1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 #include "utilities/growableArray.hpp"
  61 
  62 // Concurrent marking bit map wrapper
  63 
  64 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  65   _bm(),
  66   _shifter(shifter) {
  67   _bmStartWord = 0;
  68   _bmWordSize = 0;
  69 }
  70 
  71 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  72                                                  const HeapWord* limit) const {
  73   // First we must round addr *up* to a possible object boundary.
  74   addr = (HeapWord*)align_size_up((intptr_t)addr,
  75                                   HeapWordSize << _shifter);
  76   size_t addrOffset = heapWordToOffset(addr);
  77   assert(limit != NULL, "limit must not be NULL");
  78   size_t limitOffset = heapWordToOffset(limit);
  79   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  80   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  81   assert(nextAddr >= addr, "get_next_one postcondition");
  82   assert(nextAddr == limit || isMarked(nextAddr),
  83          "get_next_one postcondition");
  84   return nextAddr;
  85 }
  86 
  87 #ifndef PRODUCT
  88 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  89   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  90   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  91          "size inconsistency");
  92   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  93          _bmWordSize  == heap_rs.word_size();
  94 }
  95 #endif
  96 
  97 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  98   _bm.print_on_error(st, prefix);
  99 }
 100 
 101 size_t G1CMBitMap::compute_size(size_t heap_size) {
 102   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 103 }
 104 
 105 size_t G1CMBitMap::mark_distance() {
 106   return MinObjAlignmentInBytes * BitsPerByte;
 107 }
 108 
 109 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 110   _bmStartWord = heap.start();
 111   _bmWordSize = heap.word_size();
 112 
 113   _bm = BitMapView((BitMap::bm_word_t*) storage->reserved().start(), _bmWordSize >> _shifter);
 114 
 115   storage->set_mapping_changed_listener(&_listener);
 116 }
 117 
 118 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 119   if (zero_filled) {
 120     return;
 121   }
 122   // We need to clear the bitmap on commit, removing any existing information.
 123   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 124   _bm->clear_range(mr);
 125 }
 126 
 127 void G1CMBitMap::clear_range(MemRegion mr) {
 128   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 129   assert(!mr.is_empty(), "unexpected empty region");
 130   // convert address range into offset range
 131   _bm.at_put_range(heapWordToOffset(mr.start()),
 132                    heapWordToOffset(mr.end()), false);
 133 }
 134 
 135 G1CMMarkStack::G1CMMarkStack() :
 136   _reserved_space(),
 137   _base(NULL),
 138   _capacity(0),
 139   _saved_index((size_t)AllBits),
 140   _should_expand(false) {
 141   set_empty();
 142 }
 143 
 144 bool G1CMMarkStack::resize(size_t new_capacity) {
 145   assert(is_empty(), "Only resize when stack is empty.");
 146   assert(new_capacity <= MarkStackSizeMax,
 147          "Trying to resize stack to " SIZE_FORMAT " elements when the maximum is " SIZE_FORMAT, new_capacity, MarkStackSizeMax);
 148 
 149   size_t reservation_size = ReservedSpace::allocation_align_size_up(new_capacity * sizeof(oop));
 150 
 151   ReservedSpace rs(reservation_size);
 152   if (!rs.is_reserved()) {
 153     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " elements and size " SIZE_FORMAT "B.", new_capacity, reservation_size);
 154     return false;
 155   }
 156 
 157   VirtualSpace vs;
 158 
 159   if (!vs.initialize(rs, rs.size())) {
 160     rs.release();
 161     log_warning(gc)("Failed to commit memory for new overflow mark stack of size " SIZE_FORMAT "B.", rs.size());
 162     return false;
 163   }
 164 
 165   assert(vs.committed_size() == rs.size(), "Failed to commit all of the mark stack.");
 166 
 167   // Release old mapping.
 168   _reserved_space.release();
 169 
 170   // Save new mapping for future unmapping.
 171   _reserved_space = rs;
 172 
 173   MemTracker::record_virtual_memory_type((address)_reserved_space.base(), mtGC);
 174 
 175   _base = (oop*) vs.low();
 176   _capacity = new_capacity;
 177   set_empty();
 178   _should_expand = false;
 179 
 180   return true;
 181 }
 182 
 183 bool G1CMMarkStack::allocate(size_t capacity) {
 184   return resize(capacity);
 185 }
 186 
 187 void G1CMMarkStack::expand() {
 188   // Clear expansion flag
 189   _should_expand = false;
 190 
 191   if (_capacity == MarkStackSizeMax) {
 192     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " elements.", _capacity);
 193     return;
 194   }
 195   size_t old_capacity = _capacity;
 196   // Double capacity if possible
 197   size_t new_capacity = MIN2(old_capacity * 2, MarkStackSizeMax);
 198 
 199   if (resize(new_capacity)) {
 200     log_debug(gc)("Expanded marking stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " elements",
 201                   old_capacity, new_capacity);
 202   } else {
 203     log_warning(gc)("Failed to expand marking stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " elements",
 204                     old_capacity, new_capacity);
 205   }
 206 }
 207 
 208 G1CMMarkStack::~G1CMMarkStack() {
 209   if (_base != NULL) {
 210     _base = NULL;
 211     _reserved_space.release();
 212   }
 213 }
 214 
 215 void G1CMMarkStack::par_push_arr(oop* buffer, size_t n) {
 216   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 217   size_t start = _index;
 218   size_t next_index = start + n;
 219   if (next_index > _capacity) {
 220     _overflow = true;
 221     return;
 222   }
 223   // Otherwise.
 224   _index = next_index;
 225   for (size_t i = 0; i < n; i++) {
 226     size_t ind = start + i;
 227     assert(ind < _capacity, "By overflow test above.");
 228     _base[ind] = buffer[i];
 229   }
 230 }
 231 
 232 bool G1CMMarkStack::par_pop_arr(oop* buffer, size_t max, size_t* n) {
 233   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 234   size_t index = _index;
 235   if (index == 0) {
 236     *n = 0;
 237     return false;
 238   } else {
 239     size_t k = MIN2(max, index);
 240     size_t new_ind = index - k;
 241     for (size_t j = 0; j < k; j++) {
 242       buffer[j] = _base[new_ind + j];
 243     }
 244     _index = new_ind;
 245     *n = k;
 246     return true;
 247   }
 248 }
 249 
 250 void G1CMMarkStack::note_start_of_gc() {
 251   assert(_saved_index == (size_t)AllBits, "note_start_of_gc()/end_of_gc() calls bracketed incorrectly");
 252   _saved_index = _index;
 253 }
 254 
 255 void G1CMMarkStack::note_end_of_gc() {
 256   guarantee(!stack_modified(), "Saved index " SIZE_FORMAT " must be the same as " SIZE_FORMAT, _saved_index, _index);
 257 
 258   _saved_index = (size_t)AllBits;
 259 }
 260 
 261 G1CMRootRegions::G1CMRootRegions() :
 262   _cm(NULL), _scan_in_progress(false),
 263   _should_abort(false), _claimed_survivor_index(0) { }
 264 
 265 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 266   _survivors = survivors;
 267   _cm = cm;
 268 }
 269 
 270 void G1CMRootRegions::prepare_for_scan() {
 271   assert(!scan_in_progress(), "pre-condition");
 272 
 273   // Currently, only survivors can be root regions.
 274   _claimed_survivor_index = 0;
 275   _scan_in_progress = _survivors->regions()->is_nonempty();
 276   _should_abort = false;
 277 }
 278 
 279 HeapRegion* G1CMRootRegions::claim_next() {
 280   if (_should_abort) {
 281     // If someone has set the should_abort flag, we return NULL to
 282     // force the caller to bail out of their loop.
 283     return NULL;
 284   }
 285 
 286   // Currently, only survivors can be root regions.
 287   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 288 
 289   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 290   if (claimed_index < survivor_regions->length()) {
 291     return survivor_regions->at(claimed_index);
 292   }
 293   return NULL;
 294 }
 295 
 296 uint G1CMRootRegions::num_root_regions() const {
 297   return (uint)_survivors->regions()->length();
 298 }
 299 
 300 void G1CMRootRegions::notify_scan_done() {
 301   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 302   _scan_in_progress = false;
 303   RootRegionScan_lock->notify_all();
 304 }
 305 
 306 void G1CMRootRegions::cancel_scan() {
 307   notify_scan_done();
 308 }
 309 
 310 void G1CMRootRegions::scan_finished() {
 311   assert(scan_in_progress(), "pre-condition");
 312 
 313   // Currently, only survivors can be root regions.
 314   if (!_should_abort) {
 315     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 316     assert((uint)_claimed_survivor_index >= _survivors->length(),
 317            "we should have claimed all survivors, claimed index = %u, length = %u",
 318            (uint)_claimed_survivor_index, _survivors->length());
 319   }
 320 
 321   notify_scan_done();
 322 }
 323 
 324 bool G1CMRootRegions::wait_until_scan_finished() {
 325   if (!scan_in_progress()) return false;
 326 
 327   {
 328     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 329     while (scan_in_progress()) {
 330       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 331     }
 332   }
 333   return true;
 334 }
 335 
 336 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 337   return MAX2((n_par_threads + 2) / 4, 1U);
 338 }
 339 
 340 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 341   _g1h(g1h),
 342   _markBitMap1(),
 343   _markBitMap2(),
 344   _parallel_marking_threads(0),
 345   _max_parallel_marking_threads(0),
 346   _sleep_factor(0.0),
 347   _marking_task_overhead(1.0),
 348   _cleanup_list("Cleanup List"),
 349 
 350   _prevMarkBitMap(&_markBitMap1),
 351   _nextMarkBitMap(&_markBitMap2),
 352 
 353   _global_mark_stack(),
 354   // _finger set in set_non_marking_state
 355 
 356   _max_worker_id(ParallelGCThreads),
 357   // _active_tasks set in set_non_marking_state
 358   // _tasks set inside the constructor
 359   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 360   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 361 
 362   _has_overflown(false),
 363   _concurrent(false),
 364   _has_aborted(false),
 365   _restart_for_overflow(false),
 366   _concurrent_marking_in_progress(false),
 367   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 368   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 369 
 370   // _verbose_level set below
 371 
 372   _init_times(),
 373   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 374   _cleanup_times(),
 375   _total_counting_time(0.0),
 376   _total_rs_scrub_time(0.0),
 377 
 378   _parallel_workers(NULL),
 379 
 380   _completed_initialization(false) {
 381 
 382   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 383   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 384 
 385   // Create & start a ConcurrentMark thread.
 386   _cmThread = new ConcurrentMarkThread(this);
 387   assert(cmThread() != NULL, "CM Thread should have been created");
 388   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 389   if (_cmThread->osthread() == NULL) {
 390       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 391   }
 392 
 393   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 394   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 395   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 396 
 397   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 398   satb_qs.set_buffer_size(G1SATBBufferSize);
 399 
 400   _root_regions.init(_g1h->survivor(), this);
 401 
 402   if (ConcGCThreads > ParallelGCThreads) {
 403     log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
 404                     ConcGCThreads, ParallelGCThreads);
 405     return;
 406   }
 407   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 408     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 409     // if both are set
 410     _sleep_factor             = 0.0;
 411     _marking_task_overhead    = 1.0;
 412   } else if (G1MarkingOverheadPercent > 0) {
 413     // We will calculate the number of parallel marking threads based
 414     // on a target overhead with respect to the soft real-time goal
 415     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 416     double overall_cm_overhead =
 417       (double) MaxGCPauseMillis * marking_overhead /
 418       (double) GCPauseIntervalMillis;
 419     double cpu_ratio = 1.0 / os::initial_active_processor_count();
 420     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 421     double marking_task_overhead =
 422       overall_cm_overhead / marking_thread_num * os::initial_active_processor_count();
 423     double sleep_factor =
 424                        (1.0 - marking_task_overhead) / marking_task_overhead;
 425 
 426     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 427     _sleep_factor             = sleep_factor;
 428     _marking_task_overhead    = marking_task_overhead;
 429   } else {
 430     // Calculate the number of parallel marking threads by scaling
 431     // the number of parallel GC threads.
 432     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 433     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 434     _sleep_factor             = 0.0;
 435     _marking_task_overhead    = 1.0;
 436   }
 437 
 438   assert(ConcGCThreads > 0, "Should have been set");
 439   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 440   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 441   _parallel_marking_threads = ConcGCThreads;
 442   _max_parallel_marking_threads = _parallel_marking_threads;
 443 
 444   _parallel_workers = new WorkGang("G1 Marker",
 445        _max_parallel_marking_threads, false, true);
 446   if (_parallel_workers == NULL) {
 447     vm_exit_during_initialization("Failed necessary allocation.");
 448   } else {
 449     _parallel_workers->initialize_workers();
 450   }
 451 
 452   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 453     size_t mark_stack_size =
 454       MIN2(MarkStackSizeMax,
 455           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 456     // Verify that the calculated value for MarkStackSize is in range.
