1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/dirtyCardQueue.hpp"
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1FromCardCache.hpp"
  31 #include "gc/g1/g1GCPhaseTimes.hpp"
  32 #include "gc/g1/g1HotCardCache.hpp"
  33 #include "gc/g1/g1OopClosures.inline.hpp"
  34 #include "gc/g1/g1RemSet.inline.hpp"
  35 #include "gc/g1/g1SATBCardTableModRefBS.inline.hpp"
  36 #include "gc/g1/heapRegion.inline.hpp"
  37 #include "gc/g1/heapRegionManager.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "memory/iterator.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "utilities/align.hpp"
  44 #include "utilities/globalDefinitions.hpp"
  45 #include "utilities/intHisto.hpp"
  46 #include "utilities/stack.inline.hpp"
  47 
  48 // Collects information about the overall remembered set scan progress during an evacuation.
  49 class G1RemSetScanState : public CHeapObj<mtGC> {
  50 private:
  51   class G1ClearCardTableTask : public AbstractGangTask {
  52     G1CollectedHeap* _g1h;
  53     uint* _dirty_region_list;
  54     size_t _num_dirty_regions;
  55     size_t _chunk_length;
  56 
  57     size_t volatile _cur_dirty_regions;
  58   public:
  59     G1ClearCardTableTask(G1CollectedHeap* g1h,
  60                          uint* dirty_region_list,
  61                          size_t num_dirty_regions,
  62                          size_t chunk_length) :
  63       AbstractGangTask("G1 Clear Card Table Task"),
  64       _g1h(g1h),
  65       _dirty_region_list(dirty_region_list),
  66       _num_dirty_regions(num_dirty_regions),
  67       _chunk_length(chunk_length),
  68       _cur_dirty_regions(0) {
  69 
  70       assert(chunk_length > 0, "must be");
  71     }
  72 
  73     static size_t chunk_size() { return M; }
  74 
  75     void work(uint worker_id) {
  76       G1SATBCardTableModRefBS* ct_bs = _g1h->g1_barrier_set();
  77 
  78       while (_cur_dirty_regions < _num_dirty_regions) {
  79         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  80         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  81 
  82         for (size_t i = next; i < max; i++) {
  83           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  84           if (!r->is_survivor()) {
  85             ct_bs->clear(MemRegion(r->bottom(), r->end()));
  86           }
  87         }
  88       }
  89     }
  90   };
  91 
  92   size_t _max_regions;
  93 
  94   // Scan progress for the remembered set of a single region. Transitions from
  95   // Unclaimed -> Claimed -> Complete.
  96   // At each of the transitions the thread that does the transition needs to perform
  97   // some special action once. This is the reason for the extra "Claimed" state.
  98   typedef jint G1RemsetIterState;
  99 
 100   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 101   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 102   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 103 
 104   G1RemsetIterState volatile* _iter_states;
 105   // The current location where the next thread should continue scanning in a region's
 106   // remembered set.
 107   size_t volatile* _iter_claims;
 108 
 109   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 110   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 111   uint* _dirty_region_buffer;
 112 
 113   typedef jbyte IsDirtyRegionState;
 114   static const IsDirtyRegionState Clean = 0;
 115   static const IsDirtyRegionState Dirty = 1;
 116   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 117   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 118   IsDirtyRegionState* _in_dirty_region_buffer;
 119   size_t _cur_dirty_region;
 120 
 121   // Creates a snapshot of the current _top values at the start of collection to
 122   // filter out card marks that we do not want to scan.
 123   class G1ResetScanTopClosure : public HeapRegionClosure {
 124   private:
 125     HeapWord** _scan_top;
 126   public:
 127     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
 128 
 129     virtual bool doHeapRegion(HeapRegion* r) {
 130       uint hrm_index = r->hrm_index();
 131       if (!r->in_collection_set() && r->is_old_or_humongous()) {
 132         _scan_top[hrm_index] = r->top();
 133       } else {
 134         _scan_top[hrm_index] = r->bottom();
 135       }
 136       return false;
 137     }
 138   };
 139 
 140   // For each region, contains the maximum top() value to be used during this garbage
 141   // collection. Subsumes common checks like filtering out everything but old and
 142   // humongous regions outside the collection set.
 143   // This is valid because we are not interested in scanning stray remembered set
 144   // entries from free or archive regions.
