1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/gcBehaviours.hpp"
  70 #include "gc/shared/gcHeapSummary.hpp"
  71 #include "gc/shared/gcId.hpp"
  72 #include "gc/shared/gcLocker.hpp"
  73 #include "gc/shared/gcTimer.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/locationPrinter.inline.hpp"
  78 #include "gc/shared/oopStorageParState.hpp"
  79 #include "gc/shared/preservedMarks.inline.hpp"
  80 #include "gc/shared/suspendibleThreadSet.hpp"
  81 #include "gc/shared/referenceProcessor.inline.hpp"
  82 #include "gc/shared/taskqueue.inline.hpp"
  83 #include "gc/shared/weakProcessor.inline.hpp"
  84 #include "gc/shared/workerPolicy.hpp"
  85 #include "logging/log.hpp"
  86 #include "memory/allocation.hpp"
  87 #include "memory/iterator.hpp"
  88 #include "memory/resourceArea.hpp"
  89 #include "memory/universe.hpp"
  90 #include "oops/access.inline.hpp"
  91 #include "oops/compressedOops.inline.hpp"
  92 #include "oops/oop.inline.hpp"
  93 #include "runtime/atomic.hpp"
  94 #include "runtime/flags/flagSetting.hpp"
  95 #include "runtime/handles.inline.hpp"
  96 #include "runtime/init.hpp"
  97 #include "runtime/orderAccess.hpp"
  98 #include "runtime/threadSMR.hpp"
  99 #include "runtime/vmThread.hpp"
 100 #include "utilities/align.hpp"
 101 #include "utilities/globalDefinitions.hpp"
 102 #include "utilities/stack.inline.hpp"
 103 
 104 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 105 
 106 // INVARIANTS/NOTES
 107 //
 108 // All allocation activity covered by the G1CollectedHeap interface is
 109 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 110 // and allocate_new_tlab, which are the "entry" points to the
 111 // allocation code from the rest of the JVM.  (Note that this does not
 112 // apply to TLAB allocation, which is not part of this interface: it
 113 // is done by clients of this interface.)
 114 
 115 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 116  private:
 117   size_t _num_dirtied;
 118   G1CollectedHeap* _g1h;
 119   G1CardTable* _g1_ct;
 120 
 121   HeapRegion* region_for_card(CardValue* card_ptr) const {
 122     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 123   }
 124 
 125   bool will_become_free(HeapRegion* hr) const {
 126     // A region will be freed by free_collection_set if the region is in the
 127     // collection set and has not had an evacuation failure.
 128     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 129   }
 130 
 131  public:
 132   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 133     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 134 
 135   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 136     HeapRegion* hr = region_for_card(card_ptr);
 137 
 138     // Should only dirty cards in regions that won't be freed.
 139     if (!will_become_free(hr)) {
 140       *card_ptr = G1CardTable::dirty_card_val();
 141       _num_dirtied++;
 142     }
 143   }
 144 
 145   size_t num_dirtied()   const { return _num_dirtied; }
 146 };
 147 
 148 
 149 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 150   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 151 }
 152 
 153 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 154   // The from card cache is not the memory that is actually committed. So we cannot
 155   // take advantage of the zero_filled parameter.
 156   reset_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 160   Ticks start = Ticks::now();
 161   workers()->run_task(task, workers()->active_workers());
 162   return Ticks::now() - start;
 163 }
 164 
 165 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 166                                              MemRegion mr) {
 167   return new HeapRegion(hrs_index, bot(), mr);
 168 }
 169 
 170 // Private methods.
 171 
 172 HeapRegion* G1CollectedHeap::new_region(size_t word_size, HeapRegionType type, bool do_expand) {
 173   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 174          "the only time we use this to allocate a humongous region is "
 175          "when we are allocating a single humongous region");
 176 
 177   HeapRegion* res = _hrm->allocate_free_region(type);
 178 
 179   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 180     // Currently, only attempts to allocate GC alloc regions set
 181     // do_expand to true. So, we should only reach here during a
 182     // safepoint. If this assumption changes we might have to
 183     // reconsider the use of _expand_heap_after_alloc_failure.
 184     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 185 
 186     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 187                               word_size * HeapWordSize);
 188 
 189     if (expand(word_size * HeapWordSize)) {
 190       // Given that expand() succeeded in expanding the heap, and we
 191       // always expand the heap by an amount aligned to the heap
 192       // region size, the free list should in theory not be empty.
 193       // In either case allocate_free_region() will check for NULL.
 194       res = _hrm->allocate_free_region(type);
 195     } else {
 196       _expand_heap_after_alloc_failure = false;
 197     }
 198   }
 199   return res;
 200 }
 201 
 202 HeapWord*
 203 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 204                                                            uint num_regions,
 205                                                            size_t word_size) {
 206   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 207   assert(is_humongous(word_size), "word_size should be humongous");
 208   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 209 
 210   // Index of last region in the series.
 211   uint last = first + num_regions - 1;
 212 
 213   // We need to initialize the region(s) we just discovered. This is
 214   // a bit tricky given that it can happen concurrently with
 215   // refinement threads refining cards on these regions and
 216   // potentially wanting to refine the BOT as they are scanning
 217   // those cards (this can happen shortly after a cleanup; see CR
 218   // 6991377). So we have to set up the region(s) carefully and in
 219   // a specific order.
 220 
 221   // The word size sum of all the regions we will allocate.
 222   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 223   assert(word_size <= word_size_sum, "sanity");
 224 
 225   // This will be the "starts humongous" region.
 226   HeapRegion* first_hr = region_at(first);
 227   // The header of the new object will be placed at the bottom of
 228   // the first region.
 229   HeapWord* new_obj = first_hr->bottom();
 230   // This will be the new top of the new object.
 231   HeapWord* obj_top = new_obj + word_size;
 232 
 233   // First, we need to zero the header of the space that we will be
 234   // allocating. When we update top further down, some refinement
 235   // threads might try to scan the region. By zeroing the header we
 236   // ensure that any thread that will try to scan the region will
 237   // come across the zero klass word and bail out.
 238   //
 239   // NOTE: It would not have been correct to have used
 240   // CollectedHeap::fill_with_object() and make the space look like
 241   // an int array. The thread that is doing the allocation will
 242   // later update the object header to a potentially different array
 243   // type and, for a very short period of time, the klass and length
 244   // fields will be inconsistent. This could cause a refinement
 245   // thread to calculate the object size incorrectly.
 246   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 247 
 248   // Next, pad out the unused tail of the last region with filler
 249   // objects, for improved usage accounting.
 250   // How many words we use for filler objects.
 251   size_t word_fill_size = word_size_sum - word_size;
 252 
 253   // How many words memory we "waste" which cannot hold a filler object.
 254   size_t words_not_fillable = 0;
 255 
 256   if (word_fill_size >= min_fill_size()) {
 257     fill_with_objects(obj_top, word_fill_size);
 258   } else if (word_fill_size > 0) {
 259     // We have space to fill, but we cannot fit an object there.
 260     words_not_fillable = word_fill_size;
 261     word_fill_size = 0;
 262   }
 263 
 264   // We will set up the first region as "starts humongous". This
 265   // will also update the BOT covering all the regions to reflect
 266   // that there is a single object that starts at the bottom of the
 267   // first region.
 268   first_hr->set_starts_humongous(obj_top, word_fill_size);
 269   _policy->remset_tracker()->update_at_allocate(first_hr);
 270   // Then, if there are any, we will set up the "continues
 271   // humongous" regions.
 272   HeapRegion* hr = NULL;
 273   for (uint i = first + 1; i <= last; ++i) {
 274     hr = region_at(i);
 275     hr->set_continues_humongous(first_hr);
 276     _policy->remset_tracker()->update_at_allocate(hr);
 277   }
 278 
 279   // Up to this point no concurrent thread would have been able to
 280   // do any scanning on any region in this series. All the top
 281   // fields still point to bottom, so the intersection between
 282   // [bottom,top] and [card_start,card_end] will be empty. Before we
 283   // update the top fields, we'll do a storestore to make sure that
 284   // no thread sees the update to top before the zeroing of the
 285   // object header and the BOT initialization.
 286   OrderAccess::storestore();
 287 
 288   // Now, we will update the top fields of the "continues humongous"
 289   // regions except the last one.
 290   for (uint i = first; i < last; ++i) {
 291     hr = region_at(i);
 292     hr->set_top(hr->end());
 293   }
 294 
 295   hr = region_at(last);
 296   // If we cannot fit a filler object, we must set top to the end
 297   // of the humongous object, otherwise we cannot iterate the heap
 298   // and the BOT will not be complete.
 299   hr->set_top(hr->end() - words_not_fillable);
 300 
 301   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 302          "obj_top should be in last region");
 303 
 304   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 305 
 306   assert(words_not_fillable == 0 ||
 307          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 308          "Miscalculation in humongous allocation");
 309 
 310   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 311 
 312   for (uint i = first; i <= last; ++i) {
 313     hr = region_at(i);
 314     _humongous_set.add(hr);
 315     _hr_printer.alloc(hr);
 316   }
 317 
 318   return new_obj;
 319 }
 320 
 321 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 322   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 323   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 324 }
 325 
 326 // If could fit into free regions w/o expansion, try.
 327 // Otherwise, if can expand, do so.
 328 // Otherwise, if using ex regions might help, try with ex given back.
 329 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 330   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 331 
 332   _verifier->verify_region_sets_optional();
 333 
 334   uint first = G1_NO_HRM_INDEX;
 335   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 336 
 337   if (obj_regions == 1) {
 338     // Only one region to allocate, try to use a fast path by directly allocating
 339     // from the free lists. Do not try to expand here, we will potentially do that
 340     // later.
 341     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 342     if (hr != NULL) {
 343       first = hr->hrm_index();
 344     }
 345   } else {
 346     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 347     // are lucky enough to find some.
 348     first = _hrm->find_contiguous_only_empty(obj_regions);
 349     if (first != G1_NO_HRM_INDEX) {
 350       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 351     }
 352   }
 353 
 354   if (first == G1_NO_HRM_INDEX) {
 355     // Policy: We could not find enough regions for the humongous object in the
 356     // free list. Look through the heap to find a mix of free and uncommitted regions.
 357     // If so, try expansion.
 358     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 359     if (first != G1_NO_HRM_INDEX) {
 360       // We found something. Make sure these regions are committed, i.e. expand
 361       // the heap. Alternatively we could do a defragmentation GC.
 362       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 363                                     word_size * HeapWordSize);
 364 
 365       _hrm->expand_at(first, obj_regions, workers());
 366       policy()->record_new_heap_size(num_regions());
 367 
 368 #ifdef ASSERT
 369       for (uint i = first; i < first + obj_regions; ++i) {
 370         HeapRegion* hr = region_at(i);
 371         assert(hr->is_free(), "sanity");
 372         assert(hr->is_empty(), "sanity");
 373         assert(is_on_master_free_list(hr), "sanity");
 374       }
 375 #endif
 376       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 377     } else {
 378       // Policy: Potentially trigger a defragmentation GC.
 379     }
 380   }
 381 
 382   HeapWord* result = NULL;
 383   if (first != G1_NO_HRM_INDEX) {
 384     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 385     assert(result != NULL, "it should always return a valid result");
 386 
 387     // A successful humongous object allocation changes the used space
 388     // information of the old generation so we need to recalculate the
 389     // sizes and update the jstat counters here.
 390     g1mm()->update_sizes();
 391   }
 392 
 393   _verifier->verify_region_sets_optional();
 394 
 395   return result;
 396 }
 397 
 398 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 399                                              size_t requested_size,
 400                                              size_t* actual_size) {
 401   assert_heap_not_locked_and_not_at_safepoint();
 402   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 403 
 404   return attempt_allocation(min_size, requested_size, actual_size);
 405 }
 406 
 407 HeapWord*
 408 G1CollectedHeap::mem_allocate(size_t word_size,
 409                               bool*  gc_overhead_limit_was_exceeded) {
 410   assert_heap_not_locked_and_not_at_safepoint();
 411 
 412   if (is_humongous(word_size)) {
 413     return attempt_allocation_humongous(word_size);
 414   }
 415   size_t dummy = 0;
 416   return attempt_allocation(word_size, word_size, &dummy);
 417 }
 418 
 419 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 420   ResourceMark rm; // For retrieving the thread names in log messages.
 421 
 422   // Make sure you read the note in attempt_allocation_humongous().
 423 
 424   assert_heap_not_locked_and_not_at_safepoint();
 425   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 426          "be called for humongous allocation requests");
 427 
 428   // We should only get here after the first-level allocation attempt
 429   // (attempt_allocation()) failed to allocate.
 430 
 431   // We will loop until a) we manage to successfully perform the
 432   // allocation or b) we successfully schedule a collection which
 433   // fails to perform the allocation. b) is the only case when we'll
 434   // return NULL.
 435   HeapWord* result = NULL;
 436   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 437     bool should_try_gc;
 438     uint gc_count_before;
 439 
 440     {
 441       MutexLocker x(Heap_lock);
 442       result = _allocator->attempt_allocation_locked(word_size);
 443       if (result != NULL) {
 444         return result;
 445       }
 446 
 447       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 448       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 449       // waiting because the GCLocker is active to not wait too long.
 450       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 451         // No need for an ergo message here, can_expand_young_list() does this when
 452         // it returns true.
 453         result = _allocator->attempt_allocation_force(word_size);
 454         if (result != NULL) {
 455           return result;
 456         }
 457       }
 458       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 459       // the GCLocker initiated GC has been performed and then retry. This includes
 460       // the case when the GC Locker is not active but has not been performed.
 461       should_try_gc = !GCLocker::needs_gc();
 462       // Read the GC count while still holding the Heap_lock.
 463       gc_count_before = total_collections();
 464     }
 465 
 466     if (should_try_gc) {
 467       bool succeeded;
 468       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 469                                    GCCause::_g1_inc_collection_pause);
 470       if (result != NULL) {
 471         assert(succeeded, "only way to get back a non-NULL result");
 472         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 473                              Thread::current()->name(), p2i(result));
 474         return result;
 475       }
 476 
 477       if (succeeded) {
 478         // We successfully scheduled a collection which failed to allocate. No
 479         // point in trying to allocate further. We'll just return NULL.
 480         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 481                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 482         return NULL;
 483       }
 484       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 485                            Thread::current()->name(), word_size);
 486     } else {
 487       // Failed to schedule a collection.
 488       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 489         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 490                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 491         return NULL;
 492       }
 493       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 494       // The GCLocker is either active or the GCLocker initiated
 495       // GC has not yet been performed. Stall until it is and
 496       // then retry the allocation.
 497       GCLocker::stall_until_clear();
 498       gclocker_retry_count += 1;
 499     }
 500 
 501     // We can reach here if we were unsuccessful in scheduling a
 502     // collection (because another thread beat us to it) or if we were
 503     // stalled due to the GC locker. In either can we should retry the
 504     // allocation attempt in case another thread successfully
 505     // performed a collection and reclaimed enough space. We do the
 506     // first attempt (without holding the Heap_lock) here and the
 507     // follow-on attempt will be at the start of the next loop
 508     // iteration (after taking the Heap_lock).
 509     size_t dummy = 0;
 510     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 511     if (result != NULL) {
 512       return result;
 513     }
 514 
 515     // Give a warning if we seem to be looping forever.
 516     if ((QueuedAllocationWarningCount > 0) &&
 517         (try_count % QueuedAllocationWarningCount == 0)) {
 518       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 519                              Thread::current()->name(), try_count, word_size);
 520     }
 521   }
 522 
 523   ShouldNotReachHere();
 524   return NULL;
 525 }
 526 
 527 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 528   assert_at_safepoint_on_vm_thread();
 529   if (_archive_allocator == NULL) {
 530     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 531   }
 532 }
 533 
 534 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 535   // Allocations in archive regions cannot be of a size that would be considered
 536   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 537   // may be different at archive-restore time.
 538   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 539 }
 540 
 541 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 542   assert_at_safepoint_on_vm_thread();
 543   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 544   if (is_archive_alloc_too_large(word_size)) {
 545     return NULL;
 546   }
 547   return _archive_allocator->archive_mem_allocate(word_size);
 548 }
 549 
 550 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 551                                               size_t end_alignment_in_bytes) {
 552   assert_at_safepoint_on_vm_thread();
 553   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 554 
 555   // Call complete_archive to do the real work, filling in the MemRegion
 556   // array with the archive regions.
