1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/taskqueue.hpp"
  32 
  33 class G1CollectedHeap;
  34 class G1CMBitMap;
  35 class G1CMTask;
  36 class G1ConcurrentMark;
  37 class ConcurrentGCTimer;
  38 class G1OldTracer;
  39 class G1SurvivorRegions;
  40 typedef GenericTaskQueue<oop, mtGC>              G1CMTaskQueue;
  41 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  42 
  43 // Closure used by CM during concurrent reference discovery
  44 // and reference processing (during remarking) to determine
  45 // if a particular object is alive. It is primarily used
  46 // to determine if referents of discovered reference objects
  47 // are alive. An instance is also embedded into the
  48 // reference processor as the _is_alive_non_header field
  49 class G1CMIsAliveClosure: public BoolObjectClosure {
  50   G1CollectedHeap* _g1;
  51  public:
  52   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  53 
  54   bool do_object_b(oop obj);
  55 };
  56 
  57 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  58 // class, with one bit per (1<<_shifter) HeapWords.
  59 
  60 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  61  protected:
  62   HeapWord*  _bmStartWord; // base address of range covered by map
  63   size_t     _bmWordSize;  // map size (in #HeapWords covered)
  64   const int  _shifter;     // map to char or bit
  65   BitMapView _bm;          // the bit map itself
  66 
  67  public:
  68   // constructor
  69   G1CMBitMapRO(int shifter);
  70 
  71   // inquiries
  72   HeapWord* startWord()   const { return _bmStartWord; }
  73   // the following is one past the last word in space
  74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  75 
  76   // read marks
  77 
  78   bool isMarked(HeapWord* addr) const {
  79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  80            "outside underlying space?");
  81     return _bm.at(heapWordToOffset(addr));
  82   }
  83 
  84   // iteration
  85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  86 
  87   // Return the address corresponding to the next marked bit at or after
  88   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  89   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  90   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  91                                      const HeapWord* limit = NULL) const;
  92 
  93   // conversion utilities
  94   HeapWord* offsetToHeapWord(size_t offset) const {
  95     return _bmStartWord + (offset << _shifter);
  96   }
  97   size_t heapWordToOffset(const HeapWord* addr) const {
  98     return pointer_delta(addr, _bmStartWord) >> _shifter;
  99   }
 100 
 101   // The argument addr should be the start address of a valid object
 102   inline HeapWord* nextObject(HeapWord* addr);
 103 
 104   void print_on_error(outputStream* st, const char* prefix) const;
 105 
 106   // debugging
 107   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 108 };
 109 
 110 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 111  private:
 112   G1CMBitMap* _bm;
 113  public:
 114   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 115 
 116   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 117 
 118   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 119 };
 120 
 121 class G1CMBitMap : public G1CMBitMapRO {
 122  private:
 123   G1CMBitMapMappingChangedListener _listener;
 124 
 125  public:
 126   static size_t compute_size(size_t heap_size);
 127   // Returns the amount of bytes on the heap between two marks in the bitmap.
 128   static size_t mark_distance();
 129   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 130   // mark bitmap corresponds to. This is the same as the mark distance above.
 131   static size_t heap_map_factor() {
 132     return mark_distance();
 133   }
 134 
 135   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 136 
 137   // Initializes the underlying BitMap to cover the given area.
 138   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 139 
 140   // Write marks.
 141   inline void mark(HeapWord* addr);
 142   inline void clear(HeapWord* addr);
 143   inline bool parMark(HeapWord* addr);
 144 
 145   void clear_range(MemRegion mr);
 146 };
 147 
 148 // Represents the overflow mark stack used by concurrent marking.
 149 //
 150 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 151 // Resizing may only happen during a STW pause when the stack is empty.
 152 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 153   ReservedSpace _reserved_space; // Space currently reserved for the mark stack.
 154 
 155   oop* _base;                    // Bottom address of allocated memory area.
 156   size_t _capacity;              // Maximum number of elements.
 157   size_t _index;                 // One more than last occupied index.
 158 
 159   size_t _saved_index;           // Value of _index saved at start of GC to detect mark stack modifications during that time.