 145   HeapWord** _scan_top;
 146 public:
 147   G1RemSetScanState() :
 148     _max_regions(0),
 149     _iter_states(NULL),
 150     _iter_claims(NULL),
 151     _dirty_region_buffer(NULL),
 152     _in_dirty_region_buffer(NULL),
 153     _cur_dirty_region(0),
 154     _scan_top(NULL) {
 155   }
 156 
 157   ~G1RemSetScanState() {
 158     if (_iter_states != NULL) {
 159       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 160     }
 161     if (_iter_claims != NULL) {
 162       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 163     }
 164     if (_dirty_region_buffer != NULL) {
 165       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 166     }
 167     if (_in_dirty_region_buffer != NULL) {
 168       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 169     }
 170     if (_scan_top != NULL) {
 171       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 172     }
 173   }
 174 
 175   void initialize(uint max_regions) {
 176     assert(_iter_states == NULL, "Must not be initialized twice");
 177     assert(_iter_claims == NULL, "Must not be initialized twice");
 178     _max_regions = max_regions;
 179     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 180     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 181     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 182     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 183     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 184   }
 185 
 186   void reset() {
 187     for (uint i = 0; i < _max_regions; i++) {
 188       _iter_states[i] = Unclaimed;
 189     }
 190 
 191     G1ResetScanTopClosure cl(_scan_top);
 192     G1CollectedHeap::heap()->heap_region_iterate(&cl);
 193 
 194     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 195     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 196     _cur_dirty_region = 0;
 197   }
 198 
 199   // Attempt to claim the remembered set of the region for iteration. Returns true
 200   // if this call caused the transition from Unclaimed to Claimed.
 201   inline bool claim_iter(uint region) {
 202     assert(region < _max_regions, "Tried to access invalid region %u", region);
 203     if (_iter_states[region] != Unclaimed) {
 204       return false;
 205     }
 206     jint res = Atomic::cmpxchg(Claimed, (jint*)(&_iter_states[region]), Unclaimed);
 207     return (res == Unclaimed);
 208   }
 209 
 210   // Try to atomically sets the iteration state to "complete". Returns true for the
 211   // thread that caused the transition.
 212   inline bool set_iter_complete(uint region) {
 213     if (iter_is_complete(region)) {
 214       return false;
 215     }
 216     jint res = Atomic::cmpxchg(Complete, (jint*)(&_iter_states[region]), Claimed);
 217     return (res == Claimed);
 218   }
 219 
 220   // Returns true if the region's iteration is complete.
 221   inline bool iter_is_complete(uint region) const {
 222     assert(region < _max_regions, "Tried to access invalid region %u", region);
 223     return _iter_states[region] == Complete;
 224   }
 225 
 226   // The current position within the remembered set of the given region.
 227   inline size_t iter_claimed(uint region) const {
 228     assert(region < _max_regions, "Tried to access invalid region %u", region);
 229     return _iter_claims[region];
 230   }
 231 
 232   // Claim the next block of cards within the remembered set of the region with
 233   // step size.
 234   inline size_t iter_claimed_next(uint region, size_t step) {
 235     return Atomic::add(step, &_iter_claims[region]) - step;
 236   }
 237 
 238   void add_dirty_region(uint region) {
 239     if (_in_dirty_region_buffer[region] == Dirty) {
 240       return;
 241     }
 242 
 243     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 244     if (marked_as_dirty) {
 245       size_t allocated = Atomic::add(1, &_cur_dirty_region) - 1;
 246       _dirty_region_buffer[allocated] = region;
 247     }
 248   }
 249 
 250   HeapWord* scan_top(uint region_idx) const {
 251     return _scan_top[region_idx];
 252   }
 253 
 254   // Clear the card table of "dirty" regions.
 255   void clear_card_table(WorkGang* workers) {
 256     if (_cur_dirty_region == 0) {
 257       return;
 258     }
 259 
 260     size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 261     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 262     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 263 
 264     // Iterate over the dirty cards region list.
 265     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 266 
 267     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 268                         "units of work for " SIZE_FORMAT " regions.",
 269                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 270     workers->run_task(&cl, num_workers);
 271 
 272 #ifndef PRODUCT
 273     // Need to synchronize with concurrent cleanup since it needs to
 274     // finish its card table clearing before we can verify.