 457     // It would be nice to use the private utility routine from Arguments.
 458     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 459       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 460                       "must be between 1 and " SIZE_FORMAT,
 461                       mark_stack_size, MarkStackSizeMax);
 462       return;
 463     }
 464     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 465   } else {
 466     // Verify MarkStackSize is in range.
 467     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 468       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 469         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 470           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 471                           "must be between 1 and " SIZE_FORMAT,
 472                           MarkStackSize, MarkStackSizeMax);
 473           return;
 474         }
 475       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 476         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 477           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 478                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 479                           MarkStackSize, MarkStackSizeMax);
 480           return;
 481         }
 482       }
 483     }
 484   }
 485 
 486   if (!_global_mark_stack.allocate(MarkStackSize)) {
 487     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 488     return;
 489   }
 490 
 491   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 492   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 493 
 494   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 495   _active_tasks = _max_worker_id;
 496 
 497   for (uint i = 0; i < _max_worker_id; ++i) {
 498     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 499     task_queue->initialize();
 500     _task_queues->register_queue(i, task_queue);
 501 
 502     _tasks[i] = new G1CMTask(i, this, task_queue, _task_queues);
 503 
 504     _accum_task_vtime[i] = 0.0;
 505   }
 506 
 507   // so that the call below can read a sensible value
 508   _heap_start = g1h->reserved_region().start();
 509   set_non_marking_state();
 510   _completed_initialization = true;
 511 }
 512 
 513 void G1ConcurrentMark::reset() {
 514   // Starting values for these two. This should be called in a STW
 515   // phase.
 516   MemRegion reserved = _g1h->g1_reserved();
 517   _heap_start = reserved.start();
 518   _heap_end   = reserved.end();
 519 
 520   // Separated the asserts so that we know which one fires.
 521   assert(_heap_start != NULL, "heap bounds should look ok");
 522   assert(_heap_end != NULL, "heap bounds should look ok");
 523   assert(_heap_start < _heap_end, "heap bounds should look ok");
 524 
 525   // Reset all the marking data structures and any necessary flags
 526   reset_marking_state();
 527 
 528   // We do reset all of them, since different phases will use
 529   // different number of active threads. So, it's easiest to have all
 530   // of them ready.
 531   for (uint i = 0; i < _max_worker_id; ++i) {
 532     _tasks[i]->reset(_nextMarkBitMap);
 533   }
 534 
 535   // we need this to make sure that the flag is on during the evac
 536   // pause with initial mark piggy-backed
 537   set_concurrent_marking_in_progress();
 538 }
 539 
 540 
 541 void G1ConcurrentMark::reset_marking_state(bool clear_overflow) {
 542   _global_mark_stack.set_should_expand(has_overflown());
 543   _global_mark_stack.set_empty();        // Also clears the overflow stack's overflow flag
 544   if (clear_overflow) {
 545     clear_has_overflown();
 546   } else {
 547     assert(has_overflown(), "pre-condition");
 548   }
 549   _finger = _heap_start;
 550 
 551   for (uint i = 0; i < _max_worker_id; ++i) {
 552     G1CMTaskQueue* queue = _task_queues->queue(i);
 553     queue->set_empty();
 554   }
 555 }
 556 
 557 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 558   assert(active_tasks <= _max_worker_id, "we should not have more");
 559 
 560   _active_tasks = active_tasks;
 561   // Need to update the three data structures below according to the
 562   // number of active threads for this phase.
 563   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 564   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 565   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 566 }
 567 
 568 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 569   set_concurrency(active_tasks);
 570 
 571   _concurrent = concurrent;
 572   // We propagate this to all tasks, not just the active ones.
 573   for (uint i = 0; i < _max_worker_id; ++i)
 574     _tasks[i]->set_concurrent(concurrent);
 575 
 576   if (concurrent) {
 577     set_concurrent_marking_in_progress();
 578   } else {
 579     // We currently assume that the concurrent flag has been set to
 580     // false before we start remark. At this point we should also be
 581     // in a STW phase.
 582     assert(!concurrent_marking_in_progress(), "invariant");
 583     assert(out_of_regions(),
 584            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 585            p2i(_finger), p2i(_heap_end));
 586   }
 587 }
 588 
 589 void G1ConcurrentMark::set_non_marking_state() {
 590   // We set the global marking state to some default values when we're
 591   // not doing marking.
 592   reset_marking_state();
 593   _active_tasks = 0;
 594   clear_concurrent_marking_in_progress();
 595 }
 596 
 597 G1ConcurrentMark::~G1ConcurrentMark() {
 598   // The G1ConcurrentMark instance is never freed.
 599   ShouldNotReachHere();
 600 }
 601 
 602 class G1ClearBitMapTask : public AbstractGangTask {
 603 public:
 604   static size_t chunk_size() { return M; }
 605 
 606 private:
 607   // Heap region closure used for clearing the given mark bitmap.
 608   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 609   private:
 610     G1CMBitMap* _bitmap;
 611     G1ConcurrentMark* _cm;
 612   public:
 613     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 614     }
 615 
 616     virtual bool doHeapRegion(HeapRegion* r) {
 617       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 618 
 619       HeapWord* cur = r->bottom();
 620       HeapWord* const end = r->end();
 621 
 622       while (cur < end) {
 623         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 624         _bitmap->clear_range(mr);
 625 
 626         cur += chunk_size_in_words;
 627 
 628         // Abort iteration if after yielding the marking has been aborted.
 629         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 630           return true;
 631         }
 632         // Repeat the asserts from before the start of the closure. We will do them
 633         // as asserts here to minimize their overhead on the product. However, we
 634         // will have them as guarantees at the beginning / end of the bitmap
 635         // clearing to get some checking in the product.
 636         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 637         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 638       }
 639       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 640 
 641       return false;
 642     }
 643   };
 644 
 645   G1ClearBitmapHRClosure _cl;
 646   HeapRegionClaimer _hr_claimer;
 647   bool _suspendible; // If the task is suspendible, workers must join the STS.
 648 
 649 public:
 650   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 651     AbstractGangTask("G1 Clear Bitmap"),
 652     _cl(bitmap, suspendible ? cm : NULL),
 653     _hr_claimer(n_workers),
 654     _suspendible(suspendible)
 655   { }
 656 
 657   void work(uint worker_id) {
 658     SuspendibleThreadSetJoiner sts_join(_suspendible);
 659     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer, true);
 660   }
 661 
 662   bool is_complete() {
 663     return _cl.complete();
 664   }
 665 };
 666 
 667 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 668   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 669 
 670   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 671   size_t const num_chunks = align_size_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 672 
 673   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 674 
 675   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 676 
 677   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 678   workers->run_task(&cl, num_workers);
 679   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 680 }
 681 
 682 void G1ConcurrentMark::cleanup_for_next_mark() {
 683   // Make sure that the concurrent mark thread looks to still be in
 684   // the current cycle.
 685   guarantee(cmThread()->during_cycle(), "invariant");
 686 
 687   // We are finishing up the current cycle by clearing the next
 688   // marking bitmap and getting it ready for the next cycle. During
 689   // this time no other cycle can start. So, let's make sure that this
 690   // is the case.
 691   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 692 
 693   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 694 
 695   // Clear the live count data. If the marking has been aborted, the abort()
 696   // call already did that.
 697   if (!has_aborted()) {
 698     clear_live_data(_parallel_workers);
 699     DEBUG_ONLY(verify_live_data_clear());
 700   }
 701 
 702   // Repeat the asserts from above.
 703   guarantee(cmThread()->during_cycle(), "invariant");
 704   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 705 }
 706 
 707 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 708   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 709   clear_bitmap((G1CMBitMap*)_prevMarkBitMap, workers, false);
 710 }
 711 
 712 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 713   G1CMBitMap* _bitmap;
 714   bool _error;
 715  public:
 716   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 717   }
 718 
 719   virtual bool doHeapRegion(HeapRegion* r) {
 720     // This closure can be called concurrently to the mutator, so we must make sure
 721     // that the result of the getNextMarkedWordAddress() call is compared to the
 722     // value passed to it as limit to detect any found bits.
 723     // end never changes in G1.
 724     HeapWord* end = r->end();
 725     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 726   }
 727 };
 728 
 729 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 730   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 731   _g1h->heap_region_iterate(&cl);
 732   return cl.complete();
 733 }
 734 
 735 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 736 public:
 737   bool doHeapRegion(HeapRegion* r) {
 738     r->note_start_of_marking();
 739     return false;
 740   }
 741 };
 742 
 743 void G1ConcurrentMark::checkpointRootsInitialPre() {
 744   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 745   G1Policy* g1p = g1h->g1_policy();
 746 
 747   _has_aborted = false;
 748 
 749   // Initialize marking structures. This has to be done in a STW phase.
 750   reset();
 751 
 752   // For each region note start of marking.
 753   NoteStartOfMarkHRClosure startcl;
 754   g1h->heap_region_iterate(&startcl);
 755 }
 756 
 757 
 758 void G1ConcurrentMark::checkpointRootsInitialPost() {
 759   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 760 
 761   // Start Concurrent Marking weak-reference discovery.
 762   ReferenceProcessor* rp = g1h->ref_processor_cm();
 763   // enable ("weak") refs discovery
 764   rp->enable_discovery();
 765   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 766 
 767   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 768   // This is the start of  the marking cycle, we're expected all
 769   // threads to have SATB queues with active set to false.
 770   satb_mq_set.set_active_all_threads(true, /* new active value */
 771                                      false /* expected_active */);
 772 
 773   _root_regions.prepare_for_scan();
 774 
 775   // update_g1_committed() will be called at the end of an evac pause
 776   // when marking is on. So, it's also called at the end of the
 777   // initial-mark pause to update the heap end, if the heap expands
 778   // during it. No need to call it here.
 779 }
 780 
 781 /*
 782  * Notice that in the next two methods, we actually leave the STS
 783  * during the barrier sync and join it immediately afterwards. If we
 784  * do not do this, the following deadlock can occur: one thread could
 785  * be in the barrier sync code, waiting for the other thread to also
 786  * sync up, whereas another one could be trying to yield, while also
 787  * waiting for the other threads to sync up too.
 788  *
 789  * Note, however, that this code is also used during remark and in
 790  * this case we should not attempt to leave / enter the STS, otherwise
 791  * we'll either hit an assert (debug / fastdebug) or deadlock
 792  * (product). So we should only leave / enter the STS if we are
 793  * operating concurrently.
 794  *
 795  * Because the thread that does the sync barrier has left the STS, it
 796  * is possible to be suspended for a Full GC or an evacuation pause
 797  * could occur. This is actually safe, since the entering the sync
 798  * barrier is one of the last things do_marking_step() does, and it
 799  * doesn't manipulate any data structures afterwards.
 800  */
 801 
 802 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 803   bool barrier_aborted;
 804   {
 805     SuspendibleThreadSetLeaver sts_leave(concurrent());
 806     barrier_aborted = !_first_overflow_barrier_sync.enter();
 807   }
 808 
 809   // at this point everyone should have synced up and not be doing any
 810   // more work
 811 
 812   if (barrier_aborted) {
 813     // If the barrier aborted we ignore the overflow condition and
 814     // just abort the whole marking phase as quickly as possible.
 815     return;
 816   }
 817 
 818   // If we're executing the concurrent phase of marking, reset the marking
 819   // state; otherwise the marking state is reset after reference processing,
 820   // during the remark pause.
 821   // If we reset here as a result of an overflow during the remark we will
 822   // see assertion failures from any subsequent set_concurrency_and_phase()
 823   // calls.
 824   if (concurrent()) {
 825     // let the task associated with with worker 0 do this
 826     if (worker_id == 0) {
 827       // task 0 is responsible for clearing the global data structures
 828       // We should be here because of an overflow. During STW we should
 829       // not clear the overflow flag since we rely on it being true when
 830       // we exit this method to abort the pause and restart concurrent
 831       // marking.