 160 
 161   bool  _overflow;
 162   bool  _should_expand;
 163 
 164   // Resizes the mark stack to the given new capacity. Releases any previous
 165   // memory if successful.
 166   bool resize(size_t new_capacity);
 167 
 168   bool stack_modified() const { return _index != _saved_index; }
 169  public:
 170   G1CMMarkStack();
 171   ~G1CMMarkStack();
 172 
 173   bool allocate(size_t capacity);
 174 
 175   // Pushes the first "n" elements of the given buffer on the stack.
 176   void par_push_arr(oop* buffer, size_t n);
 177 
 178   // Moves up to max elements from the stack into the given buffer. Returns
 179   // the number of elements pushed, and false if the array has been empty.
 180   // Returns true if the buffer contains at least one element.
 181   bool par_pop_arr(oop* buffer, size_t max, size_t* n);
 182 
 183   bool is_empty() const { return _index == 0; }
 184   size_t capacity() const  { return _capacity; }
 185 
 186   bool overflow() const { return _overflow; }
 187   void clear_overflow() { _overflow = false; }
 188 
 189   bool should_expand() const { return _should_expand; }
 190   void set_should_expand(bool value) { _should_expand = value; }
 191 
 192   // Expand the stack, typically in response to an overflow condition
 193   void expand();
 194 
 195   size_t size() const { return _index; }
 196 
 197   void set_empty() { _index = 0; clear_overflow(); }
 198 
 199   // Record the current index.
 200   void note_start_of_gc();
 201 
 202   // Make sure that we have not added any entries to the stack during GC.
 203   void note_end_of_gc();
 204 
 205   // Apply fn to each oop in the mark stack, up to the bound recorded
 206   // via one of the above "note" functions.  The mark stack must not
 207   // be modified while iterating.
 208   template<typename Fn> void iterate(Fn fn);
 209 };
 210 
 211 // Root Regions are regions that are not empty at the beginning of a
 212 // marking cycle and which we might collect during an evacuation pause
 213 // while the cycle is active. Given that, during evacuation pauses, we
 214 // do not copy objects that are explicitly marked, what we have to do
 215 // for the root regions is to scan them and mark all objects reachable
 216 // from them. According to the SATB assumptions, we only need to visit
 217 // each object once during marking. So, as long as we finish this scan
 218 // before the next evacuation pause, we can copy the objects from the
 219 // root regions without having to mark them or do anything else to them.
 220 //
 221 // Currently, we only support root region scanning once (at the start
 222 // of the marking cycle) and the root regions are all the survivor
 223 // regions populated during the initial-mark pause.
 224 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 225 private:
 226   const G1SurvivorRegions* _survivors;
 227   G1ConcurrentMark*        _cm;
 228 
 229   volatile bool            _scan_in_progress;
 230   volatile bool            _should_abort;
 231   volatile int             _claimed_survivor_index;
 232 
 233   void notify_scan_done();
 234 
 235 public:
 236   G1CMRootRegions();
 237   // We actually do most of the initialization in this method.
 238   void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
 239 
 240   // Reset the claiming / scanning of the root regions.
 241   void prepare_for_scan();
 242 
 243   // Forces get_next() to return NULL so that the iteration aborts early.
 244   void abort() { _should_abort = true; }
 245 
 246   // Return true if the CM thread are actively scanning root regions,
 247   // false otherwise.
 248   bool scan_in_progress() { return _scan_in_progress; }
 249 
 250   // Claim the next root region to scan atomically, or return NULL if
 251   // all have been claimed.
 252   HeapRegion* claim_next();
 253 
 254   // The number of root regions to scan.
 255   uint num_root_regions() const;
 256 
 257   void cancel_scan();
 258 
 259   // Flag that we're done with root region scanning and notify anyone
 260   // who's waiting on it. If aborted is false, assume that all regions
 261   // have been claimed.
 262   void scan_finished();
 263 
 264   // If CM threads are still scanning root regions, wait until they
 265   // are done. Return true if we had to wait, false otherwise.
