1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/taskqueue.hpp"
  32 
  33 class G1CollectedHeap;
  34 class G1CMBitMap;
  35 class G1CMTask;
  36 class G1ConcurrentMark;
  37 class ConcurrentGCTimer;
  38 class G1OldTracer;
  39 class G1SurvivorRegions;
  40 typedef GenericTaskQueue<oop, mtGC>              G1CMTaskQueue;
  41 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  42 
  43 // Closure used by CM during concurrent reference discovery
  44 // and reference processing (during remarking) to determine
  45 // if a particular object is alive. It is primarily used
  46 // to determine if referents of discovered reference objects
  47 // are alive. An instance is also embedded into the
  48 // reference processor as the _is_alive_non_header field
  49 class G1CMIsAliveClosure: public BoolObjectClosure {
  50   G1CollectedHeap* _g1;
  51  public:
  52   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  53 
  54   bool do_object_b(oop obj);
  55 };
  56 
  57 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  58 // class, with one bit per (1<<_shifter) HeapWords.
  59 
  60 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  61  protected:
  62   HeapWord*  _bmStartWord; // base address of range covered by map
  63   size_t     _bmWordSize;  // map size (in #HeapWords covered)
  64   const int  _shifter;     // map to char or bit
  65   BitMapView _bm;          // the bit map itself
  66 
  67  public:
  68   // constructor
  69   G1CMBitMapRO(int shifter);
  70 
  71   // inquiries
  72   HeapWord* startWord()   const { return _bmStartWord; }
  73   // the following is one past the last word in space
  74   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  75 
  76   // read marks
  77 
  78   bool isMarked(HeapWord* addr) const {
  79     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  80            "outside underlying space?");
  81     return _bm.at(heapWordToOffset(addr));
  82   }
  83 
  84   // iteration
  85   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  86 
  87   // Return the address corresponding to the next marked bit at or after
  88   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  89   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  90   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  91                                      const HeapWord* limit = NULL) const;
  92 
  93   // conversion utilities
  94   HeapWord* offsetToHeapWord(size_t offset) const {
  95     return _bmStartWord + (offset << _shifter);
  96   }
  97   size_t heapWordToOffset(const HeapWord* addr) const {
  98     return pointer_delta(addr, _bmStartWord) >> _shifter;
  99   }
 100 
 101   // The argument addr should be the start address of a valid object
 102   inline HeapWord* nextObject(HeapWord* addr);
 103 
 104   void print_on_error(outputStream* st, const char* prefix) const;
 105 
 106   // debugging
 107   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 108 };
 109 
 110 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 111  private:
 112   G1CMBitMap* _bm;
 113  public:
 114   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 115 
 116   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 117 
 118   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 119 };
 120 
 121 class G1CMBitMap : public G1CMBitMapRO {
 122  private:
 123   G1CMBitMapMappingChangedListener _listener;
 124 
 125  public:
 126   static size_t compute_size(size_t heap_size);
 127   // Returns the amount of bytes on the heap between two marks in the bitmap.
 128   static size_t mark_distance();
 129   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 130   // mark bitmap corresponds to. This is the same as the mark distance above.
 131   static size_t heap_map_factor() {
 132     return mark_distance();
 133   }
 134 
 135   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 136 
 137   // Initializes the underlying BitMap to cover the given area.
 138   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 139 
 140   // Write marks.
 141   inline void mark(HeapWord* addr);
 142   inline void clear(HeapWord* addr);
 143   inline bool parMark(HeapWord* addr);
 144 
 145   void clear_range(MemRegion mr);
 146 };
 147 
 148 // Represents the overflow mark stack used by concurrent marking.
 149 //
 150 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 151 // Resizing may only happen during a STW pause when the stack is empty.
 152 //
 153 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 154 // stack memory is split into evenly sized chunks of oops. Users can only
 155 // add or remove entries on that basis.
 156 // Chunks are filled in increasing address order. Not completely filled chunks
 157 // have a NULL element as a terminating element.
 158 //
 159 // Every chunk has a header containing a single pointer element used for memory
 160 // management. This wastes some space, but is negligible (< .1% with current sizing).
 161 //
 162 // Memory management is done using a mix of tracking a high water-mark indicating
 163 // that all chunks at a lower address are valid chunks, and a singly linked free
 164 // list connecting all empty chunks.
 165 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 166 public:
 167   // Number of oops that can fit in a single chunk.
