1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/g1ThreadLocalData.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/g1/heapRegionSet.inline.hpp"
  42 #include "gc/shared/adaptiveSizePolicy.hpp"
  43 #include "gc/shared/gcId.hpp"
  44 #include "gc/shared/gcTimer.hpp"
  45 #include "gc/shared/gcTrace.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/referencePolicy.hpp"
  49 #include "gc/shared/strongRootsScope.hpp"
  50 #include "gc/shared/suspendibleThreadSet.hpp"
  51 #include "gc/shared/taskqueue.inline.hpp"
  52 #include "gc/shared/vmGCOperations.hpp"
  53 #include "gc/shared/weakProcessor.inline.hpp"
  54 #include "include/jvm.h"
  55 #include "logging/log.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/resourceArea.hpp"
  58 #include "oops/access.inline.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/prefetch.inline.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "utilities/align.hpp"
  66 #include "utilities/growableArray.hpp"
  67 
  68 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  69   assert(addr < _cm->finger(), "invariant");
  70   assert(addr >= _task->finger(), "invariant");
  71 
  72   // We move that task's local finger along.
  73   _task->move_finger_to(addr);
  74 
  75   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  76   // we only partially drain the local queue and global stack
  77   _task->drain_local_queue(true);
  78   _task->drain_global_stack(true);
  79 
  80   // if the has_aborted flag has been raised, we need to bail out of
  81   // the iteration
  82   return !_task->has_aborted();
  83 }
  84 
  85 G1CMMarkStack::G1CMMarkStack() :
  86   _max_chunk_capacity(0),
  87   _base(NULL),
  88   _chunk_capacity(0) {
  89   set_empty();
  90 }
  91 
  92 bool G1CMMarkStack::resize(size_t new_capacity) {
  93   assert(is_empty(), "Only resize when stack is empty.");
  94   assert(new_capacity <= _max_chunk_capacity,
  95          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  96 
  97   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  98 
  99   if (new_base == NULL) {
 100     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 101     return false;
 102   }
 103   // Release old mapping.
 104   if (_base != NULL) {
 105     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 106   }
 107 
 108   _base = new_base;
 109   _chunk_capacity = new_capacity;
 110   set_empty();
 111 
 112   return true;
 113 }
 114 
 115 size_t G1CMMarkStack::capacity_alignment() {
 116   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 117 }
 118 
 119 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 120   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 121 
 122   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 123 
 124   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 125   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 126 
 127   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 128             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 129             _max_chunk_capacity,
 130             initial_chunk_capacity);
 131 
 132   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 133                 initial_chunk_capacity, _max_chunk_capacity);
 134 
 135   return resize(initial_chunk_capacity);
 136 }
 137 
 138 void G1CMMarkStack::expand() {
 139   if (_chunk_capacity == _max_chunk_capacity) {
 140     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 141     return;
 142   }
 143   size_t old_capacity = _chunk_capacity;
 144   // Double capacity if possible
 145   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 146 
 147   if (resize(new_capacity)) {
 148     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 149                   old_capacity, new_capacity);
 150   } else {
 151     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 152                     old_capacity, new_capacity);
 153   }
 154 }
 155 
 156 G1CMMarkStack::~G1CMMarkStack() {
 157   if (_base != NULL) {
 158     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 159   }
 160 }
 161 
 162 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 163   elem->next = *list;
 164   *list = elem;
 165 }
 166 
 167 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 168   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 169   add_chunk_to_list(&_chunk_list, elem);
 170   _chunks_in_chunk_list++;
 171 }
 172 
 173 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 174   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 175   add_chunk_to_list(&_free_list, elem);
 176 }
 177 
 178 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 179   TaskQueueEntryChunk* result = *list;
 180   if (result != NULL) {
 181     *list = (*list)->next;
 182   }
 183   return result;
 184 }
 185 
 186 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 187   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 188   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 189   if (result != NULL) {
 190     _chunks_in_chunk_list--;
 191   }
 192   return result;
 193 }
 194 
 195 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 196   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 197   return remove_chunk_from_list(&_free_list);
 198 }
 199 
 200 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 201   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 202   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 203   // wraparound of _hwm.
 204   if (_hwm >= _chunk_capacity) {
 205     return NULL;
 206   }
 207 
 208   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 209   if (cur_idx >= _chunk_capacity) {
 210     return NULL;
 211   }
 212 
 213   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 214   result->next = NULL;
 215   return result;
 216 }
 217 
 218 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 219   // Get a new chunk.
 220   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 221 
 222   if (new_chunk == NULL) {
 223     // Did not get a chunk from the free list. Allocate from backing memory.
 224     new_chunk = allocate_new_chunk();
 225 
 226     if (new_chunk == NULL) {
 227       return false;
 228     }
 229   }
 230 
 231   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 232 
 233   add_chunk_to_chunk_list(new_chunk);
 234 
 235   return true;
 236 }
 237 
 238 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 239   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 240 
 241   if (cur == NULL) {
 242     return false;
 243   }
 244 
 245   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 246 
 247   add_chunk_to_free_list(cur);
 248   return true;
 249 }
 250 
 251 void G1CMMarkStack::set_empty() {
 252   _chunks_in_chunk_list = 0;
 253   _hwm = 0;
 254   _chunk_list = NULL;
 255   _free_list = NULL;
 256 }
 257 
 258 G1CMRootRegions::G1CMRootRegions() :
 259   _root_regions(NULL),
 260   _max_regions(0),
 261   _cur_regions(0),
 262   _scan_in_progress(false),
 263   _should_abort(false),
 264   _claimed_root_regions(0) { }
 265 
 266 void G1CMRootRegions::reset(const uint max_regions) {
 267   _root_regions = NEW_C_HEAP_ARRAY(HeapRegion*, max_regions, mtGC);
 268   _max_regions = max_regions;
 269   _cur_regions = 0;
 270 }
 271 
 272 void G1CMRootRegions::add(HeapRegion* hr) {
 273   assert_at_safepoint();
 274   size_t idx = Atomic::add((size_t)1, &_cur_regions) - 1;
 275   assert(idx < _max_regions, "Trying to add more root regions than there is space %u", _max_regions);
 276   _root_regions[idx] = hr;
 277 }
 278 
 279 void G1CMRootRegions::prepare_for_scan() {
 280   assert(!scan_in_progress(), "pre-condition");
 281 
 282   _scan_in_progress = _cur_regions > 0;
 283 
 284   _claimed_root_regions = 0;
 285   _should_abort = false;
 286 }
 287 
 288 HeapRegion* G1CMRootRegions::claim_next() {
 289   if (_should_abort) {
 290     // If someone has set the should_abort flag, we return NULL to
 291     // force the caller to bail out of their loop.
 292     return NULL;
 293   }
 294 
 295   if (_claimed_root_regions >= _cur_regions) {
 296     return NULL;
 297   }
 298 
 299   size_t claimed_index = Atomic::add((size_t)1, &_claimed_root_regions) - 1;
 300   if (claimed_index < _cur_regions) {
 301     return _root_regions[claimed_index];
 302   }
 303   return NULL;
 304 }
 305 
 306 uint G1CMRootRegions::num_root_regions() const {
 307   return (uint)_cur_regions;
 308 }
 309 
 310 void G1CMRootRegions::notify_scan_done() {
 311   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 312   _scan_in_progress = false;
 313   RootRegionScan_lock->notify_all();
 314 }
 315 
 316 void G1CMRootRegions::cancel_scan() {
 317   notify_scan_done();
 318 }
 319 
 320 void G1CMRootRegions::scan_finished() {
 321   assert(scan_in_progress(), "pre-condition");
 322 
 323   if (!_should_abort) {
 324     assert(_claimed_root_regions >= num_root_regions(),
 325            "we should have claimed all root regions, claimed " SIZE_FORMAT ", length = %u",
 326            _claimed_root_regions, num_root_regions());
 327   }
 328 
 329   FREE_C_HEAP_ARRAY(HeapRegion*, _root_regions);
 330   _root_regions = NULL;
 331   _max_regions = 0;
 332   _cur_regions = 0;
 333 
 334   notify_scan_done();
 335 }
 336 
 337 bool G1CMRootRegions::wait_until_scan_finished() {
 338   if (!scan_in_progress()) {
 339     return false;
 340   }
 341 
 342   {
 343     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 344     while (scan_in_progress()) {
 345       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 346     }
 347   }
 348   return true;
 349 }
 350 
 351 // Returns the maximum number of workers to be used in a concurrent
 352 // phase based on the number of GC workers being used in a STW
 353 // phase.
 354 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 355   return MAX2((num_gc_workers + 2) / 4, 1U);
 356 }
 357 
 358 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 359                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 360                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 361   // _cm_thread set inside the constructor
 362   _g1h(g1h),
 363   _completed_initialization(false),
 364 
 365   _mark_bitmap_1(),
 366   _mark_bitmap_2(),
 367   _prev_mark_bitmap(&_mark_bitmap_1),
 368   _next_mark_bitmap(&_mark_bitmap_2),
 369 
 370   _heap(_g1h->reserved_region()),
 371 
 372   _root_regions(),
 373 
 374   _global_mark_stack(),
 375 
 376   // _finger set in set_non_marking_state
 377 
 378   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 379   _max_num_tasks(ParallelGCThreads),
 380   // _num_active_tasks set in set_non_marking_state()
 381   // _tasks set inside the constructor
 382 
 383   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 384   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 385 
 386   _first_overflow_barrier_sync(),
 387   _second_overflow_barrier_sync(),
 388 
 389   _has_overflown(false),
 390   _concurrent(false),
 391   _has_aborted(false),
 392   _restart_for_overflow(false),
 393   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 394   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 395 
 396   // _verbose_level set below
 397 
 398   _init_times(),
 399   _remark_times(),
 400   _remark_mark_times(),
 401   _remark_weak_ref_times(),
 402   _cleanup_times(),
 403   _total_cleanup_time(0.0),
 404 
 405   _accum_task_vtime(NULL),
 406 
 407   _concurrent_workers(NULL),
 408   _num_concurrent_workers(0),
 409   _max_concurrent_workers(0),
 410 
 411   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 412   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 413 {
 414   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 415   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 416 
 417   // Create & start ConcurrentMark thread.
 418   _cm_thread = new G1ConcurrentMarkThread(this);
 419   if (_cm_thread->osthread() == NULL) {
 420     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 421   }
 422 
 423   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 424 
 425   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 426     // Calculate the number of concurrent worker threads by scaling
 427     // the number of parallel GC threads.
 428     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 429     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 430   }
 431 
 432   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 433   if (ConcGCThreads > ParallelGCThreads) {
 434     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 435                     ConcGCThreads, ParallelGCThreads);
 436     return;
 437   }
 438 
 439   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 440   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 441 
 442   _num_concurrent_workers = ConcGCThreads;
 443   _max_concurrent_workers = _num_concurrent_workers;
 444 
 445   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 446   _concurrent_workers->initialize_workers();
 447 
 448   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 449     size_t mark_stack_size =
 450       MIN2(MarkStackSizeMax,
 451           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 452     // Verify that the calculated value for MarkStackSize is in range.
 453     // It would be nice to use the private utility routine from Arguments.
 454     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 455       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 456                       "must be between 1 and " SIZE_FORMAT,
 457                       mark_stack_size, MarkStackSizeMax);
 458       return;
 459     }
 460     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 461   } else {
 462     // Verify MarkStackSize is in range.
 463     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 464       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 465         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 466           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 467                           "must be between 1 and " SIZE_FORMAT,
 468                           MarkStackSize, MarkStackSizeMax);
 469           return;
 470         }
 471       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 472         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 473           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 474                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 475                           MarkStackSize, MarkStackSizeMax);
 476           return;
 477         }
 478       }
 479     }
 480   }
 481 
 482   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 483     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 484   }
 485 
 486   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 487   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 488 
 489   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 490   _num_active_tasks = _max_num_tasks;
 491 
 492   for (uint i = 0; i < _max_num_tasks; ++i) {
 493     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 494     task_queue->initialize();
 495     _task_queues->register_queue(i, task_queue);
 496 
 497     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 498 
 499     _accum_task_vtime[i] = 0.0;
 500   }
 501 
 502   reset_at_marking_complete();
 503   _completed_initialization = true;
 504 }
 505 
 506 void G1ConcurrentMark::reset() {
 507   _has_aborted = false;
 508 
 509   reset_marking_for_restart();
 510 
 511   // Reset all tasks, since different phases will use different number of active
 512   // threads. So, it's easiest to have all of them ready.