 266   bool wait_until_scan_finished();
 267 };
 268 
 269 class ConcurrentMarkThread;
 270 
 271 class G1ConcurrentMark: public CHeapObj<mtGC> {
 272   friend class ConcurrentMarkThread;
 273   friend class G1ParNoteEndTask;
 274   friend class G1VerifyLiveDataClosure;
 275   friend class G1CMRefProcTaskProxy;
 276   friend class G1CMRefProcTaskExecutor;
 277   friend class G1CMKeepAliveAndDrainClosure;
 278   friend class G1CMDrainMarkingStackClosure;
 279   friend class G1CMBitMapClosure;
 280   friend class G1CMConcurrentMarkingTask;
 281   friend class G1CMMarkStack;
 282   friend class G1CMRemarkTask;
 283   friend class G1CMTask;
 284 
 285 protected:
 286   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 287   G1CollectedHeap*      _g1h;        // The heap
 288   uint                  _parallel_marking_threads; // The number of marking
 289                                                    // threads we're using
 290   uint                  _max_parallel_marking_threads; // Max number of marking
 291                                                        // threads we'll ever use
 292   double                _sleep_factor; // How much we have to sleep, with
 293                                        // respect to the work we just did, to
 294                                        // meet the marking overhead goal
 295   double                _marking_task_overhead; // Marking target overhead for
 296                                                 // a single task
 297 
 298   FreeRegionList        _cleanup_list;
 299 
 300   // Concurrent marking support structures
 301   G1CMBitMap              _markBitMap1;
 302   G1CMBitMap              _markBitMap2;
 303   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 304   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 305 
 306   // Heap bounds
 307   HeapWord*               _heap_start;
 308   HeapWord*               _heap_end;
 309 
 310   // Root region tracking and claiming
 311   G1CMRootRegions         _root_regions;
 312 
 313   // For gray objects
 314   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
 315   HeapWord* volatile      _finger;  // The global finger, region aligned,
 316                                     // always points to the end of the
 317                                     // last claimed region
 318 
 319   // Marking tasks
 320   uint                    _max_worker_id;// Maximum worker id
 321   uint                    _active_tasks; // Task num currently active
 322   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 323   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 324   ParallelTaskTerminator  _terminator;   // For termination
 325 
 326   // Two sync barriers that are used to synchronize tasks when an
 327   // overflow occurs. The algorithm is the following. All tasks enter
 328   // the first one to ensure that they have all stopped manipulating
 329   // the global data structures. After they exit it, they re-initialize
 330   // their data structures and task 0 re-initializes the global data
 331   // structures. Then, they enter the second sync barrier. This
 332   // ensure, that no task starts doing work before all data
 333   // structures (local and global) have been re-initialized. When they
 334   // exit it, they are free to start working again.
 335   WorkGangBarrierSync     _first_overflow_barrier_sync;
 336   WorkGangBarrierSync     _second_overflow_barrier_sync;
 337 
 338   // This is set by any task, when an overflow on the global data
 339   // structures is detected
 340   volatile bool           _has_overflown;
 341   // True: marking is concurrent, false: we're in remark
 342   volatile bool           _concurrent;
 343   // Set at the end of a Full GC so that marking aborts
 344   volatile bool           _has_aborted;
 345 
 346   // Used when remark aborts due to an overflow to indicate that
 347   // another concurrent marking phase should start
 348   volatile bool           _restart_for_overflow;
 349 
 350   // This is true from the very start of concurrent marking until the
 351   // point when all the tasks complete their work. It is really used
 352   // to determine the points between the end of concurrent marking and
 353   // time of remark.
 354   volatile bool           _concurrent_marking_in_progress;
 355 
 356   ConcurrentGCTimer*      _gc_timer_cm;
 357 
 358   G1OldTracer*            _gc_tracer_cm;
 359 
 360   // All of these times are in ms
 361   NumberSeq _init_times;
 362   NumberSeq _remark_times;
 363   NumberSeq _remark_mark_times;
 364   NumberSeq _remark_weak_ref_times;
 365   NumberSeq _cleanup_times;
 366   double    _total_counting_time;
 367   double    _total_rs_scrub_time;
 368 
 369   double*   _accum_task_vtime;   // Accumulated task vtime
 370 
 371   WorkGang* _parallel_workers;
 372 
 373   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 374   void weakRefsWork(bool clear_all_soft_refs);
 375 
 376   void swapMarkBitMaps();
 377 
 378   // It resets the global marking data structures, as well as the
 379   // task local ones; should be called during initial mark.