 168   static const size_t OopsPerChunk = 1024 - 1 /* One reference for the next pointer */;
 169 private:
 170   struct OopChunk {
 171     OopChunk* next;
 172     oop data[OopsPerChunk];
 173   };
 174 
 175   size_t _max_chunk_capacity;    // Maximum number of OopChunk elements on the stack.
 176 
 177   OopChunk* _base;               // Bottom address of allocated memory area.
 178   size_t _chunk_capacity;        // Current maximum number of OopChunk elements.
 179 
 180   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 181   OopChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 182   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*)];
 183   OopChunk* volatile _chunk_list; // List of chunks currently containing data.
 184   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(OopChunk*)];
 185  
 186   volatile size_t _hwm;          // High water mark within the reserved space.
 187   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 188  
 189   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 190   // NULL if out of memory.
 191   OopChunk* allocate_new_chunk();
 192 
 193   size_t volatile _chunks_in_chunk_list;
 194 
 195   volatile bool _out_of_memory;
 196 
 197   // Atomically add the given chunk to the list.
 198   void add_chunk_to_list(OopChunk* volatile* list, OopChunk* elem);
 199   // Atomically remove and return a chunk from the given list. Returns NULL if the
 200   // list is empty.
 201   OopChunk* remove_chunk_from_list(OopChunk* volatile* list); 
 202 
 203   bool  _should_expand;
 204 
 205   // Resizes the mark stack to the given new capacity. Releases any previous
 206   // memory if successful.
 207   bool resize(size_t new_capacity);
 208 
 209  public:
 210   G1CMMarkStack();
 211   ~G1CMMarkStack();
 212 
 213   // Alignment and minimum capacity of this mark stack in number of oops.
 214   static size_t capacity_alignment();
 215 
 216   // Allocate and initialize the mark stack with the given number of oops.
 217   bool initialize(size_t initial_capacity, size_t max_capacity);
 218 
 219   // Pushes the given buffer containing at most OopsPerChunk elements on the mark
 220   // stack. If less than OopsPerChunk elements are to be pushed, the array must
 221   // be terminated with a NULL.
 222   // Returns whether the buffer contents were successfully pushed to the global mark
 223   // stack.
 224   bool par_push_chunk(oop* buffer);
 225 
 226   // Pops a chunk from this mark stack, copying them into the given buffer. This
 227   // chunk may contain up to OopsPerChunk elements. If there are less, the last
 228   // element in the array is a NULL pointer.
 229   bool par_pop_chunk(oop* buffer);
 230 
 231   // Return whether the chunk list is empty. Racy due to unsynchronized access to 
 232   // _chunks_in_chunk_list.
 233   bool is_empty() const { return _chunks_in_chunk_list == 0; }
 234 
 235   size_t capacity() const  { return _chunk_capacity; }
 236 
 237   bool is_out_of_memory() const { return _out_of_memory; }
 238   void clear_out_of_memory() { _out_of_memory = false; }
 239 
 240   bool should_expand() const { return _should_expand; }
 241   void set_should_expand(bool value) { _should_expand = value; }
 242 
 243   // Expand the stack, typically in response to an overflow condition
 244   void expand();
 245 
 246   // Return the approximate number of oops on this mark stack. Racy due to
 247   // unsynchronized access to _chunks_in_chunk_list.
 248   size_t size() const { return _chunks_in_chunk_list * OopsPerChunk; }
 249  
 250   void set_empty();
 251 
 252   // Apply Fn to every oop on the mark stack. The mark stack must not
 253   // be modified while iterating.
 254   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 255 };
 256 
 257 // Root Regions are regions that are not empty at the beginning of a
 258 // marking cycle and which we might collect during an evacuation pause
 259 // while the cycle is active. Given that, during evacuation pauses, we
 260 // do not copy objects that are explicitly marked, what we have to do
 261 // for the root regions is to scan them and mark all objects reachable
 262 // from them. According to the SATB assumptions, we only need to visit
 263 // each object once during marking. So, as long as we finish this scan
 264 // before the next evacuation pause, we can copy the objects from the
 265 // root regions without having to mark them or do anything else to them.
 266 //
 267 // Currently, we only support root region scanning once (at the start
 268 // of the marking cycle) and the root regions are all the survivor
 269 // regions populated during the initial-mark pause.
