1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_PARALLEL_PARMARKBITMAP_HPP
  26 #define SHARE_VM_GC_PARALLEL_PARMARKBITMAP_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "oops/oop.hpp"
  30 #include "utilities/bitMap.hpp"
  31 
  32 class ParMarkBitMapClosure;
  33 class PSVirtualSpace;
  34 class ParCompactionManager;
  35 
  36 class ParMarkBitMap: public CHeapObj<mtGC>
  37 {
  38 public:
  39   typedef BitMap::idx_t idx_t;
  40 
  41   // Values returned by the iterate() methods.
  42   enum IterationStatus { incomplete, complete, full, would_overflow };
  43 
  44   inline ParMarkBitMap();
  45   bool initialize(MemRegion covered_region);
  46 
  47   // Atomically mark an object as live.
  48   bool mark_obj(HeapWord* addr, size_t size);
  49   inline bool mark_obj(oop obj, int size);
  50 
  51   // Return whether the specified begin or end bit is set.
  52   inline bool is_obj_beg(idx_t bit) const;
  53   inline bool is_obj_end(idx_t bit) const;
  54 
  55   // Traditional interface for testing whether an object is marked or not (these
  56   // test only the begin bits).
  57   inline bool is_marked(idx_t bit)      const;
  58   inline bool is_marked(HeapWord* addr) const;
  59   inline bool is_marked(oop obj)        const;
  60 
  61   inline bool is_unmarked(idx_t bit)      const;
  62   inline bool is_unmarked(HeapWord* addr) const;
  63   inline bool is_unmarked(oop obj)        const;
  64 
  65   // Convert sizes from bits to HeapWords and back.  An object that is n bits
  66   // long will be bits_to_words(n) words long.  An object that is m words long
  67   // will take up words_to_bits(m) bits in the bitmap.
  68   inline static size_t bits_to_words(idx_t bits);
  69   inline static idx_t  words_to_bits(size_t words);
  70 
  71   // Return the size in words of an object given a begin bit and an end bit, or
  72   // the equivalent beg_addr and end_addr.
  73   inline size_t obj_size(idx_t beg_bit, idx_t end_bit) const;
  74   inline size_t obj_size(HeapWord* beg_addr, HeapWord* end_addr) const;
  75 
  76   // Return the size in words of the object (a search is done for the end bit).
  77   inline size_t obj_size(idx_t beg_bit)  const;
  78   inline size_t obj_size(HeapWord* addr) const;
  79 
  80   // Apply live_closure to each live object that lies completely within the
  81   // range [live_range_beg, live_range_end).  This is used to iterate over the
  82   // compacted region of the heap.  Return values:
  83   //
  84   // incomplete         The iteration is not complete.  The last object that
  85   //                    begins in the range does not end in the range;
  86   //                    closure->source() is set to the start of that object.
  87   //
  88   // complete           The iteration is complete.  All objects in the range
  89   //                    were processed and the closure is not full;
  90   //                    closure->source() is set one past the end of the range.
  91   //
  92   // full               The closure is full; closure->source() is set to one
  93   //                    past the end of the last object processed.
  94   //
  95   // would_overflow     The next object in the range would overflow the closure;
  96   //                    closure->source() is set to the start of that object.
  97   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
  98                           idx_t range_beg, idx_t range_end) const;
  99   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 100                                  HeapWord* range_beg,
 101                                  HeapWord* range_end) const;
 102 
 103   // Apply live closure as above and additionally apply dead_closure to all dead
 104   // space in the range [range_beg, dead_range_end).  Note that dead_range_end
 105   // must be >= range_end.  This is used to iterate over the dense prefix.
 106   //
 107   // This method assumes that if the first bit in the range (range_beg) is not
 108   // marked, then dead space begins at that point and the dead_closure is
 109   // applied.  Thus callers must ensure that range_beg is not in the middle of a
 110   // live object.