 380   void reset();
 381 
 382   // Resets all the marking data structures. Called when we have to restart
 383   // marking or when marking completes (via set_non_marking_state below).
 384   void reset_marking_state(bool clear_overflow = true);
 385 
 386   // We do this after we're done with marking so that the marking data
 387   // structures are initialized to a sensible and predictable state.
 388   void set_non_marking_state();
 389 
 390   // Called to indicate how many threads are currently active.
 391   void set_concurrency(uint active_tasks);
 392 
 393   // It should be called to indicate which phase we're in (concurrent
 394   // mark or remark) and how many threads are currently active.
 395   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 396 
 397   // Prints all gathered CM-related statistics
 398   void print_stats();
 399 
 400   bool cleanup_list_is_empty() {
 401     return _cleanup_list.is_empty();
 402   }
 403 
 404   // Accessor methods
 405   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 406   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 407   double sleep_factor()                     { return _sleep_factor; }
 408   double marking_task_overhead()            { return _marking_task_overhead;}
 409 
 410   HeapWord*               finger()          { return _finger;   }
 411   bool                    concurrent()      { return _concurrent; }
 412   uint                    active_tasks()    { return _active_tasks; }
 413   ParallelTaskTerminator* terminator()      { return &_terminator; }
 414 
 415   // It claims the next available region to be scanned by a marking
 416   // task/thread. It might return NULL if the next region is empty or
 417   // we have run out of regions. In the latter case, out_of_regions()
 418   // determines whether we've really run out of regions or the task
 419   // should call claim_region() again. This might seem a bit
 420   // awkward. Originally, the code was written so that claim_region()
 421   // either successfully returned with a non-empty region or there
 422   // were no more regions to be claimed. The problem with this was
 423   // that, in certain circumstances, it iterated over large chunks of
 424   // the heap finding only empty regions and, while it was working, it
 425   // was preventing the calling task to call its regular clock
 426   // method. So, this way, each task will spend very little time in
 427   // claim_region() and is allowed to call the regular clock method
 428   // frequently.
 429   HeapRegion* claim_region(uint worker_id);
 430 
 431   // It determines whether we've run out of regions to scan. Note that
 432   // the finger can point past the heap end in case the heap was expanded
 433   // to satisfy an allocation without doing a GC. This is fine, because all
 434   // objects in those regions will be considered live anyway because of
 435   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 436   bool        out_of_regions() { return _finger >= _heap_end; }
 437 
 438   // Returns the task with the given id
 439   G1CMTask* task(int id) {
 440     assert(0 <= id && id < (int) _active_tasks,
 441            "task id not within active bounds");
 442     return _tasks[id];
 443   }
 444 
 445   // Returns the task queue with the given id
 446   G1CMTaskQueue* task_queue(int id) {
 447     assert(0 <= id && id < (int) _active_tasks,
 448            "task queue id not within active bounds");
 449     return (G1CMTaskQueue*) _task_queues->queue(id);
 450   }
 451 
 452   // Returns the task queue set
 453   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 454 
 455   // Access / manipulation of the overflow flag which is set to
 456   // indicate that the global stack has overflown
 457   bool has_overflown()           { return _has_overflown; }
 458   void set_has_overflown()       { _has_overflown = true; }
 459   void clear_has_overflown()     { _has_overflown = false; }
 460   bool restart_for_overflow()    { return _restart_for_overflow; }
 461 
 462   // Methods to enter the two overflow sync barriers
 463   void enter_first_sync_barrier(uint worker_id);
 464   void enter_second_sync_barrier(uint worker_id);
 465 
 466   // Card index of the bottom of the G1 heap. Used for biasing indices into
 467   // the card bitmaps.
 468   intptr_t _heap_bottom_card_num;
 469 
 470   // Set to true when initialization is complete
 471   bool _completed_initialization;
 472 
 473   // end_timer, true to end gc timer after ending concurrent phase.
 474   void register_concurrent_phase_end_common(bool end_timer);
 475 
 476   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 477   // true, periodically insert checks to see if this method should exit prematurely.
 478   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 479 public:
 480   // Manipulation of the global mark stack.