 832       reset_marking_state(true /* clear_overflow */);
 833 
 834       log_info(gc, marking)("Concurrent Mark reset for overflow");
 835     }
 836   }
 837 
 838   // after this, each task should reset its own data structures then
 839   // then go into the second barrier
 840 }
 841 
 842 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 843   SuspendibleThreadSetLeaver sts_leave(concurrent());
 844   _second_overflow_barrier_sync.enter();
 845 
 846   // at this point everything should be re-initialized and ready to go
 847 }
 848 
 849 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 850 private:
 851   G1ConcurrentMark*     _cm;
 852   ConcurrentMarkThread* _cmt;
 853 
 854 public:
 855   void work(uint worker_id) {
 856     assert(Thread::current()->is_ConcurrentGC_thread(),
 857            "this should only be done by a conc GC thread");
 858     ResourceMark rm;
 859 
 860     double start_vtime = os::elapsedVTime();
 861 
 862     {
 863       SuspendibleThreadSetJoiner sts_join;
 864 
 865       assert(worker_id < _cm->active_tasks(), "invariant");
 866       G1CMTask* the_task = _cm->task(worker_id);
 867       the_task->record_start_time();
 868       if (!_cm->has_aborted()) {
 869         do {
 870           double start_vtime_sec = os::elapsedVTime();
 871           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 872 
 873           the_task->do_marking_step(mark_step_duration_ms,
 874                                     true  /* do_termination */,
 875                                     false /* is_serial*/);
 876 
 877           double end_vtime_sec = os::elapsedVTime();
 878           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 879           _cm->clear_has_overflown();
 880 
 881           _cm->do_yield_check();
 882 
 883           jlong sleep_time_ms;
 884           if (!_cm->has_aborted() && the_task->has_aborted()) {
 885             sleep_time_ms =
 886               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 887             {
 888               SuspendibleThreadSetLeaver sts_leave;
 889               os::sleep(Thread::current(), sleep_time_ms, false);
 890             }
 891           }
 892         } while (!_cm->has_aborted() && the_task->has_aborted());
 893       }
 894       the_task->record_end_time();
 895       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 896     }
 897 
 898     double end_vtime = os::elapsedVTime();
 899     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 900   }
 901 
 902   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 903                             ConcurrentMarkThread* cmt) :
 904       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 905 
 906   ~G1CMConcurrentMarkingTask() { }
 907 };
 908 
 909 // Calculates the number of active workers for a concurrent
 910 // phase.
 911 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 912   uint n_conc_workers = 0;
 913   if (!UseDynamicNumberOfGCThreads ||
 914       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 915        !ForceDynamicNumberOfGCThreads)) {
 916     n_conc_workers = max_parallel_marking_threads();
 917   } else {
 918     n_conc_workers =
 919       AdaptiveSizePolicy::calc_default_active_workers(max_parallel_marking_threads(),
 920                                                       1, /* Minimum workers */
 921                                                       parallel_marking_threads(),
 922                                                       Threads::number_of_non_daemon_threads());
 923     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 924     // that scaling has already gone into "_max_parallel_marking_threads".
 925   }
 926   assert(n_conc_workers > 0 && n_conc_workers <= max_parallel_marking_threads(),
 927          "Calculated number of workers must be larger than zero and at most the maximum %u, but is %u",
 928          max_parallel_marking_threads(), n_conc_workers);
 929   return n_conc_workers;
 930 }
 931 
 932 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr) {
 933   // Currently, only survivors can be root regions.
 934   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 935   G1RootRegionScanClosure cl(_g1h, this);
 936 
 937   const uintx interval = PrefetchScanIntervalInBytes;
 938   HeapWord* curr = hr->bottom();
 939   const HeapWord* end = hr->top();
 940   while (curr < end) {
 941     Prefetch::read(curr, interval);
 942     oop obj = oop(curr);
 943     int size = obj->oop_iterate_size(&cl);
 944     assert(size == obj->size(), "sanity");
 945     curr += size;
 946   }
 947 }
 948 
 949 class G1CMRootRegionScanTask : public AbstractGangTask {
 950 private:
 951   G1ConcurrentMark* _cm;
 952 
 953 public:
 954   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 955     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 956 
 957   void work(uint worker_id) {
 958     assert(Thread::current()->is_ConcurrentGC_thread(),
 959            "this should only be done by a conc GC thread");
 960 
 961     G1CMRootRegions* root_regions = _cm->root_regions();
 962     HeapRegion* hr = root_regions->claim_next();
 963     while (hr != NULL) {
 964       _cm->scanRootRegion(hr);
 965       hr = root_regions->claim_next();
 966     }
 967   }
 968 };
 969 
 970 void G1ConcurrentMark::scan_root_regions() {
 971   // scan_in_progress() will have been set to true only if there was
 972   // at least one root region to scan. So, if it's false, we
 973   // should not attempt to do any further work.
 974   if (root_regions()->scan_in_progress()) {
 975     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 976 
 977     _parallel_marking_threads = MIN2(calc_parallel_marking_threads(),
 978                                      // We distribute work on a per-region basis, so starting
 979                                      // more threads than that is useless.
 980                                      root_regions()->num_root_regions());
 981     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 982            "Maximum number of marking threads exceeded");
 983 
 984     G1CMRootRegionScanTask task(this);
 985     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 986                         task.name(), _parallel_marking_threads, root_regions()->num_root_regions());
 987     _parallel_workers->run_task(&task, _parallel_marking_threads);
 988 
 989     // It's possible that has_aborted() is true here without actually
 990     // aborting the survivor scan earlier. This is OK as it's
 991     // mainly used for sanity checking.
 992     root_regions()->scan_finished();
 993   }
 994 }
 995 
 996 void G1ConcurrentMark::concurrent_cycle_start() {
 997   _gc_timer_cm->register_gc_start();
 998 
 999   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
1000 
1001   _g1h->trace_heap_before_gc(_gc_tracer_cm);
1002 }
1003 
1004 void G1ConcurrentMark::concurrent_cycle_end() {
1005   _g1h->trace_heap_after_gc(_gc_tracer_cm);
1006 
1007   if (has_aborted()) {
1008     _gc_tracer_cm->report_concurrent_mode_failure();
1009   }
1010 
1011   _gc_timer_cm->register_gc_end();
1012 
1013   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1014 }
1015 
1016 void G1ConcurrentMark::mark_from_roots() {
1017   // we might be tempted to assert that:
1018   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1019   //        "inconsistent argument?");
1020   // However that wouldn't be right, because it's possible that
1021   // a safepoint is indeed in progress as a younger generation
1022   // stop-the-world GC happens even as we mark in this generation.
1023 
1024   _restart_for_overflow = false;
1025 
1026   // _g1h has _n_par_threads
1027   _parallel_marking_threads = calc_parallel_marking_threads();
1028   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1029     "Maximum number of marking threads exceeded");
1030 
1031   uint active_workers = MAX2(1U, parallel_marking_threads());
1032   assert(active_workers > 0, "Should have been set");
1033 
1034   // Setting active workers is not guaranteed since fewer
1035   // worker threads may currently exist and more may not be
1036   // available.
1037   active_workers = _parallel_workers->update_active_workers(active_workers);
1038   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _parallel_workers->total_workers());
1039 
1040   // Parallel task terminator is set in "set_concurrency_and_phase()"
1041   set_concurrency_and_phase(active_workers, true /* concurrent */);
1042 
1043   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1044   _parallel_workers->run_task(&markingTask);
1045   print_stats();
1046 }
1047 
1048 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1049   // world is stopped at this checkpoint
1050   assert(SafepointSynchronize::is_at_safepoint(),
1051          "world should be stopped");
1052 
1053   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1054 
1055   // If a full collection has happened, we shouldn't do this.
1056   if (has_aborted()) {
1057     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1058     return;
1059   }
1060 
1061   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1062 
1063   if (VerifyDuringGC) {
1064     HandleMark hm;  // handle scope
1065     g1h->prepare_for_verify();
1066     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1067   }
1068   g1h->verifier()->check_bitmaps("Remark Start");
1069 
1070   G1Policy* g1p = g1h->g1_policy();
1071   g1p->record_concurrent_mark_remark_start();
1072 
1073   double start = os::elapsedTime();
1074 
1075   checkpointRootsFinalWork();
1076 
1077   double mark_work_end = os::elapsedTime();
1078 
1079   weakRefsWork(clear_all_soft_refs);
1080 
1081   if (has_overflown()) {
1082     // We overflowed.  Restart concurrent marking.
1083     _restart_for_overflow = true;
1084 
1085     // Verify the heap w.r.t. the previous marking bitmap.
1086     if (VerifyDuringGC) {
1087       HandleMark hm;  // handle scope
1088       g1h->prepare_for_verify();
1089       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1090     }
1091 
1092     // Clear the marking state because we will be restarting
1093     // marking due to overflowing the global mark stack.
1094     reset_marking_state();
1095   } else {
1096     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1097     // We're done with marking.
1098     // This is the end of  the marking cycle, we're expected all
1099     // threads to have SATB queues with active set to true.
1100     satb_mq_set.set_active_all_threads(false, /* new active value */
1101                                        true /* expected_active */);
1102 
1103     if (VerifyDuringGC) {
1104       HandleMark hm;  // handle scope
1105       g1h->prepare_for_verify();
1106       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1107     }
1108     g1h->verifier()->check_bitmaps("Remark End");
1109     assert(!restart_for_overflow(), "sanity");
1110     // Completely reset the marking state since marking completed
1111     set_non_marking_state();
1112   }
1113 
1114   // Expand the marking stack, if we have to and if we can.
1115   if (_global_mark_stack.should_expand()) {
1116     _global_mark_stack.expand();
1117   }
1118 
1119   // Statistics
1120   double now = os::elapsedTime();
1121   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1122   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1123   _remark_times.add((now - start) * 1000.0);
1124 
1125   g1p->record_concurrent_mark_remark_end();
1126 
1127   G1CMIsAliveClosure is_alive(g1h);
1128   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1129 }
1130 
1131 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1132   G1CollectedHeap* _g1;
1133   size_t _freed_bytes;
1134   FreeRegionList* _local_cleanup_list;
1135   uint _old_regions_removed;
1136   uint _humongous_regions_removed;
1137   HRRSCleanupTask* _hrrs_cleanup_task;
1138 
1139 public:
1140   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1141                              FreeRegionList* local_cleanup_list,
1142                              HRRSCleanupTask* hrrs_cleanup_task) :
1143     _g1(g1),
1144     _freed_bytes(0),
1145     _local_cleanup_list(local_cleanup_list),
1146     _old_regions_removed(0),
1147     _humongous_regions_removed(0),
1148     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1149 
1150   size_t freed_bytes() { return _freed_bytes; }
1151   const uint old_regions_removed() { return _old_regions_removed; }
1152   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1153 
1154   bool doHeapRegion(HeapRegion *hr) {
1155     if (hr->is_archive()) {
1156       return false;
1157     }
1158     _g1->reset_gc_time_stamps(hr);
1159     hr->note_end_of_marking();
1160 
1161     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1162       _freed_bytes += hr->used();
1163       hr->set_containing_set(NULL);
1164       if (hr->is_humongous()) {
1165         _humongous_regions_removed++;
1166         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1167       } else {
1168         _old_regions_removed++;
1169         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1170       }
1171     } else {
1172       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1173     }
1174 
1175     return false;
1176   }
1177 };
1178 
1179 class G1ParNoteEndTask: public AbstractGangTask {
1180   friend class G1NoteEndOfConcMarkClosure;
1181 
1182 protected:
1183   G1CollectedHeap* _g1h;
1184   FreeRegionList* _cleanup_list;
1185   HeapRegionClaimer _hrclaimer;
1186 
1187 public:
1188   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1189       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1190   }
1191 
1192   void work(uint worker_id) {
1193     FreeRegionList local_cleanup_list("Local Cleanup List");
1194     HRRSCleanupTask hrrs_cleanup_task;
1195     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1196                                            &hrrs_cleanup_task);
1197     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1198     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1199 
1200     // Now update the lists
1201     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1202     {
1203       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1204       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1205 
1206       // If we iterate over the global cleanup list at the end of
1207       // cleanup to do this printing we will not guarantee to only
1208       // generate output for the newly-reclaimed regions (the list
1209       // might not be empty at the beginning of cleanup; we might
1210       // still be working on its previous contents). So we do the
1211       // printing here, before we append the new regions to the global
1212       // cleanup list.
1213 
1214       G1HRPrinter* hr_printer = _g1h->hr_printer();
1215       if (hr_printer->is_active()) {
1216         FreeRegionListIterator iter(&local_cleanup_list);
1217         while (iter.more_available()) {
1218           HeapRegion* hr = iter.get_next();
1219           hr_printer->cleanup(hr);
1220         }
1221       }
1222 
1223       _cleanup_list->add_ordered(&local_cleanup_list);
1224       assert(local_cleanup_list.is_empty(), "post-condition");
1225 
1226       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1227     }
1228   }
1229 };
1230 
1231 void G1ConcurrentMark::cleanup() {
1232   // world is stopped at this checkpoint
1233   assert(SafepointSynchronize::is_at_safepoint(),
1234          "world should be stopped");
1235   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1236 
1237   // If a full collection has happened, we shouldn't do this.