 275     G1CollectedHeap::heap()->wait_while_free_regions_coming();
 276     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 277 #endif
 278   }
 279 };
 280 
 281 G1RemSet::G1RemSet(G1CollectedHeap* g1,
 282                    CardTableModRefBS* ct_bs,
 283                    G1HotCardCache* hot_card_cache) :
 284   _g1(g1),
 285   _scan_state(new G1RemSetScanState()),
 286   _num_conc_refined_cards(0),
 287   _ct_bs(ct_bs),
 288   _g1p(_g1->g1_policy()),
 289   _hot_card_cache(hot_card_cache),
 290   _prev_period_summary(),
 291   _into_cset_dirty_card_queue_set(false)
 292 {
 293   // Initialize the card queue set used to hold cards containing
 294   // references into the collection set.
 295   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
 296                                              DirtyCardQ_CBL_mon,
 297                                              DirtyCardQ_FL_lock,
 298                                              -1, // never trigger processing
 299                                              -1, // no limit on length
 300                                              Shared_DirtyCardQ_lock,
 301                                              &JavaThread::dirty_card_queue_set());
 302 }
 303 
 304 G1RemSet::~G1RemSet() {
 305   if (_scan_state != NULL) {
 306     delete _scan_state;
 307   }
 308 }
 309 
 310 uint G1RemSet::num_par_rem_sets() {
 311   return MAX2(DirtyCardQueueSet::num_par_ids() + ConcurrentG1Refine::thread_num(), ParallelGCThreads);
 312 }
 313 
 314 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 315   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 316   _scan_state->initialize(max_regions);
 317   {
 318     GCTraceTime(Debug, gc, marking)("Initialize Card Live Data");
 319     _card_live_data.initialize(capacity, max_regions);
 320   }
 321   if (G1PretouchAuxiliaryMemory) {
 322     GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data");
 323     _card_live_data.pretouch();
 324   }
 325 }
 326 
 327 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
 328                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
 329                                                    CodeBlobClosure* code_root_cl,
 330                                                    uint worker_i) :
 331   _scan_state(scan_state),
 332   _scan_objs_on_card_cl(scan_obj_on_card),
 333   _code_root_cl(code_root_cl),
 334   _strong_code_root_scan_time_sec(0.0),
 335   _cards_claimed(0),
 336   _cards_scanned(0),
 337   _cards_skipped(0),
 338   _worker_i(worker_i) {
 339   _g1h = G1CollectedHeap::heap();
 340   _bot = _g1h->bot();
 341   _ct_bs = _g1h->g1_barrier_set();
 342 }
 343 
 344 void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
 345   HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
 346   _scan_objs_on_card_cl->set_region(card_region);
 347   card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
 348   _cards_scanned++;
 349 }
 350 
 351 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
 352   double scan_start = os::elapsedTime();
 353   r->strong_code_roots_do(_code_root_cl);
 354   _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start);
 355 }
 356 
 357 void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
 358   _ct_bs->set_card_claimed(card_index);
 359   _scan_state->add_dirty_region(region_idx_for_card);
 360 }
 361 
 362 bool G1ScanRSForRegionClosure::doHeapRegion(HeapRegion* r) {
 363   assert(r->in_collection_set(), "should only be called on elements of CS.");
 364   uint region_idx = r->hrm_index();
 365 
 366   if (_scan_state->iter_is_complete(region_idx)) {
 367     return false;
 368   }
 369   if (_scan_state->claim_iter(region_idx)) {
 370     // If we ever free the collection set concurrently, we should also
 371     // clear the card table concurrently therefore we won't need to
 372     // add regions of the collection set to the dirty cards region.
 373     _scan_state->add_dirty_region(region_idx);
 374   }
 375 
 376   // We claim cards in blocks so as to reduce the contention.
 377   size_t const block_size = G1RSetScanBlockSize;
 378 
 379   HeapRegionRemSetIterator iter(r->rem_set());
 380   size_t card_index;
 381 
 382   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 383   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 384     if (current_card >= claimed_card_block + block_size) {
 385       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 386     }
 387     if (current_card < claimed_card_block) {
 388       _cards_skipped++;
 389       continue;
 390     }
 391     _cards_claimed++;
 392 
 393     // If the card is dirty, then G1 will scan it during Update RS.