 481   // The push and pop operations are used by tasks for transfers
 482   // between task-local queues and the global mark stack, and use
 483   // locking for concurrency safety.
 484   bool mark_stack_push(oop* arr, size_t n) {
 485     _global_mark_stack.par_push_arr(arr, n);
 486     if (_global_mark_stack.overflow()) {
 487       set_has_overflown();
 488       return false;
 489     }
 490     return true;
 491   }
 492   void mark_stack_pop(oop* arr, size_t max, size_t* n) {
 493     _global_mark_stack.par_pop_arr(arr, max, n);
 494   }
 495   size_t mark_stack_size()                { return _global_mark_stack.size(); }
 496   size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; }
 497   bool mark_stack_overflow()              { return _global_mark_stack.overflow(); }
 498   bool mark_stack_empty()                 { return _global_mark_stack.is_empty(); }
 499 
 500   G1CMRootRegions* root_regions() { return &_root_regions; }
 501 
 502   bool concurrent_marking_in_progress() {
 503     return _concurrent_marking_in_progress;
 504   }
 505   void set_concurrent_marking_in_progress() {
 506     _concurrent_marking_in_progress = true;
 507   }
 508   void clear_concurrent_marking_in_progress() {
 509     _concurrent_marking_in_progress = false;
 510   }
 511 
 512   void concurrent_cycle_start();
 513   void concurrent_cycle_end();
 514 
 515   void update_accum_task_vtime(int i, double vtime) {
 516     _accum_task_vtime[i] += vtime;
 517   }
 518 
 519   double all_task_accum_vtime() {
 520     double ret = 0.0;
 521     for (uint i = 0; i < _max_worker_id; ++i)
 522       ret += _accum_task_vtime[i];
 523     return ret;
 524   }
 525 
 526   // Attempts to steal an object from the task queues of other tasks
 527   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 528 
 529   G1ConcurrentMark(G1CollectedHeap* g1h,
 530                    G1RegionToSpaceMapper* prev_bitmap_storage,
 531                    G1RegionToSpaceMapper* next_bitmap_storage);
 532   ~G1ConcurrentMark();
 533 
 534   ConcurrentMarkThread* cmThread() { return _cmThread; }
 535 
 536   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 537   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 538 
 539   // Returns the number of GC threads to be used in a concurrent
 540   // phase based on the number of GC threads being used in a STW
 541   // phase.
 542   uint scale_parallel_threads(uint n_par_threads);
 543 
 544   // Calculates the number of GC threads to be used in a concurrent phase.
 545   uint calc_parallel_marking_threads();
 546 
 547   // The following three are interaction between CM and
 548   // G1CollectedHeap
 549 
 550   // This notifies CM that a root during initial-mark needs to be
 551   // grayed. It is MT-safe. hr is the region that
 552   // contains the object and it's passed optionally from callers who
 553   // might already have it (no point in recalculating it).
 554   inline void grayRoot(oop obj,
 555                        HeapRegion* hr = NULL);
 556 
 557   // Prepare internal data structures for the next mark cycle. This includes clearing
 558   // the next mark bitmap and some internal data structures. This method is intended
 559   // to be called concurrently to the mutator. It will yield to safepoint requests.
 560   void cleanup_for_next_mark();
 561 
 562   // Clear the previous marking bitmap during safepoint.
 563   void clear_prev_bitmap(WorkGang* workers);
 564 
 565   // Return whether the next mark bitmap has no marks set. To be used for assertions
 566   // only. Will not yield to pause requests.
 567   bool nextMarkBitmapIsClear();
 568 
 569   // These two do the work that needs to be done before and after the
 570   // initial root checkpoint. Since this checkpoint can be done at two
 571   // different points (i.e. an explicit pause or piggy-backed on a
 572   // young collection), then it's nice to be able to easily share the
 573   // pre/post code. It might be the case that we can put everything in
 574   // the post method. TP
 575   void checkpointRootsInitialPre();
 576   void checkpointRootsInitialPost();
 577 
 578   // Scan all the root regions and mark everything reachable from
 579   // them.
 580   void scan_root_regions();
 581 
 582   // Scan a single root region and mark everything reachable from it.