 557   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 558   delete _archive_allocator;
 559   _archive_allocator = NULL;
 560 }
 561 
 562 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 563   assert(ranges != NULL, "MemRegion array NULL");
 564   assert(count != 0, "No MemRegions provided");
 565   MemRegion reserved = _hrm->reserved();
 566   for (size_t i = 0; i < count; i++) {
 567     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 568       return false;
 569     }
 570   }
 571   return true;
 572 }
 573 
 574 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 575                                             size_t count,
 576                                             bool open) {
 577   assert(!is_init_completed(), "Expect to be called at JVM init time");
 578   assert(ranges != NULL, "MemRegion array NULL");
 579   assert(count != 0, "No MemRegions provided");
 580   MutexLocker x(Heap_lock);
 581 
 582   MemRegion reserved = _hrm->reserved();
 583   HeapWord* prev_last_addr = NULL;
 584   HeapRegion* prev_last_region = NULL;
 585 
 586   // Temporarily disable pretouching of heap pages. This interface is used
 587   // when mmap'ing archived heap data in, so pre-touching is wasted.
 588   FlagSetting fs(AlwaysPreTouch, false);
 589 
 590   // Enable archive object checking used by G1MarkSweep. We have to let it know
 591   // about each archive range, so that objects in those ranges aren't marked.
 592   G1ArchiveAllocator::enable_archive_object_check();
 593 
 594   // For each specified MemRegion range, allocate the corresponding G1
 595   // regions and mark them as archive regions. We expect the ranges
 596   // in ascending starting address order, without overlap.
 597   for (size_t i = 0; i < count; i++) {
 598     MemRegion curr_range = ranges[i];
 599     HeapWord* start_address = curr_range.start();
 600     size_t word_size = curr_range.word_size();
 601     HeapWord* last_address = curr_range.last();
 602     size_t commits = 0;
 603 
 604     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 605               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 606               p2i(start_address), p2i(last_address));
 607     guarantee(start_address > prev_last_addr,
 608               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 609               p2i(start_address), p2i(prev_last_addr));
 610     prev_last_addr = last_address;
 611 
 612     // Check for ranges that start in the same G1 region in which the previous
 613     // range ended, and adjust the start address so we don't try to allocate
 614     // the same region again. If the current range is entirely within that
 615     // region, skip it, just adjusting the recorded top.
 616     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 617     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 618       start_address = start_region->end();
 619       if (start_address > last_address) {
 620         increase_used(word_size * HeapWordSize);
 621         start_region->set_top(last_address + 1);
 622         continue;
 623       }
 624       start_region->set_top(start_address);
 625       curr_range = MemRegion(start_address, last_address + 1);
 626       start_region = _hrm->addr_to_region(start_address);
 627     }
 628 
 629     // Perform the actual region allocation, exiting if it fails.
 630     // Then note how much new space we have allocated.
 631     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 632       return false;
 633     }
 634     increase_used(word_size * HeapWordSize);
 635     if (commits != 0) {
 636       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 637                                 HeapRegion::GrainWords * HeapWordSize * commits);
 638 
 639     }
 640 
 641     // Mark each G1 region touched by the range as archive, add it to
 642     // the old set, and set top.
 643     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 644     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 645     prev_last_region = last_region;
 646 
 647     while (curr_region != NULL) {
 648       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 649              "Region already in use (index %u)", curr_region->hrm_index());
 650       if (open) {
 651         curr_region->set_open_archive();
 652       } else {
 653         curr_region->set_closed_archive();
 654       }
 655       _hr_printer.alloc(curr_region);
 656       _archive_set.add(curr_region);
 657       HeapWord* top;
 658       HeapRegion* next_region;
 659       if (curr_region != last_region) {
 660         top = curr_region->end();
 661         next_region = _hrm->next_region_in_heap(curr_region);
 662       } else {
 663         top = last_address + 1;
 664         next_region = NULL;
 665       }
 666       curr_region->set_top(top);
 667       curr_region = next_region;
 668     }
 669 
 670     // Notify mark-sweep of the archive
 671     G1ArchiveAllocator::set_range_archive(curr_range, open);
 672   }
 673   return true;
 674 }
 675 
 676 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 677   assert(!is_init_completed(), "Expect to be called at JVM init time");
 678   assert(ranges != NULL, "MemRegion array NULL");
 679   assert(count != 0, "No MemRegions provided");
 680   MemRegion reserved = _hrm->reserved();
 681   HeapWord *prev_last_addr = NULL;
 682   HeapRegion* prev_last_region = NULL;
 683 
 684   // For each MemRegion, create filler objects, if needed, in the G1 regions
 685   // that contain the address range. The address range actually within the
 686   // MemRegion will not be modified. That is assumed to have been initialized
 687   // elsewhere, probably via an mmap of archived heap data.
 688   MutexLocker x(Heap_lock);
 689   for (size_t i = 0; i < count; i++) {
 690     HeapWord* start_address = ranges[i].start();
 691     HeapWord* last_address = ranges[i].last();
 692 
 693     assert(reserved.contains(start_address) && reserved.contains(last_address),
 694            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 695            p2i(start_address), p2i(last_address));
 696     assert(start_address > prev_last_addr,
 697            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 698            p2i(start_address), p2i(prev_last_addr));
 699 
 700     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 701     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 702     HeapWord* bottom_address = start_region->bottom();
 703 
 704     // Check for a range beginning in the same region in which the
 705     // previous one ended.
 706     if (start_region == prev_last_region) {
 707       bottom_address = prev_last_addr + 1;
 708     }
 709 
 710     // Verify that the regions were all marked as archive regions by
 711     // alloc_archive_regions.
 712     HeapRegion* curr_region = start_region;
 713     while (curr_region != NULL) {
 714       guarantee(curr_region->is_archive(),
 715                 "Expected archive region at index %u", curr_region->hrm_index());
 716       if (curr_region != last_region) {
 717         curr_region = _hrm->next_region_in_heap(curr_region);
 718       } else {
 719         curr_region = NULL;
 720       }
 721     }
 722 
 723     prev_last_addr = last_address;
 724     prev_last_region = last_region;
 725 
 726     // Fill the memory below the allocated range with dummy object(s),
 727     // if the region bottom does not match the range start, or if the previous
 728     // range ended within the same G1 region, and there is a gap.
 729     if (start_address != bottom_address) {
 730       size_t fill_size = pointer_delta(start_address, bottom_address);
 731       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 732       increase_used(fill_size * HeapWordSize);
 733     }
 734   }
 735 }
 736 
 737 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 738                                                      size_t desired_word_size,
 739                                                      size_t* actual_word_size) {
 740   assert_heap_not_locked_and_not_at_safepoint();
 741   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 742          "be called for humongous allocation requests");
 743 
 744   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 745 
 746   if (result == NULL) {
 747     *actual_word_size = desired_word_size;
 748     result = attempt_allocation_slow(desired_word_size);
 749   }
 750 
 751   assert_heap_not_locked();
 752   if (result != NULL) {
 753     assert(*actual_word_size != 0, "Actual size must have been set here");
 754     dirty_young_block(result, *actual_word_size);
 755   } else {
 756     *actual_word_size = 0;
 757   }
 758 
 759   return result;
 760 }
 761 
 762 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count, bool is_open) {
 763   assert(!is_init_completed(), "Expect to be called at JVM init time");
 764   assert(ranges != NULL, "MemRegion array NULL");
 765   assert(count != 0, "No MemRegions provided");
 766   MemRegion reserved = _hrm->reserved();
 767   HeapWord* prev_last_addr = NULL;
 768   HeapRegion* prev_last_region = NULL;
 769   size_t size_used = 0;
 770   size_t uncommitted_regions = 0;
 771 
 772   // For each Memregion, free the G1 regions that constitute it, and
 773   // notify mark-sweep that the range is no longer to be considered 'archive.'
 774   MutexLocker x(Heap_lock);
 775   for (size_t i = 0; i < count; i++) {
 776     HeapWord* start_address = ranges[i].start();
 777     HeapWord* last_address = ranges[i].last();
 778 
 779     assert(reserved.contains(start_address) && reserved.contains(last_address),
 780            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 781            p2i(start_address), p2i(last_address));
 782     assert(start_address > prev_last_addr,
 783            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 784            p2i(start_address), p2i(prev_last_addr));
 785     size_used += ranges[i].byte_size();
 786     prev_last_addr = last_address;
 787 
 788     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 789     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 790 
 791     // Check for ranges that start in the same G1 region in which the previous
 792     // range ended, and adjust the start address so we don't try to free
 793     // the same region again. If the current range is entirely within that
 794     // region, skip it.
 795     if (start_region == prev_last_region) {
 796       start_address = start_region->end();
 797       if (start_address > last_address) {
 798         continue;
 799       }
 800       start_region = _hrm->addr_to_region(start_address);
 801     }
 802     prev_last_region = last_region;
 803 
 804     // After verifying that each region was marked as an archive region by
 805     // alloc_archive_regions, set it free and empty and uncommit it.
 806     HeapRegion* curr_region = start_region;
 807     while (curr_region != NULL) {
 808       guarantee(curr_region->is_archive(),
 809                 "Expected archive region at index %u", curr_region->hrm_index());
 810       uint curr_index = curr_region->hrm_index();
 811       _archive_set.remove(curr_region);
 812       curr_region->set_free();
 813       curr_region->set_top(curr_region->bottom());
 814       if (curr_region != last_region) {
 815         curr_region = _hrm->next_region_in_heap(curr_region);
 816       } else {
 817         curr_region = NULL;
 818       }
 819       _hrm->shrink_at(curr_index, 1);
 820       uncommitted_regions++;
 821     }
 822 
 823     // Notify mark-sweep that this is no longer an archive range.
 824     G1ArchiveAllocator::clear_range_archive(ranges[i], is_open);
 825   }
 826 
 827   if (uncommitted_regions != 0) {
 828     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 829                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 830   }
 831   decrease_used(size_used);
 832 }
 833 
 834 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 835   assert(obj != NULL, "archived obj is NULL");
 836   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 837 
 838   // Loading an archived object makes it strongly reachable. If it is
 839   // loaded during concurrent marking, it must be enqueued to the SATB
 840   // queue, shading the previously white object gray.
 841   G1BarrierSet::enqueue(obj);
 842 
 843   return obj;
 844 }
 845 
 846 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 847   ResourceMark rm; // For retrieving the thread names in log messages.
 848 
 849   // The structure of this method has a lot of similarities to
 850   // attempt_allocation_slow(). The reason these two were not merged
 851   // into a single one is that such a method would require several "if
 852   // allocation is not humongous do this, otherwise do that"
 853   // conditional paths which would obscure its flow. In fact, an early
 854   // version of this code did use a unified method which was harder to
 855   // follow and, as a result, it had subtle bugs that were hard to
 856   // track down. So keeping these two methods separate allows each to
 857   // be more readable. It will be good to keep these two in sync as
 858   // much as possible.
 859 
 860   assert_heap_not_locked_and_not_at_safepoint();
 861   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 862          "should only be called for humongous allocations");
 863 
 864   // Humongous objects can exhaust the heap quickly, so we should check if we
 865   // need to start a marking cycle at each humongous object allocation. We do
 866   // the check before we do the actual allocation. The reason for doing it
 867   // before the allocation is that we avoid having to keep track of the newly
 868   // allocated memory while we do a GC.
 869   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 870                                            word_size)) {
 871     collect(GCCause::_g1_humongous_allocation);
 872   }
 873 
 874   // We will loop until a) we manage to successfully perform the
 875   // allocation or b) we successfully schedule a collection which
 876   // fails to perform the allocation. b) is the only case when we'll
 877   // return NULL.
 878   HeapWord* result = NULL;
 879   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 880     bool should_try_gc;
 881     uint gc_count_before;
 882 
 883 
 884     {
 885       MutexLocker x(Heap_lock);
 886 
 887       // Given that humongous objects are not allocated in young
 888       // regions, we'll first try to do the allocation without doing a
 889       // collection hoping that there's enough space in the heap.
 890       result = humongous_obj_allocate(word_size);
 891       if (result != NULL) {
 892         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 893         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 894         return result;
 895       }
 896 
 897       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 898       // the GCLocker initiated GC has been performed and then retry. This includes
 899       // the case when the GC Locker is not active but has not been performed.
 900       should_try_gc = !GCLocker::needs_gc();
 901       // Read the GC count while still holding the Heap_lock.
 902       gc_count_before = total_collections();
 903     }
 904 
 905     if (should_try_gc) {
 906       bool succeeded;
 907       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 908                                    GCCause::_g1_humongous_allocation);
 909       if (result != NULL) {
 910         assert(succeeded, "only way to get back a non-NULL result");
 911         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 912                              Thread::current()->name(), p2i(result));
 913         return result;
 914       }
 915 
 916       if (succeeded) {
 917         // We successfully scheduled a collection which failed to allocate. No
 918         // point in trying to allocate further. We'll just return NULL.
 919         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 920                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 921         return NULL;
 922       }
 923       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 924                            Thread::current()->name(), word_size);
 925     } else {
 926       // Failed to schedule a collection.
 927       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 928         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 929                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 930         return NULL;
 931       }
 932       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 933       // The GCLocker is either active or the GCLocker initiated
 934       // GC has not yet been performed. Stall until it is and
 935       // then retry the allocation.
 936       GCLocker::stall_until_clear();
 937       gclocker_retry_count += 1;
 938     }
 939 
 940 
 941     // We can reach here if we were unsuccessful in scheduling a
 942     // collection (because another thread beat us to it) or if we were
 943     // stalled due to the GC locker. In either can we should retry the
 944     // allocation attempt in case another thread successfully
 945     // performed a collection and reclaimed enough space.
 946     // Humongous object allocation always needs a lock, so we wait for the retry
 947     // in the next iteration of the loop, unlike for the regular iteration case.
 948     // Give a warning if we seem to be looping forever.
 949 
 950     if ((QueuedAllocationWarningCount > 0) &&
 951         (try_count % QueuedAllocationWarningCount == 0)) {
 952       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 953                              Thread::current()->name(), try_count, word_size);
 954     }
 955   }
 956 
 957   ShouldNotReachHere();
 958   return NULL;
 959 }
 960 
 961 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 962                                                            bool expect_null_mutator_alloc_region) {
 963   assert_at_safepoint_on_vm_thread();
 964   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 965          "the current alloc region was unexpectedly found to be non-NULL");
 966 
 967   if (!is_humongous(word_size)) {
 968     return _allocator->attempt_allocation_locked(word_size);
 969   } else {
 970     HeapWord* result = humongous_obj_allocate(word_size);
 971     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 972       collector_state()->set_initiate_conc_mark_if_possible(true);
 973     }
 974     return result;
 975   }
 976 
 977   ShouldNotReachHere();
 978 }
 979 
 980 class PostCompactionPrinterClosure: public HeapRegionClosure {
 981 private:
 982   G1HRPrinter* _hr_printer;
 983 public:
 984   bool do_heap_region(HeapRegion* hr) {
 985     assert(!hr->is_young(), "not expecting to find young regions");
 986     _hr_printer->post_compaction(hr);
 987     return false;
 988   }
 989 
 990   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 991     : _hr_printer(hr_printer) { }
 992 };
 993 
 994 void G1CollectedHeap::print_hrm_post_compaction() {
 995   if (_hr_printer.is_active()) {
 996     PostCompactionPrinterClosure cl(hr_printer());
 997     heap_region_iterate(&cl);
 998   }
 999 }
1000 
1001 void G1CollectedHeap::abort_concurrent_cycle() {
1002   // If we start the compaction before the CM threads finish
1003   // scanning the root regions we might trip them over as we'll
1004   // be moving objects / updating references. So let's wait until
1005   // they are done. By telling them to abort, they should complete
1006   // early.
1007   _cm->root_regions()->abort();
1008   _cm->root_regions()->wait_until_scan_finished();
1009 
1010   // Disable discovery and empty the discovered lists
1011   // for the CM ref processor.
1012   _ref_processor_cm->disable_discovery();
1013   _ref_processor_cm->abandon_partial_discovery();
1014   _ref_processor_cm->verify_no_references_recorded();
1015 
1016   // Abandon current iterations of concurrent marking and concurrent
1017   // refinement, if any are in progress.
1018   concurrent_mark()->concurrent_cycle_abort();
1019 }
1020 
1021 void G1CollectedHeap::prepare_heap_for_full_collection() {
1022   // Make sure we'll choose a new allocation region afterwards.
1023   _allocator->release_mutator_alloc_region();
1024   _allocator->abandon_gc_alloc_regions();
1025 
1026   // We may have added regions to the current incremental collection
1027   // set between the last GC or pause and now. We need to clear the
1028   // incremental collection set and then start rebuilding it afresh
1029   // after this full GC.