 513   for (uint i = 0; i < _max_num_tasks; ++i) {
 514     _tasks[i]->reset(_next_mark_bitmap);
 515   }
 516 
 517   uint max_regions = _g1h->max_regions();
 518   for (uint i = 0; i < max_regions; i++) {
 519     _top_at_rebuild_starts[i] = NULL;
 520     _region_mark_stats[i].clear();
 521   }
 522 }
 523 
 524 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 525   for (uint j = 0; j < _max_num_tasks; ++j) {
 526     _tasks[j]->clear_mark_stats_cache(region_idx);
 527   }
 528   _top_at_rebuild_starts[region_idx] = NULL;
 529   _region_mark_stats[region_idx].clear();
 530 }
 531 
 532 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 533   uint const region_idx = r->hrm_index();
 534   if (r->is_humongous()) {
 535     assert(r->is_starts_humongous(), "Got humongous continues region here");
 536     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 537     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 538       clear_statistics_in_region(j);
 539     }
 540   } else {
 541     clear_statistics_in_region(region_idx);
 542   }
 543 }
 544 
 545 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 546   if (bitmap->is_marked(addr)) {
 547     bitmap->clear(addr);
 548   }
 549 }
 550 
 551 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 552   assert_at_safepoint_on_vm_thread();
 553 
 554   // Need to clear all mark bits of the humongous object.
 555   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 556   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 557 
 558   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 559     return;
 560   }
 561 
 562   // Clear any statistics about the region gathered so far.
 563   clear_statistics(r);
 564 }
 565 
 566 void G1ConcurrentMark::reset_marking_for_restart() {
 567   _global_mark_stack.set_empty();
 568 
 569   // Expand the marking stack, if we have to and if we can.
 570   if (has_overflown()) {
 571     _global_mark_stack.expand();
 572 
 573     uint max_regions = _g1h->max_regions();
 574     for (uint i = 0; i < max_regions; i++) {
 575       _region_mark_stats[i].clear_during_overflow();
 576     }
 577   }
 578 
 579   clear_has_overflown();
 580   _finger = _heap.start();
 581 
 582   for (uint i = 0; i < _max_num_tasks; ++i) {
 583     G1CMTaskQueue* queue = _task_queues->queue(i);
 584     queue->set_empty();
 585   }
 586 }
 587 
 588 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 589   assert(active_tasks <= _max_num_tasks, "we should not have more");
 590 
 591   _num_active_tasks = active_tasks;
 592   // Need to update the three data structures below according to the
 593   // number of active threads for this phase.
 594   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 595   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 596   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 597 }
 598 
 599 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 600   set_concurrency(active_tasks);
 601 
 602   _concurrent = concurrent;
 603 
 604   if (!concurrent) {
 605     // At this point we should be in a STW phase, and completed marking.
 606     assert_at_safepoint_on_vm_thread();
 607     assert(out_of_regions(),
 608            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 609            p2i(_finger), p2i(_heap.end()));
 610   }
 611 }
 612 
 613 void G1ConcurrentMark::reset_at_marking_complete() {
 614   // We set the global marking state to some default values when we're
 615   // not doing marking.
 616   reset_marking_for_restart();
 617   _num_active_tasks = 0;
 618 }
 619 
 620 G1ConcurrentMark::~G1ConcurrentMark() {
 621   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 622   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 623   // The G1ConcurrentMark instance is never freed.
 624   ShouldNotReachHere();
 625 }
 626 
 627 class G1ClearBitMapTask : public AbstractGangTask {
 628 public:
 629   static size_t chunk_size() { return M; }
 630 
 631 private:
 632   // Heap region closure used for clearing the given mark bitmap.
 633   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 634   private:
 635     G1CMBitMap* _bitmap;
 636     G1ConcurrentMark* _cm;
 637   public:
 638     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 639     }
 640 
 641     virtual bool do_heap_region(HeapRegion* r) {
 642       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 643 
 644       HeapWord* cur = r->bottom();
 645       HeapWord* const end = r->end();
 646 
 647       while (cur < end) {
 648         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 649         _bitmap->clear_range(mr);
 650 
 651         cur += chunk_size_in_words;
 652 
 653         // Abort iteration if after yielding the marking has been aborted.
 654         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 655           return true;
 656         }
 657         // Repeat the asserts from before the start of the closure. We will do them
 658         // as asserts here to minimize their overhead on the product. However, we
 659         // will have them as guarantees at the beginning / end of the bitmap
 660         // clearing to get some checking in the product.
 661         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 662         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 663       }
 664       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 665 
 666       return false;
 667     }
 668   };
 669 
 670   G1ClearBitmapHRClosure _cl;
 671   HeapRegionClaimer _hr_claimer;
 672   bool _suspendible; // If the task is suspendible, workers must join the STS.
 673 
 674 public:
 675   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 676     AbstractGangTask("G1 Clear Bitmap"),
 677     _cl(bitmap, suspendible ? cm : NULL),
 678     _hr_claimer(n_workers),
 679     _suspendible(suspendible)
 680   { }
 681 
 682   void work(uint worker_id) {
 683     SuspendibleThreadSetJoiner sts_join(_suspendible);
 684     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 685   }
 686 
 687   bool is_complete() {
 688     return _cl.is_complete();
 689   }
 690 };
 691 
 692 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 693   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 694 
 695   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 696   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 697 
 698   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 699 
 700   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 701 
 702   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 703   workers->run_task(&cl, num_workers);
 704   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 705 }
 706 
 707 void G1ConcurrentMark::cleanup_for_next_mark() {
 708   // Make sure that the concurrent mark thread looks to still be in
 709   // the current cycle.
 710   guarantee(cm_thread()->during_cycle(), "invariant");
 711 
 712   // We are finishing up the current cycle by clearing the next
 713   // marking bitmap and getting it ready for the next cycle. During
 714   // this time no other cycle can start. So, let's make sure that this
 715   // is the case.
 716   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 717 
 718   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 719 
 720   // Repeat the asserts from above.
 721   guarantee(cm_thread()->during_cycle(), "invariant");
 722   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 723 }
 724 
 725 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 726   assert_at_safepoint_on_vm_thread();
 727   clear_bitmap(_prev_mark_bitmap, workers, false);
 728 }
 729 
 730 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 731 public:
 732   bool do_heap_region(HeapRegion* r) {
 733     r->note_start_of_marking();
 734     return false;
 735   }
 736 };
 737 
 738 void G1ConcurrentMark::pre_initial_mark() {
 739   // Initialize marking structures. This has to be done in a STW phase.
 740   reset();
 741 
 742   // For each region note start of marking.
 743   NoteStartOfMarkHRClosure startcl;
 744   _g1h->heap_region_iterate(&startcl);
 745 
 746   _root_regions.reset(_g1h->max_regions());
 747 }
 748 
 749 
 750 void G1ConcurrentMark::post_initial_mark() {
 751   // Start Concurrent Marking weak-reference discovery.
 752   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 753   // enable ("weak") refs discovery
 754   rp->enable_discovery();
 755   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 756 
 757   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 758   // This is the start of  the marking cycle, we're expected all
 759   // threads to have SATB queues with active set to false.
 760   satb_mq_set.set_active_all_threads(true, /* new active value */
 761                                      false /* expected_active */);
 762 
 763   _root_regions.prepare_for_scan();
 764 
 765   // update_g1_committed() will be called at the end of an evac pause
 766   // when marking is on. So, it's also called at the end of the
 767   // initial-mark pause to update the heap end, if the heap expands
 768   // during it. No need to call it here.
 769 }
 770 
 771 /*
 772  * Notice that in the next two methods, we actually leave the STS
 773  * during the barrier sync and join it immediately afterwards. If we
 774  * do not do this, the following deadlock can occur: one thread could
 775  * be in the barrier sync code, waiting for the other thread to also
 776  * sync up, whereas another one could be trying to yield, while also
 777  * waiting for the other threads to sync up too.
 778  *
 779  * Note, however, that this code is also used during remark and in
 780  * this case we should not attempt to leave / enter the STS, otherwise
 781  * we'll either hit an assert (debug / fastdebug) or deadlock
 782  * (product). So we should only leave / enter the STS if we are
 783  * operating concurrently.
 784  *
 785  * Because the thread that does the sync barrier has left the STS, it
 786  * is possible to be suspended for a Full GC or an evacuation pause
 787  * could occur. This is actually safe, since the entering the sync
 788  * barrier is one of the last things do_marking_step() does, and it
 789  * doesn't manipulate any data structures afterwards.
 790  */
 791 
 792 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 793   bool barrier_aborted;
 794   {
 795     SuspendibleThreadSetLeaver sts_leave(concurrent());
 796     barrier_aborted = !_first_overflow_barrier_sync.enter();
 797   }
 798 
 799   // at this point everyone should have synced up and not be doing any
 800   // more work
 801 
 802   if (barrier_aborted) {
 803     // If the barrier aborted we ignore the overflow condition and
 804     // just abort the whole marking phase as quickly as possible.
 805     return;
 806   }
 807 }
 808 
 809 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 810   SuspendibleThreadSetLeaver sts_leave(concurrent());
 811   _second_overflow_barrier_sync.enter();
 812 
 813   // at this point everything should be re-initialized and ready to go
 814 }
 815 
 816 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 817   G1ConcurrentMark*     _cm;
 818 
 819 public:
 820   void work(uint worker_id) {
 821     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 822     ResourceMark rm;
 823 
 824     double start_vtime = os::elapsedVTime();
 825 
 826     {
 827       SuspendibleThreadSetJoiner sts_join;
 828 
 829       assert(worker_id < _cm->active_tasks(), "invariant");
 830 
 831       G1CMTask* task = _cm->task(worker_id);
 832       task->record_start_time();
 833       if (!_cm->has_aborted()) {
 834         do {
 835           task->do_marking_step(G1ConcMarkStepDurationMillis,
 836                                 true  /* do_termination */,
 837                                 false /* is_serial*/);
 838 
 839           _cm->do_yield_check();
 840         } while (!_cm->has_aborted() && task->has_aborted());
 841       }
 842       task->record_end_time();
 843       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 844     }
 845 
 846     double end_vtime = os::elapsedVTime();
 847     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 848   }
 849 
 850   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 851       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 852 
 853   ~G1CMConcurrentMarkingTask() { }
 854 };
 855 
 856 uint G1ConcurrentMark::calc_active_marking_workers() {
 857   uint result = 0;
 858   if (!UseDynamicNumberOfGCThreads ||
 859       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 860        !ForceDynamicNumberOfGCThreads)) {
 861     result = _max_concurrent_workers;
 862   } else {
 863     result =
 864       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 865                                                       1, /* Minimum workers */
 866                                                       _num_concurrent_workers,
 867                                                       Threads::number_of_non_daemon_threads());
 868     // Don't scale the result down by scale_concurrent_workers() because
 869     // that scaling has already gone into "_max_concurrent_workers".