 394     if (_ct_bs->is_card_claimed(card_index) || _ct_bs->is_card_dirty(card_index)) {
 395       continue;
 396     }
 397 
 398     HeapWord* const card_start = _g1h->bot()->address_for_index(card_index);
 399     uint const region_idx_for_card = _g1h->addr_to_region(card_start);
 400 
 401     assert(_g1h->region_at(region_idx_for_card)->is_in_reserved(card_start),
 402            "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
 403     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
 404     if (card_start >= top) {
 405       continue;
 406     }
 407 
 408     // We claim lazily (so races are possible but they're benign), which reduces the
 409     // number of duplicate scans (the rsets of the regions in the cset can intersect).
 410     // Claim the card after checking bounds above: the remembered set may contain
 411     // random cards into current survivor, and we would then have an incorrectly
 412     // claimed card in survivor space. Card table clear does not reset the card table
 413     // of survivor space regions.
 414     claim_card(card_index, region_idx_for_card);
 415 
 416     MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
 417 
 418     scan_card(mr, region_idx_for_card);
 419   }
 420   if (_scan_state->set_iter_complete(region_idx)) {
 421     // Scan the strong code root list attached to the current region
 422     scan_strong_code_roots(r);
 423   }
 424   return false;
 425 }
 426 
 427 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss,
 428                             CodeBlobClosure* heap_region_codeblobs,
 429                             uint worker_i) {
 430   double rs_time_start = os::elapsedTime();
 431 
 432   G1ScanObjsDuringScanRSClosure scan_cl(_g1, pss);
 433   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, heap_region_codeblobs, worker_i);
 434   _g1->collection_set_iterate_from(&cl, worker_i);
 435 
 436   double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
 437                              cl.strong_code_root_scan_time_sec();
 438 
 439   G1GCPhaseTimes* p = _g1p->phase_times();
 440 
 441   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
 442   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScannedCards);
 443   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ClaimedCards);
 444   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::SkippedCards);
 445 
 446   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec());
 447 }
 448 
 449 // Closure used for updating RSets and recording references that
 450 // point into the collection set. Only called during an
 451 // evacuation pause.
 452 class G1RefineCardClosure: public CardTableEntryClosure {
 453   G1RemSet* _g1rs;
 454   DirtyCardQueue* _into_cset_dcq;
 455   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
 456 public:
 457   G1RefineCardClosure(G1CollectedHeap* g1h,
 458                       DirtyCardQueue* into_cset_dcq,
 459                       G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
 460     _g1rs(g1h->g1_rem_set()), _into_cset_dcq(into_cset_dcq), _update_rs_cl(update_rs_cl)
 461   {}
 462 
 463   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 464     // The only time we care about recording cards that
 465     // contain references that point into the collection set
 466     // is during RSet updating within an evacuation pause.
 467     // In this case worker_i should be the id of a GC worker thread.
 468     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 469 
 470     if (_g1rs->refine_card_during_gc(card_ptr, _update_rs_cl)) {
 471       // 'card_ptr' contains references that point into the collection
 472       // set. We need to record the card in the DCQS
 473       // (_into_cset_dirty_card_queue_set)
 474       // that's used for that purpose.
 475       //
 476       // Enqueue the card
 477       _into_cset_dcq->enqueue(card_ptr);
 478     }
 479     return true;
 480   }
 481 };
 482 
 483 void G1RemSet::update_rem_set(DirtyCardQueue* into_cset_dcq,
 484                               G1ParScanThreadState* pss,
 485                               uint worker_i) {
 486   G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1, pss, worker_i);
 487   G1RefineCardClosure refine_card_cl(_g1, into_cset_dcq, &update_rs_cl);
 488 
 489   G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i);
 490   if (G1HotCardCache::default_use_cache()) {
 491     // Apply the closure to the entries of the hot card cache.
 492     G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i);
 493     _g1->iterate_hcc_closure(&refine_card_cl, worker_i);
 494   }
 495   // Apply the closure to all remaining log entries.