1030   abandon_collection_set(collection_set());
1031 
1032   tear_down_region_sets(false /* free_list_only */);
1033 
1034   hrm()->prepare_for_full_collection_start();
1035 }
1036 
1037 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1038   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1039   assert_used_and_recalculate_used_equal(this);
1040   _verifier->verify_region_sets_optional();
1041   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1042   _verifier->check_bitmaps("Full GC Start");
1043 }
1044 
1045 void G1CollectedHeap::prepare_heap_for_mutators() {
1046   hrm()->prepare_for_full_collection_end();
1047 
1048   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1049   ClassLoaderDataGraph::purge();
1050   MetaspaceUtils::verify_metrics();
1051 
1052   // Prepare heap for normal collections.
1053   assert(num_free_regions() == 0, "we should not have added any free regions");
1054   rebuild_region_sets(false /* free_list_only */);
1055   abort_refinement();
1056   resize_heap_if_necessary();
1057 
1058   // Rebuild the strong code root lists for each region
1059   rebuild_strong_code_roots();
1060 
1061   // Purge code root memory
1062   purge_code_root_memory();
1063 
1064   // Start a new incremental collection set for the next pause
1065   start_new_collection_set();
1066 
1067   _allocator->init_mutator_alloc_region();
1068 
1069   // Post collection state updates.
1070   MetaspaceGC::compute_new_size();
1071 }
1072 
1073 void G1CollectedHeap::abort_refinement() {
1074   if (_hot_card_cache->use_cache()) {
1075     _hot_card_cache->reset_hot_cache();
1076   }
1077 
1078   // Discard all remembered set updates.
1079   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1080   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1081          "DCQS should be empty");
1082 }
1083 
1084 void G1CollectedHeap::verify_after_full_collection() {
1085   _hrm->verify_optional();
1086   _verifier->verify_region_sets_optional();
1087   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1088   // Clear the previous marking bitmap, if needed for bitmap verification.
1089   // Note we cannot do this when we clear the next marking bitmap in
1090   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1091   // objects marked during a full GC against the previous bitmap.
1092   // But we need to clear it before calling check_bitmaps below since
1093   // the full GC has compacted objects and updated TAMS but not updated
1094   // the prev bitmap.
1095   if (G1VerifyBitmaps) {
1096     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1097     _cm->clear_prev_bitmap(workers());
1098   }
1099   // This call implicitly verifies that the next bitmap is clear after Full GC.
1100   _verifier->check_bitmaps("Full GC End");
1101 
1102   // At this point there should be no regions in the
1103   // entire heap tagged as young.
1104   assert(check_young_list_empty(), "young list should be empty at this point");
1105 
1106   // Note: since we've just done a full GC, concurrent
1107   // marking is no longer active. Therefore we need not
1108   // re-enable reference discovery for the CM ref processor.
1109   // That will be done at the start of the next marking cycle.
1110   // We also know that the STW processor should no longer
1111   // discover any new references.
1112   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1113   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1114   _ref_processor_stw->verify_no_references_recorded();
1115   _ref_processor_cm->verify_no_references_recorded();
1116 }
1117 
1118 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1119   // Post collection logging.
1120   // We should do this after we potentially resize the heap so
1121   // that all the COMMIT / UNCOMMIT events are generated before
1122   // the compaction events.
1123   print_hrm_post_compaction();
1124   heap_transition->print();
1125   print_heap_after_gc();
1126   print_heap_regions();
1127 #ifdef TRACESPINNING
1128   ParallelTaskTerminator::print_termination_counts();
1129 #endif
1130 }
1131 
1132 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1133                                          bool clear_all_soft_refs) {
1134   assert_at_safepoint_on_vm_thread();
1135 
1136   if (GCLocker::check_active_before_gc()) {
1137     // Full GC was not completed.
1138     return false;
1139   }
1140 
1141   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1142       soft_ref_policy()->should_clear_all_soft_refs();
1143 
1144   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1145   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1146 
1147   collector.prepare_collection();
1148   collector.collect();
1149   collector.complete_collection();
1150 
1151   // Full collection was successfully completed.
1152   return true;
1153 }
1154 
1155 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1156   // Currently, there is no facility in the do_full_collection(bool) API to notify
1157   // the caller that the collection did not succeed (e.g., because it was locked
1158   // out by the GC locker). So, right now, we'll ignore the return value.
1159   bool dummy = do_full_collection(true,                /* explicit_gc */
1160                                   clear_all_soft_refs);
1161 }
1162 
1163 void G1CollectedHeap::resize_heap_if_necessary() {
1164   assert_at_safepoint_on_vm_thread();
1165 
1166   // Capacity, free and used after the GC counted as full regions to
1167   // include the waste in the following calculations.
1168   const size_t capacity_after_gc = capacity();
1169   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1170 
1171   // This is enforced in arguments.cpp.
1172   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1173          "otherwise the code below doesn't make sense");
1174 
1175   // We don't have floating point command-line arguments
1176   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1177   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1178   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1179   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1180 
1181   // We have to be careful here as these two calculations can overflow
1182   // 32-bit size_t's.
1183   double used_after_gc_d = (double) used_after_gc;
1184   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1185   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1186 
1187   // Let's make sure that they are both under the max heap size, which
1188   // by default will make them fit into a size_t.
1189   double desired_capacity_upper_bound = (double) MaxHeapSize;
1190   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1191                                     desired_capacity_upper_bound);
1192   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1193                                     desired_capacity_upper_bound);
1194 
1195   // We can now safely turn them into size_t's.
1196   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1197   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1198 
1199   // This assert only makes sense here, before we adjust them
1200   // with respect to the min and max heap size.
1201   assert(minimum_desired_capacity <= maximum_desired_capacity,
1202          "minimum_desired_capacity = " SIZE_FORMAT ", "
1203          "maximum_desired_capacity = " SIZE_FORMAT,
1204          minimum_desired_capacity, maximum_desired_capacity);
1205 
1206   // Should not be greater than the heap max size. No need to adjust
1207   // it with respect to the heap min size as it's a lower bound (i.e.,
1208   // we'll try to make the capacity larger than it, not smaller).
1209   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1210   // Should not be less than the heap min size. No need to adjust it
1211   // with respect to the heap max size as it's an upper bound (i.e.,
1212   // we'll try to make the capacity smaller than it, not greater).
1213   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1214 
1215   if (capacity_after_gc < minimum_desired_capacity) {
1216     // Don't expand unless it's significant
1217     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1218 
1219     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1220                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1221                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1222                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1223 
1224     expand(expand_bytes, _workers);
1225 
1226     // No expansion, now see if we want to shrink
1227   } else if (capacity_after_gc > maximum_desired_capacity) {
1228     // Capacity too large, compute shrinking size
1229     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1230 
1231     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1232                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1233                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1234                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1235 
1236     shrink(shrink_bytes);
1237   }
1238 }
1239 
1240 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1241                                                             bool do_gc,
1242                                                             bool clear_all_soft_refs,
1243                                                             bool expect_null_mutator_alloc_region,
1244                                                             bool* gc_succeeded) {
1245   *gc_succeeded = true;
1246   // Let's attempt the allocation first.
1247   HeapWord* result =
1248     attempt_allocation_at_safepoint(word_size,
1249                                     expect_null_mutator_alloc_region);
1250   if (result != NULL) {
1251     return result;
1252   }
1253 
1254   // In a G1 heap, we're supposed to keep allocation from failing by
1255   // incremental pauses.  Therefore, at least for now, we'll favor
1256   // expansion over collection.  (This might change in the future if we can
1257   // do something smarter than full collection to satisfy a failed alloc.)
1258   result = expand_and_allocate(word_size);
1259   if (result != NULL) {
1260     return result;
1261   }
1262 
1263   if (do_gc) {
1264     // Expansion didn't work, we'll try to do a Full GC.
1265     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1266                                        clear_all_soft_refs);
1267   }
1268 
1269   return NULL;
1270 }
1271 
1272 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1273                                                      bool* succeeded) {
1274   assert_at_safepoint_on_vm_thread();
1275 
1276   // Attempts to allocate followed by Full GC.
1277   HeapWord* result =
1278     satisfy_failed_allocation_helper(word_size,
1279                                      true,  /* do_gc */
1280                                      false, /* clear_all_soft_refs */
1281                                      false, /* expect_null_mutator_alloc_region */
1282                                      succeeded);
1283 
1284   if (result != NULL || !*succeeded) {
1285     return result;
1286   }
1287 
1288   // Attempts to allocate followed by Full GC that will collect all soft references.
1289   result = satisfy_failed_allocation_helper(word_size,
1290                                             true, /* do_gc */
1291                                             true, /* clear_all_soft_refs */
1292                                             true, /* expect_null_mutator_alloc_region */
1293                                             succeeded);
1294 
1295   if (result != NULL || !*succeeded) {
1296     return result;
1297   }
1298 
1299   // Attempts to allocate, no GC
1300   result = satisfy_failed_allocation_helper(word_size,
1301                                             false, /* do_gc */
1302                                             false, /* clear_all_soft_refs */
1303                                             true,  /* expect_null_mutator_alloc_region */
1304                                             succeeded);
1305 
1306   if (result != NULL) {
1307     return result;
1308   }
1309 
1310   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1311          "Flag should have been handled and cleared prior to this point");
1312 
1313   // What else?  We might try synchronous finalization later.  If the total
1314   // space available is large enough for the allocation, then a more
1315   // complete compaction phase than we've tried so far might be
1316   // appropriate.
1317   return NULL;
1318 }
1319 
1320 // Attempting to expand the heap sufficiently
1321 // to support an allocation of the given "word_size".  If
1322 // successful, perform the allocation and return the address of the
1323 // allocated block, or else "NULL".
1324 
1325 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1326   assert_at_safepoint_on_vm_thread();
1327 
1328   _verifier->verify_region_sets_optional();
1329 
1330   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1331   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1332                             word_size * HeapWordSize);
1333 
1334 
1335   if (expand(expand_bytes, _workers)) {
1336     _hrm->verify_optional();
1337     _verifier->verify_region_sets_optional();
1338     return attempt_allocation_at_safepoint(word_size,
1339                                            false /* expect_null_mutator_alloc_region */);
1340   }
1341   return NULL;
1342 }
1343 
1344 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1345   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1346   aligned_expand_bytes = align_up(aligned_expand_bytes,
1347                                        HeapRegion::GrainBytes);
1348 
1349   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1350                             expand_bytes, aligned_expand_bytes);
1351 
1352   if (is_maximal_no_gc()) {
1353     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1354     return false;
1355   }
1356 
1357   double expand_heap_start_time_sec = os::elapsedTime();
1358   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1359   assert(regions_to_expand > 0, "Must expand by at least one region");
1360 
1361   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1362   if (expand_time_ms != NULL) {
1363     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1364   }
1365 
1366   if (expanded_by > 0) {
1367     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1368     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1369     policy()->record_new_heap_size(num_regions());
1370   } else {
1371     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1372 
1373     // The expansion of the virtual storage space was unsuccessful.
1374     // Let's see if it was because we ran out of swap.
1375     if (G1ExitOnExpansionFailure &&
1376         _hrm->available() >= regions_to_expand) {
1377       // We had head room...
1378       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1379     }
1380   }
1381   return regions_to_expand > 0;
1382 }
1383 
1384 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1385   size_t aligned_shrink_bytes =
1386     ReservedSpace::page_align_size_down(shrink_bytes);
1387   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1388                                          HeapRegion::GrainBytes);
1389   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1390 
1391   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1392   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1393 
1394 
1395   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1396                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1397   if (num_regions_removed > 0) {
1398     policy()->record_new_heap_size(num_regions());
1399   } else {
1400     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1401   }
1402 }
1403 
1404 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1405   _verifier->verify_region_sets_optional();
1406 
1407   // We should only reach here at the end of a Full GC or during Remark which
1408   // means we should not not be holding to any GC alloc regions. The method
1409   // below will make sure of that and do any remaining clean up.
1410   _allocator->abandon_gc_alloc_regions();
1411 
1412   // Instead of tearing down / rebuilding the free lists here, we
1413   // could instead use the remove_all_pending() method on free_list to
1414   // remove only the ones that we need to remove.
1415   tear_down_region_sets(true /* free_list_only */);
1416   shrink_helper(shrink_bytes);
1417   rebuild_region_sets(true /* free_list_only */);
1418 
1419   _hrm->verify_optional();
1420   _verifier->verify_region_sets_optional();
1421 }
1422 
1423 class OldRegionSetChecker : public HeapRegionSetChecker {
1424 public:
1425   void check_mt_safety() {
1426     // Master Old Set MT safety protocol:
1427     // (a) If we're at a safepoint, operations on the master old set
1428     // should be invoked:
1429     // - by the VM thread (which will serialize them), or
1430     // - by the GC workers while holding the FreeList_lock, if we're
1431     //   at a safepoint for an evacuation pause (this lock is taken
1432     //   anyway when an GC alloc region is retired so that a new one
1433     //   is allocated from the free list), or
1434     // - by the GC workers while holding the OldSets_lock, if we're at a
1435     //   safepoint for a cleanup pause.
1436     // (b) If we're not at a safepoint, operations on the master old set
1437     // should be invoked while holding the Heap_lock.
1438 
1439     if (SafepointSynchronize::is_at_safepoint()) {
1440       guarantee(Thread::current()->is_VM_thread() ||
1441                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1442                 "master old set MT safety protocol at a safepoint");
1443     } else {
1444       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1445     }
1446   }
1447   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1448   const char* get_description() { return "Old Regions"; }
1449 };
1450 
1451 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1452 public:
1453   void check_mt_safety() {
1454     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1455               "May only change archive regions during initialization or safepoint.");
1456   }
1457   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1458   const char* get_description() { return "Archive Regions"; }
1459 };
1460 
1461 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1462 public:
1463   void check_mt_safety() {
1464     // Humongous Set MT safety protocol:
1465     // (a) If we're at a safepoint, operations on the master humongous
1466     // set should be invoked by either the VM thread (which will
1467     // serialize them) or by the GC workers while holding the
1468     // OldSets_lock.
1469     // (b) If we're not at a safepoint, operations on the master
1470     // humongous set should be invoked while holding the Heap_lock.
1471 
1472     if (SafepointSynchronize::is_at_safepoint()) {
1473       guarantee(Thread::current()->is_VM_thread() ||
1474                 OldSets_lock->owned_by_self(),
1475                 "master humongous set MT safety protocol at a safepoint");
1476     } else {
1477       guarantee(Heap_lock->owned_by_self(),
1478                 "master humongous set MT safety protocol outside a safepoint");
1479     }
1480   }
1481   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1482   const char* get_description() { return "Humongous Regions"; }
1483 };
1484 
1485 G1CollectedHeap::G1CollectedHeap() :
1486   CollectedHeap(),
1487   _young_gen_sampling_thread(NULL),
1488   _workers(NULL),
1489   _card_table(NULL),
1490   _soft_ref_policy(),
1491   _old_set("Old Region Set", new OldRegionSetChecker()),
1492   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1493   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1494   _bot(NULL),
1495   _listener(),
1496   _hrm(NULL),
1497   _allocator(NULL),
1498   _verifier(NULL),
1499   _summary_bytes_used(0),
1500   _archive_allocator(NULL),
1501   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1502   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1503   _expand_heap_after_alloc_failure(true),
1504   _g1mm(NULL),
1505   _humongous_reclaim_candidates(),
1506   _has_humongous_reclaim_candidates(false),
1507   _hr_printer(),
1508   _collector_state(),
1509   _old_marking_cycles_started(0),
1510   _old_marking_cycles_completed(0),
1511   _eden(),
1512   _survivor(),
1513   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1514   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1515   _policy(G1Policy::create_policy(_gc_timer_stw)),
1516   _heap_sizing_policy(NULL),
1517   _collection_set(this, _policy),
1518   _hot_card_cache(NULL),
1519   _rem_set(NULL),
1520   _cm(NULL),
1521   _cm_thread(NULL),
1522   _cr(NULL),
1523   _task_queues(NULL),
1524   _evacuation_failed(false),
1525   _evacuation_failed_info_array(NULL),
1526   _preserved_marks_set(true /* in_c_heap */),
1527 #ifndef PRODUCT
1528   _evacuation_failure_alot_for_current_gc(false),
1529   _evacuation_failure_alot_gc_number(0),
1530   _evacuation_failure_alot_count(0),
1531 #endif
1532   _ref_processor_stw(NULL),
1533   _is_alive_closure_stw(this),
1534   _is_subject_to_discovery_stw(this),
1535   _ref_processor_cm(NULL),
1536   _is_alive_closure_cm(this),
1537   _is_subject_to_discovery_cm(this),
1538   _region_attr() {
1539 
1540   _verifier = new G1HeapVerifier(this);
1541 
1542   _allocator = new G1Allocator(this);
1543 
1544   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1545 
1546   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1547 
1548   // Override the default _filler_array_max_size so that no humongous filler
1549   // objects are created.