 111   IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 112                           ParMarkBitMapClosure* dead_closure,
 113                           idx_t range_beg, idx_t range_end,
 114                           idx_t dead_range_end) const;
 115   inline IterationStatus iterate(ParMarkBitMapClosure* live_closure,
 116                                  ParMarkBitMapClosure* dead_closure,
 117                                  HeapWord* range_beg,
 118                                  HeapWord* range_end,
 119                                  HeapWord* dead_range_end) const;
 120 
 121   // Return the number of live words in the range [beg_addr, end_obj) due to
 122   // objects that start in the range.  If a live object extends onto the range,
 123   // the caller must detect and account for any live words due to that object.
 124   // If a live object extends beyond the end of the range, only the words within
 125   // the range are included in the result. The end of the range must be a live object,
 126   // which is the case when updating pointers.  This allows a branch to be removed
 127   // from inside the loop.
 128   size_t live_words_in_range(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj) const;
 129 
 130   inline HeapWord* region_start() const;
 131   inline HeapWord* region_end() const;
 132   inline size_t    region_size() const;
 133   inline size_t    size() const;
 134 
 135   size_t reserved_byte_size() const { return _reserved_byte_size; }
 136 
 137   // Convert a heap address to/from a bit index.
 138   inline idx_t     addr_to_bit(HeapWord* addr) const;
 139   inline HeapWord* bit_to_addr(idx_t bit) const;
 140 
 141   // Return the bit index of the first marked object that begins (or ends,
 142   // respectively) in the range [beg, end).  If no object is found, return end.
 143   inline idx_t find_obj_beg(idx_t beg, idx_t end) const;
 144   inline idx_t find_obj_end(idx_t beg, idx_t end) const;
 145 
 146   inline HeapWord* find_obj_beg(HeapWord* beg, HeapWord* end) const;
 147   inline HeapWord* find_obj_end(HeapWord* beg, HeapWord* end) const;
 148 
 149   // Clear a range of bits or the entire bitmap (both begin and end bits are
 150   // cleared).
 151   inline void clear_range(idx_t beg, idx_t end);
 152 
 153   // Return the number of bits required to represent the specified number of
 154   // HeapWords, or the specified region.
 155   static inline idx_t bits_required(size_t words);
 156   static inline idx_t bits_required(MemRegion covered_region);
 157 
 158   void print_on_error(outputStream* st) const {
 159     st->print_cr("Marking Bits: (ParMarkBitMap*) " PTR_FORMAT, p2i(this));
 160     _beg_bits.print_on_error(st, " Begin Bits: ");
 161     _end_bits.print_on_error(st, " End Bits:   ");
 162   }
 163 
 164 #ifdef  ASSERT
 165   void verify_clear() const;
 166   inline void verify_bit(idx_t bit) const;
 167   inline void verify_addr(HeapWord* addr) const;
 168 #endif  // #ifdef ASSERT
 169 
 170 private:
 171   size_t live_words_in_range_helper(HeapWord* beg_addr, oop end_obj) const;
 172 
 173   bool is_live_words_in_range_in_cache(ParCompactionManager* cm, HeapWord* beg_addr) const;
 174   size_t live_words_in_range_use_cache(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj) const;
 175   void update_live_words_in_range_cache(ParCompactionManager* cm, HeapWord* beg_addr, oop end_obj, size_t result) const;
 176 
 177   // Each bit in the bitmap represents one unit of 'object granularity.' Objects
 178   // are double-word aligned in 32-bit VMs, but not in 64-bit VMs, so the 32-bit
 179   // granularity is 2, 64-bit is 1.
 180   static inline size_t obj_granularity() { return size_t(MinObjAlignment); }
 181   static inline int obj_granularity_shift() { return LogMinObjAlignment; }
 182 
 183   HeapWord*       _region_start;
 184   size_t          _region_size;
 185   BitMapView      _beg_bits;
 186   BitMapView      _end_bits;
 187   PSVirtualSpace* _virtual_space;
 188   size_t          _reserved_byte_size;
 189 };
 190 
 191 inline ParMarkBitMap::ParMarkBitMap():
 192   _beg_bits(), _end_bits(), _region_start(NULL), _region_size(0), _virtual_space(NULL), _reserved_byte_size(0)
 193 { }
 194 
 195 inline void ParMarkBitMap::clear_range(idx_t beg, idx_t end)
 196 {
 197   _beg_bits.clear_range(beg, end);
 198   _end_bits.clear_range(beg, end);
 199 }
 200 
 201 inline ParMarkBitMap::idx_t
 202 ParMarkBitMap::bits_required(size_t words)
 203 {
 204   // Need two bits (one begin bit, one end bit) for each unit of 'object
 205   // granularity' in the heap.