 270 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 271 private:
 272   const G1SurvivorRegions* _survivors;
 273   G1ConcurrentMark*        _cm;
 274 
 275   volatile bool            _scan_in_progress;
 276   volatile bool            _should_abort;
 277   volatile int             _claimed_survivor_index;
 278 
 279   void notify_scan_done();
 280 
 281 public:
 282   G1CMRootRegions();
 283   // We actually do most of the initialization in this method.
 284   void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
 285 
 286   // Reset the claiming / scanning of the root regions.
 287   void prepare_for_scan();
 288 
 289   // Forces get_next() to return NULL so that the iteration aborts early.
 290   void abort() { _should_abort = true; }
 291 
 292   // Return true if the CM thread are actively scanning root regions,
 293   // false otherwise.
 294   bool scan_in_progress() { return _scan_in_progress; }
 295 
 296   // Claim the next root region to scan atomically, or return NULL if
 297   // all have been claimed.
 298   HeapRegion* claim_next();
 299 
 300   // The number of root regions to scan.
 301   uint num_root_regions() const;
 302 
 303   void cancel_scan();
 304 
 305   // Flag that we're done with root region scanning and notify anyone
 306   // who's waiting on it. If aborted is false, assume that all regions
 307   // have been claimed.
 308   void scan_finished();
 309 
 310   // If CM threads are still scanning root regions, wait until they
 311   // are done. Return true if we had to wait, false otherwise.
 312   bool wait_until_scan_finished();
 313 };
 314 
 315 class ConcurrentMarkThread;
 316 
 317 class G1ConcurrentMark: public CHeapObj<mtGC> {
 318   friend class ConcurrentMarkThread;
 319   friend class G1ParNoteEndTask;
 320   friend class G1VerifyLiveDataClosure;
 321   friend class G1CMRefProcTaskProxy;
 322   friend class G1CMRefProcTaskExecutor;
 323   friend class G1CMKeepAliveAndDrainClosure;
 324   friend class G1CMDrainMarkingStackClosure;
 325   friend class G1CMBitMapClosure;
 326   friend class G1CMConcurrentMarkingTask;
 327   friend class G1CMRemarkTask;
 328   friend class G1CMTask;
 329 
 330 protected:
 331   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 332   G1CollectedHeap*      _g1h;        // The heap
 333   uint                  _parallel_marking_threads; // The number of marking
 334                                                    // threads we're using
 335   uint                  _max_parallel_marking_threads; // Max number of marking
 336                                                        // threads we'll ever use
 337   double                _sleep_factor; // How much we have to sleep, with
 338                                        // respect to the work we just did, to
 339                                        // meet the marking overhead goal
 340   double                _marking_task_overhead; // Marking target overhead for
 341                                                 // a single task
 342 
 343   FreeRegionList        _cleanup_list;
 344 
 345   // Concurrent marking support structures
 346   G1CMBitMap              _markBitMap1;
 347   G1CMBitMap              _markBitMap2;
 348   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 349   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 350 
 351   // Heap bounds
 352   HeapWord*               _heap_start;
 353   HeapWord*               _heap_end;
 354 
 355   // Root region tracking and claiming
 356   G1CMRootRegions         _root_regions;
 357 
 358   // For gray objects
 359   G1CMMarkStack           _global_mark_stack; // Grey objects behind global finger
 360   HeapWord* volatile      _finger;  // The global finger, region aligned,
 361                                     // always points to the end of the
 362                                     // last claimed region
 363 
 364   // Marking tasks
 365   uint                    _max_worker_id;// Maximum worker id
 366   uint                    _active_tasks; // Task num currently active
 367   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 368   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 369   ParallelTaskTerminator  _terminator;   // For termination
 370 
 371   // Two sync barriers that are used to synchronize tasks when an
 372   // overflow occurs. The algorithm is the following. All tasks enter
 373   // the first one to ensure that they have all stopped manipulating
 374   // the global data structures. After they exit it, they re-initialize
 375   // their data structures and task 0 re-initializes the global data
 376   // structures. Then, they enter the second sync barrier. This
 377   // ensure, that no task starts doing work before all data
 378   // structures (local and global) have been re-initialized. When they
 379   // exit it, they are free to start working again.