1550   _filler_array_max_size = _humongous_object_threshold_in_words;
1551 
1552   uint n_queues = ParallelGCThreads;
1553   _task_queues = new RefToScanQueueSet(n_queues);
1554 
1555   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1556 
1557   for (uint i = 0; i < n_queues; i++) {
1558     RefToScanQueue* q = new RefToScanQueue();
1559     q->initialize();
1560     _task_queues->register_queue(i, q);
1561     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1562   }
1563 
1564   // Initialize the G1EvacuationFailureALot counters and flags.
1565   NOT_PRODUCT(reset_evacuation_should_fail();)
1566   _gc_tracer_stw->initialize();
1567 
1568   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1569 }
1570 
1571 static size_t actual_reserved_page_size(ReservedSpace rs) {
1572   size_t page_size = os::vm_page_size();
1573   if (UseLargePages) {
1574     // There are two ways to manage large page memory.
1575     // 1. OS supports committing large page memory.
1576     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1577     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1578     //    we reserved memory without large page.
1579     if (os::can_commit_large_page_memory() || rs.special()) {
1580       // An alignment at ReservedSpace comes from preferred page size or
1581       // heap alignment, and if the alignment came from heap alignment, it could be
1582       // larger than large pages size. So need to cap with the large page size.
1583       page_size = MIN2(rs.alignment(), os::large_page_size());
1584     }
1585   }
1586 
1587   return page_size;
1588 }
1589 
1590 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1591                                                                  size_t size,
1592                                                                  size_t translation_factor) {
1593   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1594   // Allocate a new reserved space, preferring to use large pages.
1595   ReservedSpace rs(size, preferred_page_size);
1596   size_t page_size = actual_reserved_page_size(rs);
1597   G1RegionToSpaceMapper* result  =
1598     G1RegionToSpaceMapper::create_mapper(rs,
1599                                          size,
1600                                          page_size,
1601                                          HeapRegion::GrainBytes,
1602                                          translation_factor,
1603                                          mtGC);
1604 
1605   os::trace_page_sizes_for_requested_size(description,
1606                                           size,
1607                                           preferred_page_size,
1608                                           page_size,
1609                                           rs.base(),
1610                                           rs.size());
1611 
1612   return result;
1613 }
1614 
1615 jint G1CollectedHeap::initialize_concurrent_refinement() {
1616   jint ecode = JNI_OK;
1617   _cr = G1ConcurrentRefine::create(&ecode);
1618   return ecode;
1619 }
1620 
1621 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1622   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1623   if (_young_gen_sampling_thread->osthread() == NULL) {
1624     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1625     return JNI_ENOMEM;
1626   }
1627   return JNI_OK;
1628 }
1629 
1630 jint G1CollectedHeap::initialize() {
1631 
1632   // Necessary to satisfy locking discipline assertions.
1633 
1634   MutexLocker x(Heap_lock);
1635 
1636   // While there are no constraints in the GC code that HeapWordSize
1637   // be any particular value, there are multiple other areas in the
1638   // system which believe this to be true (e.g. oop->object_size in some
1639   // cases incorrectly returns the size in wordSize units rather than
1640   // HeapWordSize).
1641   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1642 
1643   size_t init_byte_size = InitialHeapSize;
1644   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1645 
1646   // Ensure that the sizes are properly aligned.
1647   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1648   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1649   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1650 
1651   // Reserve the maximum.
1652 
1653   // When compressed oops are enabled, the preferred heap base
1654   // is calculated by subtracting the requested size from the
1655   // 32Gb boundary and using the result as the base address for
1656   // heap reservation. If the requested size is not aligned to
1657   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1658   // into the ReservedHeapSpace constructor) then the actual
1659   // base of the reserved heap may end up differing from the
1660   // address that was requested (i.e. the preferred heap base).
1661   // If this happens then we could end up using a non-optimal
1662   // compressed oops mode.
1663 
1664   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1665                                                      HeapAlignment);
1666 
1667   initialize_reserved_region(heap_rs);
1668 
1669   // Create the barrier set for the entire reserved region.
1670   G1CardTable* ct = new G1CardTable(heap_rs.region());
1671   ct->initialize();
1672   G1BarrierSet* bs = new G1BarrierSet(ct);
1673   bs->initialize();
1674   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1675   BarrierSet::set_barrier_set(bs);
1676   _card_table = ct;
1677 
1678   {
1679     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1680     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1681     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1682   }
1683 
1684   // Create the hot card cache.
1685   _hot_card_cache = new G1HotCardCache(this);
1686 
1687   // Carve out the G1 part of the heap.
1688   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1689   size_t page_size = actual_reserved_page_size(heap_rs);
1690   G1RegionToSpaceMapper* heap_storage =
1691     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1692                                               g1_rs.size(),
1693                                               page_size,
1694                                               HeapRegion::GrainBytes,
1695                                               1,
1696                                               mtJavaHeap);
1697   if(heap_storage == NULL) {
1698     vm_shutdown_during_initialization("Could not initialize G1 heap");
1699     return JNI_ERR;
1700   }
1701 
1702   os::trace_page_sizes("Heap",
1703                        MinHeapSize,
1704                        reserved_byte_size,
1705                        page_size,
1706                        heap_rs.base(),
1707                        heap_rs.size());
1708   heap_storage->set_mapping_changed_listener(&_listener);
1709 
1710   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1711   G1RegionToSpaceMapper* bot_storage =
1712     create_aux_memory_mapper("Block Offset Table",
1713                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1714                              G1BlockOffsetTable::heap_map_factor());
1715 
1716   G1RegionToSpaceMapper* cardtable_storage =
1717     create_aux_memory_mapper("Card Table",
1718                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1719                              G1CardTable::heap_map_factor());
1720 
1721   G1RegionToSpaceMapper* card_counts_storage =
1722     create_aux_memory_mapper("Card Counts Table",
1723                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1724                              G1CardCounts::heap_map_factor());
1725 
1726   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1727   G1RegionToSpaceMapper* prev_bitmap_storage =
1728     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1729   G1RegionToSpaceMapper* next_bitmap_storage =
1730     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1731 
1732   _hrm = HeapRegionManager::create_manager(this);
1733 
1734   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1735   _card_table->initialize(cardtable_storage);
1736 
1737   // Do later initialization work for concurrent refinement.
1738   _hot_card_cache->initialize(card_counts_storage);
1739 
1740   // 6843694 - ensure that the maximum region index can fit
1741   // in the remembered set structures.
1742   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1743   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1744 
1745   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1746   // start within the first card.
1747   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1748   // Also create a G1 rem set.
1749   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1750   _rem_set->initialize(max_reserved_capacity(), max_regions());
1751 
1752   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1753   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1754   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1755             "too many cards per region");
1756 
1757   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1758 
1759   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1760 
1761   {
1762     HeapWord* start = _hrm->reserved().start();
1763     HeapWord* end = _hrm->reserved().end();
1764     size_t granularity = HeapRegion::GrainBytes;
1765 
1766     _region_attr.initialize(start, end, granularity);
1767     _humongous_reclaim_candidates.initialize(start, end, granularity);
1768   }
1769 
1770   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1771                           true /* are_GC_task_threads */,
1772                           false /* are_ConcurrentGC_threads */);
1773   if (_workers == NULL) {
1774     return JNI_ENOMEM;
1775   }
1776   _workers->initialize_workers();
1777 
1778   // Create the G1ConcurrentMark data structure and thread.
1779   // (Must do this late, so that "max_regions" is defined.)
1780   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1781   if (_cm == NULL || !_cm->completed_initialization()) {
1782     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1783     return JNI_ENOMEM;
1784   }
1785   _cm_thread = _cm->cm_thread();
1786 
1787   // Now expand into the initial heap size.
1788   if (!expand(init_byte_size, _workers)) {
1789     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1790     return JNI_ENOMEM;
1791   }
1792 
1793   // Perform any initialization actions delegated to the policy.
1794   policy()->init(this, &_collection_set);
1795 
1796   jint ecode = initialize_concurrent_refinement();
1797   if (ecode != JNI_OK) {
1798     return ecode;
1799   }
1800 
1801   ecode = initialize_young_gen_sampling_thread();
1802   if (ecode != JNI_OK) {
1803     return ecode;
1804   }
1805 
1806   {
1807     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1808     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1809     dcqs.set_max_cards(concurrent_refine()->red_zone());
1810   }
1811 
1812   // Here we allocate the dummy HeapRegion that is required by the
1813   // G1AllocRegion class.
1814   HeapRegion* dummy_region = _hrm->get_dummy_region();
1815 
1816   // We'll re-use the same region whether the alloc region will
1817   // require BOT updates or not and, if it doesn't, then a non-young
1818   // region will complain that it cannot support allocations without
1819   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1820   dummy_region->set_eden();
1821   // Make sure it's full.
1822   dummy_region->set_top(dummy_region->end());
1823   G1AllocRegion::setup(this, dummy_region);
1824 
1825   _allocator->init_mutator_alloc_region();
1826 
1827   // Do create of the monitoring and management support so that
1828   // values in the heap have been properly initialized.
1829   _g1mm = new G1MonitoringSupport(this);
1830 
1831   G1StringDedup::initialize();
1832 
1833   _preserved_marks_set.init(ParallelGCThreads);
1834 
1835   _collection_set.initialize(max_regions());
1836 
1837   return JNI_OK;
1838 }
1839 
1840 void G1CollectedHeap::stop() {
1841   // Stop all concurrent threads. We do this to make sure these threads
1842   // do not continue to execute and access resources (e.g. logging)
1843   // that are destroyed during shutdown.
1844   _cr->stop();
1845   _young_gen_sampling_thread->stop();
1846   _cm_thread->stop();
1847   if (G1StringDedup::is_enabled()) {
1848     G1StringDedup::stop();
1849   }
1850 }
1851 
1852 void G1CollectedHeap::safepoint_synchronize_begin() {
1853   SuspendibleThreadSet::synchronize();
1854 }
1855 
1856 void G1CollectedHeap::safepoint_synchronize_end() {
1857   SuspendibleThreadSet::desynchronize();
1858 }
1859 
1860 void G1CollectedHeap::post_initialize() {
1861   CollectedHeap::post_initialize();
1862   ref_processing_init();
1863 }
1864 
1865 void G1CollectedHeap::ref_processing_init() {
1866   // Reference processing in G1 currently works as follows:
1867   //
1868   // * There are two reference processor instances. One is
1869   //   used to record and process discovered references
1870   //   during concurrent marking; the other is used to
1871   //   record and process references during STW pauses
1872   //   (both full and incremental).
1873   // * Both ref processors need to 'span' the entire heap as
1874   //   the regions in the collection set may be dotted around.
1875   //
1876   // * For the concurrent marking ref processor:
1877   //   * Reference discovery is enabled at initial marking.
1878   //   * Reference discovery is disabled and the discovered
1879   //     references processed etc during remarking.
1880   //   * Reference discovery is MT (see below).
1881   //   * Reference discovery requires a barrier (see below).
1882   //   * Reference processing may or may not be MT
1883   //     (depending on the value of ParallelRefProcEnabled
1884   //     and ParallelGCThreads).
1885   //   * A full GC disables reference discovery by the CM
1886   //     ref processor and abandons any entries on it's
1887   //     discovered lists.
1888   //
1889   // * For the STW processor:
1890   //   * Non MT discovery is enabled at the start of a full GC.
1891   //   * Processing and enqueueing during a full GC is non-MT.
1892   //   * During a full GC, references are processed after marking.
1893   //
1894   //   * Discovery (may or may not be MT) is enabled at the start
1895   //     of an incremental evacuation pause.
1896   //   * References are processed near the end of a STW evacuation pause.
1897   //   * For both types of GC:
1898   //     * Discovery is atomic - i.e. not concurrent.
1899   //     * Reference discovery will not need a barrier.
1900 
1901   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1902 
1903   // Concurrent Mark ref processor
1904   _ref_processor_cm =
1905     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1906                            mt_processing,                                  // mt processing
1907                            ParallelGCThreads,                              // degree of mt processing
1908                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1909                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1910                            false,                                          // Reference discovery is not atomic
1911                            &_is_alive_closure_cm,                          // is alive closure
1912                            true);                                          // allow changes to number of processing threads
1913 
1914   // STW ref processor
1915   _ref_processor_stw =
1916     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1917                            mt_processing,                        // mt processing
1918                            ParallelGCThreads,                    // degree of mt processing
1919                            (ParallelGCThreads > 1),              // mt discovery
1920                            ParallelGCThreads,                    // degree of mt discovery
1921                            true,                                 // Reference discovery is atomic
1922                            &_is_alive_closure_stw,               // is alive closure
1923                            true);                                // allow changes to number of processing threads
1924 }
1925 
1926 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1927   return &_soft_ref_policy;
1928 }
1929 
1930 size_t G1CollectedHeap::capacity() const {
1931   return _hrm->length() * HeapRegion::GrainBytes;
1932 }
1933 
1934 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1935   return _hrm->total_free_bytes();
1936 }
1937 
1938 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1939   _hot_card_cache->drain(cl, worker_id);
1940 }
1941 
1942 // Computes the sum of the storage used by the various regions.
1943 size_t G1CollectedHeap::used() const {
1944   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1945   if (_archive_allocator != NULL) {
1946     result += _archive_allocator->used();
1947   }
1948   return result;
1949 }
1950 
1951 size_t G1CollectedHeap::used_unlocked() const {
1952   return _summary_bytes_used;
1953 }
1954 
1955 class SumUsedClosure: public HeapRegionClosure {
1956   size_t _used;
1957 public:
1958   SumUsedClosure() : _used(0) {}
1959   bool do_heap_region(HeapRegion* r) {
1960     _used += r->used();
1961     return false;
1962   }
1963   size_t result() { return _used; }
1964 };
1965 
1966 size_t G1CollectedHeap::recalculate_used() const {
1967   SumUsedClosure blk;
1968   heap_region_iterate(&blk);
1969   return blk.result();
1970 }
1971 
1972 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1973   switch (cause) {
1974     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1975     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1976     case GCCause::_wb_conc_mark:                        return true;
1977     default :                                           return false;
1978   }
1979 }
1980 
1981 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1982   switch (cause) {
1983     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1984     case GCCause::_g1_humongous_allocation: return true;
1985     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1986     default:                                return is_user_requested_concurrent_full_gc(cause);
1987   }
1988 }
1989 
1990 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1991   if(policy()->force_upgrade_to_full()) {
1992     return true;
1993   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1994     return false;
1995   } else if (has_regions_left_for_allocation()) {
1996     return false;
1997   } else {
1998     return true;
1999   }
2000 }
2001 
2002 #ifndef PRODUCT
2003 void G1CollectedHeap::allocate_dummy_regions() {
2004   // Let's fill up most of the region
2005   size_t word_size = HeapRegion::GrainWords - 1024;
2006   // And as a result the region we'll allocate will be humongous.
2007   guarantee(is_humongous(word_size), "sanity");
2008 
2009   // _filler_array_max_size is set to humongous object threshold
2010   // but temporarily change it to use CollectedHeap::fill_with_object().
2011   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2012 
2013   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2014     // Let's use the existing mechanism for the allocation
2015     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2016     if (dummy_obj != NULL) {
2017       MemRegion mr(dummy_obj, word_size);
2018       CollectedHeap::fill_with_object(mr);
2019     } else {
2020       // If we can't allocate once, we probably cannot allocate
2021       // again. Let's get out of the loop.
2022       break;
2023     }
2024   }
2025 }
2026 #endif // !PRODUCT
2027 
2028 void G1CollectedHeap::increment_old_marking_cycles_started() {
2029   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2030          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2031          "Wrong marking cycle count (started: %d, completed: %d)",
2032          _old_marking_cycles_started, _old_marking_cycles_completed);
2033 
2034   _old_marking_cycles_started++;
2035 }
2036 
2037 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2038   MonitorLocker x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2039 
2040   // We assume that if concurrent == true, then the caller is a
2041   // concurrent thread that was joined the Suspendible Thread
2042   // Set. If there's ever a cheap way to check this, we should add an
2043   // assert here.
2044 
2045   // Given that this method is called at the end of a Full GC or of a
2046   // concurrent cycle, and those can be nested (i.e., a Full GC can
2047   // interrupt a concurrent cycle), the number of full collections
2048   // completed should be either one (in the case where there was no
2049   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2050   // behind the number of full collections started.
2051 
2052   // This is the case for the inner caller, i.e. a Full GC.
2053   assert(concurrent ||
2054          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2055          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2056          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2057          "is inconsistent with _old_marking_cycles_completed = %u",
2058          _old_marking_cycles_started, _old_marking_cycles_completed);
2059 
2060   // This is the case for the outer caller, i.e. the concurrent cycle.