 870   }
 871   assert(result > 0 && result <= _max_concurrent_workers,
 872          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 873          _max_concurrent_workers, result);
 874   return result;
 875 }
 876 
 877 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 878   assert(hr->is_old() || (hr->is_survivor() && hr->next_top_at_mark_start() == hr->bottom()),
 879          "Root regions must be old or survivor but region %u is %s", hr->hrm_index(), hr->get_type_str());
 880   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 881 
 882   const uintx interval = PrefetchScanIntervalInBytes;
 883   HeapWord* curr = hr->next_top_at_mark_start();
 884   const HeapWord* end = hr->top();
 885   while (curr < end) {
 886     Prefetch::read(curr, interval);
 887     oop obj = oop(curr);
 888     int size = obj->oop_iterate_size(&cl);
 889     assert(size == obj->size(), "sanity");
 890     curr += size;
 891   }
 892 }
 893 
 894 class G1CMRootRegionScanTask : public AbstractGangTask {
 895   G1ConcurrentMark* _cm;
 896 public:
 897   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 898     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 899 
 900   void work(uint worker_id) {
 901     assert(Thread::current()->is_ConcurrentGC_thread(),
 902            "this should only be done by a conc GC thread");
 903 
 904     G1CMRootRegions* root_regions = _cm->root_regions();
 905     HeapRegion* hr = root_regions->claim_next();
 906     while (hr != NULL) {
 907       _cm->scan_root_region(hr, worker_id);
 908       hr = root_regions->claim_next();
 909     }
 910   }
 911 };
 912 
 913 void G1ConcurrentMark::scan_root_regions() {
 914   // scan_in_progress() will have been set to true only if there was
 915   // at least one root region to scan. So, if it's false, we
 916   // should not attempt to do any further work.
 917   if (root_regions()->scan_in_progress()) {
 918     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 919 
 920     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 921                                    // We distribute work on a per-region basis, so starting
 922                                    // more threads than that is useless.
 923                                    root_regions()->num_root_regions());
 924     assert(_num_concurrent_workers <= _max_concurrent_workers,
 925            "Maximum number of marking threads exceeded");
 926 
 927     G1CMRootRegionScanTask task(this);
 928     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 929                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 930     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 931 
 932     // It's possible that has_aborted() is true here without actually
 933     // aborting the survivor scan earlier. This is OK as it's
 934     // mainly used for sanity checking.
 935     root_regions()->scan_finished();
 936   }
 937 }
 938 
 939 void G1ConcurrentMark::concurrent_cycle_start() {
 940   _gc_timer_cm->register_gc_start();
 941 
 942   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 943 
 944   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 945 }
 946 
 947 void G1ConcurrentMark::concurrent_cycle_end() {
 948   _g1h->collector_state()->set_clearing_next_bitmap(false);
 949 
 950   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 951 
 952   if (has_aborted()) {
 953     log_info(gc, marking)("Concurrent Mark Abort");
 954     _gc_tracer_cm->report_concurrent_mode_failure();
 955   }
 956 
 957   _gc_timer_cm->register_gc_end();
 958 
 959   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 960 }
 961 
 962 void G1ConcurrentMark::mark_from_roots() {
 963   _restart_for_overflow = false;
 964 
 965   _num_concurrent_workers = calc_active_marking_workers();
 966 
 967   uint active_workers = MAX2(1U, _num_concurrent_workers);
 968 
 969   // Setting active workers is not guaranteed since fewer
 970   // worker threads may currently exist and more may not be
 971   // available.
 972   active_workers = _concurrent_workers->update_active_workers(active_workers);
 973   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 974 
 975   // Parallel task terminator is set in "set_concurrency_and_phase()"
 976   set_concurrency_and_phase(active_workers, true /* concurrent */);
 977 
 978   G1CMConcurrentMarkingTask marking_task(this);
 979   _concurrent_workers->run_task(&marking_task);
 980   print_stats();
 981 }
 982 
 983 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 984   G1HeapVerifier* verifier = _g1h->verifier();
 985 
 986   verifier->verify_region_sets_optional();
 987 
 988   if (VerifyDuringGC) {
 989     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 990 
 991     size_t const BufLen = 512;
 992     char buffer[BufLen];
 993 
 994     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
 995     verifier->verify(type, vo, buffer);
 996   }
 997 
 998   verifier->check_bitmaps(caller);
 999 }
1000 
1001 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
1002   G1CollectedHeap* _g1h;
1003   G1ConcurrentMark* _cm;
1004   HeapRegionClaimer _hrclaimer;
1005   uint volatile _total_selected_for_rebuild;
1006 
1007   G1PrintRegionLivenessInfoClosure _cl;
1008 
1009   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
1010     G1CollectedHeap* _g1h;
1011     G1ConcurrentMark* _cm;
1012 
1013     G1PrintRegionLivenessInfoClosure* _cl;
1014 
1015     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1016 
1017     void update_remset_before_rebuild(HeapRegion* hr) {
1018       G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1019 
1020       bool selected_for_rebuild;
1021       if (hr->is_humongous()) {
1022         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
1023         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
1024       } else {
1025         size_t const live_bytes = _cm->liveness(hr->hrm_index());
1026         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1027       }
1028       if (selected_for_rebuild) {
1029         _num_regions_selected_for_rebuild++;
1030       }
1031       _cm->update_top_at_rebuild_start(hr);
1032     }
1033 
1034     // Distribute the given words across the humongous object starting with hr and
1035     // note end of marking.
1036     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1037       uint const region_idx = hr->hrm_index();
1038       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
1039       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
1040 
1041       // "Distributing" zero words means that we only note end of marking for these
1042       // regions.
1043       assert(marked_words == 0 || obj_size_in_words == marked_words,
1044              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1045              obj_size_in_words, marked_words);
1046 
1047       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1048         HeapRegion* const r = _g1h->region_at(i);
1049         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1050 
1051         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1052                                words_to_add, i, r->get_type_str());
1053         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1054         marked_words -= words_to_add;
1055       }
1056       assert(marked_words == 0,
1057              SIZE_FORMAT " words left after distributing space across %u regions",
1058              marked_words, num_regions_in_humongous);
1059     }
1060 
1061     void update_marked_bytes(HeapRegion* hr) {
1062       uint const region_idx = hr->hrm_index();
1063       size_t const marked_words = _cm->liveness(region_idx);
1064       // The marking attributes the object's size completely to the humongous starts
1065       // region. We need to distribute this value across the entire set of regions a
1066       // humongous object spans.
1067       if (hr->is_humongous()) {
1068         assert(hr->is_starts_humongous() || marked_words == 0,
1069                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1070                marked_words, region_idx, hr->get_type_str());
1071         if (hr->is_starts_humongous()) {
1072           distribute_marked_bytes(hr, marked_words);
1073         }
1074       } else {
1075         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1076         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1077       }
1078     }
1079 
1080     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1081       hr->add_to_marked_bytes(marked_bytes);
1082       _cl->do_heap_region(hr);
1083       hr->note_end_of_marking();
1084     }
1085 
1086   public:
1087     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1088       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1089 
1090     virtual bool do_heap_region(HeapRegion* r) {
1091       update_remset_before_rebuild(r);
1092       update_marked_bytes(r);
1093 
1094       return false;
1095     }
1096 
1097     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1098   };
1099 
1100 public:
1101   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1102     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1103     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1104 
1105   virtual void work(uint worker_id) {
1106     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1107     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1108     Atomic::add(update_cl.num_selected_for_rebuild(), &_total_selected_for_rebuild);
1109   }
1110 
1111   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1112 
1113   // Number of regions for which roughly one thread should be spawned for this work.
1114   static const uint RegionsPerThread = 384;
1115 };
1116 
1117 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1118   G1CollectedHeap* _g1h;
1119 public:
1120   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1121 
1122   virtual bool do_heap_region(HeapRegion* r) {
1123     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1124     return false;
1125   }
1126 };
1127 
1128 void G1ConcurrentMark::remark() {
1129   assert_at_safepoint_on_vm_thread();
1130 
1131   // If a full collection has happened, we should not continue. However we might
1132   // have ended up here as the Remark VM operation has been scheduled already.
1133   if (has_aborted()) {
1134     return;
1135   }
1136 
1137   G1Policy* g1p = _g1h->g1_policy();
1138   g1p->record_concurrent_mark_remark_start();
1139 
1140   double start = os::elapsedTime();
1141 
1142   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1143 
1144   {
1145     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1146     finalize_marking();
1147   }
1148 
1149   double mark_work_end = os::elapsedTime();
1150 
1151   bool const mark_finished = !has_overflown();
1152   if (mark_finished) {
1153     weak_refs_work(false /* clear_all_soft_refs */);
1154 
1155     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1156     // We're done with marking.
1157     // This is the end of the marking cycle, we're expected all
1158     // threads to have SATB queues with active set to true.
1159     satb_mq_set.set_active_all_threads(false, /* new active value */
1160                                        true /* expected_active */);
1161 
1162     {
1163       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1164       flush_all_task_caches();
1165     }
1166 
1167     // Install newly created mark bitmap as "prev".
1168     swap_mark_bitmaps();
1169     {
1170       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1171 
1172       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1173                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1174       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1175 
1176       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1177       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1178       _g1h->workers()->run_task(&cl, num_workers);
1179 
1180       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1181                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1182     }
1183     {
1184       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1185       reclaim_empty_regions();
1186     }
1187 
1188     // Clean out dead classes
1189     if (ClassUnloadingWithConcurrentMark) {
1190       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1191       ClassLoaderDataGraph::purge();
1192     }
1193 
1194     _g1h->resize_heap_if_necessary();
1195 
1196     compute_new_sizes();
1197 
1198     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1199 
1200     assert(!restart_for_overflow(), "sanity");
1201     // Completely reset the marking state since marking completed
1202     reset_at_marking_complete();
1203   } else {
1204     // We overflowed.  Restart concurrent marking.
1205     _restart_for_overflow = true;
1206 
1207     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1208 
1209     // Clear the marking state because we will be restarting
1210     // marking due to overflowing the global mark stack.
1211     reset_marking_for_restart();
1212   }
1213 
1214   {
1215     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1216     report_object_count(mark_finished);
1217   }
1218 
1219   // Statistics
1220   double now = os::elapsedTime();
1221   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1222   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1223   _remark_times.add((now - start) * 1000.0);
1224 
1225   g1p->record_concurrent_mark_remark_end();
1226 }
1227 
1228 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1229   // Per-region work during the Cleanup pause.
1230   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1231     G1CollectedHeap* _g1h;
1232     size_t _freed_bytes;
1233     FreeRegionList* _local_cleanup_list;
1234     uint _old_regions_removed;
1235     uint _humongous_regions_removed;
1236 
1237   public:
1238     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1239                                  FreeRegionList* local_cleanup_list) :
1240       _g1h(g1h),
1241       _freed_bytes(0),
1242       _local_cleanup_list(local_cleanup_list),
1243       _old_regions_removed(0),
1244       _humongous_regions_removed(0) { }
1245 
1246     size_t freed_bytes() { return _freed_bytes; }
1247     const uint old_regions_removed() { return _old_regions_removed; }
1248     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1249 
1250     bool do_heap_region(HeapRegion *hr) {
1251       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1252         _freed_bytes += hr->used();
1253         hr->set_containing_set(NULL);
1254         if (hr->is_humongous()) {
1255           _humongous_regions_removed++;
1256           _g1h->free_humongous_region(hr, _local_cleanup_list);
1257         } else {
1258           _old_regions_removed++;
1259           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1260         }
1261         hr->clear_cardtable();
1262         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1263         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1264       }
1265 
1266       return false;
1267     }
1268   };
1269 
1270   G1CollectedHeap* _g1h;
1271   FreeRegionList* _cleanup_list;
1272   HeapRegionClaimer _hrclaimer;
1273 
1274 public:
1275   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1276     AbstractGangTask("G1 Cleanup"),
1277     _g1h(g1h),
1278     _cleanup_list(cleanup_list),
1279     _hrclaimer(n_workers) {
1280   }
1281 
1282   void work(uint worker_id) {
1283     FreeRegionList local_cleanup_list("Local Cleanup List");
1284     G1ReclaimEmptyRegionsClosure cl(_g1h, &local_cleanup_list);
1285     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1286     assert(cl.is_complete(), "Shouldn't have aborted!");
1287 
1288     // Now update the old/humongous region sets
1289     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1290     {
1291       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1292       _g1h->decrement_summary_bytes(cl.freed_bytes());
1293 
1294       _cleanup_list->add_ordered(&local_cleanup_list);
1295       assert(local_cleanup_list.is_empty(), "post-condition");
1296     }
1297   }
1298 };
1299 
1300 void G1ConcurrentMark::reclaim_empty_regions() {
1301   WorkGang* workers = _g1h->workers();
1302   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1303 
1304   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1305   workers->run_task(&cl);
1306 
1307   if (!empty_regions_list.is_empty()) {
1308     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1309     // Now print the empty regions list.