 206   return words_to_bits(words * 2);
 207 }
 208 
 209 inline ParMarkBitMap::idx_t
 210 ParMarkBitMap::bits_required(MemRegion covered_region)
 211 {
 212   return bits_required(covered_region.word_size());
 213 }
 214 
 215 inline HeapWord*
 216 ParMarkBitMap::region_start() const
 217 {
 218   return _region_start;
 219 }
 220 
 221 inline HeapWord*
 222 ParMarkBitMap::region_end() const
 223 {
 224   return region_start() + region_size();
 225 }
 226 
 227 inline size_t
 228 ParMarkBitMap::region_size() const
 229 {
 230   return _region_size;
 231 }
 232 
 233 inline size_t
 234 ParMarkBitMap::size() const
 235 {
 236   return _beg_bits.size();
 237 }
 238 
 239 inline bool ParMarkBitMap::is_obj_beg(idx_t bit) const
 240 {
 241   return _beg_bits.at(bit);
 242 }
 243 
 244 inline bool ParMarkBitMap::is_obj_end(idx_t bit) const
 245 {
 246   return _end_bits.at(bit);
 247 }
 248 
 249 inline bool ParMarkBitMap::is_marked(idx_t bit) const
 250 {
 251   return is_obj_beg(bit);
 252 }
 253 
 254 inline bool ParMarkBitMap::is_marked(HeapWord* addr) const
 255 {
 256   return is_marked(addr_to_bit(addr));
 257 }
 258 
 259 inline bool ParMarkBitMap::is_marked(oop obj) const
 260 {
 261   return is_marked((HeapWord*)obj);
 262 }
 263 
 264 inline bool ParMarkBitMap::is_unmarked(idx_t bit) const
 265 {
 266   return !is_marked(bit);
 267 }
 268 
 269 inline bool ParMarkBitMap::is_unmarked(HeapWord* addr) const
 270 {
 271   return !is_marked(addr);
 272 }
 273 
 274 inline bool ParMarkBitMap::is_unmarked(oop obj) const
 275 {
 276   return !is_marked(obj);
 277 }
 278 
 279 inline size_t
 280 ParMarkBitMap::bits_to_words(idx_t bits)
 281 {
 282   return bits << obj_granularity_shift();
 283 }
 284 
 285 inline ParMarkBitMap::idx_t
 286 ParMarkBitMap::words_to_bits(size_t words)
 287 {
 288   return words >> obj_granularity_shift();
 289 }
 290 
 291 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit, idx_t end_bit) const
 292 {
 293   DEBUG_ONLY(verify_bit(beg_bit);)
 294   DEBUG_ONLY(verify_bit(end_bit);)
 295   return bits_to_words(end_bit - beg_bit + 1);
 296 }
 297 
 298 inline size_t
 299 ParMarkBitMap::obj_size(HeapWord* beg_addr, HeapWord* end_addr) const
 300 {
 301   DEBUG_ONLY(verify_addr(beg_addr);)
 302   DEBUG_ONLY(verify_addr(end_addr);)
 303   return pointer_delta(end_addr, beg_addr) + obj_granularity();
 304 }
 305 
 306 inline size_t ParMarkBitMap::obj_size(idx_t beg_bit) const
 307 {
 308   const idx_t end_bit = _end_bits.get_next_one_offset(beg_bit, size());
 309   assert(is_marked(beg_bit), "obj not marked");
 310   assert(end_bit < size(), "end bit missing");
 311   return obj_size(beg_bit, end_bit);
 312 }
 313 
 314 inline size_t ParMarkBitMap::obj_size(HeapWord* addr) const
 315 {
 316   return obj_size(addr_to_bit(addr));
 317 }
 318 
 319 inline ParMarkBitMap::IterationStatus
 320 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 321                        HeapWord* range_beg,
 322                        HeapWord* range_end) const
 323 {