 380   WorkGangBarrierSync     _first_overflow_barrier_sync;
 381   WorkGangBarrierSync     _second_overflow_barrier_sync;
 382 
 383   // This is set by any task, when an overflow on the global data
 384   // structures is detected
 385   volatile bool           _has_overflown;
 386   // True: marking is concurrent, false: we're in remark
 387   volatile bool           _concurrent;
 388   // Set at the end of a Full GC so that marking aborts
 389   volatile bool           _has_aborted;
 390 
 391   // Used when remark aborts due to an overflow to indicate that
 392   // another concurrent marking phase should start
 393   volatile bool           _restart_for_overflow;
 394 
 395   // This is true from the very start of concurrent marking until the
 396   // point when all the tasks complete their work. It is really used
 397   // to determine the points between the end of concurrent marking and
 398   // time of remark.
 399   volatile bool           _concurrent_marking_in_progress;
 400 
 401   ConcurrentGCTimer*      _gc_timer_cm;
 402 
 403   G1OldTracer*            _gc_tracer_cm;
 404 
 405   // All of these times are in ms
 406   NumberSeq _init_times;
 407   NumberSeq _remark_times;
 408   NumberSeq _remark_mark_times;
 409   NumberSeq _remark_weak_ref_times;
 410   NumberSeq _cleanup_times;
 411   double    _total_counting_time;
 412   double    _total_rs_scrub_time;
 413 
 414   double*   _accum_task_vtime;   // Accumulated task vtime
 415 
 416   WorkGang* _parallel_workers;
 417 
 418   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 419   void weakRefsWork(bool clear_all_soft_refs);
 420 
 421   void swapMarkBitMaps();
 422 
 423   // It resets the global marking data structures, as well as the
 424   // task local ones; should be called during initial mark.
 425   void reset();
 426 
 427   // Resets all the marking data structures. Called when we have to restart
 428   // marking or when marking completes (via set_non_marking_state below).
 429   void reset_marking_state(bool clear_overflow = true);
 430 
 431   // We do this after we're done with marking so that the marking data
 432   // structures are initialized to a sensible and predictable state.
 433   void set_non_marking_state();
 434 
 435   // Called to indicate how many threads are currently active.
 436   void set_concurrency(uint active_tasks);
 437 
 438   // It should be called to indicate which phase we're in (concurrent
 439   // mark or remark) and how many threads are currently active.
 440   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 441 
 442   // Prints all gathered CM-related statistics
 443   void print_stats();
 444 
 445   bool cleanup_list_is_empty() {
 446     return _cleanup_list.is_empty();
 447   }
 448 
 449   // Accessor methods
 450   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 451   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 452   double sleep_factor()                     { return _sleep_factor; }
 453   double marking_task_overhead()            { return _marking_task_overhead;}
 454 
 455   HeapWord*               finger()          { return _finger;   }
 456   bool                    concurrent()      { return _concurrent; }
 457   uint                    active_tasks()    { return _active_tasks; }
 458   ParallelTaskTerminator* terminator()      { return &_terminator; }
 459 
 460   // It claims the next available region to be scanned by a marking
 461   // task/thread. It might return NULL if the next region is empty or
 462   // we have run out of regions. In the latter case, out_of_regions()
 463   // determines whether we've really run out of regions or the task
 464   // should call claim_region() again. This might seem a bit
 465   // awkward. Originally, the code was written so that claim_region()
 466   // either successfully returned with a non-empty region or there
 467   // were no more regions to be claimed. The problem with this was
 468   // that, in certain circumstances, it iterated over large chunks of
 469   // the heap finding only empty regions and, while it was working, it
 470   // was preventing the calling task to call its regular clock
 471   // method. So, this way, each task will spend very little time in
 472   // claim_region() and is allowed to call the regular clock method
 473   // frequently.
 474   HeapRegion* claim_region(uint worker_id);
 475 
 476   // It determines whether we've run out of regions to scan. Note that
 477   // the finger can point past the heap end in case the heap was expanded
 478   // to satisfy an allocation without doing a GC. This is fine, because all
 479   // objects in those regions will be considered live anyway because of
 480   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 481   bool        out_of_regions() { return _finger >= _heap_end; }
 482 
 483   // Returns the task with the given id
 484   G1CMTask* task(int id) {
 485     assert(0 <= id && id < (int) _active_tasks,
 486            "task id not within active bounds");
 487     return _tasks[id];
 488   }
 489 
 490   // Returns the task queue with the given id
 491   G1CMTaskQueue* task_queue(int id) {
 492     assert(0 <= id && id < (int) _active_tasks,
 493            "task queue id not within active bounds");
 494     return (G1CMTaskQueue*) _task_queues->queue(id);
 495   }
 496 
 497   // Returns the task queue set
 498   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 499 
 500   // Access / manipulation of the overflow flag which is set to
 501   // indicate that the global stack has overflown
 502   bool has_overflown()           { return _has_overflown; }
 503   void set_has_overflown()       { _has_overflown = true; }
 504   void clear_has_overflown()     { _has_overflown = false; }
 505   bool restart_for_overflow()    { return _restart_for_overflow; }
 506 
 507   // Methods to enter the two overflow sync barriers
 508   void enter_first_sync_barrier(uint worker_id);
 509   void enter_second_sync_barrier(uint worker_id);
 510 
 511   // Card index of the bottom of the G1 heap. Used for biasing indices into
 512   // the card bitmaps.