1310     G1HRPrinter* hrp = _g1h->hr_printer();
1311     if (hrp->is_active()) {
1312       FreeRegionListIterator iter(&empty_regions_list);
1313       while (iter.more_available()) {
1314         HeapRegion* hr = iter.get_next();
1315         hrp->cleanup(hr);
1316       }
1317     }
1318     // And actually make them available.
1319     _g1h->prepend_to_freelist(&empty_regions_list);
1320   }
1321 }
1322 
1323 void G1ConcurrentMark::compute_new_sizes() {
1324   MetaspaceGC::compute_new_size();
1325 
1326   // Cleanup will have freed any regions completely full of garbage.
1327   // Update the soft reference policy with the new heap occupancy.
1328   Universe::update_heap_info_at_gc();
1329 
1330   // We reclaimed old regions so we should calculate the sizes to make
1331   // sure we update the old gen/space data.
1332   _g1h->g1mm()->update_sizes();
1333 }
1334 
1335 void G1ConcurrentMark::cleanup() {
1336   assert_at_safepoint_on_vm_thread();
1337 
1338   // If a full collection has happened, we shouldn't do this.
1339   if (has_aborted()) {
1340     return;
1341   }
1342 
1343   G1Policy* g1p = _g1h->g1_policy();
1344   g1p->record_concurrent_mark_cleanup_start();
1345 
1346   double start = os::elapsedTime();
1347 
1348   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1349 
1350   {
1351     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1352     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1353     _g1h->heap_region_iterate(&cl);
1354   }
1355 
1356   if (log_is_enabled(Trace, gc, liveness)) {
1357     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1358     _g1h->heap_region_iterate(&cl);
1359   }
1360 
1361   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1362 
1363   // We need to make this be a "collection" so any collection pause that
1364   // races with it goes around and waits for Cleanup to finish.
1365   _g1h->increment_total_collections();
1366 
1367   // Local statistics
1368   double recent_cleanup_time = (os::elapsedTime() - start);
1369   _total_cleanup_time += recent_cleanup_time;
1370   _cleanup_times.add(recent_cleanup_time);
1371 
1372   {
1373     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1374     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1375   }
1376 }
1377 
1378 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1379 // Uses the G1CMTask associated with a worker thread (for serial reference
1380 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1381 // trace referent objects.
1382 //
1383 // Using the G1CMTask and embedded local queues avoids having the worker
1384 // threads operating on the global mark stack. This reduces the risk
1385 // of overflowing the stack - which we would rather avoid at this late
1386 // state. Also using the tasks' local queues removes the potential
1387 // of the workers interfering with each other that could occur if
1388 // operating on the global stack.
1389 
1390 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1391   G1ConcurrentMark* _cm;
1392   G1CMTask*         _task;
1393   uint              _ref_counter_limit;
1394   uint              _ref_counter;
1395   bool              _is_serial;
1396 public:
1397   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1398     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1399     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1400     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1401   }
1402 
1403   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1404   virtual void do_oop(      oop* p) { do_oop_work(p); }
1405 
1406   template <class T> void do_oop_work(T* p) {
1407     if (_cm->has_overflown()) {
1408       return;
1409     }
1410     if (!_task->deal_with_reference(p)) {
1411       // We did not add anything to the mark bitmap (or mark stack), so there is
1412       // no point trying to drain it.
1413       return;
1414     }
1415     _ref_counter--;
1416 
1417     if (_ref_counter == 0) {
1418       // We have dealt with _ref_counter_limit references, pushing them
1419       // and objects reachable from them on to the local stack (and
1420       // possibly the global stack). Call G1CMTask::do_marking_step() to
1421       // process these entries.
1422       //
1423       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1424       // there's nothing more to do (i.e. we're done with the entries that
1425       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1426       // above) or we overflow.
1427       //
1428       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1429       // flag while there may still be some work to do. (See the comment at
1430       // the beginning of G1CMTask::do_marking_step() for those conditions -
1431       // one of which is reaching the specified time target.) It is only
1432       // when G1CMTask::do_marking_step() returns without setting the
1433       // has_aborted() flag that the marking step has completed.
1434       do {
1435         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1436         _task->do_marking_step(mark_step_duration_ms,
1437                                false      /* do_termination */,
1438                                _is_serial);
1439       } while (_task->has_aborted() && !_cm->has_overflown());
1440       _ref_counter = _ref_counter_limit;
1441     }
1442   }
1443 };
1444 
1445 // 'Drain' oop closure used by both serial and parallel reference processing.
1446 // Uses the G1CMTask associated with a given worker thread (for serial
1447 // reference processing the G1CMtask for worker 0 is used). Calls the
1448 // do_marking_step routine, with an unbelievably large timeout value,
1449 // to drain the marking data structures of the remaining entries
1450 // added by the 'keep alive' oop closure above.
1451 
1452 class G1CMDrainMarkingStackClosure : public VoidClosure {
1453   G1ConcurrentMark* _cm;
1454   G1CMTask*         _task;
1455   bool              _is_serial;
1456  public:
1457   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1458     _cm(cm), _task(task), _is_serial(is_serial) {
1459     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1460   }
1461 
1462   void do_void() {
1463     do {
1464       // We call G1CMTask::do_marking_step() to completely drain the local
1465       // and global marking stacks of entries pushed by the 'keep alive'
1466       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1467       //
1468       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1469       // if there's nothing more to do (i.e. we've completely drained the
1470       // entries that were pushed as a a result of applying the 'keep alive'
1471       // closure to the entries on the discovered ref lists) or we overflow
1472       // the global marking stack.
1473       //
1474       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1475       // flag while there may still be some work to do. (See the comment at
1476       // the beginning of G1CMTask::do_marking_step() for those conditions -
1477       // one of which is reaching the specified time target.) It is only
1478       // when G1CMTask::do_marking_step() returns without setting the
1479       // has_aborted() flag that the marking step has completed.
1480 
1481       _task->do_marking_step(1000000000.0 /* something very large */,
1482                              true         /* do_termination */,
1483                              _is_serial);
1484     } while (_task->has_aborted() && !_cm->has_overflown());
1485   }
1486 };
1487 
1488 // Implementation of AbstractRefProcTaskExecutor for parallel
1489 // reference processing at the end of G1 concurrent marking
1490 
1491 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1492 private:
1493   G1CollectedHeap*  _g1h;
1494   G1ConcurrentMark* _cm;
1495   WorkGang*         _workers;
1496   uint              _active_workers;
1497 
1498 public:
1499   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1500                           G1ConcurrentMark* cm,
1501                           WorkGang* workers,
1502                           uint n_workers) :
1503     _g1h(g1h), _cm(cm),
1504     _workers(workers), _active_workers(n_workers) { }
1505 
1506   virtual void execute(ProcessTask& task, uint ergo_workers);
1507 };
1508 
1509 class G1CMRefProcTaskProxy : public AbstractGangTask {
1510   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1511   ProcessTask&      _proc_task;
1512   G1CollectedHeap*  _g1h;
1513   G1ConcurrentMark* _cm;
1514 
1515 public:
1516   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1517                        G1CollectedHeap* g1h,
1518                        G1ConcurrentMark* cm) :
1519     AbstractGangTask("Process reference objects in parallel"),
1520     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1521     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1522     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1523   }
1524 
1525   virtual void work(uint worker_id) {
1526     ResourceMark rm;
1527     HandleMark hm;
1528     G1CMTask* task = _cm->task(worker_id);
1529     G1CMIsAliveClosure g1_is_alive(_g1h);
1530     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1531     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1532 
1533     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1534   }
1535 };
1536 
1537 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1538   assert(_workers != NULL, "Need parallel worker threads.");
1539   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1540   assert(_workers->active_workers() >= ergo_workers,
1541          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1542          ergo_workers, _workers->active_workers());
1543 
1544   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1545 
1546   // We need to reset the concurrency level before each
1547   // proxy task execution, so that the termination protocol
1548   // and overflow handling in G1CMTask::do_marking_step() knows
1549   // how many workers to wait for.
1550   _cm->set_concurrency(ergo_workers);
1551   _workers->run_task(&proc_task_proxy, ergo_workers);
1552 }
1553 
1554 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1555   ResourceMark rm;
1556   HandleMark   hm;
1557 
1558   // Is alive closure.
1559   G1CMIsAliveClosure g1_is_alive(_g1h);
1560 
1561   // Inner scope to exclude the cleaning of the string table
1562   // from the displayed time.
1563   {
1564     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1565 
1566     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1567 
1568     // See the comment in G1CollectedHeap::ref_processing_init()
1569     // about how reference processing currently works in G1.
1570 
1571     // Set the soft reference policy
1572     rp->setup_policy(clear_all_soft_refs);
1573     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1574 
1575     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1576     // in serial reference processing. Note these closures are also
1577     // used for serially processing (by the the current thread) the
1578     // JNI references during parallel reference processing.
1579     //
1580     // These closures do not need to synchronize with the worker
1581     // threads involved in parallel reference processing as these
1582     // instances are executed serially by the current thread (e.g.
1583     // reference processing is not multi-threaded and is thus
1584     // performed by the current thread instead of a gang worker).
1585     //
1586     // The gang tasks involved in parallel reference processing create
1587     // their own instances of these closures, which do their own
1588     // synchronization among themselves.
1589     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1590     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1591 
1592     // We need at least one active thread. If reference processing
1593     // is not multi-threaded we use the current (VMThread) thread,
1594     // otherwise we use the work gang from the G1CollectedHeap and
1595     // we utilize all the worker threads we can.
1596     bool processing_is_mt = rp->processing_is_mt();
1597     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1598     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1599 
1600     // Parallel processing task executor.
1601     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1602                                               _g1h->workers(), active_workers);
1603     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1604 
1605     // Set the concurrency level. The phase was already set prior to
1606     // executing the remark task.
1607     set_concurrency(active_workers);
1608 
1609     // Set the degree of MT processing here.  If the discovery was done MT,
1610     // the number of threads involved during discovery could differ from
1611     // the number of active workers.  This is OK as long as the discovered
1612     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1613     rp->set_active_mt_degree(active_workers);
1614 
1615     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1616 
1617     // Process the weak references.
1618     const ReferenceProcessorStats& stats =
1619         rp->process_discovered_references(&g1_is_alive,
1620                                           &g1_keep_alive,
1621                                           &g1_drain_mark_stack,
1622                                           executor,
1623                                           &pt);
1624     _gc_tracer_cm->report_gc_reference_stats(stats);
1625     pt.print_all_references();
1626 
1627     // The do_oop work routines of the keep_alive and drain_marking_stack
1628     // oop closures will set the has_overflown flag if we overflow the
1629     // global marking stack.
1630 
1631     assert(has_overflown() || _global_mark_stack.is_empty(),
1632            "Mark stack should be empty (unless it has overflown)");
1633 
1634     assert(rp->num_queues() == active_workers, "why not");
1635 
1636     rp->verify_no_references_recorded();
1637     assert(!rp->discovery_enabled(), "Post condition");
1638   }
1639 
1640   if (has_overflown()) {
1641     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1642     // overflowed while processing references. Exit the VM.
1643     fatal("Overflow during reference processing, can not continue. Please "
1644           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1645           "restart.", MarkStackSizeMax);
1646     return;
1647   }
1648 
1649   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1650 
1651   {
1652     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1653     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1654   }
1655 
1656   // Unload Klasses, String, Code Cache, etc.
1657   if (ClassUnloadingWithConcurrentMark) {
1658     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1659     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1660     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1661   } else {
1662     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1663     // No need to clean string table as it is treated as strong roots when
1664     // class unloading is disabled.