1238   if (has_aborted()) {
1239     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1240     return;
1241   }
1242 
1243   g1h->verifier()->verify_region_sets_optional();
1244 
1245   if (VerifyDuringGC) {
1246     HandleMark hm;  // handle scope
1247     g1h->prepare_for_verify();
1248     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1249   }
1250   g1h->verifier()->check_bitmaps("Cleanup Start");
1251 
1252   G1Policy* g1p = g1h->g1_policy();
1253   g1p->record_concurrent_mark_cleanup_start();
1254 
1255   double start = os::elapsedTime();
1256 
1257   HeapRegionRemSet::reset_for_cleanup_tasks();
1258 
1259   {
1260     GCTraceTime(Debug, gc)("Finalize Live Data");
1261     finalize_live_data();
1262   }
1263 
1264   if (VerifyDuringGC) {
1265     GCTraceTime(Debug, gc)("Verify Live Data");
1266     verify_live_data();
1267   }
1268 
1269   g1h->collector_state()->set_mark_in_progress(false);
1270 
1271   double count_end = os::elapsedTime();
1272   double this_final_counting_time = (count_end - start);
1273   _total_counting_time += this_final_counting_time;
1274 
1275   if (log_is_enabled(Trace, gc, liveness)) {
1276     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1277     _g1h->heap_region_iterate(&cl);
1278   }
1279 
1280   // Install newly created mark bitMap as "prev".
1281   swapMarkBitMaps();
1282 
1283   g1h->reset_gc_time_stamp();
1284 
1285   uint n_workers = _g1h->workers()->active_workers();
1286 
1287   // Note end of marking in all heap regions.
1288   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1289   g1h->workers()->run_task(&g1_par_note_end_task);
1290   g1h->check_gc_time_stamps();
1291 
1292   if (!cleanup_list_is_empty()) {
1293     // The cleanup list is not empty, so we'll have to process it
1294     // concurrently. Notify anyone else that might be wanting free
1295     // regions that there will be more free regions coming soon.
1296     g1h->set_free_regions_coming();
1297   }
1298 
1299   // call below, since it affects the metric by which we sort the heap
1300   // regions.
1301   if (G1ScrubRemSets) {
1302     double rs_scrub_start = os::elapsedTime();
1303     g1h->scrub_rem_set();
1304     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1305   }
1306 
1307   // this will also free any regions totally full of garbage objects,
1308   // and sort the regions.
1309   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1310 
1311   // Statistics.
1312   double end = os::elapsedTime();
1313   _cleanup_times.add((end - start) * 1000.0);
1314 
1315   // Clean up will have freed any regions completely full of garbage.
1316   // Update the soft reference policy with the new heap occupancy.
1317   Universe::update_heap_info_at_gc();
1318 
1319   if (VerifyDuringGC) {
1320     HandleMark hm;  // handle scope
1321     g1h->prepare_for_verify();
1322     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1323   }
1324 
1325   g1h->verifier()->check_bitmaps("Cleanup End");
1326 
1327   g1h->verifier()->verify_region_sets_optional();
1328 
1329   // We need to make this be a "collection" so any collection pause that
1330   // races with it goes around and waits for completeCleanup to finish.
1331   g1h->increment_total_collections();
1332 
1333   // Clean out dead classes and update Metaspace sizes.
1334   if (ClassUnloadingWithConcurrentMark) {
1335     ClassLoaderDataGraph::purge();
1336   }
1337   MetaspaceGC::compute_new_size();
1338 
1339   // We reclaimed old regions so we should calculate the sizes to make
1340   // sure we update the old gen/space data.
1341   g1h->g1mm()->update_sizes();
1342   g1h->allocation_context_stats().update_after_mark();
1343 }
1344 
1345 void G1ConcurrentMark::complete_cleanup() {
1346   if (has_aborted()) return;
1347 
1348   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1349 
1350   _cleanup_list.verify_optional();
1351   FreeRegionList tmp_free_list("Tmp Free List");
1352 
1353   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1354                                   "cleanup list has %u entries",
1355                                   _cleanup_list.length());
1356 
1357   // No one else should be accessing the _cleanup_list at this point,
1358   // so it is not necessary to take any locks
1359   while (!_cleanup_list.is_empty()) {
1360     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1361     assert(hr != NULL, "Got NULL from a non-empty list");
1362     hr->par_clear();
1363     tmp_free_list.add_ordered(hr);
1364 
1365     // Instead of adding one region at a time to the secondary_free_list,
1366     // we accumulate them in the local list and move them a few at a
1367     // time. This also cuts down on the number of notify_all() calls
1368     // we do during this process. We'll also append the local list when
1369     // _cleanup_list is empty (which means we just removed the last
1370     // region from the _cleanup_list).
1371     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1372         _cleanup_list.is_empty()) {
1373       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1374                                       "appending %u entries to the secondary_free_list, "
1375                                       "cleanup list still has %u entries",
1376                                       tmp_free_list.length(),
1377                                       _cleanup_list.length());
1378 
1379       {
1380         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1381         g1h->secondary_free_list_add(&tmp_free_list);
1382         SecondaryFreeList_lock->notify_all();
1383       }
1384 #ifndef PRODUCT
1385       if (G1StressConcRegionFreeing) {
1386         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1387           os::sleep(Thread::current(), (jlong) 1, false);
1388         }
1389       }
1390 #endif
1391     }
1392   }
1393   assert(tmp_free_list.is_empty(), "post-condition");
1394 }
1395 
1396 // Supporting Object and Oop closures for reference discovery
1397 // and processing in during marking
1398 
1399 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1400   HeapWord* addr = (HeapWord*)obj;
1401   return addr != NULL &&
1402          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1403 }
1404 
1405 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1406 // Uses the G1CMTask associated with a worker thread (for serial reference
1407 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1408 // trace referent objects.
1409 //
1410 // Using the G1CMTask and embedded local queues avoids having the worker
1411 // threads operating on the global mark stack. This reduces the risk
1412 // of overflowing the stack - which we would rather avoid at this late
1413 // state. Also using the tasks' local queues removes the potential
1414 // of the workers interfering with each other that could occur if
1415 // operating on the global stack.
1416 
1417 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1418   G1ConcurrentMark* _cm;
1419   G1CMTask*         _task;
1420   int               _ref_counter_limit;
1421   int               _ref_counter;
1422   bool              _is_serial;
1423  public:
1424   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1425     _cm(cm), _task(task), _is_serial(is_serial),
1426     _ref_counter_limit(G1RefProcDrainInterval) {
1427     assert(_ref_counter_limit > 0, "sanity");
1428     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1429     _ref_counter = _ref_counter_limit;
1430   }
1431 
1432   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1433   virtual void do_oop(      oop* p) { do_oop_work(p); }
1434 
1435   template <class T> void do_oop_work(T* p) {
1436     if (!_cm->has_overflown()) {
1437       oop obj = oopDesc::load_decode_heap_oop(p);
1438       _task->deal_with_reference(obj);
1439       _ref_counter--;
1440 
1441       if (_ref_counter == 0) {
1442         // We have dealt with _ref_counter_limit references, pushing them
1443         // and objects reachable from them on to the local stack (and
1444         // possibly the global stack). Call G1CMTask::do_marking_step() to
1445         // process these entries.
1446         //
1447         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1448         // there's nothing more to do (i.e. we're done with the entries that
1449         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1450         // above) or we overflow.
1451         //
1452         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1453         // flag while there may still be some work to do. (See the comment at
1454         // the beginning of G1CMTask::do_marking_step() for those conditions -
1455         // one of which is reaching the specified time target.) It is only
1456         // when G1CMTask::do_marking_step() returns without setting the
1457         // has_aborted() flag that the marking step has completed.
1458         do {
1459           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1460           _task->do_marking_step(mark_step_duration_ms,
1461                                  false      /* do_termination */,
1462                                  _is_serial);
1463         } while (_task->has_aborted() && !_cm->has_overflown());
1464         _ref_counter = _ref_counter_limit;
1465       }
1466     }
1467   }
1468 };
1469 
1470 // 'Drain' oop closure used by both serial and parallel reference processing.
1471 // Uses the G1CMTask associated with a given worker thread (for serial
1472 // reference processing the G1CMtask for worker 0 is used). Calls the
1473 // do_marking_step routine, with an unbelievably large timeout value,
1474 // to drain the marking data structures of the remaining entries
1475 // added by the 'keep alive' oop closure above.
1476 
1477 class G1CMDrainMarkingStackClosure: public VoidClosure {
1478   G1ConcurrentMark* _cm;
1479   G1CMTask*         _task;
1480   bool              _is_serial;
1481  public:
1482   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1483     _cm(cm), _task(task), _is_serial(is_serial) {
1484     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1485   }
1486 
1487   void do_void() {
1488     do {
1489       // We call G1CMTask::do_marking_step() to completely drain the local
1490       // and global marking stacks of entries pushed by the 'keep alive'
1491       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1492       //
1493       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1494       // if there's nothing more to do (i.e. we've completely drained the
1495       // entries that were pushed as a a result of applying the 'keep alive'
1496       // closure to the entries on the discovered ref lists) or we overflow
1497       // the global marking stack.
1498       //
1499       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1500       // flag while there may still be some work to do. (See the comment at
1501       // the beginning of G1CMTask::do_marking_step() for those conditions -
1502       // one of which is reaching the specified time target.) It is only
1503       // when G1CMTask::do_marking_step() returns without setting the
1504       // has_aborted() flag that the marking step has completed.
1505 
1506       _task->do_marking_step(1000000000.0 /* something very large */,
1507                              true         /* do_termination */,
1508                              _is_serial);
1509     } while (_task->has_aborted() && !_cm->has_overflown());
1510   }
1511 };
1512 
1513 // Implementation of AbstractRefProcTaskExecutor for parallel
1514 // reference processing at the end of G1 concurrent marking
1515 
1516 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1517 private:
1518   G1CollectedHeap*  _g1h;
1519   G1ConcurrentMark* _cm;
1520   WorkGang*         _workers;
1521   uint              _active_workers;
1522 
1523 public:
1524   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1525                           G1ConcurrentMark* cm,
1526                           WorkGang* workers,
1527                           uint n_workers) :
1528     _g1h(g1h), _cm(cm),
1529     _workers(workers), _active_workers(n_workers) { }
1530 
1531   // Executes the given task using concurrent marking worker threads.
1532   virtual void execute(ProcessTask& task);
1533   virtual void execute(EnqueueTask& task);
1534 };
1535 
1536 class G1CMRefProcTaskProxy: public AbstractGangTask {
1537   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1538   ProcessTask&      _proc_task;
1539   G1CollectedHeap*  _g1h;
1540   G1ConcurrentMark* _cm;
1541 
1542 public:
1543   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1544                        G1CollectedHeap* g1h,
1545                        G1ConcurrentMark* cm) :
1546     AbstractGangTask("Process reference objects in parallel"),
1547     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1548     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1549     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1550   }
1551 
1552   virtual void work(uint worker_id) {
1553     ResourceMark rm;
1554     HandleMark hm;
1555     G1CMTask* task = _cm->task(worker_id);
1556     G1CMIsAliveClosure g1_is_alive(_g1h);
1557     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1558     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1559 
1560     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1561   }
1562 };
1563 
1564 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1565   assert(_workers != NULL, "Need parallel worker threads.");
1566   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1567 
1568   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1569 
1570   // We need to reset the concurrency level before each
1571   // proxy task execution, so that the termination protocol
1572   // and overflow handling in G1CMTask::do_marking_step() knows
1573   // how many workers to wait for.
1574   _cm->set_concurrency(_active_workers);
1575   _workers->run_task(&proc_task_proxy);
1576 }
1577 
1578 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1579   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1580   EnqueueTask& _enq_task;
1581 
1582 public:
1583   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1584     AbstractGangTask("Enqueue reference objects in parallel"),
1585     _enq_task(enq_task) { }
1586 
1587   virtual void work(uint worker_id) {
1588     _enq_task.work(worker_id);
1589   }
1590 };
1591 
1592 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1593   assert(_workers != NULL, "Need parallel worker threads.");
1594   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1595 
1596   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1597 
1598   // Not strictly necessary but...
1599   //
1600   // We need to reset the concurrency level before each
1601   // proxy task execution, so that the termination protocol
1602   // and overflow handling in G1CMTask::do_marking_step() knows
1603   // how many workers to wait for.
1604   _cm->set_concurrency(_active_workers);
1605   _workers->run_task(&enq_task_proxy);
1606 }
1607 
1608 void G1ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
1609   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
1610 }
1611 
1612 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1613   if (has_overflown()) {
1614     // Skip processing the discovered references if we have
1615     // overflown the global marking stack. Reference objects
1616     // only get discovered once so it is OK to not
1617     // de-populate the discovered reference lists. We could have,
1618     // but the only benefit would be that, when marking restarts,
1619     // less reference objects are discovered.
1620     return;
1621   }
1622 
1623   ResourceMark rm;
1624   HandleMark   hm;
1625 
1626   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1627 
1628   // Is alive closure.
1629   G1CMIsAliveClosure g1_is_alive(g1h);
1630 
1631   // Inner scope to exclude the cleaning of the string and symbol
1632   // tables from the displayed time.
1633   {
1634     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1635 
1636     ReferenceProcessor* rp = g1h->ref_processor_cm();
1637 
1638     // See the comment in G1CollectedHeap::ref_processing_init()
1639     // about how reference processing currently works in G1.