2061   assert(!concurrent ||
2062          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2063          "for outer caller (concurrent cycle): "
2064          "_old_marking_cycles_started = %u "
2065          "is inconsistent with _old_marking_cycles_completed = %u",
2066          _old_marking_cycles_started, _old_marking_cycles_completed);
2067 
2068   _old_marking_cycles_completed += 1;
2069 
2070   // We need to clear the "in_progress" flag in the CM thread before
2071   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2072   // is set) so that if a waiter requests another System.gc() it doesn't
2073   // incorrectly see that a marking cycle is still in progress.
2074   if (concurrent) {
2075     _cm_thread->set_idle();
2076   }
2077 
2078   // This notify_all() will ensure that a thread that called
2079   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2080   // and it's waiting for a full GC to finish will be woken up. It is
2081   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2082   FullGCCount_lock->notify_all();
2083 }
2084 
2085 void G1CollectedHeap::collect(GCCause::Cause cause) {
2086   try_collect(cause, true);
2087 }
2088 
2089 bool G1CollectedHeap::try_collect(GCCause::Cause cause, bool retry_on_gc_failure) {
2090   assert_heap_not_locked();
2091 
2092   bool gc_succeeded;
2093   bool should_retry_gc;
2094 
2095   do {
2096     should_retry_gc = false;
2097 
2098     uint gc_count_before;
2099     uint old_marking_count_before;
2100     uint full_gc_count_before;
2101 
2102     {
2103       MutexLocker ml(Heap_lock);
2104 
2105       // Read the GC count while holding the Heap_lock
2106       gc_count_before = total_collections();
2107       full_gc_count_before = total_full_collections();
2108       old_marking_count_before = _old_marking_cycles_started;
2109     }
2110 
2111     if (should_do_concurrent_full_gc(cause)) {
2112       // Schedule an initial-mark evacuation pause that will start a
2113       // concurrent cycle. We're setting word_size to 0 which means that
2114       // we are not requesting a post-GC allocation.
2115       VM_G1CollectForAllocation op(0,     /* word_size */
2116                                    gc_count_before,
2117                                    cause,
2118                                    true,  /* should_initiate_conc_mark */
2119                                    policy()->max_pause_time_ms());
2120       VMThread::execute(&op);
2121       gc_succeeded = op.gc_succeeded();
2122       if (!gc_succeeded && retry_on_gc_failure) {
2123         if (old_marking_count_before == _old_marking_cycles_started) {
2124           should_retry_gc = op.should_retry_gc();
2125         } else {
2126           // A Full GC happened while we were trying to schedule the
2127           // concurrent cycle. No point in starting a new cycle given
2128           // that the whole heap was collected anyway.
2129         }
2130 
2131         if (should_retry_gc && GCLocker::is_active_and_needs_gc()) {
2132           GCLocker::stall_until_clear();
2133         }
2134       }
2135     } else if (GCLocker::should_discard(cause, gc_count_before)) {
2136       // Return false to be consistent with VMOp failure due to
2137       // another collection slipping in after our gc_count but before
2138       // our request is processed.  _gc_locker collections upgraded by
2139       // GCLockerInvokesConcurrent are handled above and never discarded.
2140       return false;
2141     } else {
2142       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2143           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2144 
2145         // Schedule a standard evacuation pause. We're setting word_size
2146         // to 0 which means that we are not requesting a post-GC allocation.
2147         VM_G1CollectForAllocation op(0,     /* word_size */
2148                                      gc_count_before,
2149                                      cause,
2150                                      false, /* should_initiate_conc_mark */
2151                                      policy()->max_pause_time_ms());
2152         VMThread::execute(&op);
2153         gc_succeeded = op.gc_succeeded();
2154       } else {
2155         // Schedule a Full GC.
2156         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2157         VMThread::execute(&op);
2158         gc_succeeded = op.gc_succeeded();
2159       }
2160     }
2161   } while (should_retry_gc);
2162   return gc_succeeded;
2163 }
2164 
2165 bool G1CollectedHeap::is_in(const void* p) const {
2166   if (_hrm->reserved().contains(p)) {
2167     // Given that we know that p is in the reserved space,
2168     // heap_region_containing() should successfully
2169     // return the containing region.
2170     HeapRegion* hr = heap_region_containing(p);
2171     return hr->is_in(p);
2172   } else {
2173     return false;
2174   }
2175 }
2176 
2177 #ifdef ASSERT
2178 bool G1CollectedHeap::is_in_exact(const void* p) const {
2179   bool contains = reserved_region().contains(p);
2180   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2181   if (contains && available) {
2182     return true;
2183   } else {
2184     return false;
2185   }
2186 }
2187 #endif
2188 
2189 // Iteration functions.
2190 
2191 // Iterates an ObjectClosure over all objects within a HeapRegion.
2192 
2193 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2194   ObjectClosure* _cl;
2195 public:
2196   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2197   bool do_heap_region(HeapRegion* r) {
2198     if (!r->is_continues_humongous()) {
2199       r->object_iterate(_cl);
2200     }
2201     return false;
2202   }
2203 };
2204 
2205 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2206   IterateObjectClosureRegionClosure blk(cl);
2207   heap_region_iterate(&blk);
2208 }
2209 
2210 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2211   _hrm->iterate(cl);
2212 }
2213 
2214 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2215                                                                  HeapRegionClaimer *hrclaimer,
2216                                                                  uint worker_id) const {
2217   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2218 }
2219 
2220 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2221                                                          HeapRegionClaimer *hrclaimer) const {
2222   _hrm->par_iterate(cl, hrclaimer, 0);
2223 }
2224 
2225 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2226   _collection_set.iterate(cl);
2227 }
2228 
2229 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2230   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2231 }
2232 
2233 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2234   HeapRegion* hr = heap_region_containing(addr);
2235   return hr->block_start(addr);
2236 }
2237 
2238 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2239   HeapRegion* hr = heap_region_containing(addr);
2240   return hr->block_is_obj(addr);
2241 }
2242 
2243 bool G1CollectedHeap::supports_tlab_allocation() const {
2244   return true;
2245 }
2246 
2247 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2248   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2249 }
2250 
2251 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2252   return _eden.length() * HeapRegion::GrainBytes;
2253 }
2254 
2255 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2256 // must be equal to the humongous object limit.
2257 size_t G1CollectedHeap::max_tlab_size() const {
2258   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2259 }
2260 
2261 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2262   return _allocator->unsafe_max_tlab_alloc();
2263 }
2264 
2265 size_t G1CollectedHeap::max_capacity() const {
2266   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2267 }
2268 
2269 size_t G1CollectedHeap::max_reserved_capacity() const {
2270   return _hrm->max_length() * HeapRegion::GrainBytes;
2271 }
2272 
2273 jlong G1CollectedHeap::millis_since_last_gc() {
2274   // See the notes in GenCollectedHeap::millis_since_last_gc()
2275   // for more information about the implementation.
2276   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2277                   _policy->collection_pause_end_millis();
2278   if (ret_val < 0) {
2279     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2280       ". returning zero instead.", ret_val);
2281     return 0;
2282   }
2283   return ret_val;
2284 }
2285 
2286 void G1CollectedHeap::deduplicate_string(oop str) {
2287   assert(java_lang_String::is_instance(str), "invariant");
2288 
2289   if (G1StringDedup::is_enabled()) {
2290     G1StringDedup::deduplicate(str);
2291   }
2292 }
2293 
2294 void G1CollectedHeap::prepare_for_verify() {
2295   _verifier->prepare_for_verify();
2296 }
2297 
2298 void G1CollectedHeap::verify(VerifyOption vo) {
2299   _verifier->verify(vo);
2300 }
2301 
2302 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2303   return true;
2304 }
2305 
2306 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2307   return _cm_thread->request_concurrent_phase(phase);
2308 }
2309 
2310 bool G1CollectedHeap::is_heterogeneous_heap() const {
2311   return G1Arguments::is_heterogeneous_heap();
2312 }
2313 
2314 class PrintRegionClosure: public HeapRegionClosure {
2315   outputStream* _st;
2316 public:
2317   PrintRegionClosure(outputStream* st) : _st(st) {}
2318   bool do_heap_region(HeapRegion* r) {
2319     r->print_on(_st);
2320     return false;
2321   }
2322 };
2323 
2324 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2325                                        const HeapRegion* hr,
2326                                        const VerifyOption vo) const {
2327   switch (vo) {
2328   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2329   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2330   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2331   default:                            ShouldNotReachHere();
2332   }
2333   return false; // keep some compilers happy
2334 }
2335 
2336 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2337                                        const VerifyOption vo) const {
2338   switch (vo) {
2339   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2340   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2341   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2342   default:                            ShouldNotReachHere();
2343   }
2344   return false; // keep some compilers happy
2345 }
2346 
2347 void G1CollectedHeap::print_heap_regions() const {
2348   LogTarget(Trace, gc, heap, region) lt;
2349   if (lt.is_enabled()) {
2350     LogStream ls(lt);
2351     print_regions_on(&ls);
2352   }
2353 }
2354 
2355 void G1CollectedHeap::print_on(outputStream* st) const {
2356   st->print(" %-20s", "garbage-first heap");
2357   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2358             capacity()/K, used_unlocked()/K);
2359   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2360             p2i(_hrm->reserved().start()),
2361             p2i(_hrm->reserved().end()));
2362   st->cr();
2363   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2364   uint young_regions = young_regions_count();
2365   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2366             (size_t) young_regions * HeapRegion::GrainBytes / K);
2367   uint survivor_regions = survivor_regions_count();
2368   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2369             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2370   st->cr();
2371   MetaspaceUtils::print_on(st);
2372 }
2373 
2374 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2375   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2376                "HS=humongous(starts), HC=humongous(continues), "
2377                "CS=collection set, F=free, "
2378                "OA=open archive, CA=closed archive, "
2379                "TAMS=top-at-mark-start (previous, next)");
2380   PrintRegionClosure blk(st);
2381   heap_region_iterate(&blk);
2382 }
2383 
2384 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2385   print_on(st);
2386 
2387   // Print the per-region information.
2388   print_regions_on(st);
2389 }
2390 
2391 void G1CollectedHeap::print_on_error(outputStream* st) const {
2392   this->CollectedHeap::print_on_error(st);
2393 
2394   if (_cm != NULL) {
2395     st->cr();
2396     _cm->print_on_error(st);
2397   }
2398 }
2399 
2400 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2401   workers()->print_worker_threads_on(st);
2402   _cm_thread->print_on(st);
2403   st->cr();
2404   _cm->print_worker_threads_on(st);
2405   _cr->print_threads_on(st);
2406   _young_gen_sampling_thread->print_on(st);
2407   if (G1StringDedup::is_enabled()) {
2408     G1StringDedup::print_worker_threads_on(st);
2409   }
2410 }
2411 
2412 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2413   workers()->threads_do(tc);
2414   tc->do_thread(_cm_thread);
2415   _cm->threads_do(tc);
2416   _cr->threads_do(tc);
2417   tc->do_thread(_young_gen_sampling_thread);
2418   if (G1StringDedup::is_enabled()) {
2419     G1StringDedup::threads_do(tc);
2420   }
2421 }
2422 
2423 void G1CollectedHeap::print_tracing_info() const {
2424   rem_set()->print_summary_info();
2425   concurrent_mark()->print_summary_info();
2426 }
2427 
2428 #ifndef PRODUCT
2429 // Helpful for debugging RSet issues.
2430 
2431 class PrintRSetsClosure : public HeapRegionClosure {
2432 private:
2433   const char* _msg;
2434   size_t _occupied_sum;
2435 
2436 public:
2437   bool do_heap_region(HeapRegion* r) {
2438     HeapRegionRemSet* hrrs = r->rem_set();
2439     size_t occupied = hrrs->occupied();
2440     _occupied_sum += occupied;
2441 
2442     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2443     if (occupied == 0) {
2444       tty->print_cr("  RSet is empty");
2445     } else {
2446       hrrs->print();
2447     }
2448     tty->print_cr("----------");
2449     return false;
2450   }
2451 
2452   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2453     tty->cr();
2454     tty->print_cr("========================================");
2455     tty->print_cr("%s", msg);
2456     tty->cr();
2457   }
2458 
2459   ~PrintRSetsClosure() {
2460     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2461     tty->print_cr("========================================");
2462     tty->cr();
2463   }
2464 };
2465 
2466 void G1CollectedHeap::print_cset_rsets() {
2467   PrintRSetsClosure cl("Printing CSet RSets");
2468   collection_set_iterate_all(&cl);
2469 }
2470 
2471 void G1CollectedHeap::print_all_rsets() {
2472   PrintRSetsClosure cl("Printing All RSets");;
2473   heap_region_iterate(&cl);
2474 }
2475 #endif // PRODUCT
2476 
2477 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2478   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2479 }
2480 
2481 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2482 
2483   size_t eden_used_bytes = _eden.used_bytes();
2484   size_t survivor_used_bytes = _survivor.used_bytes();
2485   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2486 
2487   size_t eden_capacity_bytes =
2488     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2489 
2490   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2491   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2492                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2493 }
2494 
2495 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2496   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2497                        stats->unused(), stats->used(), stats->region_end_waste(),
2498                        stats->regions_filled(), stats->direct_allocated(),
2499                        stats->failure_used(), stats->failure_waste());
2500 }
2501 
2502 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2503   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2504   gc_tracer->report_gc_heap_summary(when, heap_summary);
2505 
2506   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2507   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2508 }
2509 
2510 G1CollectedHeap* G1CollectedHeap::heap() {
2511   CollectedHeap* heap = Universe::heap();
2512   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2513   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2514   return (G1CollectedHeap*)heap;
2515 }
2516 
2517 void G1CollectedHeap::gc_prologue(bool full) {
2518   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2519 
2520   // This summary needs to be printed before incrementing total collections.
2521   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2522 
2523   // Update common counters.
2524   increment_total_collections(full /* full gc */);
2525   if (full || collector_state()->in_initial_mark_gc()) {
2526     increment_old_marking_cycles_started();
2527   }
2528 
2529   // Fill TLAB's and such
2530   double start = os::elapsedTime();
2531   ensure_parsability(true);
2532   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2533 }
2534 
2535 void G1CollectedHeap::gc_epilogue(bool full) {
2536   // Update common counters.
2537   if (full) {
2538     // Update the number of full collections that have been completed.
2539     increment_old_marking_cycles_completed(false /* concurrent */);
2540   }
2541 
2542   // We are at the end of the GC. Total collections has already been increased.
2543   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2544 
2545   // FIXME: what is this about?
2546   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2547   // is set.
2548 #if COMPILER2_OR_JVMCI
2549   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2550 #endif
2551 
2552   double start = os::elapsedTime();
2553   resize_all_tlabs();
2554   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2555 
2556   MemoryService::track_memory_usage();
2557   // We have just completed a GC. Update the soft reference
2558   // policy with the new heap occupancy
2559   Universe::update_heap_info_at_gc();
2560 }
2561 
2562 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2563                                                uint gc_count_before,
2564                                                bool* succeeded,
2565                                                GCCause::Cause gc_cause) {
2566   assert_heap_not_locked_and_not_at_safepoint();
2567   VM_G1CollectForAllocation op(word_size,
2568                                gc_count_before,
2569                                gc_cause,
2570                                false, /* should_initiate_conc_mark */
2571                                policy()->max_pause_time_ms());
2572   VMThread::execute(&op);
2573 
2574   HeapWord* result = op.result();
2575   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2576   assert(result == NULL || ret_succeeded,
2577          "the result should be NULL if the VM did not succeed");
2578   *succeeded = ret_succeeded;
2579 
2580   assert_heap_not_locked();
2581   return result;
2582 }
2583 
2584 void G1CollectedHeap::do_concurrent_mark() {
2585   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2586   if (!_cm_thread->in_progress()) {
2587     _cm_thread->set_started();
2588     CGC_lock->notify();
2589   }
2590 }
2591 
2592 size_t G1CollectedHeap::pending_card_num() {
2593   struct CountCardsClosure : public ThreadClosure {
2594     size_t _cards;
2595     CountCardsClosure() : _cards(0) {}
2596     virtual void do_thread(Thread* t) {
2597       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2598     }
2599   } count_from_threads;
2600   Threads::threads_do(&count_from_threads);
2601 
2602   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2603   dcqs.verify_num_cards();
2604 
2605   return dcqs.num_cards() + count_from_threads._cards;
2606 }
2607 
2608 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2609   // We don't nominate objects with many remembered set entries, on
2610   // the assumption that such objects are likely still live.