1665     _g1h->partial_cleaning(&g1_is_alive, false, G1StringDedup::is_enabled());
1666   }
1667 }
1668 
1669 class G1PrecleanYieldClosure : public YieldClosure {
1670   G1ConcurrentMark* _cm;
1671 
1672 public:
1673   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1674 
1675   virtual bool should_return() {
1676     return _cm->has_aborted();
1677   }
1678 
1679   virtual bool should_return_fine_grain() {
1680     _cm->do_yield_check();
1681     return _cm->has_aborted();
1682   }
1683 };
1684 
1685 void G1ConcurrentMark::preclean() {
1686   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1687 
1688   SuspendibleThreadSetJoiner joiner;
1689 
1690   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1691   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1692 
1693   set_concurrency_and_phase(1, true);
1694 
1695   G1PrecleanYieldClosure yield_cl(this);
1696 
1697   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1698   // Precleaning is single threaded. Temporarily disable MT discovery.
1699   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1700   rp->preclean_discovered_references(rp->is_alive_non_header(),
1701                                      &keep_alive,
1702                                      &drain_mark_stack,
1703                                      &yield_cl,
1704                                      _gc_timer_cm);
1705 }
1706 
1707 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1708 // the prev bitmap determining liveness.
1709 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1710   G1CollectedHeap* _g1h;
1711 public:
1712   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1713 
1714   bool do_object_b(oop obj) {
1715     HeapWord* addr = (HeapWord*)obj;
1716     return addr != NULL &&
1717            (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_dead(obj));
1718   }
1719 };
1720 
1721 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1722   // Depending on the completion of the marking liveness needs to be determined
1723   // using either the next or prev bitmap.
1724   if (mark_completed) {
1725     G1ObjectCountIsAliveClosure is_alive(_g1h);
1726     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1727   } else {
1728     G1CMIsAliveClosure is_alive(_g1h);
1729     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1730   }
1731 }
1732 
1733 
1734 void G1ConcurrentMark::swap_mark_bitmaps() {
1735   G1CMBitMap* temp = _prev_mark_bitmap;
1736   _prev_mark_bitmap = _next_mark_bitmap;
1737   _next_mark_bitmap = temp;
1738   _g1h->collector_state()->set_clearing_next_bitmap(true);
1739 }
1740 
1741 // Closure for marking entries in SATB buffers.
1742 class G1CMSATBBufferClosure : public SATBBufferClosure {
1743 private:
1744   G1CMTask* _task;
1745   G1CollectedHeap* _g1h;
1746 
1747   // This is very similar to G1CMTask::deal_with_reference, but with
1748   // more relaxed requirements for the argument, so this must be more
1749   // circumspect about treating the argument as an object.
1750   void do_entry(void* entry) const {
1751     _task->increment_refs_reached();
1752     oop const obj = static_cast<oop>(entry);
1753     _task->make_reference_grey(obj);
1754   }
1755 
1756 public:
1757   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1758     : _task(task), _g1h(g1h) { }
1759 
1760   virtual void do_buffer(void** buffer, size_t size) {
1761     for (size_t i = 0; i < size; ++i) {
1762       do_entry(buffer[i]);
1763     }
1764   }
1765 };
1766 
1767 class G1RemarkThreadsClosure : public ThreadClosure {
1768   G1CMSATBBufferClosure _cm_satb_cl;
1769   G1CMOopClosure _cm_cl;
1770   MarkingCodeBlobClosure _code_cl;
1771   int _thread_parity;
1772 
1773  public:
1774   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1775     _cm_satb_cl(task, g1h),
1776     _cm_cl(g1h, task),
1777     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1778     _thread_parity(Threads::thread_claim_parity()) {}
1779 
1780   void do_thread(Thread* thread) {
1781     if (thread->is_Java_thread()) {
1782       if (thread->claim_oops_do(true, _thread_parity)) {
1783         JavaThread* jt = (JavaThread*)thread;
1784 
1785         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1786         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1787         // * Alive if on the stack of an executing method
1788         // * Weakly reachable otherwise
1789         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1790         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1791         jt->nmethods_do(&_code_cl);
1792 
1793         G1ThreadLocalData::satb_mark_queue(jt).apply_closure_and_empty(&_cm_satb_cl);
1794       }
1795     } else if (thread->is_VM_thread()) {
1796       if (thread->claim_oops_do(true, _thread_parity)) {
1797         G1BarrierSet::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1798       }
1799     }
1800   }
1801 };
1802 
1803 class G1CMRemarkTask : public AbstractGangTask {
1804   G1ConcurrentMark* _cm;
1805 public:
1806   void work(uint worker_id) {
1807     G1CMTask* task = _cm->task(worker_id);
1808     task->record_start_time();
1809     {
1810       ResourceMark rm;
1811       HandleMark hm;
1812 
1813       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1814       Threads::threads_do(&threads_f);
1815     }
1816 
1817     do {
1818       task->do_marking_step(1000000000.0 /* something very large */,
1819                             true         /* do_termination       */,
1820                             false        /* is_serial            */);
1821     } while (task->has_aborted() && !_cm->has_overflown());
1822     // If we overflow, then we do not want to restart. We instead
1823     // want to abort remark and do concurrent marking again.
1824     task->record_end_time();
1825   }
1826 
1827   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1828     AbstractGangTask("Par Remark"), _cm(cm) {
1829     _cm->terminator()->reset_for_reuse(active_workers);
1830   }
1831 };
1832 
1833 void G1ConcurrentMark::finalize_marking() {
1834   ResourceMark rm;
1835   HandleMark   hm;
1836 
1837   _g1h->ensure_parsability(false);
1838 
1839   // this is remark, so we'll use up all active threads
1840   uint active_workers = _g1h->workers()->active_workers();
1841   set_concurrency_and_phase(active_workers, false /* concurrent */);
1842   // Leave _parallel_marking_threads at it's
1843   // value originally calculated in the G1ConcurrentMark
1844   // constructor and pass values of the active workers
1845   // through the gang in the task.
1846 
1847   {
1848     StrongRootsScope srs(active_workers);
1849 
1850     G1CMRemarkTask remarkTask(this, active_workers);
1851     // We will start all available threads, even if we decide that the
1852     // active_workers will be fewer. The extra ones will just bail out
1853     // immediately.
1854     _g1h->workers()->run_task(&remarkTask);
1855   }
1856 
1857   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1858   guarantee(has_overflown() ||
1859             satb_mq_set.completed_buffers_num() == 0,
1860             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1861             BOOL_TO_STR(has_overflown()),
1862             satb_mq_set.completed_buffers_num());
1863 
1864   print_stats();
1865 }
1866 
1867 void G1ConcurrentMark::flush_all_task_caches() {
1868   size_t hits = 0;
1869   size_t misses = 0;
1870   for (uint i = 0; i < _max_num_tasks; i++) {
1871     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1872     hits += stats.first;
1873     misses += stats.second;
1874   }
1875   size_t sum = hits + misses;
1876   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1877                        hits, misses, percent_of(hits, sum));
1878 }
1879 
1880 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1881   _prev_mark_bitmap->clear_range(mr);
1882 }
1883 
1884 HeapRegion*
1885 G1ConcurrentMark::claim_region(uint worker_id) {
1886   // "checkpoint" the finger
1887   HeapWord* finger = _finger;
1888 
1889   while (finger < _heap.end()) {
1890     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1891 
1892     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1893     // Make sure that the reads below do not float before loading curr_region.
1894     OrderAccess::loadload();
1895     // Above heap_region_containing may return NULL as we always scan claim
1896     // until the end of the heap. In this case, just jump to the next region.
1897     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1898 
1899     // Is the gap between reading the finger and doing the CAS too long?
1900     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1901     if (res == finger && curr_region != NULL) {
1902       // we succeeded
1903       HeapWord*   bottom        = curr_region->bottom();
1904       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1905 
1906       // notice that _finger == end cannot be guaranteed here since,
1907       // someone else might have moved the finger even further
1908       assert(_finger >= end, "the finger should have moved forward");
1909 
1910       if (limit > bottom) {
1911         return curr_region;
1912       } else {
1913         assert(limit == bottom,
1914                "the region limit should be at bottom");
1915         // we return NULL and the caller should try calling
1916         // claim_region() again.
1917         return NULL;
1918       }
1919     } else {
1920       assert(_finger > finger, "the finger should have moved forward");
1921       // read it again
1922       finger = _finger;
1923     }
1924   }
1925 
1926   return NULL;
1927 }
1928 
1929 #ifndef PRODUCT
1930 class VerifyNoCSetOops {
1931   G1CollectedHeap* _g1h;
1932   const char* _phase;
1933   int _info;
1934 
1935 public:
1936   VerifyNoCSetOops(const char* phase, int info = -1) :
1937     _g1h(G1CollectedHeap::heap()),
1938     _phase(phase),
1939     _info(info)
1940   { }
1941 
1942   void operator()(G1TaskQueueEntry task_entry) const {
1943     if (task_entry.is_array_slice()) {
1944       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1945       return;
1946     }
1947     guarantee(oopDesc::is_oop(task_entry.obj()),
1948               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1949               p2i(task_entry.obj()), _phase, _info);
1950     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1951               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1952               p2i(task_entry.obj()), _phase, _info);
1953   }
1954 };
1955 
1956 void G1ConcurrentMark::verify_no_cset_oops() {
1957   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1958   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1959     return;
1960   }
1961 
1962   // Verify entries on the global mark stack
1963   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1964 
1965   // Verify entries on the task queues
1966   for (uint i = 0; i < _max_num_tasks; ++i) {
1967     G1CMTaskQueue* queue = _task_queues->queue(i);
1968     queue->iterate(VerifyNoCSetOops("Queue", i));
1969   }
1970 
1971   // Verify the global finger
1972   HeapWord* global_finger = finger();
1973   if (global_finger != NULL && global_finger < _heap.end()) {
1974     // Since we always iterate over all regions, we might get a NULL HeapRegion
1975     // here.
1976     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1977     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1978               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1979               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1980   }
1981 
1982   // Verify the task fingers
1983   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1984   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1985     G1CMTask* task = _tasks[i];
1986     HeapWord* task_finger = task->finger();
1987     if (task_finger != NULL && task_finger < _heap.end()) {
1988       // See above note on the global finger verification.
1989       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1990       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1991                 !task_hr->in_collection_set(),
1992                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1993                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1994     }
1995   }
1996 }
1997 #endif // PRODUCT
1998 
1999 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
2000   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
2001 }
2002 
2003 void G1ConcurrentMark::print_stats() {
2004   if (!log_is_enabled(Debug, gc, stats)) {
2005     return;
2006   }
2007   log_debug(gc, stats)("---------------------------------------------------------------------");
2008   for (size_t i = 0; i < _num_active_tasks; ++i) {
2009     _tasks[i]->print_stats();
2010     log_debug(gc, stats)("---------------------------------------------------------------------");
2011   }
2012 }
2013 
2014 void G1ConcurrentMark::concurrent_cycle_abort() {
2015   if (!cm_thread()->during_cycle() || _has_aborted) {
2016     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2017     return;
2018   }
2019 
2020   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2021   // concurrent bitmap clearing.
2022   {
2023     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
2024     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
2025   }
2026   // Note we cannot clear the previous marking bitmap here
2027   // since VerifyDuringGC verifies the objects marked during
2028   // a full GC against the previous bitmap.
2029 
2030   // Empty mark stack
2031   reset_marking_for_restart();
2032   for (uint i = 0; i < _max_num_tasks; ++i) {
2033     _tasks[i]->clear_region_fields();
2034   }
2035   _first_overflow_barrier_sync.abort();
2036   _second_overflow_barrier_sync.abort();
2037   _has_aborted = true;
2038 
2039   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2040   satb_mq_set.abandon_partial_marking();
2041   // This can be called either during or outside marking, we'll read
2042   // the expected_active value from the SATB queue set.