1640 
1641     // Set the soft reference policy
1642     rp->setup_policy(clear_all_soft_refs);
1643     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1644 
1645     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1646     // in serial reference processing. Note these closures are also
1647     // used for serially processing (by the the current thread) the
1648     // JNI references during parallel reference processing.
1649     //
1650     // These closures do not need to synchronize with the worker
1651     // threads involved in parallel reference processing as these
1652     // instances are executed serially by the current thread (e.g.
1653     // reference processing is not multi-threaded and is thus
1654     // performed by the current thread instead of a gang worker).
1655     //
1656     // The gang tasks involved in parallel reference processing create
1657     // their own instances of these closures, which do their own
1658     // synchronization among themselves.
1659     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1660     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1661 
1662     // We need at least one active thread. If reference processing
1663     // is not multi-threaded we use the current (VMThread) thread,
1664     // otherwise we use the work gang from the G1CollectedHeap and
1665     // we utilize all the worker threads we can.
1666     bool processing_is_mt = rp->processing_is_mt();
1667     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1668     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
1669 
1670     // Parallel processing task executor.
1671     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1672                                               g1h->workers(), active_workers);
1673     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1674 
1675     // Set the concurrency level. The phase was already set prior to
1676     // executing the remark task.
1677     set_concurrency(active_workers);
1678 
1679     // Set the degree of MT processing here.  If the discovery was done MT,
1680     // the number of threads involved during discovery could differ from
1681     // the number of active workers.  This is OK as long as the discovered
1682     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1683     rp->set_active_mt_degree(active_workers);
1684 
1685     // Process the weak references.
1686     const ReferenceProcessorStats& stats =
1687         rp->process_discovered_references(&g1_is_alive,
1688                                           &g1_keep_alive,
1689                                           &g1_drain_mark_stack,
1690                                           executor,
1691                                           _gc_timer_cm);
1692     _gc_tracer_cm->report_gc_reference_stats(stats);
1693 
1694     // The do_oop work routines of the keep_alive and drain_marking_stack
1695     // oop closures will set the has_overflown flag if we overflow the
1696     // global marking stack.
1697 
1698     assert(_global_mark_stack.overflow() || _global_mark_stack.is_empty(),
1699             "mark stack should be empty (unless it overflowed)");
1700 
1701     if (_global_mark_stack.overflow()) {
1702       // This should have been done already when we tried to push an
1703       // entry on to the global mark stack. But let's do it again.
1704       set_has_overflown();
1705     }
1706 
1707     assert(rp->num_q() == active_workers, "why not");
1708 
1709     rp->enqueue_discovered_references(executor);
1710 
1711     rp->verify_no_references_recorded();
1712     assert(!rp->discovery_enabled(), "Post condition");
1713   }
1714 
1715   if (has_overflown()) {
1716     // We can not trust g1_is_alive if the marking stack overflowed
1717     return;
1718   }
1719 
1720   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1721 
1722   // Unload Klasses, String, Symbols, Code Cache, etc.
1723   if (ClassUnloadingWithConcurrentMark) {
1724     bool purged_classes;
1725 
1726     {
1727       GCTraceTime(Debug, gc, phases) trace("System Dictionary Unloading", _gc_timer_cm);
1728       purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
1729     }
1730 
1731     {
1732       GCTraceTime(Debug, gc, phases) trace("Parallel Unloading", _gc_timer_cm);
1733       weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
1734     }
1735   }
1736 
1737   if (G1StringDedup::is_enabled()) {
1738     GCTraceTime(Debug, gc, phases) trace("String Deduplication Unlink", _gc_timer_cm);
1739     G1StringDedup::unlink(&g1_is_alive);
1740   }
1741 }
1742 
1743 void G1ConcurrentMark::swapMarkBitMaps() {
1744   G1CMBitMapRO* temp = _prevMarkBitMap;
1745   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
1746   _nextMarkBitMap    = (G1CMBitMap*)  temp;
1747 }
1748 
1749 // Closure for marking entries in SATB buffers.
1750 class G1CMSATBBufferClosure : public SATBBufferClosure {
1751 private:
1752   G1CMTask* _task;
1753   G1CollectedHeap* _g1h;
1754 
1755   // This is very similar to G1CMTask::deal_with_reference, but with
1756   // more relaxed requirements for the argument, so this must be more
1757   // circumspect about treating the argument as an object.
1758   void do_entry(void* entry) const {
1759     _task->increment_refs_reached();
1760     HeapRegion* hr = _g1h->heap_region_containing(entry);
1761     if (entry < hr->next_top_at_mark_start()) {
1762       // Until we get here, we don't know whether entry refers to a valid
1763       // object; it could instead have been a stale reference.
1764       oop obj = static_cast<oop>(entry);
1765       assert(obj->is_oop(true /* ignore mark word */),
1766              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
1767       _task->make_reference_grey(obj);
1768     }
1769   }
1770 
1771 public:
1772   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1773     : _task(task), _g1h(g1h) { }
1774 
1775   virtual void do_buffer(void** buffer, size_t size) {
1776     for (size_t i = 0; i < size; ++i) {
1777       do_entry(buffer[i]);
1778     }
1779   }
1780 };
1781 
1782 class G1RemarkThreadsClosure : public ThreadClosure {
1783   G1CMSATBBufferClosure _cm_satb_cl;
1784   G1CMOopClosure _cm_cl;
1785   MarkingCodeBlobClosure _code_cl;
1786   int _thread_parity;
1787 
1788  public:
1789   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1790     _cm_satb_cl(task, g1h),
1791     _cm_cl(g1h, g1h->concurrent_mark(), task),
1792     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1793     _thread_parity(Threads::thread_claim_parity()) {}
1794 
1795   void do_thread(Thread* thread) {
1796     if (thread->is_Java_thread()) {
1797       if (thread->claim_oops_do(true, _thread_parity)) {
1798         JavaThread* jt = (JavaThread*)thread;
1799 
1800         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1801         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1802         // * Alive if on the stack of an executing method
1803         // * Weakly reachable otherwise
1804         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1805         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1806         jt->nmethods_do(&_code_cl);
1807 
1808         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1809       }
1810     } else if (thread->is_VM_thread()) {
1811       if (thread->claim_oops_do(true, _thread_parity)) {
1812         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1813       }
1814     }
1815   }
1816 };
1817 
1818 class G1CMRemarkTask: public AbstractGangTask {
1819 private:
1820   G1ConcurrentMark* _cm;
1821 public:
1822   void work(uint worker_id) {
1823     // Since all available tasks are actually started, we should
1824     // only proceed if we're supposed to be active.
1825     if (worker_id < _cm->active_tasks()) {
1826       G1CMTask* task = _cm->task(worker_id);
1827       task->record_start_time();
1828       {
1829         ResourceMark rm;
1830         HandleMark hm;
1831 
1832         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1833         Threads::threads_do(&threads_f);
1834       }
1835 
1836       do {
1837         task->do_marking_step(1000000000.0 /* something very large */,
1838                               true         /* do_termination       */,
1839                               false        /* is_serial            */);
1840       } while (task->has_aborted() && !_cm->has_overflown());
1841       // If we overflow, then we do not want to restart. We instead
1842       // want to abort remark and do concurrent marking again.
1843       task->record_end_time();
1844     }
1845   }
1846 
1847   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1848     AbstractGangTask("Par Remark"), _cm(cm) {
1849     _cm->terminator()->reset_for_reuse(active_workers);
1850   }
1851 };
1852 
1853 void G1ConcurrentMark::checkpointRootsFinalWork() {
1854   ResourceMark rm;
1855   HandleMark   hm;
1856   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1857 
1858   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1859 
1860   g1h->ensure_parsability(false);
1861 
1862   // this is remark, so we'll use up all active threads
1863   uint active_workers = g1h->workers()->active_workers();
1864   set_concurrency_and_phase(active_workers, false /* concurrent */);
1865   // Leave _parallel_marking_threads at it's
1866   // value originally calculated in the G1ConcurrentMark
1867   // constructor and pass values of the active workers
1868   // through the gang in the task.
1869 
1870   {
1871     StrongRootsScope srs(active_workers);
1872 
1873     G1CMRemarkTask remarkTask(this, active_workers);
1874     // We will start all available threads, even if we decide that the
1875     // active_workers will be fewer. The extra ones will just bail out
1876     // immediately.
1877     g1h->workers()->run_task(&remarkTask);
1878   }
1879 
1880   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1881   guarantee(has_overflown() ||
1882             satb_mq_set.completed_buffers_num() == 0,
1883             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1884             BOOL_TO_STR(has_overflown()),
1885             satb_mq_set.completed_buffers_num());
1886 
1887   print_stats();
1888 }
1889 
1890 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
1891   // Note we are overriding the read-only view of the prev map here, via
1892   // the cast.
1893   ((G1CMBitMap*)_prevMarkBitMap)->clear_range(mr);
1894 }
1895 
1896 HeapRegion*
1897 G1ConcurrentMark::claim_region(uint worker_id) {
1898   // "checkpoint" the finger
1899   HeapWord* finger = _finger;
1900 
1901   // _heap_end will not change underneath our feet; it only changes at
1902   // yield points.
1903   while (finger < _heap_end) {
1904     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1905 
1906     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1907 
1908     // Above heap_region_containing may return NULL as we always scan claim
1909     // until the end of the heap. In this case, just jump to the next region.
1910     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1911 
1912     // Is the gap between reading the finger and doing the CAS too long?
1913     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
1914     if (res == finger && curr_region != NULL) {
1915       // we succeeded
1916       HeapWord*   bottom        = curr_region->bottom();
1917       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1918 
1919       // notice that _finger == end cannot be guaranteed here since,
1920       // someone else might have moved the finger even further
1921       assert(_finger >= end, "the finger should have moved forward");
1922 
1923       if (limit > bottom) {
1924         return curr_region;
1925       } else {
1926         assert(limit == bottom,
1927                "the region limit should be at bottom");
1928         // we return NULL and the caller should try calling
1929         // claim_region() again.
1930         return NULL;
1931       }
1932     } else {
1933       assert(_finger > finger, "the finger should have moved forward");
1934       // read it again
1935       finger = _finger;
1936     }
1937   }
1938 
1939   return NULL;
1940 }
1941 
1942 #ifndef PRODUCT
1943 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1944 private:
1945   G1CollectedHeap* _g1h;
1946   const char* _phase;
1947   int _info;
1948 
1949 public:
1950   VerifyNoCSetOops(const char* phase, int info = -1) :
1951     _g1h(G1CollectedHeap::heap()),
1952     _phase(phase),
1953     _info(info)
1954   { }
1955 
1956   void operator()(oop obj) const {
1957     guarantee(obj->is_oop(),
1958               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1959               p2i(obj), _phase, _info);
1960     guarantee(!_g1h->obj_in_cs(obj),
1961               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1962               p2i(obj), _phase, _info);
1963   }
1964 };
1965 
1966 void G1ConcurrentMark::verify_no_cset_oops() {
1967   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1968   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1969     return;
1970   }
1971 
1972   // Verify entries on the global mark stack
1973   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1974 
1975   // Verify entries on the task queues
1976   for (uint i = 0; i < _max_worker_id; ++i) {
1977     G1CMTaskQueue* queue = _task_queues->queue(i);
1978     queue->iterate(VerifyNoCSetOops("Queue", i));
1979   }
1980 
1981   // Verify the global finger
1982   HeapWord* global_finger = finger();
1983   if (global_finger != NULL && global_finger < _heap_end) {
1984     // Since we always iterate over all regions, we might get a NULL HeapRegion
1985     // here.
1986     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1987     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1988               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1989               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1990   }
1991 
1992   // Verify the task fingers
1993   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
1994   for (uint i = 0; i < parallel_marking_threads(); ++i) {
1995     G1CMTask* task = _tasks[i];
1996     HeapWord* task_finger = task->finger();
1997     if (task_finger != NULL && task_finger < _heap_end) {
1998       // See above note on the global finger verification.
1999       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2000       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2001                 !task_hr->in_collection_set(),
2002                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2003                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2004     }
2005   }
2006 }
2007 #endif // PRODUCT
2008 void G1ConcurrentMark::create_live_data() {
2009   _g1h->g1_rem_set()->create_card_live_data(_parallel_workers, _nextMarkBitMap);
2010 }
2011 
2012 void G1ConcurrentMark::finalize_live_data() {
2013   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _nextMarkBitMap);
2014 }
2015 
2016 void G1ConcurrentMark::verify_live_data() {
2017   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _nextMarkBitMap);
2018 }
2019 
2020 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
2021   _g1h->g1_rem_set()->clear_card_live_data(workers);
2022 }
2023 
2024 #ifdef ASSERT
2025 void G1ConcurrentMark::verify_live_data_clear() {
2026   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
2027 }
2028 #endif
2029 
2030 void G1ConcurrentMark::print_stats() {
2031   if (!log_is_enabled(Debug, gc, stats)) {
2032     return;
2033   }
2034   log_debug(gc, stats)("---------------------------------------------------------------------");
2035   for (size_t i = 0; i < _active_tasks; ++i) {
2036     _tasks[i]->print_stats();
2037     log_debug(gc, stats)("---------------------------------------------------------------------");
2038   }
2039 }
2040 
2041 void G1ConcurrentMark::abort() {
2042   if (!cmThread()->during_cycle() || _has_aborted) {
2043     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2044     return;
2045   }
2046 
2047   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2048   // concurrent bitmap clearing.
2049   {
2050     GCTraceTime(Debug, gc)("Clear Next Bitmap");
2051     clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
2052   }
2053   // Note we cannot clear the previous marking bitmap here
2054   // since VerifyDuringGC verifies the objects marked during
2055   // a full GC against the previous bitmap.
2056 
2057   {
2058     GCTraceTime(Debug, gc)("Clear Live Data");
2059     clear_live_data(_g1h->workers());
2060   }
2061   DEBUG_ONLY({
2062     GCTraceTime(Debug, gc)("Verify Live Data Clear");
2063     verify_live_data_clear();
2064   })
2065   // Empty mark stack
2066   reset_marking_state();
2067   for (uint i = 0; i < _max_worker_id; ++i) {
2068     _tasks[i]->clear_region_fields();
2069   }
2070   _first_overflow_barrier_sync.abort();
2071   _second_overflow_barrier_sync.abort();
2072   _has_aborted = true;
2073 
2074   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2075   satb_mq_set.abandon_partial_marking();
2076   // This can be called either during or outside marking, we'll read
2077   // the expected_active value from the SATB queue set.
2078   satb_mq_set.set_active_all_threads(
2079                                  false, /* new active value */
2080                                  satb_mq_set.is_active() /* expected_active */);
2081 }
2082 
2083 static void print_ms_time_info(const char* prefix, const char* name,
2084                                NumberSeq& ns) {
2085   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2086                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2087   if (ns.num() > 0) {
2088     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2089                            prefix, ns.sd(), ns.maximum());
2090   }
2091 }
2092 
2093 void G1ConcurrentMark::print_summary_info() {
2094   Log(gc, marking) log;
2095   if (!log.is_trace()) {
2096     return;
2097   }
2098 
2099   log.trace(" Concurrent marking:");
2100   print_ms_time_info("  ", "init marks", _init_times);
2101   print_ms_time_info("  ", "remarks", _remark_times);
2102   {
2103     print_ms_time_info("     ", "final marks", _remark_mark_times);
2104     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2105 
2106   }
2107   print_ms_time_info("  ", "cleanups", _cleanup_times);
2108   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2109             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2110   if (G1ScrubRemSets) {
2111     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2112               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2113   }
2114   log.trace("  Total stop_world time = %8.2f s.",
2115             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2116   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2117             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2118 }
2119 
2120 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2121   _parallel_workers->print_worker_threads_on(st);
2122 }
2123 
2124 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2125   _parallel_workers->threads_do(tc);
2126 }
2127 
2128 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2129   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2130       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2131   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2132   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2133 }
2134 
2135 // Closure for iteration over bitmaps
2136 class G1CMBitMapClosure : public BitMapClosure {
2137 private:
2138   // the bitmap that is being iterated over
2139   G1CMBitMap*                 _nextMarkBitMap;
2140   G1ConcurrentMark*           _cm;
2141   G1CMTask*                   _task;
2142 
2143 public:
2144   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2145     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2146 
2147   bool do_bit(size_t offset) {
2148     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2149     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2150     assert( addr < _cm->finger(), "invariant");
2151     assert(addr >= _task->finger(), "invariant");
2152 
2153     // We move that task's local finger along.
2154     _task->move_finger_to(addr);
2155 
2156     _task->scan_object(oop(addr));
2157     // we only partially drain the local queue and global stack
2158     _task->drain_local_queue(true);
2159     _task->drain_global_stack(true);
2160 
2161     // if the has_aborted flag has been raised, we need to bail out of
2162     // the iteration
2163     return !_task->has_aborted();
2164   }
2165 };
2166 
2167 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2168   ReferenceProcessor* result = g1h->ref_processor_cm();
2169   assert(result != NULL, "CM reference processor should not be NULL");
2170   return result;
2171 }
2172 
2173 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2174                                G1ConcurrentMark* cm,
2175                                G1CMTask* task)
2176   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2177     _g1h(g1h), _cm(cm), _task(task)
2178 { }
2179 
2180 void G1CMTask::setup_for_region(HeapRegion* hr) {
2181   assert(hr != NULL,
2182         "claim_region() should have filtered out NULL regions");
2183   _curr_region  = hr;
2184   _finger       = hr->bottom();
2185   update_region_limit();
2186 }
2187 
2188 void G1CMTask::update_region_limit() {
2189   HeapRegion* hr            = _curr_region;
2190   HeapWord* bottom          = hr->bottom();
2191   HeapWord* limit           = hr->next_top_at_mark_start();
2192 
2193   if (limit == bottom) {
2194     // The region was collected underneath our feet.
2195     // We set the finger to bottom to ensure that the bitmap
2196     // iteration that will follow this will not do anything.
2197     // (this is not a condition that holds when we set the region up,
2198     // as the region is not supposed to be empty in the first place)
2199     _finger = bottom;
2200   } else if (limit >= _region_limit) {
2201     assert(limit >= _finger, "peace of mind");
2202   } else {
2203     assert(limit < _region_limit, "only way to get here");
2204     // This can happen under some pretty unusual circumstances.  An
2205     // evacuation pause empties the region underneath our feet (NTAMS
2206     // at bottom). We then do some allocation in the region (NTAMS
2207     // stays at bottom), followed by the region being used as a GC
2208     // alloc region (NTAMS will move to top() and the objects
2209     // originally below it will be grayed). All objects now marked in
2210     // the region are explicitly grayed, if below the global finger,
2211     // and we do not need in fact to scan anything else. So, we simply
2212     // set _finger to be limit to ensure that the bitmap iteration
2213     // doesn't do anything.
2214     _finger = limit;
2215   }
2216 
2217   _region_limit = limit;
2218 }
2219 
2220 void G1CMTask::giveup_current_region() {
2221   assert(_curr_region != NULL, "invariant");
2222   clear_region_fields();
2223 }
2224 
2225 void G1CMTask::clear_region_fields() {
2226   // Values for these three fields that indicate that we're not
2227   // holding on to a region.
2228   _curr_region   = NULL;
2229   _finger        = NULL;
2230   _region_limit  = NULL;
2231 }
2232 
2233 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2234   if (cm_oop_closure == NULL) {
2235     assert(_cm_oop_closure != NULL, "invariant");
2236   } else {
2237     assert(_cm_oop_closure == NULL, "invariant");
2238   }
2239   _cm_oop_closure = cm_oop_closure;
2240 }
2241 
2242 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2243   guarantee(nextMarkBitMap != NULL, "invariant");
2244   _nextMarkBitMap                = nextMarkBitMap;
2245   clear_region_fields();
2246 
2247   _calls                         = 0;
2248   _elapsed_time_ms               = 0.0;
2249   _termination_time_ms           = 0.0;
2250   _termination_start_time_ms     = 0.0;
2251 }
2252 
2253 bool G1CMTask::should_exit_termination() {
2254   regular_clock_call();
2255   // This is called when we are in the termination protocol. We should
2256   // quit if, for some reason, this task wants to abort or the global
2257   // stack is not empty (this means that we can get work from it).
2258   return !_cm->mark_stack_empty() || has_aborted();
2259 }
2260 
2261 void G1CMTask::reached_limit() {
2262   assert(_words_scanned >= _words_scanned_limit ||
2263          _refs_reached >= _refs_reached_limit ,
2264          "shouldn't have been called otherwise");
2265   regular_clock_call();
2266 }
2267 
2268 void G1CMTask::regular_clock_call() {
2269   if (has_aborted()) return;
2270 
2271   // First, we need to recalculate the words scanned and refs reached
2272   // limits for the next clock call.
2273   recalculate_limits();
2274 
2275   // During the regular clock call we do the following
2276 
2277   // (1) If an overflow has been flagged, then we abort.
2278   if (_cm->has_overflown()) {
2279     set_has_aborted();
2280     return;
2281   }
2282 
2283   // If we are not concurrent (i.e. we're doing remark) we don't need
2284   // to check anything else. The other steps are only needed during
2285   // the concurrent marking phase.
2286   if (!concurrent()) return;
2287 
2288   // (2) If marking has been aborted for Full GC, then we also abort.
2289   if (_cm->has_aborted()) {
2290     set_has_aborted();
2291     return;
2292   }
2293 
2294   double curr_time_ms = os::elapsedVTime() * 1000.0;
2295 
2296   // (4) We check whether we should yield. If we have to, then we abort.
2297   if (SuspendibleThreadSet::should_yield()) {
2298     // We should yield. To do this we abort the task. The caller is
2299     // responsible for yielding.
2300     set_has_aborted();
2301     return;
2302   }
2303 
2304   // (5) We check whether we've reached our time quota. If we have,
2305   // then we abort.
2306   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2307   if (elapsed_time_ms > _time_target_ms) {
2308     set_has_aborted();
2309     _has_timed_out = true;
2310     return;
2311   }
2312 
2313   // (6) Finally, we check whether there are enough completed STAB
2314   // buffers available for processing. If there are, we abort.
2315   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2316   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2317     // we do need to process SATB buffers, we'll abort and restart
2318     // the marking task to do so
2319     set_has_aborted();
2320     return;
2321   }
2322 }
2323 
2324 void G1CMTask::recalculate_limits() {
2325   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2326   _words_scanned_limit      = _real_words_scanned_limit;
2327 
2328   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2329   _refs_reached_limit       = _real_refs_reached_limit;
2330 }
2331 
2332 void G1CMTask::decrease_limits() {
2333   // This is called when we believe that we're going to do an infrequent
2334   // operation which will increase the per byte scanned cost (i.e. move
2335   // entries to/from the global stack). It basically tries to decrease the
2336   // scanning limit so that the clock is called earlier.
2337 
2338   _words_scanned_limit = _real_words_scanned_limit -
2339     3 * words_scanned_period / 4;
2340   _refs_reached_limit  = _real_refs_reached_limit -
2341     3 * refs_reached_period / 4;
2342 }
2343 
2344 void G1CMTask::move_entries_to_global_stack() {
2345   // local array where we'll store the entries that will be popped
2346   // from the local queue
2347   oop buffer[global_stack_transfer_size];
2348 
2349   int n = 0;
2350   oop obj;
2351   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2352     buffer[n] = obj;
2353     ++n;
2354   }
2355 
2356   if (n > 0) {
2357     // we popped at least one entry from the local queue
2358 
2359     if (!_cm->mark_stack_push(buffer, n)) {
2360       set_has_aborted();
2361     }
2362   }
2363 
2364   // this operation was quite expensive, so decrease the limits
2365   decrease_limits();
2366 }
2367 
2368 void G1CMTask::get_entries_from_global_stack() {
2369   // local array where we'll store the entries that will be popped
2370   // from the global stack.
2371   oop buffer[global_stack_transfer_size];
2372   size_t n;
2373   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2374   assert(n <= global_stack_transfer_size,
2375          "we should not pop more than the given limit");
2376   if (n > 0) {
2377     // yes, we did actually pop at least one entry
2378     for (size_t i = 0; i < n; ++i) {
2379       bool success = _task_queue->push(buffer[i]);
2380       // We only call this when the local queue is empty or under a
2381       // given target limit. So, we do not expect this push to fail.
2382       assert(success, "invariant");
2383     }
2384   }
2385 
2386   // this operation was quite expensive, so decrease the limits
2387   decrease_limits();
2388 }
2389 
2390 void G1CMTask::drain_local_queue(bool partially) {
2391   if (has_aborted()) return;
2392 
2393   // Decide what the target size is, depending whether we're going to
2394   // drain it partially (so that other tasks can steal if they run out
2395   // of things to do) or totally (at the very end).
2396   size_t target_size;
2397   if (partially) {
2398     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2399   } else {
2400     target_size = 0;
2401   }
2402 
2403   if (_task_queue->size() > target_size) {
2404     oop obj;
2405     bool ret = _task_queue->pop_local(obj);
2406     while (ret) {
2407       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2408       assert(!_g1h->is_on_master_free_list(
2409                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2410 
2411       scan_object(obj);
2412 
2413       if (_task_queue->size() <= target_size || has_aborted()) {
2414         ret = false;
2415       } else {
2416         ret = _task_queue->pop_local(obj);
2417       }
2418     }
2419   }
2420 }
2421 
2422 void G1CMTask::drain_global_stack(bool partially) {
2423   if (has_aborted()) return;
2424 
2425   // We have a policy to drain the local queue before we attempt to
2426   // drain the global stack.
2427   assert(partially || _task_queue->size() == 0, "invariant");
2428 
2429   // Decide what the target size is, depending whether we're going to
2430   // drain it partially (so that other tasks can steal if they run out
2431   // of things to do) or totally (at the very end).  Notice that,
2432   // because we move entries from the global stack in chunks or
2433   // because another task might be doing the same, we might in fact
2434   // drop below the target. But, this is not a problem.
2435   size_t target_size;
2436   if (partially) {
2437     target_size = _cm->partial_mark_stack_size_target();
2438   } else {
2439     target_size = 0;
2440   }
2441 
2442   if (_cm->mark_stack_size() > target_size) {
2443     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2444       get_entries_from_global_stack();
2445       drain_local_queue(partially);
2446     }
2447   }
2448 }
2449 
2450 // SATB Queue has several assumptions on whether to call the par or
2451 // non-par versions of the methods. this is why some of the code is
2452 // replicated. We should really get rid of the single-threaded version
2453 // of the code to simplify things.
2454 void G1CMTask::drain_satb_buffers() {
2455   if (has_aborted()) return;
2456 
2457   // We set this so that the regular clock knows that we're in the
2458   // middle of draining buffers and doesn't set the abort flag when it
2459   // notices that SATB buffers are available for draining. It'd be
2460   // very counter productive if it did that. :-)
2461   _draining_satb_buffers = true;
2462 
2463   G1CMSATBBufferClosure satb_cl(this, _g1h);
2464   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2465 
2466   // This keeps claiming and applying the closure to completed buffers
2467   // until we run out of buffers or we need to abort.
2468   while (!has_aborted() &&
2469          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2470     regular_clock_call();
2471   }
2472 
2473   _draining_satb_buffers = false;
2474 
2475   assert(has_aborted() ||
2476          concurrent() ||
2477          satb_mq_set.completed_buffers_num() == 0, "invariant");
2478 
2479   // again, this was a potentially expensive operation, decrease the
2480   // limits to get the regular clock call early
2481   decrease_limits();
2482 }
2483 
2484 void G1CMTask::print_stats() {
2485   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
2486                        _worker_id, _calls);
2487   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2488                        _elapsed_time_ms, _termination_time_ms);
2489   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2490                        _step_times_ms.num(), _step_times_ms.avg(),
2491                        _step_times_ms.sd());
2492   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2493                        _step_times_ms.maximum(), _step_times_ms.sum());
2494 }
2495 
2496 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
2497   return _task_queues->steal(worker_id, hash_seed, obj);
2498 }
2499 
2500 /*****************************************************************************
2501 
2502     The do_marking_step(time_target_ms, ...) method is the building
2503     block of the parallel marking framework. It can be called in parallel
2504     with other invocations of do_marking_step() on different tasks
2505     (but only one per task, obviously) and concurrently with the
2506     mutator threads, or during remark, hence it eliminates the need
2507     for two versions of the code. When called during remark, it will
2508     pick up from where the task left off during the concurrent marking
2509     phase. Interestingly, tasks are also claimable during evacuation
2510     pauses too, since do_marking_step() ensures that it aborts before
2511     it needs to yield.
2512 
2513     The data structures that it uses to do marking work are the
2514     following:
2515 
2516       (1) Marking Bitmap. If there are gray objects that appear only
2517       on the bitmap (this happens either when dealing with an overflow
2518       or when the initial marking phase has simply marked the roots
2519       and didn't push them on the stack), then tasks claim heap
2520       regions whose bitmap they then scan to find gray objects. A
2521       global finger indicates where the end of the last claimed region
2522       is. A local finger indicates how far into the region a task has
2523       scanned. The two fingers are used to determine how to gray an
2524       object (i.e. whether simply marking it is OK, as it will be
2525       visited by a task in the future, or whether it needs to be also
2526       pushed on a stack).
2527 
2528       (2) Local Queue. The local queue of the task which is accessed
2529       reasonably efficiently by the task. Other tasks can steal from
2530       it when they run out of work. Throughout the marking phase, a
2531       task attempts to keep its local queue short but not totally
2532       empty, so that entries are available for stealing by other
2533       tasks. Only when there is no more work, a task will totally
2534       drain its local queue.
2535 
2536       (3) Global Mark Stack. This handles local queue overflow. During
2537       marking only sets of entries are moved between it and the local
2538       queues, as access to it requires a mutex and more fine-grain
2539       interaction with it which might cause contention. If it
2540       overflows, then the marking phase should restart and iterate
2541       over the bitmap to identify gray objects. Throughout the marking
2542       phase, tasks attempt to keep the global mark stack at a small
2543       length but not totally empty, so that entries are available for
2544       popping by other tasks. Only when there is no more work, tasks
2545       will totally drain the global mark stack.
2546 
2547       (4) SATB Buffer Queue. This is where completed SATB buffers are
2548       made available. Buffers are regularly removed from this queue
2549       and scanned for roots, so that the queue doesn't get too
2550       long. During remark, all completed buffers are processed, as
2551       well as the filled in parts of any uncompleted buffers.
2552 
2553     The do_marking_step() method tries to abort when the time target
2554     has been reached. There are a few other cases when the
2555     do_marking_step() method also aborts:
2556 
2557       (1) When the marking phase has been aborted (after a Full GC).
2558 
2559       (2) When a global overflow (on the global stack) has been
2560       triggered. Before the task aborts, it will actually sync up with
2561       the other tasks to ensure that all the marking data structures
2562       (local queues, stacks, fingers etc.)  are re-initialized so that
2563       when do_marking_step() completes, the marking phase can
2564       immediately restart.
2565 
2566       (3) When enough completed SATB buffers are available. The
2567       do_marking_step() method only tries to drain SATB buffers right
2568       at the beginning. So, if enough buffers are available, the
2569       marking step aborts and the SATB buffers are processed at
2570       the beginning of the next invocation.
2571 
2572       (4) To yield. when we have to yield then we abort and yield
2573       right at the end of do_marking_step(). This saves us from a lot
2574       of hassle as, by yielding we might allow a Full GC. If this
2575       happens then objects will be compacted underneath our feet, the
2576       heap might shrink, etc. We save checking for this by just
2577       aborting and doing the yield right at the end.
2578 
2579     From the above it follows that the do_marking_step() method should
2580     be called in a loop (or, otherwise, regularly) until it completes.
2581 
2582     If a marking step completes without its has_aborted() flag being
2583     true, it means it has completed the current marking phase (and
2584     also all other marking tasks have done so and have all synced up).
2585 
2586     A method called regular_clock_call() is invoked "regularly" (in
2587     sub ms intervals) throughout marking. It is this clock method that
2588     checks all the abort conditions which were mentioned above and
2589     decides when the task should abort. A work-based scheme is used to
2590     trigger this clock method: when the number of object words the
2591     marking phase has scanned or the number of references the marking
2592     phase has visited reach a given limit. Additional invocations to
2593     the method clock have been planted in a few other strategic places
2594     too. The initial reason for the clock method was to avoid calling
2595     vtime too regularly, as it is quite expensive. So, once it was in
2596     place, it was natural to piggy-back all the other conditions on it
2597     too and not constantly check them throughout the code.
2598 
2599     If do_termination is true then do_marking_step will enter its
2600     termination protocol.
2601 
2602     The value of is_serial must be true when do_marking_step is being
2603     called serially (i.e. by the VMThread) and do_marking_step should
2604     skip any synchronization in the termination and overflow code.
2605     Examples include the serial remark code and the serial reference
2606     processing closures.
2607 
2608     The value of is_serial must be false when do_marking_step is
2609     being called by any of the worker threads in a work gang.
2610     Examples include the concurrent marking code (CMMarkingTask),
2611     the MT remark code, and the MT reference processing closures.
2612 
2613  *****************************************************************************/
2614 
2615 void G1CMTask::do_marking_step(double time_target_ms,
2616                                bool do_termination,
2617                                bool is_serial) {
2618   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2619   assert(concurrent() == _cm->concurrent(), "they should be the same");
2620 
2621   G1Policy* g1_policy = _g1h->g1_policy();
2622   assert(_task_queues != NULL, "invariant");
2623   assert(_task_queue != NULL, "invariant");
2624   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
2625 
2626   assert(!_claimed,
2627          "only one thread should claim this task at any one time");
2628 
2629   // OK, this doesn't safeguard again all possible scenarios, as it is
2630   // possible for two threads to set the _claimed flag at the same
2631   // time. But it is only for debugging purposes anyway and it will
2632   // catch most problems.
2633   _claimed = true;
2634 
2635   _start_time_ms = os::elapsedVTime() * 1000.0;
2636 
2637   // If do_stealing is true then do_marking_step will attempt to
2638   // steal work from the other G1CMTasks. It only makes sense to
2639   // enable stealing when the termination protocol is enabled
2640   // and do_marking_step() is not being called serially.
2641   bool do_stealing = do_termination && !is_serial;
2642 
2643   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2644   _time_target_ms = time_target_ms - diff_prediction_ms;
2645 
2646   // set up the variables that are used in the work-based scheme to
2647   // call the regular clock method
2648   _words_scanned = 0;
2649   _refs_reached  = 0;
2650   recalculate_limits();
2651 
2652   // clear all flags
2653   clear_has_aborted();
2654   _has_timed_out = false;
2655   _draining_satb_buffers = false;
2656 
2657   ++_calls;
2658 
2659   // Set up the bitmap and oop closures. Anything that uses them is
2660   // eventually called from this method, so it is OK to allocate these
2661   // statically.
2662   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
2663   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2664   set_cm_oop_closure(&cm_oop_closure);
2665 
2666   if (_cm->has_overflown()) {
2667     // This can happen if the mark stack overflows during a GC pause
2668     // and this task, after a yield point, restarts. We have to abort
2669     // as we need to get into the overflow protocol which happens
2670     // right at the end of this task.
2671     set_has_aborted();
2672   }
2673 
2674   // First drain any available SATB buffers. After this, we will not
2675   // look at SATB buffers before the next invocation of this method.
2676   // If enough completed SATB buffers are queued up, the regular clock
2677   // will abort this task so that it restarts.
2678   drain_satb_buffers();
2679   // ...then partially drain the local queue and the global stack
2680   drain_local_queue(true);
2681   drain_global_stack(true);
2682 
2683   do {
2684     if (!has_aborted() && _curr_region != NULL) {
2685       // This means that we're already holding on to a region.
2686       assert(_finger != NULL, "if region is not NULL, then the finger "
2687              "should not be NULL either");
2688 
2689       // We might have restarted this task after an evacuation pause
2690       // which might have evacuated the region we're holding on to
2691       // underneath our feet. Let's read its limit again to make sure
2692       // that we do not iterate over a region of the heap that
2693       // contains garbage (update_region_limit() will also move
2694       // _finger to the start of the region if it is found empty).
2695       update_region_limit();
2696       // We will start from _finger not from the start of the region,
2697       // as we might be restarting this task after aborting half-way
2698       // through scanning this region. In this case, _finger points to
2699       // the address where we last found a marked object. If this is a
2700       // fresh region, _finger points to start().
2701       MemRegion mr = MemRegion(_finger, _region_limit);
2702 
2703       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2704              "humongous regions should go around loop once only");
2705 
2706       // Some special cases:
2707       // If the memory region is empty, we can just give up the region.
2708       // If the current region is humongous then we only need to check
2709       // the bitmap for the bit associated with the start of the object,
2710       // scan the object if it's live, and give up the region.
2711       // Otherwise, let's iterate over the bitmap of the part of the region
2712       // that is left.
2713       // If the iteration is successful, give up the region.
2714       if (mr.is_empty()) {
2715         giveup_current_region();
2716         regular_clock_call();
2717       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2718         if (_nextMarkBitMap->isMarked(mr.start())) {
2719           // The object is marked - apply the closure
2720           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
2721           bitmap_closure.do_bit(offset);
2722         }
2723         // Even if this task aborted while scanning the humongous object
2724         // we can (and should) give up the current region.
2725         giveup_current_region();
2726         regular_clock_call();
2727       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
2728         giveup_current_region();
2729         regular_clock_call();
2730       } else {
2731         assert(has_aborted(), "currently the only way to do so");
2732         // The only way to abort the bitmap iteration is to return
2733         // false from the do_bit() method. However, inside the
2734         // do_bit() method we move the _finger to point to the
2735         // object currently being looked at. So, if we bail out, we
2736         // have definitely set _finger to something non-null.
2737         assert(_finger != NULL, "invariant");
2738 
2739         // Region iteration was actually aborted. So now _finger
2740         // points to the address of the object we last scanned. If we
2741         // leave it there, when we restart this task, we will rescan
2742         // the object. It is easy to avoid this. We move the finger by
2743         // enough to point to the next possible object header (the
2744         // bitmap knows by how much we need to move it as it knows its
2745         // granularity).
2746         assert(_finger < _region_limit, "invariant");
2747         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
2748         // Check if bitmap iteration was aborted while scanning the last object
2749         if (new_finger >= _region_limit) {
2750           giveup_current_region();
2751         } else {
2752           move_finger_to(new_finger);
2753         }
2754       }
2755     }
2756     // At this point we have either completed iterating over the
2757     // region we were holding on to, or we have aborted.
2758 
2759     // We then partially drain the local queue and the global stack.
2760     // (Do we really need this?)
2761     drain_local_queue(true);
2762     drain_global_stack(true);
2763 
2764     // Read the note on the claim_region() method on why it might
2765     // return NULL with potentially more regions available for
2766     // claiming and why we have to check out_of_regions() to determine
2767     // whether we're done or not.
2768     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2769       // We are going to try to claim a new region. We should have
2770       // given up on the previous one.
2771       // Separated the asserts so that we know which one fires.
2772       assert(_curr_region  == NULL, "invariant");
2773       assert(_finger       == NULL, "invariant");
2774       assert(_region_limit == NULL, "invariant");
2775       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2776       if (claimed_region != NULL) {
2777         // Yes, we managed to claim one
2778         setup_for_region(claimed_region);
2779         assert(_curr_region == claimed_region, "invariant");
2780       }
2781       // It is important to call the regular clock here. It might take
2782       // a while to claim a region if, for example, we hit a large
2783       // block of empty regions. So we need to call the regular clock
2784       // method once round the loop to make sure it's called
2785       // frequently enough.
2786       regular_clock_call();
2787     }
2788 
2789     if (!has_aborted() && _curr_region == NULL) {
2790       assert(_cm->out_of_regions(),
2791              "at this point we should be out of regions");
2792     }
2793   } while ( _curr_region != NULL && !has_aborted());
2794 
2795   if (!has_aborted()) {
2796     // We cannot check whether the global stack is empty, since other
2797     // tasks might be pushing objects to it concurrently.
2798     assert(_cm->out_of_regions(),
2799            "at this point we should be out of regions");
2800     // Try to reduce the number of available SATB buffers so that
2801     // remark has less work to do.
2802     drain_satb_buffers();
2803   }
2804 
2805   // Since we've done everything else, we can now totally drain the
2806   // local queue and global stack.
2807   drain_local_queue(false);
2808   drain_global_stack(false);
2809 
2810   // Attempt at work stealing from other task's queues.
2811   if (do_stealing && !has_aborted()) {
2812     // We have not aborted. This means that we have finished all that
2813     // we could. Let's try to do some stealing...
2814 
2815     // We cannot check whether the global stack is empty, since other
2816     // tasks might be pushing objects to it concurrently.
2817     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2818            "only way to reach here");
2819     while (!has_aborted()) {
2820       oop obj;
2821       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
2822         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
2823                "any stolen object should be marked");
2824         scan_object(obj);
2825 
2826         // And since we're towards the end, let's totally drain the
2827         // local queue and global stack.
2828         drain_local_queue(false);
2829         drain_global_stack(false);
2830       } else {
2831         break;
2832       }
2833     }
2834   }
2835 
2836   // We still haven't aborted. Now, let's try to get into the
2837   // termination protocol.
2838   if (do_termination && !has_aborted()) {
2839     // We cannot check whether the global stack is empty, since other
2840     // tasks might be concurrently pushing objects on it.
2841     // Separated the asserts so that we know which one fires.
2842     assert(_cm->out_of_regions(), "only way to reach here");
2843     assert(_task_queue->size() == 0, "only way to reach here");
2844     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2845 
2846     // The G1CMTask class also extends the TerminatorTerminator class,
2847     // hence its should_exit_termination() method will also decide
2848     // whether to exit the termination protocol or not.
2849     bool finished = (is_serial ||
2850                      _cm->terminator()->offer_termination(this));
2851     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2852     _termination_time_ms +=
2853       termination_end_time_ms - _termination_start_time_ms;
2854 
2855     if (finished) {
2856       // We're all done.
2857 
2858       if (_worker_id == 0) {
2859         // let's allow task 0 to do this
2860         if (concurrent()) {
2861           assert(_cm->concurrent_marking_in_progress(), "invariant");
2862           // we need to set this to false before the next
2863           // safepoint. This way we ensure that the marking phase
2864           // doesn't observe any more heap expansions.
2865           _cm->clear_concurrent_marking_in_progress();
2866         }
2867       }
2868 
2869       // We can now guarantee that the global stack is empty, since
2870       // all other tasks have finished. We separated the guarantees so
2871       // that, if a condition is false, we can immediately find out
2872       // which one.
2873       guarantee(_cm->out_of_regions(), "only way to reach here");
2874       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2875       guarantee(_task_queue->size() == 0, "only way to reach here");
2876       guarantee(!_cm->has_overflown(), "only way to reach here");
2877       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
2878     } else {
2879       // Apparently there's more work to do. Let's abort this task. It
2880       // will restart it and we can hopefully find more things to do.
2881       set_has_aborted();
2882     }
2883   }
2884 
2885   // Mainly for debugging purposes to make sure that a pointer to the
2886   // closure which was statically allocated in this frame doesn't
2887   // escape it by accident.
2888   set_cm_oop_closure(NULL);
2889   double end_time_ms = os::elapsedVTime() * 1000.0;
2890   double elapsed_time_ms = end_time_ms - _start_time_ms;
2891   // Update the step history.
2892   _step_times_ms.add(elapsed_time_ms);
2893 
2894   if (has_aborted()) {
2895     // The task was aborted for some reason.
2896     if (_has_timed_out) {
2897       double diff_ms = elapsed_time_ms - _time_target_ms;
2898       // Keep statistics of how well we did with respect to hitting
2899       // our target only if we actually timed out (if we aborted for
2900       // other reasons, then the results might get skewed).
2901       _marking_step_diffs_ms.add(diff_ms);
2902     }
2903 
2904     if (_cm->has_overflown()) {
2905       // This is the interesting one. We aborted because a global
2906       // overflow was raised. This means we have to restart the
2907       // marking phase and start iterating over regions. However, in
2908       // order to do this we have to make sure that all tasks stop
2909       // what they are doing and re-initialize in a safe manner. We
2910       // will achieve this with the use of two barrier sync points.
2911 
2912       if (!is_serial) {
2913         // We only need to enter the sync barrier if being called
2914         // from a parallel context
2915         _cm->enter_first_sync_barrier(_worker_id);
2916 
2917         // When we exit this sync barrier we know that all tasks have
2918         // stopped doing marking work. So, it's now safe to
2919         // re-initialize our data structures. At the end of this method,
2920         // task 0 will clear the global data structures.
2921       }
2922 
2923       // We clear the local state of this task...
2924       clear_region_fields();
2925 
2926       if (!is_serial) {
2927         // ...and enter the second barrier.
2928         _cm->enter_second_sync_barrier(_worker_id);
2929       }
2930       // At this point, if we're during the concurrent phase of
2931       // marking, everything has been re-initialized and we're
2932       // ready to restart.
2933     }
2934   }
2935 
2936   _claimed = false;
2937 }
2938 
2939 G1CMTask::G1CMTask(uint worker_id,
2940                    G1ConcurrentMark* cm,
2941                    G1CMTaskQueue* task_queue,
2942                    G1CMTaskQueueSet* task_queues)
2943   : _g1h(G1CollectedHeap::heap()),
2944     _worker_id(worker_id), _cm(cm),
2945     _claimed(false),
2946     _nextMarkBitMap(NULL), _hash_seed(17),
2947     _task_queue(task_queue),
2948     _task_queues(task_queues),
2949     _cm_oop_closure(NULL) {
2950   guarantee(task_queue != NULL, "invariant");
2951   guarantee(task_queues != NULL, "invariant");
2952 
2953   _marking_step_diffs_ms.add(0.5);
2954 }
2955 
2956 // These are formatting macros that are used below to ensure
2957 // consistent formatting. The *_H_* versions are used to format the
2958 // header for a particular value and they should be kept consistent
2959 // with the corresponding macro. Also note that most of the macros add
2960 // the necessary white space (as a prefix) which makes them a bit
2961 // easier to compose.
2962 
2963 // All the output lines are prefixed with this string to be able to
2964 // identify them easily in a large log file.
2965 #define G1PPRL_LINE_PREFIX            "###"
2966 
2967 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2968 #ifdef _LP64
2969 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2970 #else // _LP64
2971 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2972 #endif // _LP64
2973 
2974 // For per-region info
2975 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2976 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2977 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2978 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2979 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2980 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2981 
2982 // For summary info
2983 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2984 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2985 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2986 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2987 
2988 G1PrintRegionLivenessInfoClosure::
2989 G1PrintRegionLivenessInfoClosure(const char* phase_name)
2990   : _total_used_bytes(0), _total_capacity_bytes(0),
2991     _total_prev_live_bytes(0), _total_next_live_bytes(0),
2992     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
2993   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2994   MemRegion g1_reserved = g1h->g1_reserved();
2995   double now = os::elapsedTime();
2996 
2997   // Print the header of the output.
2998   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2999   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3000                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3001                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3002                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3003                           HeapRegion::GrainBytes);
3004   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3005   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3006                           G1PPRL_TYPE_H_FORMAT
3007                           G1PPRL_ADDR_BASE_H_FORMAT
3008                           G1PPRL_BYTE_H_FORMAT
3009                           G1PPRL_BYTE_H_FORMAT
3010                           G1PPRL_BYTE_H_FORMAT
3011                           G1PPRL_DOUBLE_H_FORMAT
3012                           G1PPRL_BYTE_H_FORMAT
3013                           G1PPRL_BYTE_H_FORMAT,
3014                           "type", "address-range",
3015                           "used", "prev-live", "next-live", "gc-eff",
3016                           "remset", "code-roots");
3017   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3018                           G1PPRL_TYPE_H_FORMAT
3019                           G1PPRL_ADDR_BASE_H_FORMAT
3020                           G1PPRL_BYTE_H_FORMAT
3021                           G1PPRL_BYTE_H_FORMAT
3022                           G1PPRL_BYTE_H_FORMAT
3023                           G1PPRL_DOUBLE_H_FORMAT
3024                           G1PPRL_BYTE_H_FORMAT
3025                           G1PPRL_BYTE_H_FORMAT,
3026                           "", "",
3027                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3028                           "(bytes)", "(bytes)");
3029 }
3030 
3031 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3032   const char* type       = r->get_type_str();
3033   HeapWord* bottom       = r->bottom();
3034   HeapWord* end          = r->end();
3035   size_t capacity_bytes  = r->capacity();
3036   size_t used_bytes      = r->used();
3037   size_t prev_live_bytes = r->live_bytes();
3038   size_t next_live_bytes = r->next_live_bytes();
3039   double gc_eff          = r->gc_efficiency();
3040   size_t remset_bytes    = r->rem_set()->mem_size();
3041   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3042 
3043   _total_used_bytes      += used_bytes;
3044   _total_capacity_bytes  += capacity_bytes;
3045   _total_prev_live_bytes += prev_live_bytes;
3046   _total_next_live_bytes += next_live_bytes;
3047   _total_remset_bytes    += remset_bytes;
3048   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3049 
3050   // Print a line for this particular region.
3051   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3052                           G1PPRL_TYPE_FORMAT
3053                           G1PPRL_ADDR_BASE_FORMAT
3054                           G1PPRL_BYTE_FORMAT
3055                           G1PPRL_BYTE_FORMAT
3056                           G1PPRL_BYTE_FORMAT
3057                           G1PPRL_DOUBLE_FORMAT
3058                           G1PPRL_BYTE_FORMAT
3059                           G1PPRL_BYTE_FORMAT,
3060                           type, p2i(bottom), p2i(end),
3061                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3062                           remset_bytes, strong_code_roots_bytes);
3063 
3064   return false;
3065 }
3066 
3067 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3068   // add static memory usages to remembered set sizes
3069   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3070   // Print the footer of the output.
3071   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3072   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3073                          " SUMMARY"
3074                          G1PPRL_SUM_MB_FORMAT("capacity")
3075                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3076                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3077                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3078                          G1PPRL_SUM_MB_FORMAT("remset")
3079                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3080                          bytes_to_mb(_total_capacity_bytes),
3081                          bytes_to_mb(_total_used_bytes),
3082                          perc(_total_used_bytes, _total_capacity_bytes),
3083                          bytes_to_mb(_total_prev_live_bytes),
3084                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3085                          bytes_to_mb(_total_next_live_bytes),
3086                          perc(_total_next_live_bytes, _total_capacity_bytes),
3087                          bytes_to_mb(_total_remset_bytes),
3088                          bytes_to_mb(_total_strong_code_roots_bytes));
3089 }