 513   intptr_t _heap_bottom_card_num;
 514 
 515   // Set to true when initialization is complete
 516   bool _completed_initialization;
 517 
 518   // end_timer, true to end gc timer after ending concurrent phase.
 519   void register_concurrent_phase_end_common(bool end_timer);
 520 
 521   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 522   // true, periodically insert checks to see if this method should exit prematurely.
 523   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 524 public:
 525   // Manipulation of the global mark stack.
 526   // The push and pop operations are used by tasks for transfers
 527   // between task-local queues and the global mark stack.
 528   bool mark_stack_push(oop* arr) {
 529     if (!_global_mark_stack.par_push_chunk(arr)) {
 530       set_has_overflown();
 531       return false;
 532     }
 533     return true;
 534   }
 535   bool mark_stack_pop(oop* arr) {
 536     return _global_mark_stack.par_pop_chunk(arr);
 537   }
 538   size_t mark_stack_size()                { return _global_mark_stack.size(); }
 539   size_t partial_mark_stack_size_target() { return _global_mark_stack.capacity()/3; }
 540   bool mark_stack_overflow()              { return _global_mark_stack.is_out_of_memory(); }
 541   bool mark_stack_empty()                 { return _global_mark_stack.is_empty(); }
 542 
 543   G1CMRootRegions* root_regions() { return &_root_regions; }
 544 
 545   bool concurrent_marking_in_progress() {
 546     return _concurrent_marking_in_progress;
 547   }
 548   void set_concurrent_marking_in_progress() {
 549     _concurrent_marking_in_progress = true;
 550   }
 551   void clear_concurrent_marking_in_progress() {
 552     _concurrent_marking_in_progress = false;
 553   }
 554 
 555   void concurrent_cycle_start();
 556   void concurrent_cycle_end();
 557 
 558   void update_accum_task_vtime(int i, double vtime) {
 559     _accum_task_vtime[i] += vtime;
 560   }
 561 
 562   double all_task_accum_vtime() {
 563     double ret = 0.0;
 564     for (uint i = 0; i < _max_worker_id; ++i)
 565       ret += _accum_task_vtime[i];
 566     return ret;
 567   }
 568 
 569   // Attempts to steal an object from the task queues of other tasks
 570   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 571 
 572   G1ConcurrentMark(G1CollectedHeap* g1h,
 573                    G1RegionToSpaceMapper* prev_bitmap_storage,
 574                    G1RegionToSpaceMapper* next_bitmap_storage);
 575   ~G1ConcurrentMark();
 576 
 577   ConcurrentMarkThread* cmThread() { return _cmThread; }
 578 
 579   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 580   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 581 
 582   // Returns the number of GC threads to be used in a concurrent
 583   // phase based on the number of GC threads being used in a STW
 584   // phase.
 585   uint scale_parallel_threads(uint n_par_threads);
 586 
 587   // Calculates the number of GC threads to be used in a concurrent phase.
 588   uint calc_parallel_marking_threads();
 589 
 590   // The following three are interaction between CM and
 591   // G1CollectedHeap
 592 
 593   // This notifies CM that a root during initial-mark needs to be
 594   // grayed. It is MT-safe. hr is the region that
 595   // contains the object and it's passed optionally from callers who
 596   // might already have it (no point in recalculating it).
 597   inline void grayRoot(oop obj,
 598                        HeapRegion* hr = NULL);
 599 
 600   // Prepare internal data structures for the next mark cycle. This includes clearing
 601   // the next mark bitmap and some internal data structures. This method is intended
 602   // to be called concurrently to the mutator. It will yield to safepoint requests.