2043   satb_mq_set.set_active_all_threads(
2044                                  false, /* new active value */
2045                                  satb_mq_set.is_active() /* expected_active */);
2046 }
2047 
2048 static void print_ms_time_info(const char* prefix, const char* name,
2049                                NumberSeq& ns) {
2050   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2051                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2052   if (ns.num() > 0) {
2053     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2054                            prefix, ns.sd(), ns.maximum());
2055   }
2056 }
2057 
2058 void G1ConcurrentMark::print_summary_info() {
2059   Log(gc, marking) log;
2060   if (!log.is_trace()) {
2061     return;
2062   }
2063 
2064   log.trace(" Concurrent marking:");
2065   print_ms_time_info("  ", "init marks", _init_times);
2066   print_ms_time_info("  ", "remarks", _remark_times);
2067   {
2068     print_ms_time_info("     ", "final marks", _remark_mark_times);
2069     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2070 
2071   }
2072   print_ms_time_info("  ", "cleanups", _cleanup_times);
2073   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2074             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2075   log.trace("  Total stop_world time = %8.2f s.",
2076             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2077   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2078             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2079 }
2080 
2081 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2082   _concurrent_workers->print_worker_threads_on(st);
2083 }
2084 
2085 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2086   _concurrent_workers->threads_do(tc);
2087 }
2088 
2089 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2090   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2091                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2092   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2093   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2094 }
2095 
2096 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2097   ReferenceProcessor* result = g1h->ref_processor_cm();
2098   assert(result != NULL, "CM reference processor should not be NULL");
2099   return result;
2100 }
2101 
2102 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2103                                G1CMTask* task)
2104   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2105     _g1h(g1h), _task(task)
2106 { }
2107 
2108 void G1CMTask::setup_for_region(HeapRegion* hr) {
2109   assert(hr != NULL,
2110         "claim_region() should have filtered out NULL regions");
2111   _curr_region  = hr;
2112   _finger       = hr->bottom();
2113   update_region_limit();
2114 }
2115 
2116 void G1CMTask::update_region_limit() {
2117   HeapRegion* hr            = _curr_region;
2118   HeapWord* bottom          = hr->bottom();
2119   HeapWord* limit           = hr->next_top_at_mark_start();
2120 
2121   if (limit == bottom) {
2122     // The region was collected underneath our feet.
2123     // We set the finger to bottom to ensure that the bitmap
2124     // iteration that will follow this will not do anything.
2125     // (this is not a condition that holds when we set the region up,
2126     // as the region is not supposed to be empty in the first place)
2127     _finger = bottom;
2128   } else if (limit >= _region_limit) {
2129     assert(limit >= _finger, "peace of mind");
2130   } else {
2131     assert(limit < _region_limit, "only way to get here");
2132     // This can happen under some pretty unusual circumstances.  An
2133     // evacuation pause empties the region underneath our feet (NTAMS
2134     // at bottom). We then do some allocation in the region (NTAMS
2135     // stays at bottom), followed by the region being used as a GC
2136     // alloc region (NTAMS will move to top() and the objects
2137     // originally below it will be grayed). All objects now marked in
2138     // the region are explicitly grayed, if below the global finger,
2139     // and we do not need in fact to scan anything else. So, we simply
2140     // set _finger to be limit to ensure that the bitmap iteration
2141     // doesn't do anything.
2142     _finger = limit;
2143   }
2144 
2145   _region_limit = limit;
2146 }
2147 
2148 void G1CMTask::giveup_current_region() {
2149   assert(_curr_region != NULL, "invariant");
2150   clear_region_fields();
2151 }
2152 
2153 void G1CMTask::clear_region_fields() {
2154   // Values for these three fields that indicate that we're not
2155   // holding on to a region.
2156   _curr_region   = NULL;
2157   _finger        = NULL;
2158   _region_limit  = NULL;
2159 }
2160 
2161 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2162   if (cm_oop_closure == NULL) {
2163     assert(_cm_oop_closure != NULL, "invariant");
2164   } else {
2165     assert(_cm_oop_closure == NULL, "invariant");
2166   }
2167   _cm_oop_closure = cm_oop_closure;
2168 }
2169 
2170 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2171   guarantee(next_mark_bitmap != NULL, "invariant");
2172   _next_mark_bitmap              = next_mark_bitmap;
2173   clear_region_fields();
2174 
2175   _calls                         = 0;
2176   _elapsed_time_ms               = 0.0;
2177   _termination_time_ms           = 0.0;
2178   _termination_start_time_ms     = 0.0;
2179 
2180   _mark_stats_cache.reset();
2181 }
2182 
2183 bool G1CMTask::should_exit_termination() {
2184   regular_clock_call();
2185   // This is called when we are in the termination protocol. We should
2186   // quit if, for some reason, this task wants to abort or the global
2187   // stack is not empty (this means that we can get work from it).
2188   return !_cm->mark_stack_empty() || has_aborted();
2189 }
2190 
2191 void G1CMTask::reached_limit() {
2192   assert(_words_scanned >= _words_scanned_limit ||
2193          _refs_reached >= _refs_reached_limit ,
2194          "shouldn't have been called otherwise");
2195   regular_clock_call();
2196 }
2197 
2198 void G1CMTask::regular_clock_call() {
2199   if (has_aborted()) {
2200     return;
2201   }
2202 
2203   // First, we need to recalculate the words scanned and refs reached
2204   // limits for the next clock call.
2205   recalculate_limits();
2206 
2207   // During the regular clock call we do the following
2208 
2209   // (1) If an overflow has been flagged, then we abort.
2210   if (_cm->has_overflown()) {
2211     set_has_aborted();
2212     return;
2213   }
2214 
2215   // If we are not concurrent (i.e. we're doing remark) we don't need
2216   // to check anything else. The other steps are only needed during
2217   // the concurrent marking phase.
2218   if (!_cm->concurrent()) {
2219     return;
2220   }
2221 
2222   // (2) If marking has been aborted for Full GC, then we also abort.
2223   if (_cm->has_aborted()) {
2224     set_has_aborted();
2225     return;
2226   }
2227 
2228   double curr_time_ms = os::elapsedVTime() * 1000.0;
2229 
2230   // (4) We check whether we should yield. If we have to, then we abort.
2231   if (SuspendibleThreadSet::should_yield()) {
2232     // We should yield. To do this we abort the task. The caller is
2233     // responsible for yielding.
2234     set_has_aborted();
2235     return;
2236   }
2237 
2238   // (5) We check whether we've reached our time quota. If we have,
2239   // then we abort.
2240   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2241   if (elapsed_time_ms > _time_target_ms) {
2242     set_has_aborted();
2243     _has_timed_out = true;
2244     return;
2245   }
2246 
2247   // (6) Finally, we check whether there are enough completed STAB
2248   // buffers available for processing. If there are, we abort.
2249   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2250   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2251     // we do need to process SATB buffers, we'll abort and restart
2252     // the marking task to do so
2253     set_has_aborted();
2254     return;
2255   }
2256 }
2257 
2258 void G1CMTask::recalculate_limits() {
2259   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2260   _words_scanned_limit      = _real_words_scanned_limit;
2261 
2262   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2263   _refs_reached_limit       = _real_refs_reached_limit;
2264 }
2265 
2266 void G1CMTask::decrease_limits() {
2267   // This is called when we believe that we're going to do an infrequent
2268   // operation which will increase the per byte scanned cost (i.e. move
2269   // entries to/from the global stack). It basically tries to decrease the
2270   // scanning limit so that the clock is called earlier.
2271 
2272   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2273   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2274 }
2275 
2276 void G1CMTask::move_entries_to_global_stack() {
2277   // Local array where we'll store the entries that will be popped
2278   // from the local queue.
2279   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2280 
2281   size_t n = 0;
2282   G1TaskQueueEntry task_entry;
2283   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2284     buffer[n] = task_entry;
2285     ++n;
2286   }
2287   if (n < G1CMMarkStack::EntriesPerChunk) {
2288     buffer[n] = G1TaskQueueEntry();
2289   }
2290 
2291   if (n > 0) {
2292     if (!_cm->mark_stack_push(buffer)) {
2293       set_has_aborted();
2294     }
2295   }
2296 
2297   // This operation was quite expensive, so decrease the limits.
2298   decrease_limits();
2299 }
2300 
2301 bool G1CMTask::get_entries_from_global_stack() {
2302   // Local array where we'll store the entries that will be popped
2303   // from the global stack.
2304   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2305 
2306   if (!_cm->mark_stack_pop(buffer)) {
2307     return false;
2308   }
2309 
2310   // We did actually pop at least one entry.
2311   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2312     G1TaskQueueEntry task_entry = buffer[i];
2313     if (task_entry.is_null()) {
2314       break;
2315     }
2316     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2317     bool success = _task_queue->push(task_entry);
2318     // We only call this when the local queue is empty or under a
2319     // given target limit. So, we do not expect this push to fail.
2320     assert(success, "invariant");
2321   }
2322 
2323   // This operation was quite expensive, so decrease the limits
2324   decrease_limits();
2325   return true;
2326 }
2327 
2328 void G1CMTask::drain_local_queue(bool partially) {
2329   if (has_aborted()) {
2330     return;
2331   }
2332 
2333   // Decide what the target size is, depending whether we're going to
2334   // drain it partially (so that other tasks can steal if they run out
2335   // of things to do) or totally (at the very end).
2336   size_t target_size;
2337   if (partially) {
2338     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2339   } else {
2340     target_size = 0;
2341   }
2342 
2343   if (_task_queue->size() > target_size) {
2344     G1TaskQueueEntry entry;
2345     bool ret = _task_queue->pop_local(entry);
2346     while (ret) {
2347       scan_task_entry(entry);
2348       if (_task_queue->size() <= target_size || has_aborted()) {
2349         ret = false;
2350       } else {
2351         ret = _task_queue->pop_local(entry);
2352       }
2353     }
2354   }
2355 }
2356 
2357 void G1CMTask::drain_global_stack(bool partially) {
2358   if (has_aborted()) {
2359     return;
2360   }
2361 
2362   // We have a policy to drain the local queue before we attempt to
2363   // drain the global stack.
2364   assert(partially || _task_queue->size() == 0, "invariant");
2365 
2366   // Decide what the target size is, depending whether we're going to
2367   // drain it partially (so that other tasks can steal if they run out
2368   // of things to do) or totally (at the very end).
2369   // Notice that when draining the global mark stack partially, due to the racyness
2370   // of the mark stack size update we might in fact drop below the target. But,
2371   // this is not a problem.
2372   // In case of total draining, we simply process until the global mark stack is
2373   // totally empty, disregarding the size counter.
2374   if (partially) {
2375     size_t const target_size = _cm->partial_mark_stack_size_target();
2376     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2377       if (get_entries_from_global_stack()) {
2378         drain_local_queue(partially);
2379       }
2380     }
2381   } else {
2382     while (!has_aborted() && get_entries_from_global_stack()) {
2383       drain_local_queue(partially);
2384     }
2385   }
2386 }
2387 
2388 // SATB Queue has several assumptions on whether to call the par or
2389 // non-par versions of the methods. this is why some of the code is
2390 // replicated. We should really get rid of the single-threaded version
2391 // of the code to simplify things.
2392 void G1CMTask::drain_satb_buffers() {
2393   if (has_aborted()) {
2394     return;
2395   }
2396 
2397   // We set this so that the regular clock knows that we're in the
2398   // middle of draining buffers and doesn't set the abort flag when it
2399   // notices that SATB buffers are available for draining. It'd be
2400   // very counter productive if it did that. :-)
2401   _draining_satb_buffers = true;
2402 
2403   G1CMSATBBufferClosure satb_cl(this, _g1h);
2404   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2405 
2406   // This keeps claiming and applying the closure to completed buffers
2407   // until we run out of buffers or we need to abort.