2611   HeapRegionRemSet* rem_set = r->rem_set();
2612 
2613   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2614          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2615          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2616 }
2617 
2618 class RegisterRegionsWithRegionAttrTableClosure : public HeapRegionClosure {
2619  private:
2620   size_t _total_humongous;
2621   size_t _candidate_humongous;
2622 
2623   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2624     assert(region->is_starts_humongous(), "Must start a humongous object");
2625 
2626     oop obj = oop(region->bottom());
2627 
2628     // Dead objects cannot be eager reclaim candidates. Due to class
2629     // unloading it is unsafe to query their classes so we return early.
2630     if (g1h->is_obj_dead(obj, region)) {
2631       return false;
2632     }
2633 
2634     // If we do not have a complete remembered set for the region, then we can
2635     // not be sure that we have all references to it.
2636     if (!region->rem_set()->is_complete()) {
2637       return false;
2638     }
2639     // Candidate selection must satisfy the following constraints
2640     // while concurrent marking is in progress:
2641     //
2642     // * In order to maintain SATB invariants, an object must not be
2643     // reclaimed if it was allocated before the start of marking and
2644     // has not had its references scanned.  Such an object must have
2645     // its references (including type metadata) scanned to ensure no
2646     // live objects are missed by the marking process.  Objects
2647     // allocated after the start of concurrent marking don't need to
2648     // be scanned.
2649     //
2650     // * An object must not be reclaimed if it is on the concurrent
2651     // mark stack.  Objects allocated after the start of concurrent
2652     // marking are never pushed on the mark stack.
2653     //
2654     // Nominating only objects allocated after the start of concurrent
2655     // marking is sufficient to meet both constraints.  This may miss
2656     // some objects that satisfy the constraints, but the marking data
2657     // structures don't support efficiently performing the needed
2658     // additional tests or scrubbing of the mark stack.
2659     //
2660     // However, we presently only nominate is_typeArray() objects.
2661     // A humongous object containing references induces remembered
2662     // set entries on other regions.  In order to reclaim such an
2663     // object, those remembered sets would need to be cleaned up.
2664     //
2665     // We also treat is_typeArray() objects specially, allowing them
2666     // to be reclaimed even if allocated before the start of
2667     // concurrent mark.  For this we rely on mark stack insertion to
2668     // exclude is_typeArray() objects, preventing reclaiming an object
2669     // that is in the mark stack.  We also rely on the metadata for
2670     // such objects to be built-in and so ensured to be kept live.
2671     // Frequent allocation and drop of large binary blobs is an
2672     // important use case for eager reclaim, and this special handling
2673     // may reduce needed headroom.
2674 
2675     return obj->is_typeArray() &&
2676            g1h->is_potential_eager_reclaim_candidate(region);
2677   }
2678 
2679  public:
2680   RegisterRegionsWithRegionAttrTableClosure()
2681   : _total_humongous(0),
2682     _candidate_humongous(0) {
2683   }
2684 
2685   virtual bool do_heap_region(HeapRegion* r) {
2686     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2687 
2688     if (!r->is_starts_humongous()) {
2689       g1h->register_region_with_region_attr(r);
2690       return false;
2691     }
2692 
2693     bool is_candidate = humongous_region_is_candidate(g1h, r);
2694     uint rindex = r->hrm_index();
2695     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2696     if (is_candidate) {
2697       g1h->register_humongous_region_with_region_attr(rindex);
2698       _candidate_humongous++;
2699       // We will later handle the remembered sets of these regions.
2700     } else {
2701       g1h->register_region_with_region_attr(r);
2702     }
2703     _total_humongous++;
2704 
2705     return false;
2706   }
2707 
2708   size_t total_humongous() const { return _total_humongous; }
2709   size_t candidate_humongous() const { return _candidate_humongous; }
2710 };
2711 
2712 void G1CollectedHeap::register_regions_with_region_attr() {
2713   Ticks start = Ticks::now();
2714 
2715   RegisterRegionsWithRegionAttrTableClosure cl;
2716   heap_region_iterate(&cl);
2717 
2718   phase_times()->record_register_regions((Ticks::now() - start).seconds() * 1000.0,
2719                                          cl.total_humongous(),
2720                                          cl.candidate_humongous());
2721   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2722 }
2723 
2724 #ifndef PRODUCT
2725 void G1CollectedHeap::verify_region_attr_remset_update() {
2726   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2727   public:
2728     virtual bool do_heap_region(HeapRegion* r) {
2729       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2730       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2731       assert(r->rem_set()->is_tracked() == needs_remset_update,
2732              "Region %u remset tracking status (%s) different to region attribute (%s)",
2733              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2734       return false;
2735     }
2736   } cl;
2737   heap_region_iterate(&cl);
2738 }
2739 #endif
2740 
2741 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2742   public:
2743     bool do_heap_region(HeapRegion* hr) {
2744       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2745         hr->verify_rem_set();
2746       }
2747       return false;
2748     }
2749 };
2750 
2751 uint G1CollectedHeap::num_task_queues() const {
2752   return _task_queues->size();
2753 }
2754 
2755 #if TASKQUEUE_STATS
2756 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2757   st->print_raw_cr("GC Task Stats");
2758   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2759   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2760 }
2761 
2762 void G1CollectedHeap::print_taskqueue_stats() const {
2763   if (!log_is_enabled(Trace, gc, task, stats)) {
2764     return;
2765   }
2766   Log(gc, task, stats) log;
2767   ResourceMark rm;
2768   LogStream ls(log.trace());
2769   outputStream* st = &ls;
2770 
2771   print_taskqueue_stats_hdr(st);
2772 
2773   TaskQueueStats totals;
2774   const uint n = num_task_queues();
2775   for (uint i = 0; i < n; ++i) {
2776     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2777     totals += task_queue(i)->stats;
2778   }
2779   st->print_raw("tot "); totals.print(st); st->cr();
2780 
2781   DEBUG_ONLY(totals.verify());
2782 }
2783 
2784 void G1CollectedHeap::reset_taskqueue_stats() {
2785   const uint n = num_task_queues();
2786   for (uint i = 0; i < n; ++i) {
2787     task_queue(i)->stats.reset();
2788   }
2789 }
2790 #endif // TASKQUEUE_STATS
2791 
2792 void G1CollectedHeap::wait_for_root_region_scanning() {
2793   double scan_wait_start = os::elapsedTime();
2794   // We have to wait until the CM threads finish scanning the
2795   // root regions as it's the only way to ensure that all the
2796   // objects on them have been correctly scanned before we start
2797   // moving them during the GC.
2798   bool waited = _cm->root_regions()->wait_until_scan_finished();
2799   double wait_time_ms = 0.0;
2800   if (waited) {
2801     double scan_wait_end = os::elapsedTime();
2802     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2803   }
2804   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2805 }
2806 
2807 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2808 private:
2809   G1HRPrinter* _hr_printer;
2810 public:
2811   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2812 
2813   virtual bool do_heap_region(HeapRegion* r) {
2814     _hr_printer->cset(r);
2815     return false;
2816   }
2817 };
2818 
2819 void G1CollectedHeap::start_new_collection_set() {
2820   double start = os::elapsedTime();
2821 
2822   collection_set()->start_incremental_building();
2823 
2824   clear_region_attr();
2825 
2826   guarantee(_eden.length() == 0, "eden should have been cleared");
2827   policy()->transfer_survivors_to_cset(survivor());
2828 
2829   // We redo the verification but now wrt to the new CSet which
2830   // has just got initialized after the previous CSet was freed.
2831   _cm->verify_no_collection_set_oops();
2832 
2833   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2834 }
2835 
2836 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2837 
2838   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2839   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2840                                             collection_set()->optional_region_length());
2841 
2842   _cm->verify_no_collection_set_oops();
2843 
2844   if (_hr_printer.is_active()) {
2845     G1PrintCollectionSetClosure cl(&_hr_printer);
2846     _collection_set.iterate(&cl);
2847     _collection_set.iterate_optional(&cl);
2848   }
2849 }
2850 
2851 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2852   if (collector_state()->in_initial_mark_gc()) {
2853     return G1HeapVerifier::G1VerifyConcurrentStart;
2854   } else if (collector_state()->in_young_only_phase()) {
2855     return G1HeapVerifier::G1VerifyYoungNormal;
2856   } else {
2857     return G1HeapVerifier::G1VerifyMixed;
2858   }
2859 }
2860 
2861 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2862   if (VerifyRememberedSets) {
2863     log_info(gc, verify)("[Verifying RemSets before GC]");
2864     VerifyRegionRemSetClosure v_cl;
2865     heap_region_iterate(&v_cl);
2866   }
2867   _verifier->verify_before_gc(type);
2868   _verifier->check_bitmaps("GC Start");
2869 }
2870 
2871 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2872   if (VerifyRememberedSets) {
2873     log_info(gc, verify)("[Verifying RemSets after GC]");
2874     VerifyRegionRemSetClosure v_cl;
2875     heap_region_iterate(&v_cl);
2876   }
2877   _verifier->verify_after_gc(type);
2878   _verifier->check_bitmaps("GC End");
2879 }
2880 
2881 void G1CollectedHeap::expand_heap_after_young_collection(){
2882   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2883   if (expand_bytes > 0) {
2884     // No need for an ergo logging here,
2885     // expansion_amount() does this when it returns a value > 0.
2886     double expand_ms;
2887     if (!expand(expand_bytes, _workers, &expand_ms)) {
2888       // We failed to expand the heap. Cannot do anything about it.
2889     }
2890     phase_times()->record_expand_heap_time(expand_ms);
2891   }
2892 }
2893 
2894 const char* G1CollectedHeap::young_gc_name() const {
2895   if (collector_state()->in_initial_mark_gc()) {
2896     return "Pause Young (Concurrent Start)";
2897   } else if (collector_state()->in_young_only_phase()) {
2898     if (collector_state()->in_young_gc_before_mixed()) {
2899       return "Pause Young (Prepare Mixed)";
2900     } else {
2901       return "Pause Young (Normal)";
2902     }
2903   } else {
2904     return "Pause Young (Mixed)";
2905   }
2906 }
2907 
2908 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2909   assert_at_safepoint_on_vm_thread();
2910   guarantee(!is_gc_active(), "collection is not reentrant");
2911 
2912   if (GCLocker::check_active_before_gc()) {
2913     return false;
2914   }
2915 
2916   GCIdMark gc_id_mark;
2917 
2918   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2919   ResourceMark rm;
2920 
2921   policy()->note_gc_start();
2922 
2923   _gc_timer_stw->register_gc_start();
2924   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2925 
2926   wait_for_root_region_scanning();
2927 
2928   print_heap_before_gc();
2929   print_heap_regions();
2930   trace_heap_before_gc(_gc_tracer_stw);
2931 
2932   _verifier->verify_region_sets_optional();
2933   _verifier->verify_dirty_young_regions();
2934 
2935   // We should not be doing initial mark unless the conc mark thread is running
2936   if (!_cm_thread->should_terminate()) {
2937     // This call will decide whether this pause is an initial-mark
2938     // pause. If it is, in_initial_mark_gc() will return true
2939     // for the duration of this pause.
2940     policy()->decide_on_conc_mark_initiation();
2941   }
2942 
2943   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2944   assert(!collector_state()->in_initial_mark_gc() ||
2945          collector_state()->in_young_only_phase(), "sanity");
2946   // We also do not allow mixed GCs during marking.
2947   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2948 
2949   // Record whether this pause is an initial mark. When the current
2950   // thread has completed its logging output and it's safe to signal
2951   // the CM thread, the flag's value in the policy has been reset.
2952   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2953   if (should_start_conc_mark) {
2954     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2955   }
2956 
2957   // Inner scope for scope based logging, timers, and stats collection
2958   {
2959     G1EvacuationInfo evacuation_info;
2960 
2961     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2962 
2963     GCTraceCPUTime tcpu;
2964 
2965     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
2966 
2967     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
2968                                                             workers()->active_workers(),
2969                                                             Threads::number_of_non_daemon_threads());
2970     active_workers = workers()->update_active_workers(active_workers);
2971     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2972 
2973     G1MonitoringScope ms(g1mm(),
2974                          false /* full_gc */,
2975                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
2976 
2977     G1HeapTransition heap_transition(this);
2978     size_t heap_used_bytes_before_gc = used();
2979 
2980     {
2981       IsGCActiveMark x;
2982 
2983       gc_prologue(false);
2984 
2985       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
2986       verify_before_young_collection(verify_type);
2987 
2988       {
2989         // The elapsed time induced by the start time below deliberately elides
2990         // the possible verification above.
2991         double sample_start_time_sec = os::elapsedTime();
2992 
2993         // Please see comment in g1CollectedHeap.hpp and
2994         // G1CollectedHeap::ref_processing_init() to see how
2995         // reference processing currently works in G1.
2996         _ref_processor_stw->enable_discovery();
2997 
2998         // We want to temporarily turn off discovery by the
2999         // CM ref processor, if necessary, and turn it back on
3000         // on again later if we do. Using a scoped
3001         // NoRefDiscovery object will do this.
3002         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3003 
3004         policy()->record_collection_pause_start(sample_start_time_sec);
3005 
3006         // Forget the current allocation region (we might even choose it to be part
3007         // of the collection set!).
3008         _allocator->release_mutator_alloc_region();
3009 
3010         calculate_collection_set(evacuation_info, target_pause_time_ms);
3011 
3012         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3013         G1ParScanThreadStateSet per_thread_states(this,
3014                                                   &rdcqs,
3015                                                   workers()->active_workers(),
3016                                                   collection_set()->young_region_length(),
3017                                                   collection_set()->optional_region_length());
3018         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3019 
3020         // Actually do the work...
3021         evacuate_initial_collection_set(&per_thread_states);
3022 
3023         if (_collection_set.optional_region_length() != 0) {
3024           evacuate_optional_collection_set(&per_thread_states);
3025         }
3026         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3027 
3028         start_new_collection_set();
3029 
3030         _survivor_evac_stats.adjust_desired_plab_sz();
3031         _old_evac_stats.adjust_desired_plab_sz();
3032 
3033         if (should_start_conc_mark) {
3034           // We have to do this before we notify the CM threads that
3035           // they can start working to make sure that all the
3036           // appropriate initialization is done on the CM object.
3037           concurrent_mark()->post_initial_mark();
3038           // Note that we don't actually trigger the CM thread at
3039           // this point. We do that later when we're sure that
3040           // the current thread has completed its logging output.
3041         }
3042 
3043         allocate_dummy_regions();
3044 
3045         _allocator->init_mutator_alloc_region();
3046 
3047         expand_heap_after_young_collection();
3048 
3049         double sample_end_time_sec = os::elapsedTime();
3050         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3051         policy()->record_collection_pause_end(pause_time_ms, heap_used_bytes_before_gc);
3052       }
3053 
3054       verify_after_young_collection(verify_type);
3055 
3056 #ifdef TRACESPINNING
3057       ParallelTaskTerminator::print_termination_counts();
3058 #endif
3059 
3060       gc_epilogue(false);
3061     }
3062 
3063     // Print the remainder of the GC log output.
3064     if (evacuation_failed()) {
3065       log_info(gc)("To-space exhausted");
3066     }
3067 
3068     policy()->print_phases();
3069     heap_transition.print();
3070 
3071     _hrm->verify_optional();
3072     _verifier->verify_region_sets_optional();
3073 
3074     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3075     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3076 
3077     print_heap_after_gc();
3078     print_heap_regions();
3079     trace_heap_after_gc(_gc_tracer_stw);
3080 
3081     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3082     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3083     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3084     // before any GC notifications are raised.
3085     g1mm()->update_sizes();
3086 
3087     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3088     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3089     _gc_timer_stw->register_gc_end();
3090     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3091   }
3092   // It should now be safe to tell the concurrent mark thread to start
3093   // without its logging output interfering with the logging output
3094   // that came from the pause.
3095 
3096   if (should_start_conc_mark) {
3097     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3098     // thread(s) could be running concurrently with us. Make sure that anything
3099     // after this point does not assume that we are the only GC thread running.
3100     // Note: of course, the actual marking work will not start until the safepoint
3101     // itself is released in SuspendibleThreadSet::desynchronize().
3102     do_concurrent_mark();
3103   }
3104 
3105   return true;
3106 }
3107 
3108 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3109   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3110   workers()->run_task(&rsfp_task);
3111 }
3112 
3113 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3114   double remove_self_forwards_start = os::elapsedTime();
3115 
3116   remove_self_forwarding_pointers(rdcqs);
3117   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3118   _preserved_marks_set.restore(&task_executor);
3119 
3120   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3121 }
3122 
3123 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3124   if (!_evacuation_failed) {
3125     _evacuation_failed = true;
3126   }
3127 
3128   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3129   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3130 }
3131 
3132 bool G1ParEvacuateFollowersClosure::offer_termination() {
3133   EventGCPhaseParallel event;
3134   G1ParScanThreadState* const pss = par_scan_state();
3135   start_term_time();
3136   const bool res = terminator()->offer_termination();
3137   end_term_time();
3138   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3139   return res;
3140 }
3141 
3142 void G1ParEvacuateFollowersClosure::do_void() {
3143   EventGCPhaseParallel event;
3144   G1ParScanThreadState* const pss = par_scan_state();
3145   pss->trim_queue();
3146   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3147   do {
3148     EventGCPhaseParallel event;
3149     pss->steal_and_trim_queue(queues());
3150     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3151   } while (!offer_termination());
3152 }
3153 
3154 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3155                                         bool class_unloading_occurred) {
3156   uint num_workers = workers()->active_workers();
3157   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3158   workers()->run_task(&unlink_task);
3159 }
3160 
3161 // Clean string dedup data structures.