 603   void cleanup_for_next_mark();
 604 
 605   // Clear the previous marking bitmap during safepoint.
 606   void clear_prev_bitmap(WorkGang* workers);
 607 
 608   // Return whether the next mark bitmap has no marks set. To be used for assertions
 609   // only. Will not yield to pause requests.
 610   bool nextMarkBitmapIsClear();
 611 
 612   // These two do the work that needs to be done before and after the
 613   // initial root checkpoint. Since this checkpoint can be done at two
 614   // different points (i.e. an explicit pause or piggy-backed on a
 615   // young collection), then it's nice to be able to easily share the
 616   // pre/post code. It might be the case that we can put everything in
 617   // the post method. TP
 618   void checkpointRootsInitialPre();
 619   void checkpointRootsInitialPost();
 620 
 621   // Scan all the root regions and mark everything reachable from
 622   // them.
 623   void scan_root_regions();
 624 
 625   // Scan a single root region and mark everything reachable from it.
 626   void scanRootRegion(HeapRegion* hr);
 627 
 628   // Do concurrent phase of marking, to a tentative transitive closure.
 629   void mark_from_roots();
 630 
 631   void checkpointRootsFinal(bool clear_all_soft_refs);
 632   void checkpointRootsFinalWork();
 633   void cleanup();
 634   void complete_cleanup();
 635 
 636   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 637   // this carefully!
 638   inline void markPrev(oop p);
 639 
 640   // Clears marks for all objects in the given range, for the prev or
 641   // next bitmaps.  NB: the previous bitmap is usually
 642   // read-only, so use this carefully!
 643   void clearRangePrevBitmap(MemRegion mr);
 644 
 645   // Verify that there are no CSet oops on the stacks (taskqueues /
 646   // global mark stack) and fingers (global / per-task).
 647   // If marking is not in progress, it's a no-op.
 648   void verify_no_cset_oops() PRODUCT_RETURN;
 649 
 650   inline bool isPrevMarked(oop p) const;
 651 
 652   inline bool do_yield_check();
 653 
 654   // Abandon current marking iteration due to a Full GC.
 655   void abort();
 656 
 657   bool has_aborted()      { return _has_aborted; }
 658 
 659   void print_summary_info();
 660 
 661   void print_worker_threads_on(outputStream* st) const;
 662   void threads_do(ThreadClosure* tc) const;
 663 
 664   void print_on_error(outputStream* st) const;
 665 
 666   // Attempts to mark the given object on the next mark bitmap.
 667   inline bool par_mark(oop obj);
 668 
 669   // Returns true if initialization was successfully completed.
 670   bool completed_initialization() const {
 671     return _completed_initialization;
 672   }
 673 
 674   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 675   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 676 
 677 private:
 678   // Clear (Reset) all liveness count data.
 679   void clear_live_data(WorkGang* workers);
 680 
 681 #ifdef ASSERT
 682   // Verify all of the above data structures that they are in initial state.
 683   void verify_live_data_clear();
 684 #endif
 685 
 686   // Aggregates the per-card liveness data based on the current marking. Also sets
 687   // the amount of marked bytes for each region.
 688   void create_live_data();
 689 
 690   void finalize_live_data();
 691 
 692   void verify_live_data();
 693 };
 694 
 695 // A class representing a marking task.
 696 class G1CMTask : public TerminatorTerminator {
 697 private:
 698   enum PrivateConstants {
 699     // The regular clock call is called once the scanned words reaches
 700     // this limit
 701     words_scanned_period          = 12*1024,
 702     // The regular clock call is called once the number of visited
 703     // references reaches this limit
 704     refs_reached_period           = 384,
 705     // Initial value for the hash seed, used in the work stealing code
 706     init_hash_seed                = 17
 707   };
 708 
 709   uint                        _worker_id;
 710   G1CollectedHeap*            _g1h;
 711   G1ConcurrentMark*           _cm;
 712   G1CMBitMap*                 _nextMarkBitMap;
 713   // the task queue of this task
 714   G1CMTaskQueue*              _task_queue;
 715 private:
 716   // the task queue set---needed for stealing
 717   G1CMTaskQueueSet*           _task_queues;
 718   // indicates whether the task has been claimed---this is only  for
 719   // debugging purposes
 720   bool                        _claimed;
 721 
 722   // number of calls to this task
 723   int                         _calls;
 724 
 725   // when the virtual timer reaches this time, the marking step should
 726   // exit
 727   double                      _time_target_ms;
 728   // the start time of the current marking step
 729   double                      _start_time_ms;
 730 
 731   // the oop closure used for iterations over oops
 732   G1CMOopClosure*             _cm_oop_closure;
 733 
 734   // the region this task is scanning, NULL if we're not scanning any
 735   HeapRegion*                 _curr_region;
 736   // the local finger of this task, NULL if we're not scanning a region
 737   HeapWord*                   _finger;
 738   // limit of the region this task is scanning, NULL if we're not scanning one
 739   HeapWord*                   _region_limit;
 740 
 741   // the number of words this task has scanned
 742   size_t                      _words_scanned;
 743   // When _words_scanned reaches this limit, the regular clock is
 744   // called. Notice that this might be decreased under certain
 745   // circumstances (i.e. when we believe that we did an expensive
 746   // operation).