2408   while (!has_aborted() &&
2409          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2410     regular_clock_call();
2411   }
2412 
2413   _draining_satb_buffers = false;
2414 
2415   assert(has_aborted() ||
2416          _cm->concurrent() ||
2417          satb_mq_set.completed_buffers_num() == 0, "invariant");
2418 
2419   // again, this was a potentially expensive operation, decrease the
2420   // limits to get the regular clock call early
2421   decrease_limits();
2422 }
2423 
2424 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2425   _mark_stats_cache.reset(region_idx);
2426 }
2427 
2428 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2429   return _mark_stats_cache.evict_all();
2430 }
2431 
2432 void G1CMTask::print_stats() {
2433   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2434   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2435                        _elapsed_time_ms, _termination_time_ms);
2436   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2437                        _step_times_ms.num(),
2438                        _step_times_ms.avg(),
2439                        _step_times_ms.sd(),
2440                        _step_times_ms.maximum(),
2441                        _step_times_ms.sum());
2442   size_t const hits = _mark_stats_cache.hits();
2443   size_t const misses = _mark_stats_cache.misses();
2444   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2445                        hits, misses, percent_of(hits, hits + misses));
2446 }
2447 
2448 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2449   return _task_queues->steal(worker_id, task_entry);
2450 }
2451 
2452 /*****************************************************************************
2453 
2454     The do_marking_step(time_target_ms, ...) method is the building
2455     block of the parallel marking framework. It can be called in parallel
2456     with other invocations of do_marking_step() on different tasks
2457     (but only one per task, obviously) and concurrently with the
2458     mutator threads, or during remark, hence it eliminates the need
2459     for two versions of the code. When called during remark, it will
2460     pick up from where the task left off during the concurrent marking
2461     phase. Interestingly, tasks are also claimable during evacuation
2462     pauses too, since do_marking_step() ensures that it aborts before
2463     it needs to yield.
2464 
2465     The data structures that it uses to do marking work are the
2466     following:
2467 
2468       (1) Marking Bitmap. If there are gray objects that appear only
2469       on the bitmap (this happens either when dealing with an overflow
2470       or when the initial marking phase has simply marked the roots
2471       and didn't push them on the stack), then tasks claim heap
2472       regions whose bitmap they then scan to find gray objects. A
2473       global finger indicates where the end of the last claimed region
2474       is. A local finger indicates how far into the region a task has
2475       scanned. The two fingers are used to determine how to gray an
2476       object (i.e. whether simply marking it is OK, as it will be
2477       visited by a task in the future, or whether it needs to be also
2478       pushed on a stack).
2479 
2480       (2) Local Queue. The local queue of the task which is accessed
2481       reasonably efficiently by the task. Other tasks can steal from
2482       it when they run out of work. Throughout the marking phase, a
2483       task attempts to keep its local queue short but not totally
2484       empty, so that entries are available for stealing by other
2485       tasks. Only when there is no more work, a task will totally
2486       drain its local queue.
2487 
2488       (3) Global Mark Stack. This handles local queue overflow. During
2489       marking only sets of entries are moved between it and the local
2490       queues, as access to it requires a mutex and more fine-grain
2491       interaction with it which might cause contention. If it
2492       overflows, then the marking phase should restart and iterate
2493       over the bitmap to identify gray objects. Throughout the marking
2494       phase, tasks attempt to keep the global mark stack at a small
2495       length but not totally empty, so that entries are available for
2496       popping by other tasks. Only when there is no more work, tasks
2497       will totally drain the global mark stack.
2498 
2499       (4) SATB Buffer Queue. This is where completed SATB buffers are
2500       made available. Buffers are regularly removed from this queue
2501       and scanned for roots, so that the queue doesn't get too
2502       long. During remark, all completed buffers are processed, as
2503       well as the filled in parts of any uncompleted buffers.
2504 
2505     The do_marking_step() method tries to abort when the time target
2506     has been reached. There are a few other cases when the
2507     do_marking_step() method also aborts:
2508 
2509       (1) When the marking phase has been aborted (after a Full GC).
2510 
2511       (2) When a global overflow (on the global stack) has been
2512       triggered. Before the task aborts, it will actually sync up with
2513       the other tasks to ensure that all the marking data structures
2514       (local queues, stacks, fingers etc.)  are re-initialized so that
2515       when do_marking_step() completes, the marking phase can
2516       immediately restart.
2517 
2518       (3) When enough completed SATB buffers are available. The
2519       do_marking_step() method only tries to drain SATB buffers right
2520       at the beginning. So, if enough buffers are available, the
2521       marking step aborts and the SATB buffers are processed at
2522       the beginning of the next invocation.
2523 
2524       (4) To yield. when we have to yield then we abort and yield
2525       right at the end of do_marking_step(). This saves us from a lot
2526       of hassle as, by yielding we might allow a Full GC. If this
2527       happens then objects will be compacted underneath our feet, the
2528       heap might shrink, etc. We save checking for this by just
2529       aborting and doing the yield right at the end.
2530 
2531     From the above it follows that the do_marking_step() method should
2532     be called in a loop (or, otherwise, regularly) until it completes.
2533 
2534     If a marking step completes without its has_aborted() flag being
2535     true, it means it has completed the current marking phase (and
2536     also all other marking tasks have done so and have all synced up).
2537 
2538     A method called regular_clock_call() is invoked "regularly" (in
2539     sub ms intervals) throughout marking. It is this clock method that
2540     checks all the abort conditions which were mentioned above and
2541     decides when the task should abort. A work-based scheme is used to
2542     trigger this clock method: when the number of object words the
2543     marking phase has scanned or the number of references the marking
2544     phase has visited reach a given limit. Additional invocations to
2545     the method clock have been planted in a few other strategic places
2546     too. The initial reason for the clock method was to avoid calling
2547     vtime too regularly, as it is quite expensive. So, once it was in
2548     place, it was natural to piggy-back all the other conditions on it
2549     too and not constantly check them throughout the code.
2550 
2551     If do_termination is true then do_marking_step will enter its
2552     termination protocol.
2553 
2554     The value of is_serial must be true when do_marking_step is being
2555     called serially (i.e. by the VMThread) and do_marking_step should
2556     skip any synchronization in the termination and overflow code.
2557     Examples include the serial remark code and the serial reference
2558     processing closures.
2559 
2560     The value of is_serial must be false when do_marking_step is
2561     being called by any of the worker threads in a work gang.
2562     Examples include the concurrent marking code (CMMarkingTask),
2563     the MT remark code, and the MT reference processing closures.
2564 
2565  *****************************************************************************/
2566 
2567 void G1CMTask::do_marking_step(double time_target_ms,
2568                                bool do_termination,
2569                                bool is_serial) {
2570   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2571 
2572   _start_time_ms = os::elapsedVTime() * 1000.0;
2573 
2574   // If do_stealing is true then do_marking_step will attempt to
2575   // steal work from the other G1CMTasks. It only makes sense to
2576   // enable stealing when the termination protocol is enabled
2577   // and do_marking_step() is not being called serially.
2578   bool do_stealing = do_termination && !is_serial;
2579 
2580   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2581   _time_target_ms = time_target_ms - diff_prediction_ms;
2582 
2583   // set up the variables that are used in the work-based scheme to
2584   // call the regular clock method
2585   _words_scanned = 0;
2586   _refs_reached  = 0;
2587   recalculate_limits();
2588 
2589   // clear all flags
2590   clear_has_aborted();
2591   _has_timed_out = false;
2592   _draining_satb_buffers = false;
2593 
2594   ++_calls;
2595 
2596   // Set up the bitmap and oop closures. Anything that uses them is
2597   // eventually called from this method, so it is OK to allocate these
2598   // statically.
2599   G1CMBitMapClosure bitmap_closure(this, _cm);
2600   G1CMOopClosure cm_oop_closure(_g1h, this);
2601   set_cm_oop_closure(&cm_oop_closure);
2602 
2603   if (_cm->has_overflown()) {
2604     // This can happen if the mark stack overflows during a GC pause
2605     // and this task, after a yield point, restarts. We have to abort
2606     // as we need to get into the overflow protocol which happens
2607     // right at the end of this task.
2608     set_has_aborted();
2609   }
2610 
2611   // First drain any available SATB buffers. After this, we will not
2612   // look at SATB buffers before the next invocation of this method.
2613   // If enough completed SATB buffers are queued up, the regular clock
2614   // will abort this task so that it restarts.
2615   drain_satb_buffers();
2616   // ...then partially drain the local queue and the global stack
2617   drain_local_queue(true);
2618   drain_global_stack(true);
2619 
2620   do {
2621     if (!has_aborted() && _curr_region != NULL) {
2622       // This means that we're already holding on to a region.
2623       assert(_finger != NULL, "if region is not NULL, then the finger "
2624              "should not be NULL either");
2625 
2626       // We might have restarted this task after an evacuation pause
2627       // which might have evacuated the region we're holding on to
2628       // underneath our feet. Let's read its limit again to make sure
2629       // that we do not iterate over a region of the heap that
2630       // contains garbage (update_region_limit() will also move
2631       // _finger to the start of the region if it is found empty).
2632       update_region_limit();
2633       // We will start from _finger not from the start of the region,
2634       // as we might be restarting this task after aborting half-way
2635       // through scanning this region. In this case, _finger points to
2636       // the address where we last found a marked object. If this is a
2637       // fresh region, _finger points to start().
2638       MemRegion mr = MemRegion(_finger, _region_limit);
2639 
2640       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2641              "humongous regions should go around loop once only");
2642 
2643       // Some special cases:
2644       // If the memory region is empty, we can just give up the region.
2645       // If the current region is humongous then we only need to check
2646       // the bitmap for the bit associated with the start of the object,
2647       // scan the object if it's live, and give up the region.
2648       // Otherwise, let's iterate over the bitmap of the part of the region
2649       // that is left.
2650       // If the iteration is successful, give up the region.
2651       if (mr.is_empty()) {
2652         giveup_current_region();
2653         regular_clock_call();
2654       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2655         if (_next_mark_bitmap->is_marked(mr.start())) {
2656           // The object is marked - apply the closure
2657           bitmap_closure.do_addr(mr.start());
2658         }
2659         // Even if this task aborted while scanning the humongous object
2660         // we can (and should) give up the current region.
2661         giveup_current_region();
2662         regular_clock_call();
2663       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2664         giveup_current_region();
2665         regular_clock_call();
2666       } else {
2667         assert(has_aborted(), "currently the only way to do so");
2668         // The only way to abort the bitmap iteration is to return
2669         // false from the do_bit() method. However, inside the
2670         // do_bit() method we move the _finger to point to the
2671         // object currently being looked at. So, if we bail out, we
2672         // have definitely set _finger to something non-null.
2673         assert(_finger != NULL, "invariant");
2674 
2675         // Region iteration was actually aborted. So now _finger
2676         // points to the address of the object we last scanned. If we
2677         // leave it there, when we restart this task, we will rescan
2678         // the object. It is easy to avoid this. We move the finger by
2679         // enough to point to the next possible object header.
2680         assert(_finger < _region_limit, "invariant");
2681         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2682         // Check if bitmap iteration was aborted while scanning the last object
2683         if (new_finger >= _region_limit) {
2684           giveup_current_region();
2685         } else {
2686           move_finger_to(new_finger);
2687         }
2688       }
2689     }
2690     // At this point we have either completed iterating over the
2691     // region we were holding on to, or we have aborted.
2692 
2693     // We then partially drain the local queue and the global stack.
2694     // (Do we really need this?)
2695     drain_local_queue(true);
2696     drain_global_stack(true);
2697 
2698     // Read the note on the claim_region() method on why it might
2699     // return NULL with potentially more regions available for
2700     // claiming and why we have to check out_of_regions() to determine
2701     // whether we're done or not.
2702     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2703       // We are going to try to claim a new region. We should have
2704       // given up on the previous one.
2705       // Separated the asserts so that we know which one fires.
2706       assert(_curr_region  == NULL, "invariant");
2707       assert(_finger       == NULL, "invariant");
2708       assert(_region_limit == NULL, "invariant");
2709       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2710       if (claimed_region != NULL) {
2711         // Yes, we managed to claim one
2712         setup_for_region(claimed_region);
2713         assert(_curr_region == claimed_region, "invariant");
2714       }
2715       // It is important to call the regular clock here. It might take
2716       // a while to claim a region if, for example, we hit a large
2717       // block of empty regions. So we need to call the regular clock
2718       // method once round the loop to make sure it's called
2719       // frequently enough.
2720       regular_clock_call();
2721     }
2722 
2723     if (!has_aborted() && _curr_region == NULL) {
2724       assert(_cm->out_of_regions(),
2725              "at this point we should be out of regions");
2726     }
2727   } while ( _curr_region != NULL && !has_aborted());
2728 
2729   if (!has_aborted()) {
2730     // We cannot check whether the global stack is empty, since other
2731     // tasks might be pushing objects to it concurrently.