 324   return iterate(live_closure, addr_to_bit(range_beg), addr_to_bit(range_end));
 325 }
 326 
 327 inline ParMarkBitMap::IterationStatus
 328 ParMarkBitMap::iterate(ParMarkBitMapClosure* live_closure,
 329                        ParMarkBitMapClosure* dead_closure,
 330                        HeapWord* range_beg,
 331                        HeapWord* range_end,
 332                        HeapWord* dead_range_end) const
 333 {
 334   return iterate(live_closure, dead_closure,
 335                  addr_to_bit(range_beg), addr_to_bit(range_end),
 336                  addr_to_bit(dead_range_end));
 337 }
 338 
 339 inline bool
 340 ParMarkBitMap::mark_obj(oop obj, int size)
 341 {
 342   return mark_obj((HeapWord*)obj, (size_t)size);
 343 }
 344 
 345 inline BitMap::idx_t
 346 ParMarkBitMap::addr_to_bit(HeapWord* addr) const
 347 {
 348   DEBUG_ONLY(verify_addr(addr);)
 349   return words_to_bits(pointer_delta(addr, region_start()));
 350 }
 351 
 352 inline HeapWord*
 353 ParMarkBitMap::bit_to_addr(idx_t bit) const
 354 {
 355   DEBUG_ONLY(verify_bit(bit);)
 356   return region_start() + bits_to_words(bit);
 357 }
 358 
 359 inline ParMarkBitMap::idx_t
 360 ParMarkBitMap::find_obj_beg(idx_t beg, idx_t end) const
 361 {
 362   return _beg_bits.get_next_one_offset_aligned_right(beg, end);
 363 }
 364 
 365 inline ParMarkBitMap::idx_t
 366 ParMarkBitMap::find_obj_end(idx_t beg, idx_t end) const
 367 {
 368   return _end_bits.get_next_one_offset_aligned_right(beg, end);
 369 }
 370 
 371 inline HeapWord*
 372 ParMarkBitMap::find_obj_beg(HeapWord* beg, HeapWord* end) const
 373 {
 374   const idx_t beg_bit = addr_to_bit(beg);
 375   const idx_t end_bit = addr_to_bit(end);
 376   const idx_t search_end = BitMap::word_align_up(end_bit);
 377   const idx_t res_bit = MIN2(find_obj_beg(beg_bit, search_end), end_bit);
 378   return bit_to_addr(res_bit);
 379 }
 380 
 381 inline HeapWord*
 382 ParMarkBitMap::find_obj_end(HeapWord* beg, HeapWord* end) const
 383 {
 384   const idx_t beg_bit = addr_to_bit(beg);
 385   const idx_t end_bit = addr_to_bit(end);
 386   const idx_t search_end = BitMap::word_align_up(end_bit);
 387   const idx_t res_bit = MIN2(find_obj_end(beg_bit, search_end), end_bit);
 388   return bit_to_addr(res_bit);
 389 }
 390 
 391 #ifdef  ASSERT
 392 inline void ParMarkBitMap::verify_bit(idx_t bit) const {
 393   // Allow one past the last valid bit; useful for loop bounds.
 394   assert(bit <= _beg_bits.size(), "bit out of range");
 395 }
 396 
 397 inline void ParMarkBitMap::verify_addr(HeapWord* addr) const {
 398   // Allow one past the last valid address; useful for loop bounds.
 399   assert(addr >= region_start(),
 400          "addr too small, addr: " PTR_FORMAT " region start: " PTR_FORMAT, p2i(addr), p2i(region_start()));
 401   assert(addr <= region_end(),
 402          "addr too big, addr: " PTR_FORMAT " region end: " PTR_FORMAT, p2i(addr), p2i(region_end()));
 403 }
 404 #endif  // #ifdef ASSERT
 405 
 406 #endif // SHARE_VM_GC_PARALLEL_PARMARKBITMAP_HPP