 747   size_t                      _words_scanned_limit;
 748   // the initial value of _words_scanned_limit (i.e. what it was
 749   // before it was decreased).
 750   size_t                      _real_words_scanned_limit;
 751 
 752   // the number of references this task has visited
 753   size_t                      _refs_reached;
 754   // When _refs_reached reaches this limit, the regular clock is
 755   // called. Notice this this might be decreased under certain
 756   // circumstances (i.e. when we believe that we did an expensive
 757   // operation).
 758   size_t                      _refs_reached_limit;
 759   // the initial value of _refs_reached_limit (i.e. what it was before
 760   // it was decreased).
 761   size_t                      _real_refs_reached_limit;
 762 
 763   // used by the work stealing stuff
 764   int                         _hash_seed;
 765   // if this is true, then the task has aborted for some reason
 766   bool                        _has_aborted;
 767   // set when the task aborts because it has met its time quota
 768   bool                        _has_timed_out;
 769   // true when we're draining SATB buffers; this avoids the task
 770   // aborting due to SATB buffers being available (as we're already
 771   // dealing with them)
 772   bool                        _draining_satb_buffers;
 773 
 774   // number sequence of past step times
 775   NumberSeq                   _step_times_ms;
 776   // elapsed time of this task
 777   double                      _elapsed_time_ms;
 778   // termination time of this task
 779   double                      _termination_time_ms;
 780   // when this task got into the termination protocol
 781   double                      _termination_start_time_ms;
 782 
 783   // true when the task is during a concurrent phase, false when it is
 784   // in the remark phase (so, in the latter case, we do not have to
 785   // check all the things that we have to check during the concurrent
 786   // phase, i.e. SATB buffer availability...)
 787   bool                        _concurrent;
 788 
 789   TruncatedSeq                _marking_step_diffs_ms;
 790 
 791   // it updates the local fields after this task has claimed
 792   // a new region to scan
 793   void setup_for_region(HeapRegion* hr);
 794   // it brings up-to-date the limit of the region
 795   void update_region_limit();
 796 
 797   // called when either the words scanned or the refs visited limit
 798   // has been reached
 799   void reached_limit();
 800   // recalculates the words scanned and refs visited limits
 801   void recalculate_limits();
 802   // decreases the words scanned and refs visited limits when we reach
 803   // an expensive operation
 804   void decrease_limits();
 805   // it checks whether the words scanned or refs visited reached their
 806   // respective limit and calls reached_limit() if they have
 807   void check_limits() {
 808     if (_words_scanned >= _words_scanned_limit ||
 809         _refs_reached >= _refs_reached_limit) {
 810       reached_limit();
 811     }
 812   }
 813   // this is supposed to be called regularly during a marking step as
 814   // it checks a bunch of conditions that might cause the marking step
 815   // to abort
 816   void regular_clock_call();
 817   bool concurrent() { return _concurrent; }
 818 
 819   // Test whether obj might have already been passed over by the
 820   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 821   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 822 
 823   template<bool scan> void process_grey_object(oop obj);
 824 
 825 public:
 826   // It resets the task; it should be called right at the beginning of
 827   // a marking phase.
 828   void reset(G1CMBitMap* _nextMarkBitMap);
 829   // it clears all the fields that correspond to a claimed region.
 830   void clear_region_fields();
 831 
 832   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 833 
 834   // The main method of this class which performs a marking step
 835   // trying not to exceed the given duration. However, it might exit
 836   // prematurely, according to some conditions (i.e. SATB buffers are
 837   // available for processing).