 496   _g1->iterate_dirty_card_closure(&refine_card_cl, worker_i);
 497 }
 498 
 499 void G1RemSet::cleanupHRRS() {
 500   HeapRegionRemSet::cleanup();
 501 }
 502 
 503 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss,
 504                                            CodeBlobClosure* heap_region_codeblobs,
 505                                            uint worker_i) {
 506   // A DirtyCardQueue that is used to hold cards containing references
 507   // that point into the collection set. This DCQ is associated with a
 508   // special DirtyCardQueueSet (see g1CollectedHeap.hpp).  Under normal
 509   // circumstances (i.e. the pause successfully completes), these cards
 510   // are just discarded (there's no need to update the RSets of regions
 511   // that were in the collection set - after the pause these regions
 512   // are wholly 'free' of live objects. In the event of an evacuation
 513   // failure the cards/buffers in this queue set are passed to the
 514   // DirtyCardQueueSet that is used to manage RSet updates
 515   DirtyCardQueue into_cset_dcq(&_into_cset_dirty_card_queue_set);
 516 
 517   update_rem_set(&into_cset_dcq, pss, worker_i);
 518   scan_rem_set(pss, heap_region_codeblobs, worker_i);;
 519 }
 520 
 521 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 522   _g1->set_refine_cte_cl_concurrency(false);
 523   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 524   dcqs.concatenate_logs();
 525 
 526   _scan_state->reset();
 527 }
 528 
 529 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 530   G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times();
 531   // Cleanup after copy
 532   _g1->set_refine_cte_cl_concurrency(true);
 533 
 534   // Set all cards back to clean.
 535   double start = os::elapsedTime();
 536   _scan_state->clear_card_table(_g1->workers());
 537   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 538 
 539   DirtyCardQueueSet& into_cset_dcqs = _into_cset_dirty_card_queue_set;
 540 
 541   if (_g1->evacuation_failed()) {
 542     double restore_remembered_set_start = os::elapsedTime();
 543 
 544     // Restore remembered sets for the regions pointing into the collection set.
 545     // We just need to transfer the completed buffers from the DirtyCardQueueSet
 546     // used to hold cards that contain references that point into the collection set
 547     // to the DCQS used to hold the deferred RS updates.
 548     _g1->dirty_card_queue_set().merge_bufferlists(&into_cset_dcqs);
 549     phase_times->record_evac_fail_restore_remsets((os::elapsedTime() - restore_remembered_set_start) * 1000.0);
 550   }
 551 
 552   // Free any completed buffers in the DirtyCardQueueSet used to hold cards
 553   // which contain references that point into the collection.
 554   _into_cset_dirty_card_queue_set.clear();
 555   assert(_into_cset_dirty_card_queue_set.completed_buffers_num() == 0,
 556          "all buffers should be freed");
 557   _into_cset_dirty_card_queue_set.clear_n_completed_buffers();
 558 }
 559 
 560 class G1ScrubRSClosure: public HeapRegionClosure {
 561   G1CollectedHeap* _g1h;
 562   G1CardLiveData* _live_data;
 563 public:
 564   G1ScrubRSClosure(G1CardLiveData* live_data) :
 565     _g1h(G1CollectedHeap::heap()),
 566     _live_data(live_data) { }
 567 
 568   bool doHeapRegion(HeapRegion* r) {
 569     if (!r->is_continues_humongous()) {
 570       r->rem_set()->scrub(_live_data);
 571     }
 572     return false;
 573   }
 574 };
 575 
 576 void G1RemSet::scrub(uint worker_num, HeapRegionClaimer *hrclaimer) {
 577   G1ScrubRSClosure scrub_cl(&_card_live_data);
 578   _g1->heap_region_par_iterate(&scrub_cl, worker_num, hrclaimer);
 579 }
 580 
 581 inline void check_card_ptr(jbyte* card_ptr, CardTableModRefBS* ct_bs) {
 582 #ifdef ASSERT
 583   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 584   assert(g1->is_in_exact(ct_bs->addr_for(card_ptr)),
 585          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 586          p2i(card_ptr),
 587          ct_bs->index_for(ct_bs->addr_for(card_ptr)),
 588          p2i(ct_bs->addr_for(card_ptr)),
 589          g1->addr_to_region(ct_bs->addr_for(card_ptr)));
 590 #endif
 591 }
 592 
 593 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 594                                         uint worker_i) {
 595   assert(!_g1->is_gc_active(), "Only call concurrently");
 596 
 597   check_card_ptr(card_ptr, _ct_bs);
 598 
 599   // If the card is no longer dirty, nothing to do.
 600   if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 601     return;
 602   }
 603 
 604   // Construct the region representing the card.
 605   HeapWord* start = _ct_bs->addr_for(card_ptr);
 606   // And find the region containing it.