3162 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3163 // record the durations of the phases. Hence the almost-copy.
3164 class G1StringDedupCleaningTask : public AbstractGangTask {
3165   BoolObjectClosure* _is_alive;
3166   OopClosure* _keep_alive;
3167   G1GCPhaseTimes* _phase_times;
3168 
3169 public:
3170   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3171                             OopClosure* keep_alive,
3172                             G1GCPhaseTimes* phase_times) :
3173     AbstractGangTask("Partial Cleaning Task"),
3174     _is_alive(is_alive),
3175     _keep_alive(keep_alive),
3176     _phase_times(phase_times)
3177   {
3178     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3179     StringDedup::gc_prologue(true);
3180   }
3181 
3182   ~G1StringDedupCleaningTask() {
3183     StringDedup::gc_epilogue();
3184   }
3185 
3186   void work(uint worker_id) {
3187     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3188     {
3189       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3190       StringDedupQueue::unlink_or_oops_do(&cl);
3191     }
3192     {
3193       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3194       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3195     }
3196   }
3197 };
3198 
3199 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3200                                             OopClosure* keep_alive,
3201                                             G1GCPhaseTimes* phase_times) {
3202   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3203   workers()->run_task(&cl);
3204 }
3205 
3206 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3207  private:
3208   G1RedirtyCardsQueueSet* _qset;
3209   G1CollectedHeap* _g1h;
3210   BufferNode* volatile _nodes;
3211 
3212   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3213     size_t buffer_size = _qset->buffer_size();
3214     BufferNode* next = Atomic::load(&_nodes);
3215     while (next != NULL) {
3216       BufferNode* node = next;
3217       next = Atomic::cmpxchg(node->next(), &_nodes, node);
3218       if (next == node) {
3219         cl->apply_to_buffer(node, buffer_size, worker_id);
3220         next = node->next();
3221       }
3222     }
3223   }
3224 
3225  public:
3226   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3227     AbstractGangTask("Redirty Cards"),
3228     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3229 
3230   virtual void work(uint worker_id) {
3231     G1GCPhaseTimes* p = _g1h->phase_times();
3232     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3233 
3234     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3235     par_apply(&cl, worker_id);
3236 
3237     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3238   }
3239 };
3240 
3241 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3242   double redirty_logged_cards_start = os::elapsedTime();
3243 
3244   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3245   workers()->run_task(&redirty_task);
3246 
3247   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3248   dcq.merge_bufferlists(rdcqs);
3249 
3250   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3251 }
3252 
3253 // Weak Reference Processing support
3254 
3255 bool G1STWIsAliveClosure::do_object_b(oop p) {
3256   // An object is reachable if it is outside the collection set,
3257   // or is inside and copied.
3258   return !_g1h->is_in_cset(p) || p->is_forwarded();
3259 }
3260 
3261 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3262   assert(obj != NULL, "must not be NULL");
3263   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3264   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3265   // may falsely indicate that this is not the case here: however the collection set only
3266   // contains old regions when concurrent mark is not running.
3267   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3268 }
3269 
3270 // Non Copying Keep Alive closure
3271 class G1KeepAliveClosure: public OopClosure {
3272   G1CollectedHeap*_g1h;
3273 public:
3274   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3275   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3276   void do_oop(oop* p) {
3277     oop obj = *p;
3278     assert(obj != NULL, "the caller should have filtered out NULL values");
3279 
3280     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3281     if (!region_attr.is_in_cset_or_humongous()) {
3282       return;
3283     }
3284     if (region_attr.is_in_cset()) {
3285       assert( obj->is_forwarded(), "invariant" );
3286       *p = obj->forwardee();
3287     } else {
3288       assert(!obj->is_forwarded(), "invariant" );
3289       assert(region_attr.is_humongous(),
3290              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3291      _g1h->set_humongous_is_live(obj);
3292     }
3293   }
3294 };
3295 
3296 // Copying Keep Alive closure - can be called from both
3297 // serial and parallel code as long as different worker
3298 // threads utilize different G1ParScanThreadState instances
3299 // and different queues.
3300 
3301 class G1CopyingKeepAliveClosure: public OopClosure {
3302   G1CollectedHeap*         _g1h;
3303   G1ParScanThreadState*    _par_scan_state;
3304 
3305 public:
3306   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3307                             G1ParScanThreadState* pss):
3308     _g1h(g1h),
3309     _par_scan_state(pss)
3310   {}
3311 
3312   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3313   virtual void do_oop(      oop* p) { do_oop_work(p); }
3314 
3315   template <class T> void do_oop_work(T* p) {
3316     oop obj = RawAccess<>::oop_load(p);
3317 
3318     if (_g1h->is_in_cset_or_humongous(obj)) {
3319       // If the referent object has been forwarded (either copied
3320       // to a new location or to itself in the event of an
3321       // evacuation failure) then we need to update the reference
3322       // field and, if both reference and referent are in the G1
3323       // heap, update the RSet for the referent.
3324       //
3325       // If the referent has not been forwarded then we have to keep
3326       // it alive by policy. Therefore we have copy the referent.
3327       //
3328       // When the queue is drained (after each phase of reference processing)
3329       // the object and it's followers will be copied, the reference field set
3330       // to point to the new location, and the RSet updated.
3331       _par_scan_state->push_on_queue(p);
3332     }
3333   }
3334 };
3335 
3336 // Serial drain queue closure. Called as the 'complete_gc'
3337 // closure for each discovered list in some of the
3338 // reference processing phases.
3339 
3340 class G1STWDrainQueueClosure: public VoidClosure {
3341 protected:
3342   G1CollectedHeap* _g1h;
3343   G1ParScanThreadState* _par_scan_state;
3344 
3345   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3346 
3347 public:
3348   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3349     _g1h(g1h),
3350     _par_scan_state(pss)
3351   { }
3352 
3353   void do_void() {
3354     G1ParScanThreadState* const pss = par_scan_state();
3355     pss->trim_queue();
3356   }
3357 };
3358 
3359 // Parallel Reference Processing closures
3360 
3361 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3362 // processing during G1 evacuation pauses.
3363 
3364 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3365 private:
3366   G1CollectedHeap*          _g1h;
3367   G1ParScanThreadStateSet*  _pss;
3368   RefToScanQueueSet*        _queues;
3369   WorkGang*                 _workers;
3370 
3371 public:
3372   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3373                            G1ParScanThreadStateSet* per_thread_states,
3374                            WorkGang* workers,
3375                            RefToScanQueueSet *task_queues) :
3376     _g1h(g1h),
3377     _pss(per_thread_states),
3378     _queues(task_queues),
3379     _workers(workers)
3380   {
3381     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3382   }
3383 
3384   // Executes the given task using concurrent marking worker threads.
3385   virtual void execute(ProcessTask& task, uint ergo_workers);
3386 };
3387 
3388 // Gang task for possibly parallel reference processing
3389 
3390 class G1STWRefProcTaskProxy: public AbstractGangTask {
3391   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3392   ProcessTask&     _proc_task;
3393   G1CollectedHeap* _g1h;
3394   G1ParScanThreadStateSet* _pss;
3395   RefToScanQueueSet* _task_queues;
3396   ParallelTaskTerminator* _terminator;
3397 
3398 public:
3399   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3400                         G1CollectedHeap* g1h,
3401                         G1ParScanThreadStateSet* per_thread_states,
3402                         RefToScanQueueSet *task_queues,
3403                         ParallelTaskTerminator* terminator) :
3404     AbstractGangTask("Process reference objects in parallel"),
3405     _proc_task(proc_task),
3406     _g1h(g1h),
3407     _pss(per_thread_states),
3408     _task_queues(task_queues),
3409     _terminator(terminator)
3410   {}
3411 
3412   virtual void work(uint worker_id) {
3413     // The reference processing task executed by a single worker.
3414     ResourceMark rm;
3415     HandleMark   hm;
3416 
3417     G1STWIsAliveClosure is_alive(_g1h);
3418 
3419     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3420     pss->set_ref_discoverer(NULL);
3421 
3422     // Keep alive closure.
3423     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3424 
3425     // Complete GC closure
3426     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3427 
3428     // Call the reference processing task's work routine.
3429     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3430 
3431     // Note we cannot assert that the refs array is empty here as not all
3432     // of the processing tasks (specifically phase2 - pp2_work) execute
3433     // the complete_gc closure (which ordinarily would drain the queue) so
3434     // the queue may not be empty.
3435   }
3436 };
3437 
3438 // Driver routine for parallel reference processing.
3439 // Creates an instance of the ref processing gang
3440 // task and has the worker threads execute it.
3441 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3442   assert(_workers != NULL, "Need parallel worker threads.");
3443 
3444   assert(_workers->active_workers() >= ergo_workers,
3445          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3446          ergo_workers, _workers->active_workers());
3447   TaskTerminator terminator(ergo_workers, _queues);
3448   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, terminator.terminator());
3449 
3450   _workers->run_task(&proc_task_proxy, ergo_workers);
3451 }
3452 
3453 // End of weak reference support closures
3454 
3455 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3456   double ref_proc_start = os::elapsedTime();
3457 
3458   ReferenceProcessor* rp = _ref_processor_stw;
3459   assert(rp->discovery_enabled(), "should have been enabled");
3460 
3461   // Closure to test whether a referent is alive.
3462   G1STWIsAliveClosure is_alive(this);
3463 
3464   // Even when parallel reference processing is enabled, the processing
3465   // of JNI refs is serial and performed serially by the current thread
3466   // rather than by a worker. The following PSS will be used for processing
3467   // JNI refs.
3468 
3469   // Use only a single queue for this PSS.
3470   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3471   pss->set_ref_discoverer(NULL);
3472   assert(pss->queue_is_empty(), "pre-condition");
3473 
3474   // Keep alive closure.
3475   G1CopyingKeepAliveClosure keep_alive(this, pss);
3476 
3477   // Serial Complete GC closure
3478   G1STWDrainQueueClosure drain_queue(this, pss);
3479 
3480   // Setup the soft refs policy...
3481   rp->setup_policy(false);
3482 
3483   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3484 
3485   ReferenceProcessorStats stats;
3486   if (!rp->processing_is_mt()) {
3487     // Serial reference processing...
3488     stats = rp->process_discovered_references(&is_alive,
3489                                               &keep_alive,
3490                                               &drain_queue,
3491                                               NULL,
3492                                               pt);
3493   } else {
3494     uint no_of_gc_workers = workers()->active_workers();
3495 
3496     // Parallel reference processing
3497     assert(no_of_gc_workers <= rp->max_num_queues(),
3498            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3499            no_of_gc_workers,  rp->max_num_queues());
3500 
3501     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3502     stats = rp->process_discovered_references(&is_alive,
3503                                               &keep_alive,
3504                                               &drain_queue,
3505                                               &par_task_executor,
3506                                               pt);
3507   }
3508 
3509   _gc_tracer_stw->report_gc_reference_stats(stats);
3510 
3511   // We have completed copying any necessary live referent objects.
3512   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3513 
3514   make_pending_list_reachable();
3515 
3516   assert(!rp->discovery_enabled(), "Postcondition");
3517   rp->verify_no_references_recorded();
3518 
3519   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3520   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3521 }
3522 
3523 void G1CollectedHeap::make_pending_list_reachable() {
3524   if (collector_state()->in_initial_mark_gc()) {
3525     oop pll_head = Universe::reference_pending_list();
3526     if (pll_head != NULL) {
3527       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3528       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3529     }
3530   }
3531 }
3532 
3533 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3534   double merge_pss_time_start = os::elapsedTime();
3535   per_thread_states->flush();
3536   phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3537 }
3538 
3539 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3540   _expand_heap_after_alloc_failure = true;
3541   _evacuation_failed = false;
3542 
3543   // Disable the hot card cache.
3544   _hot_card_cache->reset_hot_cache_claimed_index();
3545   _hot_card_cache->set_use_cache(false);
3546 
3547   // Initialize the GC alloc regions.
3548   _allocator->init_gc_alloc_regions(evacuation_info);
3549 
3550   {
3551     Ticks start = Ticks::now();
3552     rem_set()->prepare_for_scan_heap_roots();
3553     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3554   }
3555 
3556   register_regions_with_region_attr();
3557   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3558 
3559   _preserved_marks_set.assert_empty();
3560 
3561 #if COMPILER2_OR_JVMCI
3562   DerivedPointerTable::clear();
3563 #endif
3564 
3565   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3566   if (collector_state()->in_initial_mark_gc()) {
3567     concurrent_mark()->pre_initial_mark();
3568 
3569     double start_clear_claimed_marks = os::elapsedTime();
3570 
3571     ClassLoaderDataGraph::clear_claimed_marks();
3572 
3573     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3574     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3575   }
3576 
3577   // Should G1EvacuationFailureALot be in effect for this GC?
3578   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3579 }
3580 
3581 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3582 protected:
3583   G1CollectedHeap* _g1h;
3584   G1ParScanThreadStateSet* _per_thread_states;
3585   RefToScanQueueSet* _task_queues;
3586   TaskTerminator _terminator;
3587   uint _num_workers;
3588 
3589   void evacuate_live_objects(G1ParScanThreadState* pss,
3590                              uint worker_id,
3591                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3592                              G1GCPhaseTimes::GCParPhases termination_phase) {
3593     G1GCPhaseTimes* p = _g1h->phase_times();
3594 
3595     Ticks start = Ticks::now();
3596     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, _terminator.terminator(), objcopy_phase);
3597     cl.do_void();
3598 
3599     assert(pss->queue_is_empty(), "should be empty");
3600 
3601     Tickspan evac_time = (Ticks::now() - start);
3602     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3603 
3604     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABWaste);
3605     p->record_or_add_thread_work_item(objcopy_phase, worker_id, pss->lab_undo_waste_words() * HeapWordSize, G1GCPhaseTimes::ObjCopyLABUndoWaste);
3606 
3607     if (termination_phase == G1GCPhaseTimes::Termination) {
3608       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3609       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3610     } else {
3611       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3612       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3613     }
3614     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3615   }
3616 
3617   virtual void start_work(uint worker_id) { }
3618 
3619   virtual void end_work(uint worker_id) { }
3620 
3621   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3622 
3623   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3624 
3625 public:
3626   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3627     AbstractGangTask(name),
3628     _g1h(G1CollectedHeap::heap()),
3629     _per_thread_states(per_thread_states),
3630     _task_queues(task_queues),
3631     _terminator(num_workers, _task_queues),
3632     _num_workers(num_workers)
3633   { }
3634 
3635   void work(uint worker_id) {
3636     start_work(worker_id);
3637 
3638     {
3639       ResourceMark rm;
3640       HandleMark   hm;
3641 
3642       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3643       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3644 
3645       scan_roots(pss, worker_id);
3646       evacuate_live_objects(pss, worker_id);
3647     }
3648 
3649     end_work(worker_id);
3650   }
3651 };
3652 
3653 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3654   G1RootProcessor* _root_processor;
3655 
3656   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3657     _root_processor->evacuate_roots(pss, worker_id);
3658     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3659     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3660   }
3661 
3662   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3663     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3664   }
3665 
3666   void start_work(uint worker_id) {
3667     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3668   }
3669 
3670   void end_work(uint worker_id) {
3671     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3672   }
3673 
3674 public:
3675   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3676                         G1ParScanThreadStateSet* per_thread_states,
3677                         RefToScanQueueSet* task_queues,
3678                         G1RootProcessor* root_processor,
3679                         uint num_workers) :
3680     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3681     _root_processor(root_processor)
3682   { }
3683 };
3684 
3685 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3686   G1GCPhaseTimes* p = phase_times();
3687 
3688   {
3689     Ticks start = Ticks::now();
3690     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3691     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3692   }
3693 
3694   Tickspan task_time;
3695   const uint num_workers = workers()->active_workers();
3696 
3697   Ticks start_processing = Ticks::now();
3698   {
3699     G1RootProcessor root_processor(this, num_workers);
3700     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3701     task_time = run_task(&g1_par_task);
3702     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3703     // To extract its code root fixup time we measure total time of this scope and
3704     // subtract from the time the WorkGang task took.