 583   void scanRootRegion(HeapRegion* hr);
 584 
 585   // Do concurrent phase of marking, to a tentative transitive closure.
 586   void mark_from_roots();
 587 
 588   void checkpointRootsFinal(bool clear_all_soft_refs);
 589   void checkpointRootsFinalWork();
 590   void cleanup();
 591   void complete_cleanup();
 592 
 593   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 594   // this carefully!
 595   inline void markPrev(oop p);
 596 
 597   // Clears marks for all objects in the given range, for the prev or
 598   // next bitmaps.  NB: the previous bitmap is usually
 599   // read-only, so use this carefully!
 600   void clearRangePrevBitmap(MemRegion mr);
 601 
 602   // Notify data structures that a GC has started.
 603   void note_start_of_gc() {
 604     _global_mark_stack.note_start_of_gc();
 605   }
 606 
 607   // Notify data structures that a GC is finished.
 608   void note_end_of_gc() {
 609     _global_mark_stack.note_end_of_gc();
 610   }
 611 
 612   // Verify that there are no CSet oops on the stacks (taskqueues /
 613   // global mark stack) and fingers (global / per-task).
 614   // If marking is not in progress, it's a no-op.
 615   void verify_no_cset_oops() PRODUCT_RETURN;
 616 
 617   inline bool isPrevMarked(oop p) const;
 618 
 619   inline bool do_yield_check();
 620 
 621   // Abandon current marking iteration due to a Full GC.
 622   void abort();
 623 
 624   bool has_aborted()      { return _has_aborted; }
 625 
 626   void print_summary_info();
 627 
 628   void print_worker_threads_on(outputStream* st) const;
 629   void threads_do(ThreadClosure* tc) const;
 630 
 631   void print_on_error(outputStream* st) const;
 632 
 633   // Attempts to mark the given object on the next mark bitmap.
 634   inline bool par_mark(oop obj);
 635 
 636   // Returns true if initialization was successfully completed.
 637   bool completed_initialization() const {
 638     return _completed_initialization;
 639   }
 640 
 641   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 642   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 643 
 644 private:
 645   // Clear (Reset) all liveness count data.
 646   void clear_live_data(WorkGang* workers);
 647 
 648 #ifdef ASSERT
 649   // Verify all of the above data structures that they are in initial state.
 650   void verify_live_data_clear();
 651 #endif
 652 
 653   // Aggregates the per-card liveness data based on the current marking. Also sets
 654   // the amount of marked bytes for each region.
 655   void create_live_data();
 656 
 657   void finalize_live_data();
 658 
 659   void verify_live_data();
 660 };
 661 
 662 // A class representing a marking task.
 663 class G1CMTask : public TerminatorTerminator {
 664 private:
 665   enum PrivateConstants {
 666     // The regular clock call is called once the scanned words reaches
 667     // this limit
 668     words_scanned_period          = 12*1024,
 669     // The regular clock call is called once the number of visited
 670     // references reaches this limit
 671     refs_reached_period           = 384,
 672     // Initial value for the hash seed, used in the work stealing code
 673     init_hash_seed                = 17,
 674     // How many entries will be transferred between global stack and
 675     // local queues at once.
 676     global_stack_transfer_size    = 1024
 677   };
 678 
 679   uint                        _worker_id;
 680   G1CollectedHeap*            _g1h;
 681   G1ConcurrentMark*           _cm;
 682   G1CMBitMap*                 _nextMarkBitMap;
 683   // the task queue of this task
 684   G1CMTaskQueue*              _task_queue;
 685 private:
 686   // the task queue set---needed for stealing
 687   G1CMTaskQueueSet*           _task_queues;
 688   // indicates whether the task has been claimed---this is only  for
 689   // debugging purposes
 690   bool                        _claimed;
 691 
 692   // number of calls to this task
 693   int                         _calls;
 694 
 695   // when the virtual timer reaches this time, the marking step should
 696   // exit
 697   double                      _time_target_ms;
 698   // the start time of the current marking step
 699   double                      _start_time_ms;
 700 
 701   // the oop closure used for iterations over oops
 702   G1CMOopClosure*             _cm_oop_closure;
 703 
 704   // the region this task is scanning, NULL if we're not scanning any
 705   HeapRegion*                 _curr_region;
 706   // the local finger of this task, NULL if we're not scanning a region
 707   HeapWord*                   _finger;
 708   // limit of the region this task is scanning, NULL if we're not scanning one
 709   HeapWord*                   _region_limit;
 710 
 711   // the number of words this task has scanned
 712   size_t                      _words_scanned;
 713   // When _words_scanned reaches this limit, the regular clock is
 714   // called. Notice that this might be decreased under certain
 715   // circumstances (i.e. when we believe that we did an expensive
 716   // operation).