 607   HeapRegion* r = _g1->heap_region_containing(start);
 608 
 609   // This check is needed for some uncommon cases where we should
 610   // ignore the card.
 611   //
 612   // The region could be young.  Cards for young regions are
 613   // distinctly marked (set to g1_young_gen), so the post-barrier will
 614   // filter them out.  However, that marking is performed
 615   // concurrently.  A write to a young object could occur before the
 616   // card has been marked young, slipping past the filter.
 617   //
 618   // The card could be stale, because the region has been freed since
 619   // the card was recorded. In this case the region type could be
 620   // anything.  If (still) free or (reallocated) young, just ignore
 621   // it.  If (reallocated) old or humongous, the later card trimming
 622   // and additional checks in iteration may detect staleness.  At
 623   // worst, we end up processing a stale card unnecessarily.
 624   //
 625   // In the normal (non-stale) case, the synchronization between the
 626   // enqueueing of the card and processing it here will have ensured
 627   // we see the up-to-date region type here.
 628   if (!r->is_old_or_humongous()) {
 629     return;
 630   }
 631 
 632   // While we are processing RSet buffers during the collection, we
 633   // actually don't want to scan any cards on the collection set,
 634   // since we don't want to update remembered sets with entries that
 635   // point into the collection set, given that live objects from the
 636   // collection set are about to move and such entries will be stale
 637   // very soon. This change also deals with a reliability issue which
 638   // involves scanning a card in the collection set and coming across
 639   // an array that was being chunked and looking malformed. Note,
 640   // however, that if evacuation fails, we have to scan any objects
 641   // that were not moved and create any missing entries.
 642   if (r->in_collection_set()) {
 643     return;
 644   }
 645 
 646   // The result from the hot card cache insert call is either:
 647   //   * pointer to the current card
 648   //     (implying that the current card is not 'hot'),
 649   //   * null
 650   //     (meaning we had inserted the card ptr into the "hot" card cache,
 651   //     which had some headroom),
 652   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 653   //
 654 
 655   if (_hot_card_cache->use_cache()) {
 656     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 657 
 658     const jbyte* orig_card_ptr = card_ptr;
 659     card_ptr = _hot_card_cache->insert(card_ptr);
 660     if (card_ptr == NULL) {
 661       // There was no eviction. Nothing to do.
 662       return;
 663     } else if (card_ptr != orig_card_ptr) {
 664       // Original card was inserted and an old card was evicted.
 665       start = _ct_bs->addr_for(card_ptr);
 666       r = _g1->heap_region_containing(start);
 667 
 668       // Check whether the region formerly in the cache should be
 669       // ignored, as discussed earlier for the original card.  The
 670       // region could have been freed while in the cache.  The cset is
 671       // not relevant here, since we're in concurrent phase.
 672       if (!r->is_old_or_humongous()) {
 673         return;
 674       }
 675     } // Else we still have the original card.
 676   }
 677 
 678   // Trim the region designated by the card to what's been allocated
 679   // in the region.  The card could be stale, or the card could cover
 680   // (part of) an object at the end of the allocated space and extend
 681   // beyond the end of allocation.
 682 
 683   // Non-humongous objects are only allocated in the old-gen during
 684   // GC, so if region is old then top is stable.  Humongous object
 685   // allocation sets top last; if top has not yet been set, this is
 686   // a stale card and we'll end up with an empty intersection.  If
 687   // this is not a stale card, the synchronization between the
 688   // enqueuing of the card and processing it here will have ensured
 689   // we see the up-to-date top here.
 690   HeapWord* scan_limit = r->top();
 691 
 692   if (scan_limit <= start) {
 693     // If the trimmed region is empty, the card must be stale.
 694     return;
 695   }
 696 
 697   // Okay to clean and process the card now.  There are still some
 698   // stale card cases that may be detected by iteration and dealt with
 699   // as iteration failure.
 700   *const_cast<volatile jbyte*>(card_ptr) = CardTableModRefBS::clean_card_val();
 701 
 702   // This fence serves two purposes.  First, the card must be cleaned
 703   // before processing the contents.  Second, we can't proceed with
 704   // processing until after the read of top, for synchronization with
 705   // possibly concurrent humongous object allocation.  It's okay that
 706   // reading top and reading type were racy wrto each other.  We need
 707   // both set, in any order, to proceed.
 708   OrderAccess::fence();
 709 
 710   // Don't use addr_for(card_ptr + 1) which can ask for
 711   // a card beyond the heap.