2732     assert(_cm->out_of_regions(),
2733            "at this point we should be out of regions");
2734     // Try to reduce the number of available SATB buffers so that
2735     // remark has less work to do.
2736     drain_satb_buffers();
2737   }
2738 
2739   // Since we've done everything else, we can now totally drain the
2740   // local queue and global stack.
2741   drain_local_queue(false);
2742   drain_global_stack(false);
2743 
2744   // Attempt at work stealing from other task's queues.
2745   if (do_stealing && !has_aborted()) {
2746     // We have not aborted. This means that we have finished all that
2747     // we could. Let's try to do some stealing...
2748 
2749     // We cannot check whether the global stack is empty, since other
2750     // tasks might be pushing objects to it concurrently.
2751     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2752            "only way to reach here");
2753     while (!has_aborted()) {
2754       G1TaskQueueEntry entry;
2755       if (_cm->try_stealing(_worker_id, entry)) {
2756         scan_task_entry(entry);
2757 
2758         // And since we're towards the end, let's totally drain the
2759         // local queue and global stack.
2760         drain_local_queue(false);
2761         drain_global_stack(false);
2762       } else {
2763         break;
2764       }
2765     }
2766   }
2767 
2768   // We still haven't aborted. Now, let's try to get into the
2769   // termination protocol.
2770   if (do_termination && !has_aborted()) {
2771     // We cannot check whether the global stack is empty, since other
2772     // tasks might be concurrently pushing objects on it.
2773     // Separated the asserts so that we know which one fires.
2774     assert(_cm->out_of_regions(), "only way to reach here");
2775     assert(_task_queue->size() == 0, "only way to reach here");
2776     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2777 
2778     // The G1CMTask class also extends the TerminatorTerminator class,
2779     // hence its should_exit_termination() method will also decide
2780     // whether to exit the termination protocol or not.
2781     bool finished = (is_serial ||
2782                      _cm->terminator()->offer_termination(this));
2783     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2784     _termination_time_ms +=
2785       termination_end_time_ms - _termination_start_time_ms;
2786 
2787     if (finished) {
2788       // We're all done.
2789 
2790       // We can now guarantee that the global stack is empty, since
2791       // all other tasks have finished. We separated the guarantees so
2792       // that, if a condition is false, we can immediately find out
2793       // which one.
2794       guarantee(_cm->out_of_regions(), "only way to reach here");
2795       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2796       guarantee(_task_queue->size() == 0, "only way to reach here");
2797       guarantee(!_cm->has_overflown(), "only way to reach here");
2798     } else {
2799       // Apparently there's more work to do. Let's abort this task. It
2800       // will restart it and we can hopefully find more things to do.
2801       set_has_aborted();
2802     }
2803   }
2804 
2805   // Mainly for debugging purposes to make sure that a pointer to the
2806   // closure which was statically allocated in this frame doesn't
2807   // escape it by accident.
2808   set_cm_oop_closure(NULL);
2809   double end_time_ms = os::elapsedVTime() * 1000.0;
2810   double elapsed_time_ms = end_time_ms - _start_time_ms;
2811   // Update the step history.
2812   _step_times_ms.add(elapsed_time_ms);
2813 
2814   if (has_aborted()) {
2815     // The task was aborted for some reason.
2816     if (_has_timed_out) {
2817       double diff_ms = elapsed_time_ms - _time_target_ms;
2818       // Keep statistics of how well we did with respect to hitting
2819       // our target only if we actually timed out (if we aborted for
2820       // other reasons, then the results might get skewed).
2821       _marking_step_diffs_ms.add(diff_ms);
2822     }
2823 
2824     if (_cm->has_overflown()) {
2825       // This is the interesting one. We aborted because a global
2826       // overflow was raised. This means we have to restart the
2827       // marking phase and start iterating over regions. However, in
2828       // order to do this we have to make sure that all tasks stop
2829       // what they are doing and re-initialize in a safe manner. We
2830       // will achieve this with the use of two barrier sync points.
2831 
2832       if (!is_serial) {
2833         // We only need to enter the sync barrier if being called
2834         // from a parallel context
2835         _cm->enter_first_sync_barrier(_worker_id);
2836 
2837         // When we exit this sync barrier we know that all tasks have
2838         // stopped doing marking work. So, it's now safe to
2839         // re-initialize our data structures.
2840       }
2841 
2842       clear_region_fields();
2843       flush_mark_stats_cache();
2844 
2845       if (!is_serial) {
2846         // If we're executing the concurrent phase of marking, reset the marking
2847         // state; otherwise the marking state is reset after reference processing,
2848         // during the remark pause.
2849         // If we reset here as a result of an overflow during the remark we will
2850         // see assertion failures from any subsequent set_concurrency_and_phase()
2851         // calls.
2852         if (_cm->concurrent() && _worker_id == 0) {
2853           // Worker 0 is responsible for clearing the global data structures because
2854           // of an overflow. During STW we should not clear the overflow flag (in
2855           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2856           // method to abort the pause and restart concurrent marking.
2857           _cm->reset_marking_for_restart();
2858 
2859           log_info(gc, marking)("Concurrent Mark reset for overflow");
2860         }
2861 
2862         // ...and enter the second barrier.
2863         _cm->enter_second_sync_barrier(_worker_id);
2864       }
2865       // At this point, if we're during the concurrent phase of
2866       // marking, everything has been re-initialized and we're
2867       // ready to restart.
2868     }
2869   }
2870 }
2871 
2872 G1CMTask::G1CMTask(uint worker_id,
2873                    G1ConcurrentMark* cm,
2874                    G1CMTaskQueue* task_queue,
2875                    G1RegionMarkStats* mark_stats,
2876                    uint max_regions) :
2877   _objArray_processor(this),
2878   _worker_id(worker_id),
2879   _g1h(G1CollectedHeap::heap()),
2880   _cm(cm),
2881   _next_mark_bitmap(NULL),
2882   _task_queue(task_queue),
2883   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2884   _calls(0),
2885   _time_target_ms(0.0),
2886   _start_time_ms(0.0),
2887   _cm_oop_closure(NULL),
2888   _curr_region(NULL),
2889   _finger(NULL),
2890   _region_limit(NULL),
2891   _words_scanned(0),
2892   _words_scanned_limit(0),
2893   _real_words_scanned_limit(0),
2894   _refs_reached(0),
2895   _refs_reached_limit(0),
2896   _real_refs_reached_limit(0),
2897   _has_aborted(false),
2898   _has_timed_out(false),
2899   _draining_satb_buffers(false),
2900   _step_times_ms(),
2901   _elapsed_time_ms(0.0),
2902   _termination_time_ms(0.0),
2903   _termination_start_time_ms(0.0),
2904   _marking_step_diffs_ms()
2905 {
2906   guarantee(task_queue != NULL, "invariant");
2907 
2908   _marking_step_diffs_ms.add(0.5);
2909 }
2910 
2911 // These are formatting macros that are used below to ensure
2912 // consistent formatting. The *_H_* versions are used to format the
2913 // header for a particular value and they should be kept consistent
2914 // with the corresponding macro. Also note that most of the macros add
2915 // the necessary white space (as a prefix) which makes them a bit
2916 // easier to compose.
2917 
2918 // All the output lines are prefixed with this string to be able to
2919 // identify them easily in a large log file.
2920 #define G1PPRL_LINE_PREFIX            "###"
2921 
2922 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2923 #ifdef _LP64
2924 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2925 #else // _LP64
2926 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2927 #endif // _LP64
2928 
2929 // For per-region info
2930 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2931 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2932 #define G1PPRL_STATE_FORMAT           "   %-5s"
2933 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2934 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2935 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2936 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2937 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2938 
2939 // For summary info
2940 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2941 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2942 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2943 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2944 
2945 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2946   _total_used_bytes(0), _total_capacity_bytes(0),
2947   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2948   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2949 {
2950   if (!log_is_enabled(Trace, gc, liveness)) {
2951     return;
2952   }
2953 
2954   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2955   MemRegion g1_reserved = g1h->g1_reserved();
2956   double now = os::elapsedTime();
2957 
2958   // Print the header of the output.
2959   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2960   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2961                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2962                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2963                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2964                           HeapRegion::GrainBytes);
2965   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2966   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2967                           G1PPRL_TYPE_H_FORMAT
2968                           G1PPRL_ADDR_BASE_H_FORMAT
2969                           G1PPRL_BYTE_H_FORMAT
2970                           G1PPRL_BYTE_H_FORMAT
2971                           G1PPRL_BYTE_H_FORMAT
2972                           G1PPRL_DOUBLE_H_FORMAT
2973                           G1PPRL_BYTE_H_FORMAT
2974                           G1PPRL_STATE_H_FORMAT
2975                           G1PPRL_BYTE_H_FORMAT,
2976                           "type", "address-range",
2977                           "used", "prev-live", "next-live", "gc-eff",
2978                           "remset", "state", "code-roots");
2979   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2980                           G1PPRL_TYPE_H_FORMAT
2981                           G1PPRL_ADDR_BASE_H_FORMAT
2982                           G1PPRL_BYTE_H_FORMAT
2983                           G1PPRL_BYTE_H_FORMAT
2984                           G1PPRL_BYTE_H_FORMAT
2985                           G1PPRL_DOUBLE_H_FORMAT
2986                           G1PPRL_BYTE_H_FORMAT
2987                           G1PPRL_STATE_H_FORMAT
2988                           G1PPRL_BYTE_H_FORMAT,
2989                           "", "",
2990                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2991                           "(bytes)", "", "(bytes)");
2992 }
2993 
2994 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2995   if (!log_is_enabled(Trace, gc, liveness)) {
2996     return false;
2997   }
2998 
2999   const char* type       = r->get_type_str();
3000   HeapWord* bottom       = r->bottom();
3001   HeapWord* end          = r->end();
3002   size_t capacity_bytes  = r->capacity();
3003   size_t used_bytes      = r->used();
3004   size_t prev_live_bytes = r->live_bytes();
3005   size_t next_live_bytes = r->next_live_bytes();
3006   double gc_eff          = r->gc_efficiency();
3007   size_t remset_bytes    = r->rem_set()->mem_size();
3008   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3009   const char* remset_type = r->rem_set()->get_short_state_str();
3010 
3011   _total_used_bytes      += used_bytes;
3012   _total_capacity_bytes  += capacity_bytes;
3013   _total_prev_live_bytes += prev_live_bytes;
3014   _total_next_live_bytes += next_live_bytes;
3015   _total_remset_bytes    += remset_bytes;
3016   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3017 
3018   // Print a line for this particular region.
3019   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3020                           G1PPRL_TYPE_FORMAT
3021                           G1PPRL_ADDR_BASE_FORMAT
3022                           G1PPRL_BYTE_FORMAT
3023                           G1PPRL_BYTE_FORMAT
3024                           G1PPRL_BYTE_FORMAT
3025                           G1PPRL_DOUBLE_FORMAT
3026                           G1PPRL_BYTE_FORMAT
3027                           G1PPRL_STATE_FORMAT
3028                           G1PPRL_BYTE_FORMAT,
3029                           type, p2i(bottom), p2i(end),
3030                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3031                           remset_bytes, remset_type, strong_code_roots_bytes);
3032 
3033   return false;
3034 }
3035 
3036 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3037   if (!log_is_enabled(Trace, gc, liveness)) {
3038     return;
3039   }
3040 
3041   // add static memory usages to remembered set sizes
3042   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3043   // Print the footer of the output.
3044   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3045   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3046                          " SUMMARY"
3047                          G1PPRL_SUM_MB_FORMAT("capacity")
3048                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3049                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3050                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3051                          G1PPRL_SUM_MB_FORMAT("remset")
3052                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3053                          bytes_to_mb(_total_capacity_bytes),
3054                          bytes_to_mb(_total_used_bytes),
3055                          percent_of(_total_used_bytes, _total_capacity_bytes),
3056                          bytes_to_mb(_total_prev_live_bytes),
3057                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3058                          bytes_to_mb(_total_next_live_bytes),
3059                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3060                          bytes_to_mb(_total_remset_bytes),
3061                          bytes_to_mb(_total_strong_code_roots_bytes));
3062 }