 717   size_t                      _words_scanned_limit;
 718   // the initial value of _words_scanned_limit (i.e. what it was
 719   // before it was decreased).
 720   size_t                      _real_words_scanned_limit;
 721 
 722   // the number of references this task has visited
 723   size_t                      _refs_reached;
 724   // When _refs_reached reaches this limit, the regular clock is
 725   // called. Notice this this might be decreased under certain
 726   // circumstances (i.e. when we believe that we did an expensive
 727   // operation).
 728   size_t                      _refs_reached_limit;
 729   // the initial value of _refs_reached_limit (i.e. what it was before
 730   // it was decreased).
 731   size_t                      _real_refs_reached_limit;
 732 
 733   // used by the work stealing stuff
 734   int                         _hash_seed;
 735   // if this is true, then the task has aborted for some reason
 736   bool                        _has_aborted;
 737   // set when the task aborts because it has met its time quota
 738   bool                        _has_timed_out;
 739   // true when we're draining SATB buffers; this avoids the task
 740   // aborting due to SATB buffers being available (as we're already
 741   // dealing with them)
 742   bool                        _draining_satb_buffers;
 743 
 744   // number sequence of past step times
 745   NumberSeq                   _step_times_ms;
 746   // elapsed time of this task
 747   double                      _elapsed_time_ms;
 748   // termination time of this task
 749   double                      _termination_time_ms;
 750   // when this task got into the termination protocol
 751   double                      _termination_start_time_ms;
 752 
 753   // true when the task is during a concurrent phase, false when it is
 754   // in the remark phase (so, in the latter case, we do not have to
 755   // check all the things that we have to check during the concurrent
 756   // phase, i.e. SATB buffer availability...)
 757   bool                        _concurrent;
 758 
 759   TruncatedSeq                _marking_step_diffs_ms;
 760 
 761   // it updates the local fields after this task has claimed
 762   // a new region to scan
 763   void setup_for_region(HeapRegion* hr);
 764   // it brings up-to-date the limit of the region
 765   void update_region_limit();
 766 
 767   // called when either the words scanned or the refs visited limit
 768   // has been reached
 769   void reached_limit();
 770   // recalculates the words scanned and refs visited limits
 771   void recalculate_limits();
 772   // decreases the words scanned and refs visited limits when we reach
 773   // an expensive operation
 774   void decrease_limits();
 775   // it checks whether the words scanned or refs visited reached their
 776   // respective limit and calls reached_limit() if they have
 777   void check_limits() {
 778     if (_words_scanned >= _words_scanned_limit ||
 779         _refs_reached >= _refs_reached_limit) {
 780       reached_limit();
 781     }
 782   }
 783   // this is supposed to be called regularly during a marking step as
 784   // it checks a bunch of conditions that might cause the marking step
 785   // to abort
 786   void regular_clock_call();
 787   bool concurrent() { return _concurrent; }
 788 
 789   // Test whether obj might have already been passed over by the
 790   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 791   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 792 
 793   template<bool scan> void process_grey_object(oop obj);
 794 
 795 public:
 796   // It resets the task; it should be called right at the beginning of
 797   // a marking phase.
 798   void reset(G1CMBitMap* _nextMarkBitMap);
 799   // it clears all the fields that correspond to a claimed region.
 800   void clear_region_fields();
 801 
 802   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 803 
 804   // The main method of this class which performs a marking step
 805   // trying not to exceed the given duration. However, it might exit
 806   // prematurely, according to some conditions (i.e. SATB buffers are
 807   // available for processing).