 712   HeapWord* end = start + CardTableModRefBS::card_size_in_words;
 713   MemRegion dirty_region(start, MIN2(scan_limit, end));
 714   assert(!dirty_region.is_empty(), "sanity");
 715 
 716   G1ConcurrentRefineOopClosure conc_refine_cl(_g1, worker_i);
 717 
 718   bool card_processed =
 719     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 720 
 721   // If unable to process the card then we encountered an unparsable
 722   // part of the heap (e.g. a partially allocated object) while
 723   // processing a stale card.  Despite the card being stale, redirty
 724   // and re-enqueue, because we've already cleaned the card.  Without
 725   // this we could incorrectly discard a non-stale card.
 726   if (!card_processed) {
 727     // The card might have gotten re-dirtied and re-enqueued while we
 728     // worked.  (In fact, it's pretty likely.)
 729     if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 730       *card_ptr = CardTableModRefBS::dirty_card_val();
 731       MutexLockerEx x(Shared_DirtyCardQ_lock,
 732                       Mutex::_no_safepoint_check_flag);
 733       DirtyCardQueue* sdcq =
 734         JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
 735       sdcq->enqueue(card_ptr);
 736     }
 737   } else {
 738     _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
 739   }
 740 }
 741 
 742 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 743                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
 744   assert(_g1->is_gc_active(), "Only call during GC");
 745 
 746   check_card_ptr(card_ptr, _ct_bs);
 747 
 748   // If the card is no longer dirty, nothing to do. This covers cards that were already
 749   // scanned as parts of the remembered sets.
 750   if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
 751     // No need to return that this card contains refs that point
 752     // into the collection set.
 753     return false;
 754   }
 755 
 756   // During GC we can immediately clean the card since we will not re-enqueue stale
 757   // cards as we know they can be disregarded.
 758   *card_ptr = CardTableModRefBS::clean_card_val();
 759 
 760   // Construct the region representing the card.
 761   HeapWord* card_start = _ct_bs->addr_for(card_ptr);
 762   // And find the region containing it.
 763   HeapRegion* r = _g1->heap_region_containing(card_start);
 764 
 765   HeapWord* scan_limit = _scan_state->scan_top(r->hrm_index());
 766   if (scan_limit <= card_start) {
 767     // If the card starts above the area in the region containing objects to scan, skip it.
 768     return false;
 769   }
 770 
 771   // Don't use addr_for(card_ptr + 1) which can ask for
 772   // a card beyond the heap.
 773   HeapWord* card_end = card_start + CardTableModRefBS::card_size_in_words;
 774   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
 775   assert(!dirty_region.is_empty(), "sanity");
 776 
 777   update_rs_cl->set_region(r);
 778   update_rs_cl->reset_has_refs_into_cset();
 779 
 780   bool card_processed = r->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
 781   assert(card_processed, "must be");
 782 
 783   return update_rs_cl->has_refs_into_cset();
 784 }
 785 
 786 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 787   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 788       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 789 
 790     G1RemSetSummary current(this);
 791     _prev_period_summary.subtract_from(&current);
 792 
 793     Log(gc, remset) log;
 794     log.trace("%s", header);
 795     ResourceMark rm;
 796     _prev_period_summary.print_on(log.trace_stream());
 797 
 798     _prev_period_summary.set(&current);
 799   }
 800 }
 801 
 802 void G1RemSet::print_summary_info() {
 803   Log(gc, remset, exit) log;
 804   if (log.is_trace()) {
 805     log.trace(" Cumulative RS summary");
 806     G1RemSetSummary current;
 807     ResourceMark rm;
 808     current.print_on(log.trace_stream());
 809   }
 810 }
 811 
 812 void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
 813   _card_live_data.create(workers, mark_bitmap);
 814 }
 815 
 816 void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
 817   _card_live_data.finalize(workers, mark_bitmap);
 818 }
 819 
 820 void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) {
 821   _card_live_data.verify(workers, bitmap);
 822 }
 823 
 824 void G1RemSet::clear_card_live_data(WorkGang* workers) {
 825   _card_live_data.clear(workers);
 826 }
 827 
 828 #ifdef ASSERT
 829 void G1RemSet::verify_card_live_data_is_clear() {
 830   _card_live_data.verify_is_clear();
 831 }
 832 #endif