 838   void do_marking_step(double target_ms,
 839                        bool do_termination,
 840                        bool is_serial);
 841 
 842   // These two calls start and stop the timer
 843   void record_start_time() {
 844     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 845   }
 846   void record_end_time() {
 847     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 848   }
 849 
 850   // returns the worker ID associated with this task.
 851   uint worker_id() { return _worker_id; }
 852 
 853   // From TerminatorTerminator. It determines whether this task should
 854   // exit the termination protocol after it's entered it.
 855   virtual bool should_exit_termination();
 856 
 857   // Resets the local region fields after a task has finished scanning a
 858   // region; or when they have become stale as a result of the region
 859   // being evacuated.
 860   void giveup_current_region();
 861 
 862   HeapWord* finger()            { return _finger; }
 863 
 864   bool has_aborted()            { return _has_aborted; }
 865   void set_has_aborted()        { _has_aborted = true; }
 866   void clear_has_aborted()      { _has_aborted = false; }
 867   bool has_timed_out()          { return _has_timed_out; }
 868   bool claimed()                { return _claimed; }
 869 
 870   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 871 
 872   // Increment the number of references this task has visited.
 873   void increment_refs_reached() { ++_refs_reached; }
 874 
 875   // Grey the object by marking it.  If not already marked, push it on
 876   // the local queue if below the finger.
 877   // obj is below its region's NTAMS.
 878   inline void make_reference_grey(oop obj);
 879 
 880   // Grey the object (by calling make_grey_reference) if required,
 881   // e.g. obj is below its containing region's NTAMS.
 882   // Precondition: obj is a valid heap object.
 883   inline void deal_with_reference(oop obj);
 884 
 885   // It scans an object and visits its children.
 886   inline void scan_object(oop obj);
 887 
 888   // It pushes an object on the local queue.
 889   inline void push(oop obj);
 890 
 891   // Move entries to the global stack.
 892   void move_entries_to_global_stack();
 893   // Move entries from the global stack, return true if we were successful to do so.
 894   bool get_entries_from_global_stack();
 895 
 896   // It pops and scans objects from the local queue. If partially is
 897   // true, then it stops when the queue size is of a given limit. If
 898   // partially is false, then it stops when the queue is empty.
 899   void drain_local_queue(bool partially);
 900   // It moves entries from the global stack to the local queue and
 901   // drains the local queue. If partially is true, then it stops when
 902   // both the global stack and the local queue reach a given size. If
 903   // partially if false, it tries to empty them totally.
 904   void drain_global_stack(bool partially);
 905   // It keeps picking SATB buffers and processing them until no SATB
 906   // buffers are available.
 907   void drain_satb_buffers();
 908 
 909   // moves the local finger to a new location
 910   inline void move_finger_to(HeapWord* new_finger) {
 911     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 912     _finger = new_finger;
 913   }
 914 
 915   G1CMTask(uint worker_id,
 916            G1ConcurrentMark *cm,
 917            G1CMTaskQueue* task_queue,
 918            G1CMTaskQueueSet* task_queues);
 919 
 920   // it prints statistics associated with this task
 921   void print_stats();
 922 };
 923 
 924 // Class that's used to to print out per-region liveness
 925 // information. It's currently used at the end of marking and also
 926 // after we sort the old regions at the end of the cleanup operation.
 927 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 928 private:
 929   // Accumulators for these values.
 930   size_t _total_used_bytes;
 931   size_t _total_capacity_bytes;
 932   size_t _total_prev_live_bytes;
 933   size_t _total_next_live_bytes;
 934 
 935   // Accumulator for the remembered set size
 936   size_t _total_remset_bytes;
 937 
 938   // Accumulator for strong code roots memory size
 939   size_t _total_strong_code_roots_bytes;
 940 
 941   static double perc(size_t val, size_t total) {
 942     if (total == 0) {
 943       return 0.0;
 944     } else {
 945       return 100.0 * ((double) val / (double) total);
 946     }
 947   }
 948 
 949   static double bytes_to_mb(size_t val) {
 950     return (double) val / (double) M;
 951   }
 952 
 953 public:
 954   // The header and footer are printed in the constructor and
 955   // destructor respectively.
 956   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 957   virtual bool doHeapRegion(HeapRegion* r);
 958   ~G1PrintRegionLivenessInfoClosure();
 959 };
 960 
 961 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP