1 /*
   2  * Copyright (c) 2005, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/parallel/gcTaskManager.hpp"
  32 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  33 #include "gc/parallel/parMarkBitMap.inline.hpp"
  34 #include "gc/parallel/pcTasks.hpp"
  35 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  36 #include "gc/parallel/psCompactionManager.inline.hpp"
  37 #include "gc/parallel/psMarkSweep.hpp"
  38 #include "gc/parallel/psMarkSweepDecorator.hpp"
  39 #include "gc/parallel/psOldGen.hpp"
  40 #include "gc/parallel/psParallelCompact.inline.hpp"
  41 #include "gc/parallel/psPromotionManager.inline.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.inline.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/referencePolicy.hpp"
  53 #include "gc/shared/referenceProcessor.hpp"
  54 #include "gc/shared/spaceDecorator.hpp"
  55 #include "logging/log.hpp"
  56 #include "memory/resourceArea.hpp"
  57 #include "oops/instanceKlass.inline.hpp"
  58 #include "oops/instanceMirrorKlass.inline.hpp"
  59 #include "oops/methodData.hpp"
  60 #include "oops/objArrayKlass.inline.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "runtime/atomic.hpp"
  63 #include "runtime/fprofiler.hpp"
  64 #include "runtime/safepoint.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "services/management.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 #include <math.h>
  73 
  74 // All sizes are in HeapWords.
  75 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  76 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  77 const size_t ParallelCompactData::RegionSizeBytes =
  78   RegionSize << LogHeapWordSize;
  79 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  80 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  81 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  82 
  83 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  84 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  85 const size_t ParallelCompactData::BlockSizeBytes  =
  86   BlockSize << LogHeapWordSize;
  87 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  88 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  89 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  90 
  91 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  92 const size_t ParallelCompactData::Log2BlocksPerRegion =
  93   Log2RegionSize - Log2BlockSize;
  94 
  95 const ParallelCompactData::RegionData::region_sz_t
  96 ParallelCompactData::RegionData::dc_shift = 27;
  97 
  98 const ParallelCompactData::RegionData::region_sz_t
  99 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 100 
 101 const ParallelCompactData::RegionData::region_sz_t
 102 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 103 
 104 const ParallelCompactData::RegionData::region_sz_t
 105 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 106 
 107 const ParallelCompactData::RegionData::region_sz_t
 108 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 109 
 110 const ParallelCompactData::RegionData::region_sz_t
 111 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 112 
 113 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 114 
 115 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 116 
 117 double PSParallelCompact::_dwl_mean;
 118 double PSParallelCompact::_dwl_std_dev;
 119 double PSParallelCompact::_dwl_first_term;
 120 double PSParallelCompact::_dwl_adjustment;
 121 #ifdef  ASSERT
 122 bool   PSParallelCompact::_dwl_initialized = false;
 123 #endif  // #ifdef ASSERT
 124 
 125 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 126                        HeapWord* destination)
 127 {
 128   assert(src_region_idx != 0, "invalid src_region_idx");
 129   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 130   assert(destination != NULL, "invalid destination argument");
 131 
 132   _src_region_idx = src_region_idx;
 133   _partial_obj_size = partial_obj_size;
 134   _destination = destination;
 135 
 136   // These fields may not be updated below, so make sure they're clear.
 137   assert(_dest_region_addr == NULL, "should have been cleared");
 138   assert(_first_src_addr == NULL, "should have been cleared");
 139 
 140   // Determine the number of destination regions for the partial object.
 141   HeapWord* const last_word = destination + partial_obj_size - 1;
 142   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 143   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 144   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 145 
 146   if (beg_region_addr == end_region_addr) {
 147     // One destination region.
 148     _destination_count = 1;
 149     if (end_region_addr == destination) {
 150       // The destination falls on a region boundary, thus the first word of the
 151       // partial object will be the first word copied to the destination region.
 152       _dest_region_addr = end_region_addr;
 153       _first_src_addr = sd.region_to_addr(src_region_idx);
 154     }
 155   } else {
 156     // Two destination regions.  When copied, the partial object will cross a
 157     // destination region boundary, so a word somewhere within the partial
 158     // object will be the first word copied to the second destination region.
 159     _destination_count = 2;
 160     _dest_region_addr = end_region_addr;
 161     const size_t ofs = pointer_delta(end_region_addr, destination);
 162     assert(ofs < _partial_obj_size, "sanity");
 163     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 164   }
 165 }
 166 
 167 void SplitInfo::clear()
 168 {
 169   _src_region_idx = 0;
 170   _partial_obj_size = 0;
 171   _destination = NULL;
 172   _destination_count = 0;
 173   _dest_region_addr = NULL;
 174   _first_src_addr = NULL;
 175   assert(!is_valid(), "sanity");
 176 }
 177 
 178 #ifdef  ASSERT
 179 void SplitInfo::verify_clear()
 180 {
 181   assert(_src_region_idx == 0, "not clear");
 182   assert(_partial_obj_size == 0, "not clear");
 183   assert(_destination == NULL, "not clear");
 184   assert(_destination_count == 0, "not clear");
 185   assert(_dest_region_addr == NULL, "not clear");
 186   assert(_first_src_addr == NULL, "not clear");
 187 }
 188 #endif  // #ifdef ASSERT
 189 
 190 
 191 void PSParallelCompact::print_on_error(outputStream* st) {
 192   _mark_bitmap.print_on_error(st);
 193 }
 194 
 195 #ifndef PRODUCT
 196 const char* PSParallelCompact::space_names[] = {
 197   "old ", "eden", "from", "to  "
 198 };
 199 
 200 void PSParallelCompact::print_region_ranges() {
 201   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 202     return;
 203   }
 204   Log(gc, compaction) log;
 205   ResourceMark rm;
 206   Universe::print_on(log.trace_stream());
 207   log.trace("space  bottom     top        end        new_top");
 208   log.trace("------ ---------- ---------- ---------- ----------");
 209 
 210   for (unsigned int id = 0; id < last_space_id; ++id) {
 211     const MutableSpace* space = _space_info[id].space();
 212     log.trace("%u %s "
 213               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 214               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 215               id, space_names[id],
 216               summary_data().addr_to_region_idx(space->bottom()),
 217               summary_data().addr_to_region_idx(space->top()),
 218               summary_data().addr_to_region_idx(space->end()),
 219               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 220   }
 221 }
 222 
 223 void
 224 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 225 {
 226 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 227 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 228 
 229   ParallelCompactData& sd = PSParallelCompact::summary_data();
 230   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 231   log_develop_trace(gc, compaction)(
 232       REGION_IDX_FORMAT " " PTR_FORMAT " "
 233       REGION_IDX_FORMAT " " PTR_FORMAT " "
 234       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 235       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 236       i, p2i(c->data_location()), dci, p2i(c->destination()),
 237       c->partial_obj_size(), c->live_obj_size(),
 238       c->data_size(), c->source_region(), c->destination_count());
 239 
 240 #undef  REGION_IDX_FORMAT
 241 #undef  REGION_DATA_FORMAT
 242 }
 243 
 244 void
 245 print_generic_summary_data(ParallelCompactData& summary_data,
 246                            HeapWord* const beg_addr,
 247                            HeapWord* const end_addr)
 248 {
 249   size_t total_words = 0;
 250   size_t i = summary_data.addr_to_region_idx(beg_addr);
 251   const size_t last = summary_data.addr_to_region_idx(end_addr);
 252   HeapWord* pdest = 0;
 253 
 254   while (i < last) {
 255     ParallelCompactData::RegionData* c = summary_data.region(i);
 256     if (c->data_size() != 0 || c->destination() != pdest) {
 257       print_generic_summary_region(i, c);
 258       total_words += c->data_size();
 259       pdest = c->destination();
 260     }
 261     ++i;
 262   }
 263 
 264   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 265 }
 266 
 267 void
 268 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 269                                               HeapWord* const beg_addr,
 270                                               HeapWord* const end_addr) {
 271   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 272 }
 273 
 274 void
 275 print_generic_summary_data(ParallelCompactData& summary_data,
 276                            SpaceInfo* space_info)
 277 {
 278   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 279     return;
 280   }
 281 
 282   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 283     const MutableSpace* space = space_info[id].space();
 284     print_generic_summary_data(summary_data, space->bottom(),
 285                                MAX2(space->top(), space_info[id].new_top()));
 286   }
 287 }
 288 
 289 void
 290 print_initial_summary_data(ParallelCompactData& summary_data,
 291                            const MutableSpace* space) {
 292   if (space->top() == space->bottom()) {
 293     return;
 294   }
 295 
 296   const size_t region_size = ParallelCompactData::RegionSize;
 297   typedef ParallelCompactData::RegionData RegionData;
 298   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 299   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 300   const RegionData* c = summary_data.region(end_region - 1);
 301   HeapWord* end_addr = c->destination() + c->data_size();
 302   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 303 
 304   // Print (and count) the full regions at the beginning of the space.
 305   size_t full_region_count = 0;
 306   size_t i = summary_data.addr_to_region_idx(space->bottom());
 307   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 308     ParallelCompactData::RegionData* c = summary_data.region(i);
 309     log_develop_trace(gc, compaction)(
 310         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 311         i, p2i(c->destination()),
 312         c->partial_obj_size(), c->live_obj_size(),
 313         c->data_size(), c->source_region(), c->destination_count());
 314     ++full_region_count;
 315     ++i;
 316   }
 317 
 318   size_t live_to_right = live_in_space - full_region_count * region_size;
 319 
 320   double max_reclaimed_ratio = 0.0;
 321   size_t max_reclaimed_ratio_region = 0;
 322   size_t max_dead_to_right = 0;
 323   size_t max_live_to_right = 0;
 324 
 325   // Print the 'reclaimed ratio' for regions while there is something live in
 326   // the region or to the right of it.  The remaining regions are empty (and
 327   // uninteresting), and computing the ratio will result in division by 0.
 328   while (i < end_region && live_to_right > 0) {
 329     c = summary_data.region(i);
 330     HeapWord* const region_addr = summary_data.region_to_addr(i);
 331     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 332     const size_t dead_to_right = used_to_right - live_to_right;
 333     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 334 
 335     if (reclaimed_ratio > max_reclaimed_ratio) {
 336             max_reclaimed_ratio = reclaimed_ratio;
 337             max_reclaimed_ratio_region = i;
 338             max_dead_to_right = dead_to_right;
 339             max_live_to_right = live_to_right;
 340     }
 341 
 342     ParallelCompactData::RegionData* c = summary_data.region(i);
 343     log_develop_trace(gc, compaction)(
 344         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 345         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 346         i, p2i(c->destination()),
 347         c->partial_obj_size(), c->live_obj_size(),
 348         c->data_size(), c->source_region(), c->destination_count(),
 349         reclaimed_ratio, dead_to_right, live_to_right);
 350 
 351 
 352     live_to_right -= c->data_size();
 353     ++i;
 354   }
 355 
 356   // Any remaining regions are empty.  Print one more if there is one.
 357   if (i < end_region) {
 358     ParallelCompactData::RegionData* c = summary_data.region(i);
 359     log_develop_trace(gc, compaction)(
 360         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 361          i, p2i(c->destination()),
 362          c->partial_obj_size(), c->live_obj_size(),
 363          c->data_size(), c->source_region(), c->destination_count());
 364   }
 365 
 366   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 367                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 368 }
 369 
 370 void
 371 print_initial_summary_data(ParallelCompactData& summary_data,
 372                            SpaceInfo* space_info) {
 373   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 374     return;
 375   }
 376 
 377   unsigned int id = PSParallelCompact::old_space_id;
 378   const MutableSpace* space;
 379   do {
 380     space = space_info[id].space();
 381     print_initial_summary_data(summary_data, space);
 382   } while (++id < PSParallelCompact::eden_space_id);
 383 
 384   do {
 385     space = space_info[id].space();
 386     print_generic_summary_data(summary_data, space->bottom(), space->top());
 387   } while (++id < PSParallelCompact::last_space_id);
 388 }
 389 #endif  // #ifndef PRODUCT
 390 
 391 #ifdef  ASSERT
 392 size_t add_obj_count;
 393 size_t add_obj_size;
 394 size_t mark_bitmap_count;
 395 size_t mark_bitmap_size;
 396 #endif  // #ifdef ASSERT
 397 
 398 ParallelCompactData::ParallelCompactData()
 399 {
 400   _region_start = 0;
 401 
 402   _region_vspace = 0;
 403   _reserved_byte_size = 0;
 404   _region_data = 0;
 405   _region_count = 0;
 406 
 407   _block_vspace = 0;
 408   _block_data = 0;
 409   _block_count = 0;
 410 }
 411 
 412 bool ParallelCompactData::initialize(MemRegion covered_region)
 413 {
 414   _region_start = covered_region.start();
 415   const size_t region_size = covered_region.word_size();
 416   DEBUG_ONLY(_region_end = _region_start + region_size;)
 417 
 418   assert(region_align_down(_region_start) == _region_start,
 419          "region start not aligned");
 420   assert((region_size & RegionSizeOffsetMask) == 0,
 421          "region size not a multiple of RegionSize");
 422 
 423   bool result = initialize_region_data(region_size) && initialize_block_data();
 424   return result;
 425 }
 426 
 427 PSVirtualSpace*
 428 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 429 {
 430   const size_t raw_bytes = count * element_size;
 431   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 432   const size_t granularity = os::vm_allocation_granularity();
 433   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 434 
 435   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 436     MAX2(page_sz, granularity);
 437   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 438   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 439                        rs.size());
 440 
 441   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 442 
 443   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 444   if (vspace != 0) {
 445     if (vspace->expand_by(_reserved_byte_size)) {
 446       return vspace;
 447     }
 448     delete vspace;
 449     // Release memory reserved in the space.
 450     rs.release();
 451   }
 452 
 453   return 0;
 454 }
 455 
 456 bool ParallelCompactData::initialize_region_data(size_t region_size)
 457 {
 458   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 459   _region_vspace = create_vspace(count, sizeof(RegionData));
 460   if (_region_vspace != 0) {
 461     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 462     _region_count = count;
 463     return true;
 464   }
 465   return false;
 466 }
 467 
 468 bool ParallelCompactData::initialize_block_data()
 469 {
 470   assert(_region_count != 0, "region data must be initialized first");
 471   const size_t count = _region_count << Log2BlocksPerRegion;
 472   _block_vspace = create_vspace(count, sizeof(BlockData));
 473   if (_block_vspace != 0) {
 474     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 475     _block_count = count;
 476     return true;
 477   }
 478   return false;
 479 }
 480 
 481 void ParallelCompactData::clear()
 482 {
 483   memset(_region_data, 0, _region_vspace->committed_size());
 484   memset(_block_data, 0, _block_vspace->committed_size());
 485 }
 486 
 487 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 488   assert(beg_region <= _region_count, "beg_region out of range");
 489   assert(end_region <= _region_count, "end_region out of range");
 490   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 491 
 492   const size_t region_cnt = end_region - beg_region;
 493   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 494 
 495   const size_t beg_block = beg_region * BlocksPerRegion;
 496   const size_t block_cnt = region_cnt * BlocksPerRegion;
 497   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 498 }
 499 
 500 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 501 {
 502   const RegionData* cur_cp = region(region_idx);
 503   const RegionData* const end_cp = region(region_count() - 1);
 504 
 505   HeapWord* result = region_to_addr(region_idx);
 506   if (cur_cp < end_cp) {
 507     do {
 508       result += cur_cp->partial_obj_size();
 509     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 510   }
 511   return result;
 512 }
 513 
 514 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 515 {
 516   const size_t obj_ofs = pointer_delta(addr, _region_start);
 517   const size_t beg_region = obj_ofs >> Log2RegionSize;
 518   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 519 
 520   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 521   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 522 
 523   if (beg_region == end_region) {
 524     // All in one region.
 525     _region_data[beg_region].add_live_obj(len);
 526     return;
 527   }
 528 
 529   // First region.
 530   const size_t beg_ofs = region_offset(addr);
 531   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 532 
 533   Klass* klass = ((oop)addr)->klass();
 534   // Middle regions--completely spanned by this object.
 535   for (size_t region = beg_region + 1; region < end_region; ++region) {
 536     _region_data[region].set_partial_obj_size(RegionSize);
 537     _region_data[region].set_partial_obj_addr(addr);
 538   }
 539 
 540   // Last region.
 541   const size_t end_ofs = region_offset(addr + len - 1);
 542   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 543   _region_data[end_region].set_partial_obj_addr(addr);
 544 }
 545 
 546 void
 547 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 548 {
 549   assert(region_offset(beg) == 0, "not RegionSize aligned");
 550   assert(region_offset(end) == 0, "not RegionSize aligned");
 551 
 552   size_t cur_region = addr_to_region_idx(beg);
 553   const size_t end_region = addr_to_region_idx(end);
 554   HeapWord* addr = beg;
 555   while (cur_region < end_region) {
 556     _region_data[cur_region].set_destination(addr);
 557     _region_data[cur_region].set_destination_count(0);
 558     _region_data[cur_region].set_source_region(cur_region);
 559     _region_data[cur_region].set_data_location(addr);
 560 
 561     // Update live_obj_size so the region appears completely full.
 562     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 563     _region_data[cur_region].set_live_obj_size(live_size);
 564 
 565     ++cur_region;
 566     addr += RegionSize;
 567   }
 568 }
 569 
 570 // Find the point at which a space can be split and, if necessary, record the
 571 // split point.
 572 //
 573 // If the current src region (which overflowed the destination space) doesn't
 574 // have a partial object, the split point is at the beginning of the current src
 575 // region (an "easy" split, no extra bookkeeping required).
 576 //
 577 // If the current src region has a partial object, the split point is in the
 578 // region where that partial object starts (call it the split_region).  If
 579 // split_region has a partial object, then the split point is just after that
 580 // partial object (a "hard" split where we have to record the split data and
 581 // zero the partial_obj_size field).  With a "hard" split, we know that the
 582 // partial_obj ends within split_region because the partial object that caused
 583 // the overflow starts in split_region.  If split_region doesn't have a partial
 584 // obj, then the split is at the beginning of split_region (another "easy"
 585 // split).
 586 HeapWord*
 587 ParallelCompactData::summarize_split_space(size_t src_region,
 588                                            SplitInfo& split_info,
 589                                            HeapWord* destination,
 590                                            HeapWord* target_end,
 591                                            HeapWord** target_next)
 592 {
 593   assert(destination <= target_end, "sanity");
 594   assert(destination + _region_data[src_region].data_size() > target_end,
 595     "region should not fit into target space");
 596   assert(is_region_aligned(target_end), "sanity");
 597 
 598   size_t split_region = src_region;
 599   HeapWord* split_destination = destination;
 600   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 601 
 602   if (destination + partial_obj_size > target_end) {
 603     // The split point is just after the partial object (if any) in the
 604     // src_region that contains the start of the object that overflowed the
 605     // destination space.
 606     //
 607     // Find the start of the "overflow" object and set split_region to the
 608     // region containing it.
 609     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 610     split_region = addr_to_region_idx(overflow_obj);
 611 
 612     // Clear the source_region field of all destination regions whose first word
 613     // came from data after the split point (a non-null source_region field
 614     // implies a region must be filled).
 615     //
 616     // An alternative to the simple loop below:  clear during post_compact(),
 617     // which uses memcpy instead of individual stores, and is easy to
 618     // parallelize.  (The downside is that it clears the entire RegionData
 619     // object as opposed to just one field.)
 620     //
 621     // post_compact() would have to clear the summary data up to the highest
 622     // address that was written during the summary phase, which would be
 623     //
 624     //         max(top, max(new_top, clear_top))
 625     //
 626     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 627     // to target_end.
 628     const RegionData* const sr = region(split_region);
 629     const size_t beg_idx =
 630       addr_to_region_idx(region_align_up(sr->destination() +
 631                                          sr->partial_obj_size()));
 632     const size_t end_idx = addr_to_region_idx(target_end);
 633 
 634     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 635     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 636       _region_data[idx].set_source_region(0);
 637     }
 638 
 639     // Set split_destination and partial_obj_size to reflect the split region.
 640     split_destination = sr->destination();
 641     partial_obj_size = sr->partial_obj_size();
 642   }
 643 
 644   // The split is recorded only if a partial object extends onto the region.
 645   if (partial_obj_size != 0) {
 646     _region_data[split_region].set_partial_obj_size(0);
 647     split_info.record(split_region, partial_obj_size, split_destination);
 648   }
 649 
 650   // Setup the continuation addresses.
 651   *target_next = split_destination + partial_obj_size;
 652   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 653 
 654   if (log_develop_is_enabled(Trace, gc, compaction)) {
 655     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 656     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 657                                       split_type, p2i(source_next), split_region, partial_obj_size);
 658     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 659                                       split_type, p2i(split_destination),
 660                                       addr_to_region_idx(split_destination),
 661                                       p2i(*target_next));
 662 
 663     if (partial_obj_size != 0) {
 664       HeapWord* const po_beg = split_info.destination();
 665       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 666       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 667                                         split_type,
 668                                         p2i(po_beg), addr_to_region_idx(po_beg),
 669                                         p2i(po_end), addr_to_region_idx(po_end));
 670     }
 671   }
 672 
 673   return source_next;
 674 }
 675 
 676 bool ParallelCompactData::summarize(SplitInfo& split_info,
 677                                     HeapWord* source_beg, HeapWord* source_end,
 678                                     HeapWord** source_next,
 679                                     HeapWord* target_beg, HeapWord* target_end,
 680                                     HeapWord** target_next)
 681 {
 682   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 683   log_develop_trace(gc, compaction)(
 684       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 685       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 686       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 687       p2i(target_beg), p2i(target_end), p2i(*target_next));
 688 
 689   size_t cur_region = addr_to_region_idx(source_beg);
 690   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 691 
 692   HeapWord *dest_addr = target_beg;
 693   while (cur_region < end_region) {
 694     // The destination must be set even if the region has no data.
 695     _region_data[cur_region].set_destination(dest_addr);
 696 
 697     size_t words = _region_data[cur_region].data_size();
 698     if (words > 0) {
 699       // If cur_region does not fit entirely into the target space, find a point
 700       // at which the source space can be 'split' so that part is copied to the
 701       // target space and the rest is copied elsewhere.
 702       if (dest_addr + words > target_end) {
 703         assert(source_next != NULL, "source_next is NULL when splitting");
 704         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 705                                              target_end, target_next);
 706         return false;
 707       }
 708 
 709       // Compute the destination_count for cur_region, and if necessary, update
 710       // source_region for a destination region.  The source_region field is
 711       // updated if cur_region is the first (left-most) region to be copied to a
 712       // destination region.
 713       //
 714       // The destination_count calculation is a bit subtle.  A region that has
 715       // data that compacts into itself does not count itself as a destination.
 716       // This maintains the invariant that a zero count means the region is
 717       // available and can be claimed and then filled.
 718       uint destination_count = 0;
 719       if (split_info.is_split(cur_region)) {
 720         // The current region has been split:  the partial object will be copied
 721         // to one destination space and the remaining data will be copied to
 722         // another destination space.  Adjust the initial destination_count and,
 723         // if necessary, set the source_region field if the partial object will
 724         // cross a destination region boundary.
 725         destination_count = split_info.destination_count();
 726         if (destination_count == 2) {
 727           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 728           _region_data[dest_idx].set_source_region(cur_region);
 729         }
 730       }
 731 
 732       HeapWord* const last_addr = dest_addr + words - 1;
 733       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 734       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 735 
 736       // Initially assume that the destination regions will be the same and
 737       // adjust the value below if necessary.  Under this assumption, if
 738       // cur_region == dest_region_2, then cur_region will be compacted
 739       // completely into itself.
 740       destination_count += cur_region == dest_region_2 ? 0 : 1;
 741       if (dest_region_1 != dest_region_2) {
 742         // Destination regions differ; adjust destination_count.
 743         destination_count += 1;
 744         // Data from cur_region will be copied to the start of dest_region_2.
 745         _region_data[dest_region_2].set_source_region(cur_region);
 746       } else if (region_offset(dest_addr) == 0) {
 747         // Data from cur_region will be copied to the start of the destination
 748         // region.
 749         _region_data[dest_region_1].set_source_region(cur_region);
 750       }
 751 
 752       _region_data[cur_region].set_destination_count(destination_count);
 753       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 754       dest_addr += words;
 755     }
 756 
 757     ++cur_region;
 758   }
 759 
 760   *target_next = dest_addr;
 761   return true;
 762 }
 763 
 764 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 765   assert(addr != NULL, "Should detect NULL oop earlier");
 766   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 767   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 768 
 769   // Region covering the object.
 770   RegionData* const region_ptr = addr_to_region_ptr(addr);
 771   HeapWord* result = region_ptr->destination();
 772 
 773   // If the entire Region is live, the new location is region->destination + the
 774   // offset of the object within in the Region.
 775 
 776   // Run some performance tests to determine if this special case pays off.  It
 777   // is worth it for pointers into the dense prefix.  If the optimization to
 778   // avoid pointer updates in regions that only point to the dense prefix is
 779   // ever implemented, this should be revisited.
 780   if (region_ptr->data_size() == RegionSize) {
 781     result += region_offset(addr);
 782     return result;
 783   }
 784 
 785   // Otherwise, the new location is region->destination + block offset + the
 786   // number of live words in the Block that are (a) to the left of addr and (b)
 787   // due to objects that start in the Block.
 788 
 789   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 790   // threads may fill the block table for a region (harmless, since it is
 791   // idempotent).
 792   if (!region_ptr->blocks_filled()) {
 793     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 794     region_ptr->set_blocks_filled();
 795   }
 796 
 797   HeapWord* const search_start = block_align_down(addr);
 798   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 799 
 800   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 801   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 802   result += block_offset + live;
 803   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 804   return result;
 805 }
 806 
 807 #ifdef ASSERT
 808 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 809 {
 810   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 811   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 812   for (const size_t* p = beg; p < end; ++p) {
 813     assert(*p == 0, "not zero");
 814   }
 815 }
 816 
 817 void ParallelCompactData::verify_clear()
 818 {
 819   verify_clear(_region_vspace);
 820   verify_clear(_block_vspace);
 821 }
 822 #endif  // #ifdef ASSERT
 823 
 824 STWGCTimer          PSParallelCompact::_gc_timer;
 825 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 826 elapsedTimer        PSParallelCompact::_accumulated_time;
 827 unsigned int        PSParallelCompact::_total_invocations = 0;
 828 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 829 jlong               PSParallelCompact::_time_of_last_gc = 0;
 830 CollectorCounters*  PSParallelCompact::_counters = NULL;
 831 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 832 ParallelCompactData PSParallelCompact::_summary_data;
 833 
 834 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 835 
 836 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 837 
 838 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 839   PSParallelCompact::AdjustPointerClosure closure(_cm);
 840   klass->oops_do(&closure);
 841 }
 842 
 843 void PSParallelCompact::post_initialize() {
 844   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 845   MemRegion mr = heap->reserved_region();
 846   _ref_processor =
 847     new ReferenceProcessor(mr,            // span
 848                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 849                            ParallelGCThreads, // mt processing degree
 850                            true,              // mt discovery
 851                            ParallelGCThreads, // mt discovery degree
 852                            true,              // atomic_discovery
 853                            &_is_alive_closure); // non-header is alive closure
 854   _counters = new CollectorCounters("PSParallelCompact", 1);
 855 
 856   // Initialize static fields in ParCompactionManager.
 857   ParCompactionManager::initialize(mark_bitmap());
 858 }
 859 
 860 bool PSParallelCompact::initialize() {
 861   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 862   MemRegion mr = heap->reserved_region();
 863 
 864   // Was the old gen get allocated successfully?
 865   if (!heap->old_gen()->is_allocated()) {
 866     return false;
 867   }
 868 
 869   initialize_space_info();
 870   initialize_dead_wood_limiter();
 871 
 872   if (!_mark_bitmap.initialize(mr)) {
 873     vm_shutdown_during_initialization(
 874       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 875       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 876       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 877     return false;
 878   }
 879 
 880   if (!_summary_data.initialize(mr)) {
 881     vm_shutdown_during_initialization(
 882       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 883       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 884       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 885     return false;
 886   }
 887 
 888   return true;
 889 }
 890 
 891 void PSParallelCompact::initialize_space_info()
 892 {
 893   memset(&_space_info, 0, sizeof(_space_info));
 894 
 895   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 896   PSYoungGen* young_gen = heap->young_gen();
 897 
 898   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 899   _space_info[eden_space_id].set_space(young_gen->eden_space());
 900   _space_info[from_space_id].set_space(young_gen->from_space());
 901   _space_info[to_space_id].set_space(young_gen->to_space());
 902 
 903   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 904 }
 905 
 906 void PSParallelCompact::initialize_dead_wood_limiter()
 907 {
 908   const size_t max = 100;
 909   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 910   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 911   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 912   DEBUG_ONLY(_dwl_initialized = true;)
 913   _dwl_adjustment = normal_distribution(1.0);
 914 }
 915 
 916 void
 917 PSParallelCompact::clear_data_covering_space(SpaceId id)
 918 {
 919   // At this point, top is the value before GC, new_top() is the value that will
 920   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 921   // should be marked above top.  The summary data is cleared to the larger of
 922   // top & new_top.
 923   MutableSpace* const space = _space_info[id].space();
 924   HeapWord* const bot = space->bottom();
 925   HeapWord* const top = space->top();
 926   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 927 
 928   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 929   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 930   _mark_bitmap.clear_range(beg_bit, end_bit);
 931 
 932   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 933   const size_t end_region =
 934     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 935   _summary_data.clear_range(beg_region, end_region);
 936 
 937   // Clear the data used to 'split' regions.
 938   SplitInfo& split_info = _space_info[id].split_info();
 939   if (split_info.is_valid()) {
 940     split_info.clear();
 941   }
 942   DEBUG_ONLY(split_info.verify_clear();)
 943 }
 944 
 945 void PSParallelCompact::pre_compact()
 946 {
 947   // Update the from & to space pointers in space_info, since they are swapped
 948   // at each young gen gc.  Do the update unconditionally (even though a
 949   // promotion failure does not swap spaces) because an unknown number of young
 950   // collections will have swapped the spaces an unknown number of times.
 951   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 952   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 953   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 954   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 955 
 956   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 957   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 958 
 959   // Increment the invocation count
 960   heap->increment_total_collections(true);
 961 
 962   // We need to track unique mark sweep invocations as well.
 963   _total_invocations++;
 964 
 965   heap->print_heap_before_gc();
 966   heap->trace_heap_before_gc(&_gc_tracer);
 967 
 968   // Fill in TLABs
 969   heap->accumulate_statistics_all_tlabs();
 970   heap->ensure_parsability(true);  // retire TLABs
 971 
 972   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 973     HandleMark hm;  // Discard invalid handles created during verification
 974     Universe::verify("Before GC");
 975   }
 976 
 977   // Verify object start arrays
 978   if (VerifyObjectStartArray &&
 979       VerifyBeforeGC) {
 980     heap->old_gen()->verify_object_start_array();
 981   }
 982 
 983   DEBUG_ONLY(mark_bitmap()->verify_clear();)
 984   DEBUG_ONLY(summary_data().verify_clear();)
 985 
 986   // Have worker threads release resources the next time they run a task.
 987   gc_task_manager()->release_all_resources();
 988 
 989   ParCompactionManager::reset_all_bitmap_query_caches();
 990 }
 991 
 992 void PSParallelCompact::post_compact()
 993 {
 994   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
 995 
 996   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
 997     // Clear the marking bitmap, summary data and split info.
 998     clear_data_covering_space(SpaceId(id));
 999     // Update top().  Must be done after clearing the bitmap and summary data.
1000     _space_info[id].publish_new_top();
1001   }
1002 
1003   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1004   MutableSpace* const from_space = _space_info[from_space_id].space();
1005   MutableSpace* const to_space   = _space_info[to_space_id].space();
1006 
1007   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1008   bool eden_empty = eden_space->is_empty();
1009   if (!eden_empty) {
1010     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1011                                             heap->young_gen(), heap->old_gen());
1012   }
1013 
1014   // Update heap occupancy information which is used as input to the soft ref
1015   // clearing policy at the next gc.
1016   Universe::update_heap_info_at_gc();
1017 
1018   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1019     to_space->is_empty();
1020 
1021   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1022   MemRegion old_mr = heap->old_gen()->reserved();
1023   if (young_gen_empty) {
1024     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1025   } else {
1026     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1027   }
1028 
1029   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1030   ClassLoaderDataGraph::purge();
1031   MetaspaceAux::verify_metrics();
1032 
1033   CodeCache::gc_epilogue();
1034   JvmtiExport::gc_epilogue();
1035 
1036 #if defined(COMPILER2) || INCLUDE_JVMCI
1037   DerivedPointerTable::update_pointers();
1038 #endif
1039 
1040   ref_processor()->enqueue_discovered_references(NULL);
1041 
1042   if (ZapUnusedHeapArea) {
1043     heap->gen_mangle_unused_area();
1044   }
1045 
1046   // Update time of last GC
1047   reset_millis_since_last_gc();
1048 }
1049 
1050 HeapWord*
1051 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1052                                                     bool maximum_compaction)
1053 {
1054   const size_t region_size = ParallelCompactData::RegionSize;
1055   const ParallelCompactData& sd = summary_data();
1056 
1057   const MutableSpace* const space = _space_info[id].space();
1058   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1059   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1060   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1061 
1062   // Skip full regions at the beginning of the space--they are necessarily part
1063   // of the dense prefix.
1064   size_t full_count = 0;
1065   const RegionData* cp;
1066   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1067     ++full_count;
1068   }
1069 
1070   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1071   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1072   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1073   if (maximum_compaction || cp == end_cp || interval_ended) {
1074     _maximum_compaction_gc_num = total_invocations();
1075     return sd.region_to_addr(cp);
1076   }
1077 
1078   HeapWord* const new_top = _space_info[id].new_top();
1079   const size_t space_live = pointer_delta(new_top, space->bottom());
1080   const size_t space_used = space->used_in_words();
1081   const size_t space_capacity = space->capacity_in_words();
1082 
1083   const double cur_density = double(space_live) / space_capacity;
1084   const double deadwood_density =
1085     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1086   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1087 
1088   if (TraceParallelOldGCDensePrefix) {
1089     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1090                   cur_density, deadwood_density, deadwood_goal);
1091     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1092                   "space_cap=" SIZE_FORMAT,
1093                   space_live, space_used,
1094                   space_capacity);
1095   }
1096 
1097   // XXX - Use binary search?
1098   HeapWord* dense_prefix = sd.region_to_addr(cp);
1099   const RegionData* full_cp = cp;
1100   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1101   while (cp < end_cp) {
1102     HeapWord* region_destination = cp->destination();
1103     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1104     if (TraceParallelOldGCDensePrefix && Verbose) {
1105       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1106                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1107                     sd.region(cp), p2i(region_destination),
1108                     p2i(dense_prefix), cur_deadwood);
1109     }
1110 
1111     if (cur_deadwood >= deadwood_goal) {
1112       // Found the region that has the correct amount of deadwood to the left.
1113       // This typically occurs after crossing a fairly sparse set of regions, so
1114       // iterate backwards over those sparse regions, looking for the region
1115       // that has the lowest density of live objects 'to the right.'
1116       size_t space_to_left = sd.region(cp) * region_size;
1117       size_t live_to_left = space_to_left - cur_deadwood;
1118       size_t space_to_right = space_capacity - space_to_left;
1119       size_t live_to_right = space_live - live_to_left;
1120       double density_to_right = double(live_to_right) / space_to_right;
1121       while (cp > full_cp) {
1122         --cp;
1123         const size_t prev_region_live_to_right = live_to_right -
1124           cp->data_size();
1125         const size_t prev_region_space_to_right = space_to_right + region_size;
1126         double prev_region_density_to_right =
1127           double(prev_region_live_to_right) / prev_region_space_to_right;
1128         if (density_to_right <= prev_region_density_to_right) {
1129           return dense_prefix;
1130         }
1131         if (TraceParallelOldGCDensePrefix && Verbose) {
1132           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1133                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1134                         prev_region_density_to_right);
1135         }
1136         dense_prefix -= region_size;
1137         live_to_right = prev_region_live_to_right;
1138         space_to_right = prev_region_space_to_right;
1139         density_to_right = prev_region_density_to_right;
1140       }
1141       return dense_prefix;
1142     }
1143 
1144     dense_prefix += region_size;
1145     ++cp;
1146   }
1147 
1148   return dense_prefix;
1149 }
1150 
1151 #ifndef PRODUCT
1152 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1153                                                  const SpaceId id,
1154                                                  const bool maximum_compaction,
1155                                                  HeapWord* const addr)
1156 {
1157   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1158   RegionData* const cp = summary_data().region(region_idx);
1159   const MutableSpace* const space = _space_info[id].space();
1160   HeapWord* const new_top = _space_info[id].new_top();
1161 
1162   const size_t space_live = pointer_delta(new_top, space->bottom());
1163   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1164   const size_t space_cap = space->capacity_in_words();
1165   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1166   const size_t live_to_right = new_top - cp->destination();
1167   const size_t dead_to_right = space->top() - addr - live_to_right;
1168 
1169   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1170                 "spl=" SIZE_FORMAT " "
1171                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1172                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1173                 " ratio=%10.8f",
1174                 algorithm, p2i(addr), region_idx,
1175                 space_live,
1176                 dead_to_left, dead_to_left_pct,
1177                 dead_to_right, live_to_right,
1178                 double(dead_to_right) / live_to_right);
1179 }
1180 #endif  // #ifndef PRODUCT
1181 
1182 // Return a fraction indicating how much of the generation can be treated as
1183 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1184 // based on the density of live objects in the generation to determine a limit,
1185 // which is then adjusted so the return value is min_percent when the density is
1186 // 1.
1187 //
1188 // The following table shows some return values for a different values of the
1189 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1190 // min_percent is 1.
1191 //
1192 //                          fraction allowed as dead wood
1193 //         -----------------------------------------------------------------
1194 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1195 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1196 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1197 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1198 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1199 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1200 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1201 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1202 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1203 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1204 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1205 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1206 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1207 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1208 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1209 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1210 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1211 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1212 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1213 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1214 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1215 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1216 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1217 
1218 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1219 {
1220   assert(_dwl_initialized, "uninitialized");
1221 
1222   // The raw limit is the value of the normal distribution at x = density.
1223   const double raw_limit = normal_distribution(density);
1224 
1225   // Adjust the raw limit so it becomes the minimum when the density is 1.
1226   //
1227   // First subtract the adjustment value (which is simply the precomputed value
1228   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1229   // Then add the minimum value, so the minimum is returned when the density is
1230   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1231   const double min = double(min_percent) / 100.0;
1232   const double limit = raw_limit - _dwl_adjustment + min;
1233   return MAX2(limit, 0.0);
1234 }
1235 
1236 ParallelCompactData::RegionData*
1237 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1238                                            const RegionData* end)
1239 {
1240   const size_t region_size = ParallelCompactData::RegionSize;
1241   ParallelCompactData& sd = summary_data();
1242   size_t left = sd.region(beg);
1243   size_t right = end > beg ? sd.region(end) - 1 : left;
1244 
1245   // Binary search.
1246   while (left < right) {
1247     // Equivalent to (left + right) / 2, but does not overflow.
1248     const size_t middle = left + (right - left) / 2;
1249     RegionData* const middle_ptr = sd.region(middle);
1250     HeapWord* const dest = middle_ptr->destination();
1251     HeapWord* const addr = sd.region_to_addr(middle);
1252     assert(dest != NULL, "sanity");
1253     assert(dest <= addr, "must move left");
1254 
1255     if (middle > left && dest < addr) {
1256       right = middle - 1;
1257     } else if (middle < right && middle_ptr->data_size() == region_size) {
1258       left = middle + 1;
1259     } else {
1260       return middle_ptr;
1261     }
1262   }
1263   return sd.region(left);
1264 }
1265 
1266 ParallelCompactData::RegionData*
1267 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1268                                           const RegionData* end,
1269                                           size_t dead_words)
1270 {
1271   ParallelCompactData& sd = summary_data();
1272   size_t left = sd.region(beg);
1273   size_t right = end > beg ? sd.region(end) - 1 : left;
1274 
1275   // Binary search.
1276   while (left < right) {
1277     // Equivalent to (left + right) / 2, but does not overflow.
1278     const size_t middle = left + (right - left) / 2;
1279     RegionData* const middle_ptr = sd.region(middle);
1280     HeapWord* const dest = middle_ptr->destination();
1281     HeapWord* const addr = sd.region_to_addr(middle);
1282     assert(dest != NULL, "sanity");
1283     assert(dest <= addr, "must move left");
1284 
1285     const size_t dead_to_left = pointer_delta(addr, dest);
1286     if (middle > left && dead_to_left > dead_words) {
1287       right = middle - 1;
1288     } else if (middle < right && dead_to_left < dead_words) {
1289       left = middle + 1;
1290     } else {
1291       return middle_ptr;
1292     }
1293   }
1294   return sd.region(left);
1295 }
1296 
1297 // The result is valid during the summary phase, after the initial summarization
1298 // of each space into itself, and before final summarization.
1299 inline double
1300 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1301                                    HeapWord* const bottom,
1302                                    HeapWord* const top,
1303                                    HeapWord* const new_top)
1304 {
1305   ParallelCompactData& sd = summary_data();
1306 
1307   assert(cp != NULL, "sanity");
1308   assert(bottom != NULL, "sanity");
1309   assert(top != NULL, "sanity");
1310   assert(new_top != NULL, "sanity");
1311   assert(top >= new_top, "summary data problem?");
1312   assert(new_top > bottom, "space is empty; should not be here");
1313   assert(new_top >= cp->destination(), "sanity");
1314   assert(top >= sd.region_to_addr(cp), "sanity");
1315 
1316   HeapWord* const destination = cp->destination();
1317   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1318   const size_t compacted_region_live = pointer_delta(new_top, destination);
1319   const size_t compacted_region_used = pointer_delta(top,
1320                                                      sd.region_to_addr(cp));
1321   const size_t reclaimable = compacted_region_used - compacted_region_live;
1322 
1323   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1324   return double(reclaimable) / divisor;
1325 }
1326 
1327 // Return the address of the end of the dense prefix, a.k.a. the start of the
1328 // compacted region.  The address is always on a region boundary.
1329 //
1330 // Completely full regions at the left are skipped, since no compaction can
1331 // occur in those regions.  Then the maximum amount of dead wood to allow is
1332 // computed, based on the density (amount live / capacity) of the generation;
1333 // the region with approximately that amount of dead space to the left is
1334 // identified as the limit region.  Regions between the last completely full
1335 // region and the limit region are scanned and the one that has the best
1336 // (maximum) reclaimed_ratio() is selected.
1337 HeapWord*
1338 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1339                                         bool maximum_compaction)
1340 {
1341   const size_t region_size = ParallelCompactData::RegionSize;
1342   const ParallelCompactData& sd = summary_data();
1343 
1344   const MutableSpace* const space = _space_info[id].space();
1345   HeapWord* const top = space->top();
1346   HeapWord* const top_aligned_up = sd.region_align_up(top);
1347   HeapWord* const new_top = _space_info[id].new_top();
1348   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1349   HeapWord* const bottom = space->bottom();
1350   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1351   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1352   const RegionData* const new_top_cp =
1353     sd.addr_to_region_ptr(new_top_aligned_up);
1354 
1355   // Skip full regions at the beginning of the space--they are necessarily part
1356   // of the dense prefix.
1357   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1358   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1359          space->is_empty(), "no dead space allowed to the left");
1360   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1361          "region must have dead space");
1362 
1363   // The gc number is saved whenever a maximum compaction is done, and used to
1364   // determine when the maximum compaction interval has expired.  This avoids
1365   // successive max compactions for different reasons.
1366   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1367   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1368   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1369     total_invocations() == HeapFirstMaximumCompactionCount;
1370   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1371     _maximum_compaction_gc_num = total_invocations();
1372     return sd.region_to_addr(full_cp);
1373   }
1374 
1375   const size_t space_live = pointer_delta(new_top, bottom);
1376   const size_t space_used = space->used_in_words();
1377   const size_t space_capacity = space->capacity_in_words();
1378 
1379   const double density = double(space_live) / double(space_capacity);
1380   const size_t min_percent_free = MarkSweepDeadRatio;
1381   const double limiter = dead_wood_limiter(density, min_percent_free);
1382   const size_t dead_wood_max = space_used - space_live;
1383   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1384                                       dead_wood_max);
1385 
1386   if (TraceParallelOldGCDensePrefix) {
1387     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1388                   "space_cap=" SIZE_FORMAT,
1389                   space_live, space_used,
1390                   space_capacity);
1391     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1392                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1393                   density, min_percent_free, limiter,
1394                   dead_wood_max, dead_wood_limit);
1395   }
1396 
1397   // Locate the region with the desired amount of dead space to the left.
1398   const RegionData* const limit_cp =
1399     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1400 
1401   // Scan from the first region with dead space to the limit region and find the
1402   // one with the best (largest) reclaimed ratio.
1403   double best_ratio = 0.0;
1404   const RegionData* best_cp = full_cp;
1405   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1406     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1407     if (tmp_ratio > best_ratio) {
1408       best_cp = cp;
1409       best_ratio = tmp_ratio;
1410     }
1411   }
1412 
1413   return sd.region_to_addr(best_cp);
1414 }
1415 
1416 void PSParallelCompact::summarize_spaces_quick()
1417 {
1418   for (unsigned int i = 0; i < last_space_id; ++i) {
1419     const MutableSpace* space = _space_info[i].space();
1420     HeapWord** nta = _space_info[i].new_top_addr();
1421     bool result = _summary_data.summarize(_space_info[i].split_info(),
1422                                           space->bottom(), space->top(), NULL,
1423                                           space->bottom(), space->end(), nta);
1424     assert(result, "space must fit into itself");
1425     _space_info[i].set_dense_prefix(space->bottom());
1426   }
1427 }
1428 
1429 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1430 {
1431   HeapWord* const dense_prefix_end = dense_prefix(id);
1432   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1433   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1434   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1435     // Only enough dead space is filled so that any remaining dead space to the
1436     // left is larger than the minimum filler object.  (The remainder is filled
1437     // during the copy/update phase.)
1438     //
1439     // The size of the dead space to the right of the boundary is not a
1440     // concern, since compaction will be able to use whatever space is
1441     // available.
1442     //
1443     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1444     // surrounds the space to be filled with an object.
1445     //
1446     // In the 32-bit VM, each bit represents two 32-bit words:
1447     //                              +---+
1448     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1449     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1450     //                              +---+
1451     //
1452     // In the 64-bit VM, each bit represents one 64-bit word:
1453     //                              +------------+
1454     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1455     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1456     //                              +------------+
1457     //                          +-------+
1458     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1459     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1460     //                          +-------+
1461     //                      +-----------+
1462     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1463     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1464     //                      +-----------+
1465     //                          +-------+
1466     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1467     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1468     //                          +-------+
1469 
1470     // Initially assume case a, c or e will apply.
1471     size_t obj_len = CollectedHeap::min_fill_size();
1472     HeapWord* obj_beg = dense_prefix_end - obj_len;
1473 
1474 #ifdef  _LP64
1475     if (MinObjAlignment > 1) { // object alignment > heap word size
1476       // Cases a, c or e.
1477     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1478       // Case b above.
1479       obj_beg = dense_prefix_end - 1;
1480     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1481                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1482       // Case d above.
1483       obj_beg = dense_prefix_end - 3;
1484       obj_len = 3;
1485     }
1486 #endif  // #ifdef _LP64
1487 
1488     CollectedHeap::fill_with_object(obj_beg, obj_len);
1489     _mark_bitmap.mark_obj(obj_beg, obj_len);
1490     _summary_data.add_obj(obj_beg, obj_len);
1491     assert(start_array(id) != NULL, "sanity");
1492     start_array(id)->allocate_block(obj_beg);
1493   }
1494 }
1495 
1496 void
1497 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1498 {
1499   assert(id < last_space_id, "id out of range");
1500   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1501          "should have been reset in summarize_spaces_quick()");
1502 
1503   const MutableSpace* space = _space_info[id].space();
1504   if (_space_info[id].new_top() != space->bottom()) {
1505     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1506     _space_info[id].set_dense_prefix(dense_prefix_end);
1507 
1508 #ifndef PRODUCT
1509     if (TraceParallelOldGCDensePrefix) {
1510       print_dense_prefix_stats("ratio", id, maximum_compaction,
1511                                dense_prefix_end);
1512       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1513       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1514     }
1515 #endif  // #ifndef PRODUCT
1516 
1517     // Recompute the summary data, taking into account the dense prefix.  If
1518     // every last byte will be reclaimed, then the existing summary data which
1519     // compacts everything can be left in place.
1520     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1521       // If dead space crosses the dense prefix boundary, it is (at least
1522       // partially) filled with a dummy object, marked live and added to the
1523       // summary data.  This simplifies the copy/update phase and must be done
1524       // before the final locations of objects are determined, to prevent
1525       // leaving a fragment of dead space that is too small to fill.
1526       fill_dense_prefix_end(id);
1527 
1528       // Compute the destination of each Region, and thus each object.
1529       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1530       _summary_data.summarize(_space_info[id].split_info(),
1531                               dense_prefix_end, space->top(), NULL,
1532                               dense_prefix_end, space->end(),
1533                               _space_info[id].new_top_addr());
1534     }
1535   }
1536 
1537   if (log_develop_is_enabled(Trace, gc, compaction)) {
1538     const size_t region_size = ParallelCompactData::RegionSize;
1539     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1540     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1541     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1542     HeapWord* const new_top = _space_info[id].new_top();
1543     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1544     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1545     log_develop_trace(gc, compaction)(
1546         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1547         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1548         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1549         id, space->capacity_in_words(), p2i(dense_prefix_end),
1550         dp_region, dp_words / region_size,
1551         cr_words / region_size, p2i(new_top));
1552   }
1553 }
1554 
1555 #ifndef PRODUCT
1556 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1557                                           HeapWord* dst_beg, HeapWord* dst_end,
1558                                           SpaceId src_space_id,
1559                                           HeapWord* src_beg, HeapWord* src_end)
1560 {
1561   log_develop_trace(gc, compaction)(
1562       "Summarizing %d [%s] into %d [%s]:  "
1563       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1564       SIZE_FORMAT "-" SIZE_FORMAT " "
1565       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1566       SIZE_FORMAT "-" SIZE_FORMAT,
1567       src_space_id, space_names[src_space_id],
1568       dst_space_id, space_names[dst_space_id],
1569       p2i(src_beg), p2i(src_end),
1570       _summary_data.addr_to_region_idx(src_beg),
1571       _summary_data.addr_to_region_idx(src_end),
1572       p2i(dst_beg), p2i(dst_end),
1573       _summary_data.addr_to_region_idx(dst_beg),
1574       _summary_data.addr_to_region_idx(dst_end));
1575 }
1576 #endif  // #ifndef PRODUCT
1577 
1578 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1579                                       bool maximum_compaction)
1580 {
1581   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1582 
1583 #ifdef  ASSERT
1584   if (TraceParallelOldGCMarkingPhase) {
1585     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1586                   "add_obj_bytes=" SIZE_FORMAT,
1587                   add_obj_count, add_obj_size * HeapWordSize);
1588     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1589                   "mark_bitmap_bytes=" SIZE_FORMAT,
1590                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1591   }
1592 #endif  // #ifdef ASSERT
1593 
1594   // Quick summarization of each space into itself, to see how much is live.
1595   summarize_spaces_quick();
1596 
1597   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1598   NOT_PRODUCT(print_region_ranges());
1599   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1600 
1601   // The amount of live data that will end up in old space (assuming it fits).
1602   size_t old_space_total_live = 0;
1603   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1604     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1605                                           _space_info[id].space()->bottom());
1606   }
1607 
1608   MutableSpace* const old_space = _space_info[old_space_id].space();
1609   const size_t old_capacity = old_space->capacity_in_words();
1610   if (old_space_total_live > old_capacity) {
1611     // XXX - should also try to expand
1612     maximum_compaction = true;
1613   }
1614 
1615   // Old generations.
1616   summarize_space(old_space_id, maximum_compaction);
1617 
1618   // Summarize the remaining spaces in the young gen.  The initial target space
1619   // is the old gen.  If a space does not fit entirely into the target, then the
1620   // remainder is compacted into the space itself and that space becomes the new
1621   // target.
1622   SpaceId dst_space_id = old_space_id;
1623   HeapWord* dst_space_end = old_space->end();
1624   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1625   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1626     const MutableSpace* space = _space_info[id].space();
1627     const size_t live = pointer_delta(_space_info[id].new_top(),
1628                                       space->bottom());
1629     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1630 
1631     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1632                                   SpaceId(id), space->bottom(), space->top());)
1633     if (live > 0 && live <= available) {
1634       // All the live data will fit.
1635       bool done = _summary_data.summarize(_space_info[id].split_info(),
1636                                           space->bottom(), space->top(),
1637                                           NULL,
1638                                           *new_top_addr, dst_space_end,
1639                                           new_top_addr);
1640       assert(done, "space must fit into old gen");
1641 
1642       // Reset the new_top value for the space.
1643       _space_info[id].set_new_top(space->bottom());
1644     } else if (live > 0) {
1645       // Attempt to fit part of the source space into the target space.
1646       HeapWord* next_src_addr = NULL;
1647       bool done = _summary_data.summarize(_space_info[id].split_info(),
1648                                           space->bottom(), space->top(),
1649                                           &next_src_addr,
1650                                           *new_top_addr, dst_space_end,
1651                                           new_top_addr);
1652       assert(!done, "space should not fit into old gen");
1653       assert(next_src_addr != NULL, "sanity");
1654 
1655       // The source space becomes the new target, so the remainder is compacted
1656       // within the space itself.
1657       dst_space_id = SpaceId(id);
1658       dst_space_end = space->end();
1659       new_top_addr = _space_info[id].new_top_addr();
1660       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1661                                     space->bottom(), dst_space_end,
1662                                     SpaceId(id), next_src_addr, space->top());)
1663       done = _summary_data.summarize(_space_info[id].split_info(),
1664                                      next_src_addr, space->top(),
1665                                      NULL,
1666                                      space->bottom(), dst_space_end,
1667                                      new_top_addr);
1668       assert(done, "space must fit when compacted into itself");
1669       assert(*new_top_addr <= space->top(), "usage should not grow");
1670     }
1671   }
1672 
1673   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1674   NOT_PRODUCT(print_region_ranges());
1675   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1676 }
1677 
1678 // This method should contain all heap-specific policy for invoking a full
1679 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1680 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1681 // before full gc, or any other specialized behavior, it needs to be added here.
1682 //
1683 // Note that this method should only be called from the vm_thread while at a
1684 // safepoint.
1685 //
1686 // Note that the all_soft_refs_clear flag in the collector policy
1687 // may be true because this method can be called without intervening
1688 // activity.  For example when the heap space is tight and full measure
1689 // are being taken to free space.
1690 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1691   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1692   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1693          "should be in vm thread");
1694 
1695   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1696   GCCause::Cause gc_cause = heap->gc_cause();
1697   assert(!heap->is_gc_active(), "not reentrant");
1698 
1699   PSAdaptiveSizePolicy* policy = heap->size_policy();
1700   IsGCActiveMark mark;
1701 
1702   if (ScavengeBeforeFullGC) {
1703     PSScavenge::invoke_no_policy();
1704   }
1705 
1706   const bool clear_all_soft_refs =
1707     heap->collector_policy()->should_clear_all_soft_refs();
1708 
1709   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1710                                       maximum_heap_compaction);
1711 }
1712 
1713 // This method contains no policy. You should probably
1714 // be calling invoke() instead.
1715 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1716   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1717   assert(ref_processor() != NULL, "Sanity");
1718 
1719   if (GCLocker::check_active_before_gc()) {
1720     return false;
1721   }
1722 
1723   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1724 
1725   GCIdMark gc_id_mark;
1726   _gc_timer.register_gc_start();
1727   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1728 
1729   TimeStamp marking_start;
1730   TimeStamp compaction_start;
1731   TimeStamp collection_exit;
1732 
1733   GCCause::Cause gc_cause = heap->gc_cause();
1734   PSYoungGen* young_gen = heap->young_gen();
1735   PSOldGen* old_gen = heap->old_gen();
1736   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1737 
1738   // The scope of casr should end after code that can change
1739   // CollectorPolicy::_should_clear_all_soft_refs.
1740   ClearedAllSoftRefs casr(maximum_heap_compaction,
1741                           heap->collector_policy());
1742 
1743   if (ZapUnusedHeapArea) {
1744     // Save information needed to minimize mangling
1745     heap->record_gen_tops_before_GC();
1746   }
1747 
1748   // Make sure data structures are sane, make the heap parsable, and do other
1749   // miscellaneous bookkeeping.
1750   pre_compact();
1751 
1752   PreGCValues pre_gc_values(heap);
1753 
1754   // Get the compaction manager reserved for the VM thread.
1755   ParCompactionManager* const vmthread_cm =
1756     ParCompactionManager::manager_array(gc_task_manager()->workers());
1757 
1758   {
1759     ResourceMark rm;
1760     HandleMark hm;
1761 
1762     // Set the number of GC threads to be used in this collection
1763     gc_task_manager()->set_active_gang();
1764     gc_task_manager()->task_idle_workers();
1765 
1766     GCTraceCPUTime tcpu;
1767     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1768 
1769     heap->pre_full_gc_dump(&_gc_timer);
1770 
1771     TraceCollectorStats tcs(counters());
1772     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1773 
1774     if (TraceOldGenTime) accumulated_time()->start();
1775 
1776     // Let the size policy know we're starting
1777     size_policy->major_collection_begin();
1778 
1779     CodeCache::gc_prologue();
1780 
1781 #if defined(COMPILER2) || INCLUDE_JVMCI
1782     DerivedPointerTable::clear();
1783 #endif
1784 
1785     ref_processor()->enable_discovery();
1786     ref_processor()->setup_policy(maximum_heap_compaction);
1787 
1788     bool marked_for_unloading = false;
1789 
1790     marking_start.update();
1791     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1792 
1793     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1794       && GCCause::is_user_requested_gc(gc_cause);
1795     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1796 
1797 #if defined(COMPILER2) || INCLUDE_JVMCI
1798     assert(DerivedPointerTable::is_active(), "Sanity");
1799     DerivedPointerTable::set_active(false);
1800 #endif
1801 
1802     // adjust_roots() updates Universe::_intArrayKlassObj which is
1803     // needed by the compaction for filling holes in the dense prefix.
1804     adjust_roots(vmthread_cm);
1805 
1806     compaction_start.update();
1807     compact();
1808 
1809     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1810     // done before resizing.
1811     post_compact();
1812 
1813     // Let the size policy know we're done
1814     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1815 
1816     if (UseAdaptiveSizePolicy) {
1817       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1818       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1819                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1820 
1821       // Don't check if the size_policy is ready here.  Let
1822       // the size_policy check that internally.
1823       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1824           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1825         // Swap the survivor spaces if from_space is empty. The
1826         // resize_young_gen() called below is normally used after
1827         // a successful young GC and swapping of survivor spaces;
1828         // otherwise, it will fail to resize the young gen with
1829         // the current implementation.
1830         if (young_gen->from_space()->is_empty()) {
1831           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1832           young_gen->swap_spaces();
1833         }
1834 
1835         // Calculate optimal free space amounts
1836         assert(young_gen->max_size() >
1837           young_gen->from_space()->capacity_in_bytes() +
1838           young_gen->to_space()->capacity_in_bytes(),
1839           "Sizes of space in young gen are out-of-bounds");
1840 
1841         size_t young_live = young_gen->used_in_bytes();
1842         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1843         size_t old_live = old_gen->used_in_bytes();
1844         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1845         size_t max_old_gen_size = old_gen->max_gen_size();
1846         size_t max_eden_size = young_gen->max_size() -
1847           young_gen->from_space()->capacity_in_bytes() -
1848           young_gen->to_space()->capacity_in_bytes();
1849 
1850         // Used for diagnostics
1851         size_policy->clear_generation_free_space_flags();
1852 
1853         size_policy->compute_generations_free_space(young_live,
1854                                                     eden_live,
1855                                                     old_live,
1856                                                     cur_eden,
1857                                                     max_old_gen_size,
1858                                                     max_eden_size,
1859                                                     true /* full gc*/);
1860 
1861         size_policy->check_gc_overhead_limit(young_live,
1862                                              eden_live,
1863                                              max_old_gen_size,
1864                                              max_eden_size,
1865                                              true /* full gc*/,
1866                                              gc_cause,
1867                                              heap->collector_policy());
1868 
1869         size_policy->decay_supplemental_growth(true /* full gc*/);
1870 
1871         heap->resize_old_gen(
1872           size_policy->calculated_old_free_size_in_bytes());
1873 
1874         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1875                                size_policy->calculated_survivor_size_in_bytes());
1876       }
1877 
1878       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1879     }
1880 
1881     if (UsePerfData) {
1882       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1883       counters->update_counters();
1884       counters->update_old_capacity(old_gen->capacity_in_bytes());
1885       counters->update_young_capacity(young_gen->capacity_in_bytes());
1886     }
1887 
1888     heap->resize_all_tlabs();
1889 
1890     // Resize the metaspace capacity after a collection
1891     MetaspaceGC::compute_new_size();
1892 
1893     if (TraceOldGenTime) {
1894       accumulated_time()->stop();
1895     }
1896 
1897     young_gen->print_used_change(pre_gc_values.young_gen_used());
1898     old_gen->print_used_change(pre_gc_values.old_gen_used());
1899     MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1900 
1901     // Track memory usage and detect low memory
1902     MemoryService::track_memory_usage();
1903     heap->update_counters();
1904     gc_task_manager()->release_idle_workers();
1905 
1906     heap->post_full_gc_dump(&_gc_timer);
1907   }
1908 
1909 #ifdef ASSERT
1910   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1911     ParCompactionManager* const cm =
1912       ParCompactionManager::manager_array(int(i));
1913     assert(cm->marking_stack()->is_empty(),       "should be empty");
1914     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1915   }
1916 #endif // ASSERT
1917 
1918   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1919     HandleMark hm;  // Discard invalid handles created during verification
1920     Universe::verify("After GC");
1921   }
1922 
1923   // Re-verify object start arrays
1924   if (VerifyObjectStartArray &&
1925       VerifyAfterGC) {
1926     old_gen->verify_object_start_array();
1927   }
1928 
1929   if (ZapUnusedHeapArea) {
1930     old_gen->object_space()->check_mangled_unused_area_complete();
1931   }
1932 
1933   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1934 
1935   collection_exit.update();
1936 
1937   heap->print_heap_after_gc();
1938   heap->trace_heap_after_gc(&_gc_tracer);
1939 
1940   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1941                          marking_start.ticks(), compaction_start.ticks(),
1942                          collection_exit.ticks());
1943   gc_task_manager()->print_task_time_stamps();
1944 
1945 #ifdef TRACESPINNING
1946   ParallelTaskTerminator::print_termination_counts();
1947 #endif
1948 
1949   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1950 
1951   _gc_timer.register_gc_end();
1952 
1953   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1954   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1955 
1956   return true;
1957 }
1958 
1959 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
1960                                              PSYoungGen* young_gen,
1961                                              PSOldGen* old_gen) {
1962   MutableSpace* const eden_space = young_gen->eden_space();
1963   assert(!eden_space->is_empty(), "eden must be non-empty");
1964   assert(young_gen->virtual_space()->alignment() ==
1965          old_gen->virtual_space()->alignment(), "alignments do not match");
1966 
1967   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
1968     return false;
1969   }
1970 
1971   // Both generations must be completely committed.
1972   if (young_gen->virtual_space()->uncommitted_size() != 0) {
1973     return false;
1974   }
1975   if (old_gen->virtual_space()->uncommitted_size() != 0) {
1976     return false;
1977   }
1978 
1979   // Figure out how much to take from eden.  Include the average amount promoted
1980   // in the total; otherwise the next young gen GC will simply bail out to a
1981   // full GC.
1982   const size_t alignment = old_gen->virtual_space()->alignment();
1983   const size_t eden_used = eden_space->used_in_bytes();
1984   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
1985   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
1986   const size_t eden_capacity = eden_space->capacity_in_bytes();
1987 
1988   if (absorb_size >= eden_capacity) {
1989     return false; // Must leave some space in eden.
1990   }
1991 
1992   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
1993   if (new_young_size < young_gen->min_gen_size()) {
1994     return false; // Respect young gen minimum size.
1995   }
1996 
1997   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "
1998                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
1999                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2000                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2001                         absorb_size / K,
2002                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2003                         young_gen->from_space()->used_in_bytes() / K,
2004                         young_gen->to_space()->used_in_bytes() / K,
2005                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2006 
2007   // Fill the unused part of the old gen.
2008   MutableSpace* const old_space = old_gen->object_space();
2009   HeapWord* const unused_start = old_space->top();
2010   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2011 
2012   if (unused_words > 0) {
2013     if (unused_words < CollectedHeap::min_fill_size()) {
2014       return false;  // If the old gen cannot be filled, must give up.
2015     }
2016     CollectedHeap::fill_with_objects(unused_start, unused_words);
2017   }
2018 
2019   // Take the live data from eden and set both top and end in the old gen to
2020   // eden top.  (Need to set end because reset_after_change() mangles the region
2021   // from end to virtual_space->high() in debug builds).
2022   HeapWord* const new_top = eden_space->top();
2023   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2024                                         absorb_size);
2025   young_gen->reset_after_change();
2026   old_space->set_top(new_top);
2027   old_space->set_end(new_top);
2028   old_gen->reset_after_change();
2029 
2030   // Update the object start array for the filler object and the data from eden.
2031   ObjectStartArray* const start_array = old_gen->start_array();
2032   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2033     start_array->allocate_block(p);
2034   }
2035 
2036   // Could update the promoted average here, but it is not typically updated at
2037   // full GCs and the value to use is unclear.  Something like
2038   //
2039   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2040 
2041   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2042   return true;
2043 }
2044 
2045 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2046   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2047     "shouldn't return NULL");
2048   return ParallelScavengeHeap::gc_task_manager();
2049 }
2050 
2051 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2052                                       bool maximum_heap_compaction,
2053                                       ParallelOldTracer *gc_tracer) {
2054   // Recursively traverse all live objects and mark them
2055   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2056 
2057   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2058   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2059   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2060   TaskQueueSetSuper* qset = ParCompactionManager::stack_array();
2061   ParallelTaskTerminator terminator(active_gc_threads, qset);
2062 
2063   ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2064   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2065 
2066   // Need new claim bits before marking starts.
2067   ClassLoaderDataGraph::clear_claimed_marks();
2068 
2069   {
2070     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2071 
2072     ParallelScavengeHeap::ParStrongRootsScope psrs;
2073 
2074     GCTaskQueue* q = GCTaskQueue::create();
2075 
2076     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2077     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2078     // We scan the thread roots in parallel
2079     Threads::create_thread_roots_marking_tasks(q);
2080     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2081     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2082     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2083     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2084     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2085     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2086     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2087 
2088     if (active_gc_threads > 1) {
2089       for (uint j = 0; j < active_gc_threads; j++) {
2090         q->enqueue(new StealMarkingTask(&terminator));
2091       }
2092     }
2093 
2094     gc_task_manager()->execute_and_wait(q);
2095   }
2096 
2097   // Process reference objects found during marking
2098   {
2099     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2100 
2101     ReferenceProcessorStats stats;
2102     if (ref_processor()->processing_is_mt()) {
2103       RefProcTaskExecutor task_executor;
2104       stats = ref_processor()->process_discovered_references(
2105         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2106         &task_executor, &_gc_timer);
2107     } else {
2108       stats = ref_processor()->process_discovered_references(
2109         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2110         &_gc_timer);
2111     }
2112 
2113     gc_tracer->report_gc_reference_stats(stats);
2114   }
2115 
2116   // This is the point where the entire marking should have completed.
2117   assert(cm->marking_stacks_empty(), "Marking should have completed");
2118 
2119   {
2120     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2121 
2122     // Follow system dictionary roots and unload classes.
2123     bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2124 
2125     // Unload nmethods.
2126     CodeCache::do_unloading(is_alive_closure(), purged_class);
2127 
2128     // Prune dead klasses from subklass/sibling/implementor lists.
2129     Klass::clean_weak_klass_links(is_alive_closure());
2130   }
2131 
2132   {
2133     GCTraceTime(Debug, gc, phases) t("Scrub String Table", &_gc_timer);
2134     // Delete entries for dead interned strings.
2135     StringTable::unlink(is_alive_closure());
2136   }
2137 
2138   {
2139     GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", &_gc_timer);
2140     // Clean up unreferenced symbols in symbol table.
2141     SymbolTable::unlink();
2142   }
2143 
2144   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2145 }
2146 
2147 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2148   // Adjust the pointers to reflect the new locations
2149   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2150 
2151   // Need new claim bits when tracing through and adjusting pointers.
2152   ClassLoaderDataGraph::clear_claimed_marks();
2153 
2154   PSParallelCompact::AdjustPointerClosure oop_closure(cm);
2155   PSParallelCompact::AdjustKlassClosure klass_closure(cm);
2156 
2157   // General strong roots.
2158   Universe::oops_do(&oop_closure);
2159   JNIHandles::oops_do(&oop_closure);   // Global (strong) JNI handles
2160   Threads::oops_do(&oop_closure, NULL);
2161   ObjectSynchronizer::oops_do(&oop_closure);
2162   FlatProfiler::oops_do(&oop_closure);
2163   Management::oops_do(&oop_closure);
2164   JvmtiExport::oops_do(&oop_closure);
2165   SystemDictionary::oops_do(&oop_closure);
2166   ClassLoaderDataGraph::oops_do(&oop_closure, &klass_closure, true);
2167 
2168   // Now adjust pointers in remaining weak roots.  (All of which should
2169   // have been cleared if they pointed to non-surviving objects.)
2170   // Global (weak) JNI handles
2171   JNIHandles::weak_oops_do(&oop_closure);
2172 
2173   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2174   CodeCache::blobs_do(&adjust_from_blobs);
2175   AOTLoader::oops_do(&oop_closure);
2176   StringTable::oops_do(&oop_closure);
2177   ref_processor()->weak_oops_do(&oop_closure);
2178   // Roots were visited so references into the young gen in roots
2179   // may have been scanned.  Process them also.
2180   // Should the reference processor have a span that excludes
2181   // young gen objects?
2182   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2183 }
2184 
2185 // Helper class to print 8 region numbers per line and then print the total at the end.
2186 class FillableRegionLogger : public StackObj {
2187 private:
2188   Log(gc, compaction) log;
2189   static const int LineLength = 8;
2190   size_t _regions[LineLength];
2191   int _next_index;
2192   bool _enabled;
2193   size_t _total_regions;
2194 public:
2195   FillableRegionLogger() : _next_index(0), _total_regions(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)) { }
2196   ~FillableRegionLogger() {
2197     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2198   }
2199 
2200   void print_line() {
2201     if (!_enabled || _next_index == 0) {
2202       return;
2203     }
2204     FormatBuffer<> line("Fillable: ");
2205     for (int i = 0; i < _next_index; i++) {
2206       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2207     }
2208     log.trace("%s", line.buffer());
2209     _next_index = 0;
2210   }
2211 
2212   void handle(size_t region) {
2213     if (!_enabled) {
2214       return;
2215     }
2216     _regions[_next_index++] = region;
2217     if (_next_index == LineLength) {
2218       print_line();
2219     }
2220     _total_regions++;
2221   }
2222 };
2223 
2224 void PSParallelCompact::prepare_region_draining_tasks(GCTaskQueue* q,
2225                                                       uint parallel_gc_threads)
2226 {
2227   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2228 
2229   // Find the threads that are active
2230   unsigned int which = 0;
2231 
2232   // Find all regions that are available (can be filled immediately) and
2233   // distribute them to the thread stacks.  The iteration is done in reverse
2234   // order (high to low) so the regions will be removed in ascending order.
2235 
2236   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2237 
2238   which = 0;
2239   // id + 1 is used to test termination so unsigned  can
2240   // be used with an old_space_id == 0.
2241   FillableRegionLogger region_logger;
2242   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2243     SpaceInfo* const space_info = _space_info + id;
2244     MutableSpace* const space = space_info->space();
2245     HeapWord* const new_top = space_info->new_top();
2246 
2247     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2248     const size_t end_region =
2249       sd.addr_to_region_idx(sd.region_align_up(new_top));
2250 
2251     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2252       if (sd.region(cur)->claim_unsafe()) {
2253         ParCompactionManager* cm = ParCompactionManager::manager_array(which);
2254         cm->region_stack()->push(cur);
2255         region_logger.handle(cur);
2256         // Assign regions to tasks in round-robin fashion.
2257         if (++which == parallel_gc_threads) {
2258           which = 0;
2259         }
2260       }
2261     }
2262     region_logger.print_line();
2263   }
2264 }
2265 
2266 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2267 
2268 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2269                                                     uint parallel_gc_threads) {
2270   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2271 
2272   ParallelCompactData& sd = PSParallelCompact::summary_data();
2273 
2274   // Iterate over all the spaces adding tasks for updating
2275   // regions in the dense prefix.  Assume that 1 gc thread
2276   // will work on opening the gaps and the remaining gc threads
2277   // will work on the dense prefix.
2278   unsigned int space_id;
2279   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2280     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2281     const MutableSpace* const space = _space_info[space_id].space();
2282 
2283     if (dense_prefix_end == space->bottom()) {
2284       // There is no dense prefix for this space.
2285       continue;
2286     }
2287 
2288     // The dense prefix is before this region.
2289     size_t region_index_end_dense_prefix =
2290         sd.addr_to_region_idx(dense_prefix_end);
2291     RegionData* const dense_prefix_cp =
2292       sd.region(region_index_end_dense_prefix);
2293     assert(dense_prefix_end == space->end() ||
2294            dense_prefix_cp->available() ||
2295            dense_prefix_cp->claimed(),
2296            "The region after the dense prefix should always be ready to fill");
2297 
2298     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2299 
2300     // Is there dense prefix work?
2301     size_t total_dense_prefix_regions =
2302       region_index_end_dense_prefix - region_index_start;
2303     // How many regions of the dense prefix should be given to
2304     // each thread?
2305     if (total_dense_prefix_regions > 0) {
2306       uint tasks_for_dense_prefix = 1;
2307       if (total_dense_prefix_regions <=
2308           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2309         // Don't over partition.  This assumes that
2310         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2311         // so there are not many regions to process.
2312         tasks_for_dense_prefix = parallel_gc_threads;
2313       } else {
2314         // Over partition
2315         tasks_for_dense_prefix = parallel_gc_threads *
2316           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2317       }
2318       size_t regions_per_thread = total_dense_prefix_regions /
2319         tasks_for_dense_prefix;
2320       // Give each thread at least 1 region.
2321       if (regions_per_thread == 0) {
2322         regions_per_thread = 1;
2323       }
2324 
2325       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2326         if (region_index_start >= region_index_end_dense_prefix) {
2327           break;
2328         }
2329         // region_index_end is not processed
2330         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2331                                        region_index_end_dense_prefix);
2332         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2333                                              region_index_start,
2334                                              region_index_end));
2335         region_index_start = region_index_end;
2336       }
2337     }
2338     // This gets any part of the dense prefix that did not
2339     // fit evenly.
2340     if (region_index_start < region_index_end_dense_prefix) {
2341       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2342                                            region_index_start,
2343                                            region_index_end_dense_prefix));
2344     }
2345   }
2346 }
2347 
2348 void PSParallelCompact::enqueue_region_stealing_tasks(
2349                                      GCTaskQueue* q,
2350                                      ParallelTaskTerminator* terminator_ptr,
2351                                      uint parallel_gc_threads) {
2352   GCTraceTime(Trace, gc, phases) tm("Steal Task Setup", &_gc_timer);
2353 
2354   // Once a thread has drained it's stack, it should try to steal regions from
2355   // other threads.
2356   for (uint j = 0; j < parallel_gc_threads; j++) {
2357     q->enqueue(new CompactionWithStealingTask(terminator_ptr));
2358   }
2359 }
2360 
2361 #ifdef ASSERT
2362 // Write a histogram of the number of times the block table was filled for a
2363 // region.
2364 void PSParallelCompact::write_block_fill_histogram()
2365 {
2366   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2367     return;
2368   }
2369 
2370   Log(gc, compaction) log;
2371   ResourceMark rm;
2372   outputStream* out = log.trace_stream();
2373 
2374   typedef ParallelCompactData::RegionData rd_t;
2375   ParallelCompactData& sd = summary_data();
2376 
2377   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2378     MutableSpace* const spc = _space_info[id].space();
2379     if (spc->bottom() != spc->top()) {
2380       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2381       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2382       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2383 
2384       size_t histo[5] = { 0, 0, 0, 0, 0 };
2385       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2386       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2387 
2388       for (const rd_t* cur = beg; cur < end; ++cur) {
2389         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2390       }
2391       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2392       for (size_t i = 0; i < histo_len; ++i) {
2393         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2394                    histo[i], 100.0 * histo[i] / region_cnt);
2395       }
2396       out->cr();
2397     }
2398   }
2399 }
2400 #endif // #ifdef ASSERT
2401 
2402 void PSParallelCompact::compact() {
2403   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2404 
2405   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2406   PSOldGen* old_gen = heap->old_gen();
2407   old_gen->start_array()->reset();
2408   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2409   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2410   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2411   ParallelTaskTerminator terminator(active_gc_threads, qset);
2412 
2413   GCTaskQueue* q = GCTaskQueue::create();
2414   prepare_region_draining_tasks(q, active_gc_threads);
2415   enqueue_dense_prefix_tasks(q, active_gc_threads);
2416   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2417 
2418   {
2419     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2420 
2421     gc_task_manager()->execute_and_wait(q);
2422 
2423 #ifdef  ASSERT
2424     // Verify that all regions have been processed before the deferred updates.
2425     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2426       verify_complete(SpaceId(id));
2427     }
2428 #endif
2429   }
2430 
2431   {
2432     // Update the deferred objects, if any.  Any compaction manager can be used.
2433     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2434     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2435     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2436       update_deferred_objects(cm, SpaceId(id));
2437     }
2438   }
2439 
2440   DEBUG_ONLY(write_block_fill_histogram());
2441 }
2442 
2443 #ifdef  ASSERT
2444 void PSParallelCompact::verify_complete(SpaceId space_id) {
2445   // All Regions between space bottom() to new_top() should be marked as filled
2446   // and all Regions between new_top() and top() should be available (i.e.,
2447   // should have been emptied).
2448   ParallelCompactData& sd = summary_data();
2449   SpaceInfo si = _space_info[space_id];
2450   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2451   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2452   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2453   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2454   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2455 
2456   bool issued_a_warning = false;
2457 
2458   size_t cur_region;
2459   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2460     const RegionData* const c = sd.region(cur_region);
2461     if (!c->completed()) {
2462       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2463                       cur_region, c->destination_count());
2464       issued_a_warning = true;
2465     }
2466   }
2467 
2468   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2469     const RegionData* const c = sd.region(cur_region);
2470     if (!c->available()) {
2471       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2472                       cur_region, c->destination_count());
2473       issued_a_warning = true;
2474     }
2475   }
2476 
2477   if (issued_a_warning) {
2478     print_region_ranges();
2479   }
2480 }
2481 #endif  // #ifdef ASSERT
2482 
2483 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2484   _start_array->allocate_block(addr);
2485   compaction_manager()->update_contents(oop(addr));
2486 }
2487 
2488 // Update interior oops in the ranges of regions [beg_region, end_region).
2489 void
2490 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2491                                                        SpaceId space_id,
2492                                                        size_t beg_region,
2493                                                        size_t end_region) {
2494   ParallelCompactData& sd = summary_data();
2495   ParMarkBitMap* const mbm = mark_bitmap();
2496 
2497   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2498   HeapWord* const end_addr = sd.region_to_addr(end_region);
2499   assert(beg_region <= end_region, "bad region range");
2500   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2501 
2502 #ifdef  ASSERT
2503   // Claim the regions to avoid triggering an assert when they are marked as
2504   // filled.
2505   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2506     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2507   }
2508 #endif  // #ifdef ASSERT
2509 
2510   if (beg_addr != space(space_id)->bottom()) {
2511     // Find the first live object or block of dead space that *starts* in this
2512     // range of regions.  If a partial object crosses onto the region, skip it;
2513     // it will be marked for 'deferred update' when the object head is
2514     // processed.  If dead space crosses onto the region, it is also skipped; it
2515     // will be filled when the prior region is processed.  If neither of those
2516     // apply, the first word in the region is the start of a live object or dead
2517     // space.
2518     assert(beg_addr > space(space_id)->bottom(), "sanity");
2519     const RegionData* const cp = sd.region(beg_region);
2520     if (cp->partial_obj_size() != 0) {
2521       beg_addr = sd.partial_obj_end(beg_region);
2522     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2523       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2524     }
2525   }
2526 
2527   if (beg_addr < end_addr) {
2528     // A live object or block of dead space starts in this range of Regions.
2529      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2530 
2531     // Create closures and iterate.
2532     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2533     FillClosure fill_closure(cm, space_id);
2534     ParMarkBitMap::IterationStatus status;
2535     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2536                           dense_prefix_end);
2537     if (status == ParMarkBitMap::incomplete) {
2538       update_closure.do_addr(update_closure.source());
2539     }
2540   }
2541 
2542   // Mark the regions as filled.
2543   RegionData* const beg_cp = sd.region(beg_region);
2544   RegionData* const end_cp = sd.region(end_region);
2545   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2546     cp->set_completed();
2547   }
2548 }
2549 
2550 // Return the SpaceId for the space containing addr.  If addr is not in the
2551 // heap, last_space_id is returned.  In debug mode it expects the address to be
2552 // in the heap and asserts such.
2553 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2554   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2555 
2556   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2557     if (_space_info[id].space()->contains(addr)) {
2558       return SpaceId(id);
2559     }
2560   }
2561 
2562   assert(false, "no space contains the addr");
2563   return last_space_id;
2564 }
2565 
2566 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2567                                                 SpaceId id) {
2568   assert(id < last_space_id, "bad space id");
2569 
2570   ParallelCompactData& sd = summary_data();
2571   const SpaceInfo* const space_info = _space_info + id;
2572   ObjectStartArray* const start_array = space_info->start_array();
2573 
2574   const MutableSpace* const space = space_info->space();
2575   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2576   HeapWord* const beg_addr = space_info->dense_prefix();
2577   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2578 
2579   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2580   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2581   const RegionData* cur_region;
2582   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2583     HeapWord* const addr = cur_region->deferred_obj_addr();
2584     if (addr != NULL) {
2585       if (start_array != NULL) {
2586         start_array->allocate_block(addr);
2587       }
2588       cm->update_contents(oop(addr));
2589       assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2590     }
2591   }
2592 }
2593 
2594 // Skip over count live words starting from beg, and return the address of the
2595 // next live word.  Unless marked, the word corresponding to beg is assumed to
2596 // be dead.  Callers must either ensure beg does not correspond to the middle of
2597 // an object, or account for those live words in some other way.  Callers must
2598 // also ensure that there are enough live words in the range [beg, end) to skip.
2599 HeapWord*
2600 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2601 {
2602   assert(count > 0, "sanity");
2603 
2604   ParMarkBitMap* m = mark_bitmap();
2605   idx_t bits_to_skip = m->words_to_bits(count);
2606   idx_t cur_beg = m->addr_to_bit(beg);
2607   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2608 
2609   do {
2610     cur_beg = m->find_obj_beg(cur_beg, search_end);
2611     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2612     const size_t obj_bits = cur_end - cur_beg + 1;
2613     if (obj_bits > bits_to_skip) {
2614       return m->bit_to_addr(cur_beg + bits_to_skip);
2615     }
2616     bits_to_skip -= obj_bits;
2617     cur_beg = cur_end + 1;
2618   } while (bits_to_skip > 0);
2619 
2620   // Skipping the desired number of words landed just past the end of an object.
2621   // Find the start of the next object.
2622   cur_beg = m->find_obj_beg(cur_beg, search_end);
2623   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2624   return m->bit_to_addr(cur_beg);
2625 }
2626 
2627 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2628                                             SpaceId src_space_id,
2629                                             size_t src_region_idx)
2630 {
2631   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2632 
2633   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2634   if (split_info.dest_region_addr() == dest_addr) {
2635     // The partial object ending at the split point contains the first word to
2636     // be copied to dest_addr.
2637     return split_info.first_src_addr();
2638   }
2639 
2640   const ParallelCompactData& sd = summary_data();
2641   ParMarkBitMap* const bitmap = mark_bitmap();
2642   const size_t RegionSize = ParallelCompactData::RegionSize;
2643 
2644   assert(sd.is_region_aligned(dest_addr), "not aligned");
2645   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2646   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2647   HeapWord* const src_region_destination = src_region_ptr->destination();
2648 
2649   assert(dest_addr >= src_region_destination, "wrong src region");
2650   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2651 
2652   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2653   HeapWord* const src_region_end = src_region_beg + RegionSize;
2654 
2655   HeapWord* addr = src_region_beg;
2656   if (dest_addr == src_region_destination) {
2657     // Return the first live word in the source region.
2658     if (partial_obj_size == 0) {
2659       addr = bitmap->find_obj_beg(addr, src_region_end);
2660       assert(addr < src_region_end, "no objects start in src region");
2661     }
2662     return addr;
2663   }
2664 
2665   // Must skip some live data.
2666   size_t words_to_skip = dest_addr - src_region_destination;
2667   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2668 
2669   if (partial_obj_size >= words_to_skip) {
2670     // All the live words to skip are part of the partial object.
2671     addr += words_to_skip;
2672     if (partial_obj_size == words_to_skip) {
2673       // Find the first live word past the partial object.
2674       addr = bitmap->find_obj_beg(addr, src_region_end);
2675       assert(addr < src_region_end, "wrong src region");
2676     }
2677     return addr;
2678   }
2679 
2680   // Skip over the partial object (if any).
2681   if (partial_obj_size != 0) {
2682     words_to_skip -= partial_obj_size;
2683     addr += partial_obj_size;
2684   }
2685 
2686   // Skip over live words due to objects that start in the region.
2687   addr = skip_live_words(addr, src_region_end, words_to_skip);
2688   assert(addr < src_region_end, "wrong src region");
2689   return addr;
2690 }
2691 
2692 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2693                                                      SpaceId src_space_id,
2694                                                      size_t beg_region,
2695                                                      HeapWord* end_addr)
2696 {
2697   ParallelCompactData& sd = summary_data();
2698 
2699 #ifdef ASSERT
2700   MutableSpace* const src_space = _space_info[src_space_id].space();
2701   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2702   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2703          "src_space_id does not match beg_addr");
2704   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2705          "src_space_id does not match end_addr");
2706 #endif // #ifdef ASSERT
2707 
2708   RegionData* const beg = sd.region(beg_region);
2709   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2710 
2711   // Regions up to new_top() are enqueued if they become available.
2712   HeapWord* const new_top = _space_info[src_space_id].new_top();
2713   RegionData* const enqueue_end =
2714     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2715 
2716   for (RegionData* cur = beg; cur < end; ++cur) {
2717     assert(cur->data_size() > 0, "region must have live data");
2718     cur->decrement_destination_count();
2719     if (cur < enqueue_end && cur->available() && cur->claim()) {
2720       cm->push_region(sd.region(cur));
2721     }
2722   }
2723 }
2724 
2725 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2726                                           SpaceId& src_space_id,
2727                                           HeapWord*& src_space_top,
2728                                           HeapWord* end_addr)
2729 {
2730   typedef ParallelCompactData::RegionData RegionData;
2731 
2732   ParallelCompactData& sd = PSParallelCompact::summary_data();
2733   const size_t region_size = ParallelCompactData::RegionSize;
2734 
2735   size_t src_region_idx = 0;
2736 
2737   // Skip empty regions (if any) up to the top of the space.
2738   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2739   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2740   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2741   const RegionData* const top_region_ptr =
2742     sd.addr_to_region_ptr(top_aligned_up);
2743   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2744     ++src_region_ptr;
2745   }
2746 
2747   if (src_region_ptr < top_region_ptr) {
2748     // The next source region is in the current space.  Update src_region_idx
2749     // and the source address to match src_region_ptr.
2750     src_region_idx = sd.region(src_region_ptr);
2751     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2752     if (src_region_addr > closure.source()) {
2753       closure.set_source(src_region_addr);
2754     }
2755     return src_region_idx;
2756   }
2757 
2758   // Switch to a new source space and find the first non-empty region.
2759   unsigned int space_id = src_space_id + 1;
2760   assert(space_id < last_space_id, "not enough spaces");
2761 
2762   HeapWord* const destination = closure.destination();
2763 
2764   do {
2765     MutableSpace* space = _space_info[space_id].space();
2766     HeapWord* const bottom = space->bottom();
2767     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2768 
2769     // Iterate over the spaces that do not compact into themselves.
2770     if (bottom_cp->destination() != bottom) {
2771       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2772       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2773 
2774       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2775         if (src_cp->live_obj_size() > 0) {
2776           // Found it.
2777           assert(src_cp->destination() == destination,
2778                  "first live obj in the space must match the destination");
2779           assert(src_cp->partial_obj_size() == 0,
2780                  "a space cannot begin with a partial obj");
2781 
2782           src_space_id = SpaceId(space_id);
2783           src_space_top = space->top();
2784           const size_t src_region_idx = sd.region(src_cp);
2785           closure.set_source(sd.region_to_addr(src_region_idx));
2786           return src_region_idx;
2787         } else {
2788           assert(src_cp->data_size() == 0, "sanity");
2789         }
2790       }
2791     }
2792   } while (++space_id < last_space_id);
2793 
2794   assert(false, "no source region was found");
2795   return 0;
2796 }
2797 
2798 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2799 {
2800   typedef ParMarkBitMap::IterationStatus IterationStatus;
2801   const size_t RegionSize = ParallelCompactData::RegionSize;
2802   ParMarkBitMap* const bitmap = mark_bitmap();
2803   ParallelCompactData& sd = summary_data();
2804   RegionData* const region_ptr = sd.region(region_idx);
2805 
2806   // Get the items needed to construct the closure.
2807   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2808   SpaceId dest_space_id = space_id(dest_addr);
2809   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2810   HeapWord* new_top = _space_info[dest_space_id].new_top();
2811   assert(dest_addr < new_top, "sanity");
2812   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2813 
2814   // Get the source region and related info.
2815   size_t src_region_idx = region_ptr->source_region();
2816   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2817   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2818 
2819   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2820   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2821 
2822   // Adjust src_region_idx to prepare for decrementing destination counts (the
2823   // destination count is not decremented when a region is copied to itself).
2824   if (src_region_idx == region_idx) {
2825     src_region_idx += 1;
2826   }
2827 
2828   if (bitmap->is_unmarked(closure.source())) {
2829     // The first source word is in the middle of an object; copy the remainder
2830     // of the object or as much as will fit.  The fact that pointer updates were
2831     // deferred will be noted when the object header is processed.
2832     HeapWord* const old_src_addr = closure.source();
2833     closure.copy_partial_obj();
2834     if (closure.is_full()) {
2835       decrement_destination_counts(cm, src_space_id, src_region_idx,
2836                                    closure.source());
2837       region_ptr->set_deferred_obj_addr(NULL);
2838       region_ptr->set_completed();
2839       return;
2840     }
2841 
2842     HeapWord* const end_addr = sd.region_align_down(closure.source());
2843     if (sd.region_align_down(old_src_addr) != end_addr) {
2844       // The partial object was copied from more than one source region.
2845       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2846 
2847       // Move to the next source region, possibly switching spaces as well.  All
2848       // args except end_addr may be modified.
2849       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2850                                        end_addr);
2851     }
2852   }
2853 
2854   do {
2855     HeapWord* const cur_addr = closure.source();
2856     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2857                                     src_space_top);
2858     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2859 
2860     if (status == ParMarkBitMap::incomplete) {
2861       // The last obj that starts in the source region does not end in the
2862       // region.
2863       assert(closure.source() < end_addr, "sanity");
2864       HeapWord* const obj_beg = closure.source();
2865       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2866                                        src_space_top);
2867       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2868       if (obj_end < range_end) {
2869         // The end was found; the entire object will fit.
2870         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2871         assert(status != ParMarkBitMap::would_overflow, "sanity");
2872       } else {
2873         // The end was not found; the object will not fit.
2874         assert(range_end < src_space_top, "obj cannot cross space boundary");
2875         status = ParMarkBitMap::would_overflow;
2876       }
2877     }
2878 
2879     if (status == ParMarkBitMap::would_overflow) {
2880       // The last object did not fit.  Note that interior oop updates were
2881       // deferred, then copy enough of the object to fill the region.
2882       region_ptr->set_deferred_obj_addr(closure.destination());
2883       status = closure.copy_until_full(); // copies from closure.source()
2884 
2885       decrement_destination_counts(cm, src_space_id, src_region_idx,
2886                                    closure.source());
2887       region_ptr->set_completed();
2888       return;
2889     }
2890 
2891     if (status == ParMarkBitMap::full) {
2892       decrement_destination_counts(cm, src_space_id, src_region_idx,
2893                                    closure.source());
2894       region_ptr->set_deferred_obj_addr(NULL);
2895       region_ptr->set_completed();
2896       return;
2897     }
2898 
2899     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2900 
2901     // Move to the next source region, possibly switching spaces as well.  All
2902     // args except end_addr may be modified.
2903     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2904                                      end_addr);
2905   } while (true);
2906 }
2907 
2908 void PSParallelCompact::fill_blocks(size_t region_idx)
2909 {
2910   // Fill in the block table elements for the specified region.  Each block
2911   // table element holds the number of live words in the region that are to the
2912   // left of the first object that starts in the block.  Thus only blocks in
2913   // which an object starts need to be filled.
2914   //
2915   // The algorithm scans the section of the bitmap that corresponds to the
2916   // region, keeping a running total of the live words.  When an object start is
2917   // found, if it's the first to start in the block that contains it, the
2918   // current total is written to the block table element.
2919   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2920   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2921   const size_t RegionSize = ParallelCompactData::RegionSize;
2922 
2923   ParallelCompactData& sd = summary_data();
2924   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2925   if (partial_obj_size >= RegionSize) {
2926     return; // No objects start in this region.
2927   }
2928 
2929   // Ensure the first loop iteration decides that the block has changed.
2930   size_t cur_block = sd.block_count();
2931 
2932   const ParMarkBitMap* const bitmap = mark_bitmap();
2933 
2934   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2935   assert((size_t)1 << Log2BitsPerBlock ==
2936          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2937 
2938   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2939   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2940   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2941   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2942   while (beg_bit < range_end) {
2943     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2944     if (new_block != cur_block) {
2945       cur_block = new_block;
2946       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2947     }
2948 
2949     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2950     if (end_bit < range_end - 1) {
2951       live_bits += end_bit - beg_bit + 1;
2952       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2953     } else {
2954       return;
2955     }
2956   }
2957 }
2958 
2959 void
2960 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
2961   const MutableSpace* sp = space(space_id);
2962   if (sp->is_empty()) {
2963     return;
2964   }
2965 
2966   ParallelCompactData& sd = PSParallelCompact::summary_data();
2967   ParMarkBitMap* const bitmap = mark_bitmap();
2968   HeapWord* const dp_addr = dense_prefix(space_id);
2969   HeapWord* beg_addr = sp->bottom();
2970   HeapWord* end_addr = sp->top();
2971 
2972   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
2973 
2974   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
2975   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
2976   if (beg_region < dp_region) {
2977     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
2978   }
2979 
2980   // The destination of the first live object that starts in the region is one
2981   // past the end of the partial object entering the region (if any).
2982   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
2983   HeapWord* const new_top = _space_info[space_id].new_top();
2984   assert(new_top >= dest_addr, "bad new_top value");
2985   const size_t words = pointer_delta(new_top, dest_addr);
2986 
2987   if (words > 0) {
2988     ObjectStartArray* start_array = _space_info[space_id].start_array();
2989     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2990 
2991     ParMarkBitMap::IterationStatus status;
2992     status = bitmap->iterate(&closure, dest_addr, end_addr);
2993     assert(status == ParMarkBitMap::full, "iteration not complete");
2994     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
2995            "live objects skipped because closure is full");
2996   }
2997 }
2998 
2999 jlong PSParallelCompact::millis_since_last_gc() {
3000   // We need a monotonically non-decreasing time in ms but
3001   // os::javaTimeMillis() does not guarantee monotonicity.
3002   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3003   jlong ret_val = now - _time_of_last_gc;
3004   // XXX See note in genCollectedHeap::millis_since_last_gc().
3005   if (ret_val < 0) {
3006     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3007     return 0;
3008   }
3009   return ret_val;
3010 }
3011 
3012 void PSParallelCompact::reset_millis_since_last_gc() {
3013   // We need a monotonically non-decreasing time in ms but
3014   // os::javaTimeMillis() does not guarantee monotonicity.
3015   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3016 }
3017 
3018 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3019 {
3020   if (source() != destination()) {
3021     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3022     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3023   }
3024   update_state(words_remaining());
3025   assert(is_full(), "sanity");
3026   return ParMarkBitMap::full;
3027 }
3028 
3029 void MoveAndUpdateClosure::copy_partial_obj()
3030 {
3031   size_t words = words_remaining();
3032 
3033   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3034   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3035   if (end_addr < range_end) {
3036     words = bitmap()->obj_size(source(), end_addr);
3037   }
3038 
3039   // This test is necessary; if omitted, the pointer updates to a partial object
3040   // that crosses the dense prefix boundary could be overwritten.
3041   if (source() != destination()) {
3042     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3043     Copy::aligned_conjoint_words(source(), destination(), words);
3044   }
3045   update_state(words);
3046 }
3047 
3048 void InstanceKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3049   PSParallelCompact::AdjustPointerClosure closure(cm);
3050   oop_oop_iterate_oop_maps<true>(obj, &closure);
3051 }
3052 
3053 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3054   InstanceKlass::oop_pc_update_pointers(obj, cm);
3055 
3056   PSParallelCompact::AdjustPointerClosure closure(cm);
3057   oop_oop_iterate_statics<true>(obj, &closure);
3058 }
3059 
3060 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3061   InstanceKlass::oop_pc_update_pointers(obj, cm);
3062 }
3063 
3064 #ifdef ASSERT
3065 template <class T> static void trace_reference_gc(const char *s, oop obj,
3066                                                   T* referent_addr,
3067                                                   T* next_addr,
3068                                                   T* discovered_addr) {
3069   log_develop_trace(gc, ref)("%s obj " PTR_FORMAT, s, p2i(obj));
3070   log_develop_trace(gc, ref)("     referent_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3071                              p2i(referent_addr), referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3072   log_develop_trace(gc, ref)("     next_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3073                              p2i(next_addr), next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3074   log_develop_trace(gc, ref)("     discovered_addr/* " PTR_FORMAT " / " PTR_FORMAT,
3075                              p2i(discovered_addr), discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3076 }
3077 #endif
3078 
3079 template <class T>
3080 static void oop_pc_update_pointers_specialized(oop obj, ParCompactionManager* cm) {
3081   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3082   PSParallelCompact::adjust_pointer(referent_addr, cm);
3083   T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3084   PSParallelCompact::adjust_pointer(next_addr, cm);
3085   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3086   PSParallelCompact::adjust_pointer(discovered_addr, cm);
3087   debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj,
3088                                 referent_addr, next_addr, discovered_addr);)
3089 }
3090 
3091 void InstanceRefKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3092   InstanceKlass::oop_pc_update_pointers(obj, cm);
3093 
3094   if (UseCompressedOops) {
3095     oop_pc_update_pointers_specialized<narrowOop>(obj, cm);
3096   } else {
3097     oop_pc_update_pointers_specialized<oop>(obj, cm);
3098   }
3099 }
3100 
3101 void ObjArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3102   assert(obj->is_objArray(), "obj must be obj array");
3103   PSParallelCompact::AdjustPointerClosure closure(cm);
3104   oop_oop_iterate_elements<true>(objArrayOop(obj), &closure);
3105 }
3106 
3107 void TypeArrayKlass::oop_pc_update_pointers(oop obj, ParCompactionManager* cm) {
3108   assert(obj->is_typeArray(),"must be a type array");
3109 }
3110 
3111 ParMarkBitMapClosure::IterationStatus
3112 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3113   assert(destination() != NULL, "sanity");
3114   assert(bitmap()->obj_size(addr) == words, "bad size");
3115 
3116   _source = addr;
3117   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3118          destination(), "wrong destination");
3119 
3120   if (words > words_remaining()) {
3121     return ParMarkBitMap::would_overflow;
3122   }
3123 
3124   // The start_array must be updated even if the object is not moving.
3125   if (_start_array != NULL) {
3126     _start_array->allocate_block(destination());
3127   }
3128 
3129   if (destination() != source()) {
3130     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3131     Copy::aligned_conjoint_words(source(), destination(), words);
3132   }
3133 
3134   oop moved_oop = (oop) destination();
3135   compaction_manager()->update_contents(moved_oop);
3136   assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3137 
3138   update_state(words);
3139   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3140   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3141 }
3142 
3143 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3144                                      ParCompactionManager* cm,
3145                                      PSParallelCompact::SpaceId space_id) :
3146   ParMarkBitMapClosure(mbm, cm),
3147   _space_id(space_id),
3148   _start_array(PSParallelCompact::start_array(space_id))
3149 {
3150 }
3151 
3152 // Updates the references in the object to their new values.
3153 ParMarkBitMapClosure::IterationStatus
3154 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3155   do_addr(addr);
3156   return ParMarkBitMap::incomplete;
3157 }
3158 
3159 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3160   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3161   _start_array(PSParallelCompact::start_array(space_id))
3162 {
3163   assert(space_id == PSParallelCompact::old_space_id,
3164          "cannot use FillClosure in the young gen");
3165 }
3166 
3167 ParMarkBitMapClosure::IterationStatus
3168 FillClosure::do_addr(HeapWord* addr, size_t size) {
3169   CollectedHeap::fill_with_objects(addr, size);
3170   HeapWord* const end = addr + size;
3171   do {
3172     _start_array->allocate_block(addr);
3173     addr += oop(addr)->size();
3174   } while (addr < end);
3175   return ParMarkBitMap::incomplete;
3176 }