 808   void do_marking_step(double target_ms,
 809                        bool do_termination,
 810                        bool is_serial);
 811 
 812   // These two calls start and stop the timer
 813   void record_start_time() {
 814     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 815   }
 816   void record_end_time() {
 817     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 818   }
 819 
 820   // returns the worker ID associated with this task.
 821   uint worker_id() { return _worker_id; }
 822 
 823   // From TerminatorTerminator. It determines whether this task should
 824   // exit the termination protocol after it's entered it.
 825   virtual bool should_exit_termination();
 826 
 827   // Resets the local region fields after a task has finished scanning a
 828   // region; or when they have become stale as a result of the region
 829   // being evacuated.
 830   void giveup_current_region();
 831 
 832   HeapWord* finger()            { return _finger; }
 833 
 834   bool has_aborted()            { return _has_aborted; }
 835   void set_has_aborted()        { _has_aborted = true; }
 836   void clear_has_aborted()      { _has_aborted = false; }
 837   bool has_timed_out()          { return _has_timed_out; }
 838   bool claimed()                { return _claimed; }
 839 
 840   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 841 
 842   // Increment the number of references this task has visited.
 843   void increment_refs_reached() { ++_refs_reached; }
 844 
 845   // Grey the object by marking it.  If not already marked, push it on
 846   // the local queue if below the finger.
 847   // obj is below its region's NTAMS.
 848   inline void make_reference_grey(oop obj);
 849 
 850   // Grey the object (by calling make_grey_reference) if required,
 851   // e.g. obj is below its containing region's NTAMS.
 852   // Precondition: obj is a valid heap object.
 853   inline void deal_with_reference(oop obj);
 854 
 855   // It scans an object and visits its children.
 856   inline void scan_object(oop obj);
 857 
 858   // It pushes an object on the local queue.
 859   inline void push(oop obj);
 860 
 861   // These two move entries to/from the global stack.
 862   void move_entries_to_global_stack();
 863   void get_entries_from_global_stack();
 864 
 865   // It pops and scans objects from the local queue. If partially is
 866   // true, then it stops when the queue size is of a given limit. If
 867   // partially is false, then it stops when the queue is empty.
 868   void drain_local_queue(bool partially);
 869   // It moves entries from the global stack to the local queue and
 870   // drains the local queue. If partially is true, then it stops when
 871   // both the global stack and the local queue reach a given size. If
 872   // partially if false, it tries to empty them totally.
 873   void drain_global_stack(bool partially);
 874   // It keeps picking SATB buffers and processing them until no SATB
 875   // buffers are available.
 876   void drain_satb_buffers();
 877 
 878   // moves the local finger to a new location
 879   inline void move_finger_to(HeapWord* new_finger) {
 880     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 881     _finger = new_finger;
 882   }
 883 
 884   G1CMTask(uint worker_id,
 885            G1ConcurrentMark *cm,
 886            G1CMTaskQueue* task_queue,
 887            G1CMTaskQueueSet* task_queues);
 888 
 889   // it prints statistics associated with this task
 890   void print_stats();
 891 };
 892 
 893 // Class that's used to to print out per-region liveness
 894 // information. It's currently used at the end of marking and also
 895 // after we sort the old regions at the end of the cleanup operation.
 896 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 897 private:
 898   // Accumulators for these values.
 899   size_t _total_used_bytes;
 900   size_t _total_capacity_bytes;
 901   size_t _total_prev_live_bytes;
 902   size_t _total_next_live_bytes;
 903 
 904   // Accumulator for the remembered set size
 905   size_t _total_remset_bytes;
 906 
 907   // Accumulator for strong code roots memory size
 908   size_t _total_strong_code_roots_bytes;
 909 
 910   static double perc(size_t val, size_t total) {
 911     if (total == 0) {
 912       return 0.0;
 913     } else {
 914       return 100.0 * ((double) val / (double) total);
 915     }
 916   }
 917 
 918   static double bytes_to_mb(size_t val) {
 919     return (double) val / (double) M;
 920   }
 921 
 922 public:
 923   // The header and footer are printed in the constructor and
 924   // destructor respectively.
 925   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 926   virtual bool doHeapRegion(HeapRegion* r);
 927   ~G1PrintRegionLivenessInfoClosure();
 928 };
 929 
 930 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP