();
 239 
 240   // The actual # of bytes this hr_remset takes up.
 241   // Note also includes the strong code root set.
 242   size_t mem_size() {
 243     MutexLockerEx x(&_m, Mutex::_no_safepoint_check_flag);
 244     return _other_regions.mem_size()
 245       // This correction is necessary because the above includes the second
 246       // part.
 247       + (sizeof(HeapRegionRemSet) - sizeof(OtherRegionsTable))
 248       + strong_code_roots_mem_size();
 249   }
 250 
 251   // Returns the memory occupancy of all static data structures associated
 252   // with remembered sets.
 253   static size_t static_mem_size() {
 254     return OtherRegionsTable::static_mem_size() + G1CodeRootSet::static_mem_size();
 255   }
 256 
 257   // Returns the memory occupancy of all free_list data structures associated
 258   // with remembered sets.
 259   static size_t fl_mem_size() {
 260     return OtherRegionsTable::fl_mem_size();
 261   }
 262 
 263   bool contains_reference(OopOrNarrowOopStar from) const {
 264     return _other_regions.contains_reference(from);
 265   }
 266 
 267   // Routines for managing the list of code roots that point into
 268   // the heap region that owns this RSet.
 269   void add_strong_code_root(nmethod* nm);
 270   void add_strong_code_root_locked(nmethod* nm);
 271   void remove_strong_code_root(nmethod* nm);
 272 
 273   // Applies blk->do_code_blob() to each of the entries in
 274   // the strong code roots list
 275   void strong_code_roots_do(CodeBlobClosure* blk) const;
 276 
 277   void clean_strong_code_roots(HeapRegion* hr);
 278 
 279   // Returns the number of elements in the strong code roots list
 280   size_t strong_code_roots_list_length() const {
 281     return _code_roots.length();
 282   }
 283 
 284   // Returns true if the strong code roots contains the given
 285   // nmethod.
 286   bool strong_code_roots_list_contains(nmethod* nm) {
 287     return _code_roots.contains(nm);
 288   }
 289 
 290   // Returns the amount of memory, in bytes, currently
 291   // consumed by the strong code roots.
 292   size_t strong_code_roots_mem_size();
 293 
 294   void print() PRODUCT_RETURN;
 295 
 296   // Called during a stop-world phase to perform any deferred cleanups.
 297   static void cleanup();
 298 
 299   static void invalidate_from_card_cache(uint start_idx, size_t num_regions) {
 300     G1FromCardCache::invalidate(start_idx, num_regions);
 301   }
 302 
 303 #ifndef PRODUCT
 304   static void print_from_card_cache() {
 305     G1FromCardCache::print();
 306   }
 307 #endif
 308 
 309   // These are wrappers for the similarly-named methods on
 310   // SparsePRT. Look at sparsePRT.hpp for more details.
 311   static void reset_for_cleanup_tasks();
 312   void do_cleanup_work(HRRSCleanupTask* hrrs_cleanup_task);
 313   static void finish_cleanup_task(HRRSCleanupTask* hrrs_cleanup_task);
 314 
 315   // Run unit tests.
 316 #ifndef PRODUCT
 317   static void test();
 318 #endif
 319 };
 320 
 321 class HeapRegionRemSetIterator : public StackObj {
 322  private:
 323   // The region RSet over which we are iterating.
 324   HeapRegionRemSet* _hrrs;
 325 
 326   // Local caching of HRRS fields.
 327   const BitMap*             _coarse_map;
 328 
 329   G1BlockOffsetTable*       _bot;
 330   G1CollectedHeap*          _g1h;
 331 
 332   // The number of cards yielded since initialization.
 333   size_t _n_yielded_fine;
 334   size_t _n_yielded_coarse;
 335   size_t _n_yielded_sparse;
 336 
 337   // Indicates what granularity of table that we are currently iterating over.
 338   // We start iterating over the sparse table, progress to the fine grain
 339   // table, and then finish with the coarse table.
 340   enum IterState {
 341     Sparse,
 342     Fine,
 343     Coarse
 344   };
 345   IterState _is;
 346 
 347   // For both Coarse and Fine remembered set iteration this contains the
 348   // first card number of the heap region we currently iterate over.
 349   size_t _cur_region_card_offset;
 350 
 351   // Current region index for the Coarse remembered set iteration.
 352   int    _coarse_cur_region_index;
 353   size_t _coarse_cur_region_cur_card;
 354 
 355   bool coarse_has_next(size_t& card_index);
 356 
 357   // The PRT we are currently iterating over.
 358   PerRegionTable* _fine_cur_prt;
 359   // Card offset within the current PRT.
 360   size_t _cur_card_in_prt;
 361 
 362   // Update internal variables when switching to the given PRT.
 363   void switch_to_prt(PerRegionTable* prt);
 364   bool fine_has_next();
 365   bool fine_has_next(size_t& card_index);
 366 
 367   // The Sparse remembered set iterator.
 368   SparsePRTIter _sparse_iter;
 369 
 370  public:
 371   HeapRegionRemSetIterator(HeapRegionRemSet* hrrs);
 372 
 373   // If there remains one or more cards to be yielded, returns true and
 374   // sets "card_index" to one of those cards (which is then considered
 375   // yielded.)   Otherwise, returns false (and leaves "card_index"
 376   // undefined.)
 377   bool has_next(size_t& card_index);
 378 
 379   size_t n_yielded_fine() { return _n_yielded_fine; }
 380   size_t n_yielded_coarse() { return _n_yielded_coarse; }
 381   size_t n_yielded_sparse() { return _n_yielded_sparse; }
 382   size_t n_yielded() {
 383     return n_yielded_fine() + n_yielded_coarse() + n_yielded_sparse();
 384   }
 385 };
 386 
 387 #endif // SHARE_VM_GC_G1_HEAPREGIONREMSET_HPP