3705   }
3706   Tickspan total_processing = Ticks::now() - start_processing;
3707 
3708   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3709   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3710 }
3711 
3712 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3713 
3714   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3715     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3716     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3717   }
3718 
3719   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3720     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3721   }
3722 
3723 public:
3724   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3725                                 RefToScanQueueSet* queues,
3726                                 uint num_workers) :
3727     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3728   }
3729 };
3730 
3731 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3732   class G1MarkScope : public MarkScope { };
3733 
3734   Tickspan task_time;
3735 
3736   Ticks start_processing = Ticks::now();
3737   {
3738     G1MarkScope code_mark_scope;
3739     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3740     task_time = run_task(&task);
3741     // See comment in evacuate_collection_set() for the reason of the scope.
3742   }
3743   Tickspan total_processing = Ticks::now() - start_processing;
3744 
3745   G1GCPhaseTimes* p = phase_times();
3746   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3747 }
3748 
3749 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3750   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3751 
3752   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3753 
3754     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3755     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3756 
3757     if (time_left_ms < 0 ||
3758         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3759       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3760                                 _collection_set.optional_region_length(), time_left_ms);
3761       break;
3762     }
3763 
3764     {
3765       Ticks start = Ticks::now();
3766       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3767       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3768     }
3769 
3770     {
3771       Ticks start = Ticks::now();
3772       evacuate_next_optional_regions(per_thread_states);
3773       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3774     }
3775   }
3776 
3777   _collection_set.abandon_optional_collection_set(per_thread_states);
3778 }
3779 
3780 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
3781                                                    G1RedirtyCardsQueueSet* rdcqs,
3782                                                    G1ParScanThreadStateSet* per_thread_states) {
3783   rem_set()->cleanup_after_scan_heap_roots();
3784 
3785   // Process any discovered reference objects - we have
3786   // to do this _before_ we retire the GC alloc regions
3787   // as we may have to copy some 'reachable' referent
3788   // objects (and their reachable sub-graphs) that were
3789   // not copied during the pause.
3790   process_discovered_references(per_thread_states);
3791 
3792   G1STWIsAliveClosure is_alive(this);
3793   G1KeepAliveClosure keep_alive(this);
3794 
3795   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive,
3796                               phase_times()->weak_phase_times());
3797 
3798   if (G1StringDedup::is_enabled()) {
3799     double string_dedup_time_ms = os::elapsedTime();
3800 
3801     string_dedup_cleaning(&is_alive, &keep_alive, phase_times());
3802 
3803     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
3804     phase_times()->record_string_deduplication_time(string_cleanup_time_ms);
3805   }
3806 
3807   _allocator->release_gc_alloc_regions(evacuation_info);
3808 
3809   if (evacuation_failed()) {
3810     restore_after_evac_failure(rdcqs);
3811 
3812     // Reset the G1EvacuationFailureALot counters and flags
3813     NOT_PRODUCT(reset_evacuation_should_fail();)
3814 
3815     double recalculate_used_start = os::elapsedTime();
3816     set_used(recalculate_used());
3817     phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
3818 
3819     if (_archive_allocator != NULL) {
3820       _archive_allocator->clear_used();
3821     }
3822     for (uint i = 0; i < ParallelGCThreads; i++) {
3823       if (_evacuation_failed_info_array[i].has_failed()) {
3824         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3825       }
3826     }
3827   } else {
3828     // The "used" of the the collection set have already been subtracted
3829     // when they were freed.  Add in the bytes evacuated.
3830     increase_used(policy()->bytes_copied_during_gc());
3831   }
3832 
3833   _preserved_marks_set.assert_empty();
3834 
3835   merge_per_thread_state_info(per_thread_states);
3836 
3837   // Reset and re-enable the hot card cache.
3838   // Note the counts for the cards in the regions in the
3839   // collection set are reset when the collection set is freed.
3840   _hot_card_cache->reset_hot_cache();
3841   _hot_card_cache->set_use_cache(true);
3842 
3843   purge_code_root_memory();
3844 
3845   redirty_logged_cards(rdcqs);
3846 
3847   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
3848 
3849   eagerly_reclaim_humongous_regions();
3850 
3851   record_obj_copy_mem_stats();
3852 
3853   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3854   evacuation_info.set_bytes_copied(policy()->bytes_copied_during_gc());
3855 
3856 #if COMPILER2_OR_JVMCI
3857   double start = os::elapsedTime();
3858   DerivedPointerTable::update_pointers();
3859   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
3860 #endif
3861   policy()->print_age_table();
3862 }
3863 
3864 void G1CollectedHeap::record_obj_copy_mem_stats() {
3865   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
3866 
3867   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
3868                                                create_g1_evac_summary(&_old_evac_stats));
3869 }
3870 
3871 void G1CollectedHeap::free_region(HeapRegion* hr,
3872                                   FreeRegionList* free_list,
3873                                   bool skip_remset,
3874                                   bool skip_hot_card_cache,
3875                                   bool locked) {
3876   assert(!hr->is_free(), "the region should not be free");
3877   assert(!hr->is_empty(), "the region should not be empty");
3878   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
3879   assert(free_list != NULL, "pre-condition");
3880 
3881   if (G1VerifyBitmaps) {
3882     MemRegion mr(hr->bottom(), hr->end());
3883     concurrent_mark()->clear_range_in_prev_bitmap(mr);
3884   }
3885 
3886   // Clear the card counts for this region.
3887   // Note: we only need to do this if the region is not young
3888   // (since we don't refine cards in young regions).
3889   if (!skip_hot_card_cache && !hr->is_young()) {
3890     _hot_card_cache->reset_card_counts(hr);
3891   }
3892   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
3893   _policy->remset_tracker()->update_at_free(hr);
3894   free_list->add_ordered(hr);
3895 }
3896 
3897 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
3898                                             FreeRegionList* free_list) {
3899   assert(hr->is_humongous(), "this is only for humongous regions");
3900   assert(free_list != NULL, "pre-condition");
3901   hr->clear_humongous();
3902   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
3903 }
3904 
3905 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
3906                                            const uint humongous_regions_removed) {
3907   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
3908     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
3909     _old_set.bulk_remove(old_regions_removed);
3910     _humongous_set.bulk_remove(humongous_regions_removed);
3911   }
3912 
3913 }
3914 
3915 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
3916   assert(list != NULL, "list can't be null");
3917   if (!list->is_empty()) {
3918     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
3919     _hrm->insert_list_into_free_list(list);
3920   }
3921 }
3922 
3923 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
3924   decrease_used(bytes);
3925 }
3926 
3927 class G1FreeCollectionSetTask : public AbstractGangTask {
3928 private:
3929 
3930   // Closure applied to all regions in the collection set to do work that needs to
3931   // be done serially in a single thread.
3932   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
3933   private:
3934     G1EvacuationInfo* _evacuation_info;
3935     const size_t* _surviving_young_words;
3936 
3937     // Bytes used in successfully evacuated regions before the evacuation.
3938     size_t _before_used_bytes;
3939     // Bytes used in unsucessfully evacuated regions before the evacuation
3940     size_t _after_used_bytes;
3941 
3942     size_t _bytes_allocated_in_old_since_last_gc;
3943 
3944     size_t _failure_used_words;
3945     size_t _failure_waste_words;
3946 
3947     FreeRegionList _local_free_list;
3948   public:
3949     G1SerialFreeCollectionSetClosure(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
3950       HeapRegionClosure(),
3951       _evacuation_info(evacuation_info),
3952       _surviving_young_words(surviving_young_words),
3953       _before_used_bytes(0),
3954       _after_used_bytes(0),
3955       _bytes_allocated_in_old_since_last_gc(0),
3956       _failure_used_words(0),
3957       _failure_waste_words(0),
3958       _local_free_list("Local Region List for CSet Freeing") {
3959     }
3960 
3961     virtual bool do_heap_region(HeapRegion* r) {
3962       G1CollectedHeap* g1h = G1CollectedHeap::heap();
3963 
3964       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
3965       g1h->clear_region_attr(r);
3966 
3967       if (r->is_young()) {
3968         assert(r->young_index_in_cset() != 0 && (uint)r->young_index_in_cset() <= g1h->collection_set()->young_region_length(),
3969                "Young index %u is wrong for region %u of type %s with %u young regions",
3970                r->young_index_in_cset(),
3971                r->hrm_index(),
3972                r->get_type_str(),
3973                g1h->collection_set()->young_region_length());
3974         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
3975         r->record_surv_words_in_group(words_survived);
3976       }
3977 
3978       if (!r->evacuation_failed()) {
3979         assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
3980         _before_used_bytes += r->used();
3981         g1h->free_region(r,
3982                          &_local_free_list,
3983                          true, /* skip_remset */
3984                          true, /* skip_hot_card_cache */
3985                          true  /* locked */);
3986       } else {
3987         r->uninstall_surv_rate_group();
3988         r->clear_young_index_in_cset();
3989         r->set_evacuation_failed(false);
3990         // When moving a young gen region to old gen, we "allocate" that whole region
3991         // there. This is in addition to any already evacuated objects. Notify the
3992         // policy about that.
3993         // Old gen regions do not cause an additional allocation: both the objects
3994         // still in the region and the ones already moved are accounted for elsewhere.
3995         if (r->is_young()) {
3996           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
3997         }
3998         // The region is now considered to be old.
3999         r->set_old();
4000         // Do some allocation statistics accounting. Regions that failed evacuation
4001         // are always made old, so there is no need to update anything in the young
4002         // gen statistics, but we need to update old gen statistics.
4003         size_t used_words = r->marked_bytes() / HeapWordSize;
4004 
4005         _failure_used_words += used_words;
4006         _failure_waste_words += HeapRegion::GrainWords - used_words;
4007 
4008         g1h->old_set_add(r);
4009         _after_used_bytes += r->used();
4010       }
4011       return false;
4012     }
4013 
4014     void complete_work() {
4015       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4016 
4017       _evacuation_info->set_regions_freed(_local_free_list.length());
4018       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4019 
4020       g1h->prepend_to_freelist(&_local_free_list);
4021       g1h->decrement_summary_bytes(_before_used_bytes);
4022 
4023       G1Policy* policy = g1h->policy();
4024       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4025 
4026       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4027     }
4028   };
4029 
4030   G1CollectionSet* _collection_set;
4031   G1SerialFreeCollectionSetClosure _cl;
4032   const size_t* _surviving_young_words;
4033 
4034   size_t _rs_length;
4035 
4036   volatile jint _serial_work_claim;
4037 
4038   struct WorkItem {
4039     uint region_idx;
4040     bool is_young;
4041     bool evacuation_failed;
4042 
4043     WorkItem(HeapRegion* r) {
4044       region_idx = r->hrm_index();
4045       is_young = r->is_young();
4046       evacuation_failed = r->evacuation_failed();
4047     }
4048   };
4049 
4050   volatile size_t _parallel_work_claim;
4051   size_t _num_work_items;
4052   WorkItem* _work_items;
4053 
4054   void do_serial_work() {
4055     // Need to grab the lock to be allowed to modify the old region list.
4056     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4057     _collection_set->iterate(&_cl);
4058   }
4059 
4060   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4061     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4062 
4063     HeapRegion* r = g1h->region_at(region_idx);
4064     assert(!g1h->is_on_master_free_list(r), "sanity");
4065 
4066     Atomic::add(r->rem_set()->occupied_locked(), &_rs_length);
4067 
4068     if (!is_young) {
4069       g1h->hot_card_cache()->reset_card_counts(r);
4070     }
4071 
4072     if (!evacuation_failed) {
4073       r->rem_set()->clear_locked();
4074     }
4075   }
4076 
4077   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4078   private:
4079     size_t _cur_idx;
4080     WorkItem* _work_items;
4081   public:
4082     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4083 
4084     virtual bool do_heap_region(HeapRegion* r) {
4085       _work_items[_cur_idx++] = WorkItem(r);
4086       return false;
4087     }
4088   };
4089 
4090   void prepare_work() {
4091     G1PrepareFreeCollectionSetClosure cl(_work_items);
4092     _collection_set->iterate(&cl);
4093   }
4094 
4095   void complete_work() {
4096     _cl.complete_work();
4097 
4098     G1Policy* policy = G1CollectedHeap::heap()->policy();
4099     policy->record_rs_length(_rs_length);
4100     policy->cset_regions_freed();
4101   }
4102 public:
4103   G1FreeCollectionSetTask(G1CollectionSet* collection_set, G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4104     AbstractGangTask("G1 Free Collection Set"),
4105     _collection_set(collection_set),
4106     _cl(evacuation_info, surviving_young_words),
4107     _surviving_young_words(surviving_young_words),
4108     _rs_length(0),
4109     _serial_work_claim(0),
4110     _parallel_work_claim(0),
4111     _num_work_items(collection_set->region_length()),
4112     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4113     prepare_work();
4114   }
4115 
4116   ~G1FreeCollectionSetTask() {
4117     complete_work();
4118     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4119   }
4120 
4121   // Chunk size for work distribution. The chosen value has been determined experimentally
4122   // to be a good tradeoff between overhead and achievable parallelism.
4123   static uint chunk_size() { return 32; }
4124 
4125   virtual void work(uint worker_id) {
4126     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->phase_times();
4127 
4128     // Claim serial work.
4129     if (_serial_work_claim == 0) {
4130       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4131       if (value == 0) {
4132         double serial_time = os::elapsedTime();
4133         do_serial_work();
4134         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4135       }
4136     }
4137 
4138     // Start parallel work.
4139     double young_time = 0.0;
4140     bool has_young_time = false;
4141     double non_young_time = 0.0;
4142     bool has_non_young_time = false;
4143 
4144     while (true) {
4145       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4146       size_t cur = end - chunk_size();
4147 
4148       if (cur >= _num_work_items) {
4149         break;
4150       }
4151 
4152       EventGCPhaseParallel event;
4153       double start_time = os::elapsedTime();
4154 
4155       end = MIN2(end, _num_work_items);
4156 
4157       for (; cur < end; cur++) {
4158         bool is_young = _work_items[cur].is_young;
4159 
4160         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4161 
4162         double end_time = os::elapsedTime();
4163         double time_taken = end_time - start_time;
4164         if (is_young) {
4165           young_time += time_taken;
4166           has_young_time = true;
4167           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4168         } else {
4169           non_young_time += time_taken;
4170           has_non_young_time = true;
4171           event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4172         }
4173         start_time = end_time;
4174       }
4175     }
4176 
4177     if (has_young_time) {
4178       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4179     }
4180     if (has_non_young_time) {
4181       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4182     }
4183   }
4184 };
4185 
4186 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4187   _eden.clear();
4188 
4189   double free_cset_start_time = os::elapsedTime();
4190 
4191   {
4192     uint const num_regions = _collection_set.region_length();
4193     uint const num_chunks = MAX2(num_regions / G1FreeCollectionSetTask::chunk_size(), 1U);
4194     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4195 
4196     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4197 
4198     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4199                         cl.name(), num_workers, num_regions);
4200     workers()->run_task(&cl, num_workers);
4201   }
4202   phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4203 
4204   collection_set->clear();
4205 }
4206 
4207 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4208  private:
4209   FreeRegionList* _free_region_list;
4210   HeapRegionSet* _proxy_set;
4211   uint _humongous_objects_reclaimed;
4212   uint _humongous_regions_reclaimed;
4213   size_t _freed_bytes;
4214  public:
4215 
4216   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4217     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4218   }
4219 
4220   virtual bool do_heap_region(HeapRegion* r) {
4221     if (!r->is_starts_humongous()) {
4222       return false;
4223     }
4224 
4225     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4226 
4227     oop obj = (oop)r->bottom();
4228     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4229 
4230     // The following checks whether the humongous object is live are sufficient.
4231     // The main additional check (in addition to having a reference from the roots
4232     // or the young gen) is whether the humongous object has a remembered set entry.
4233     //
4234     // A humongous object cannot be live if there is no remembered set for it
4235     // because:
4236     // - there can be no references from within humongous starts regions referencing
4237     // the object because we never allocate other objects into them.
4238     // (I.e. there are no intra-region references that may be missed by the
4239     // remembered set)
4240     // - as soon there is a remembered set entry to the humongous starts region
4241     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4242     // until the end of a concurrent mark.
4243     //
4244     // It is not required to check whether the object has been found dead by marking
4245     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4246     // all objects allocated during that time are considered live.
4247     // SATB marking is even more conservative than the remembered set.
4248     // So if at this point in the collection there is no remembered set entry,
4249     // nobody has a reference to it.
4250     // At the start of collection we flush all refinement logs, and remembered sets
4251     // are completely up-to-date wrt to references to the humongous object.
4252     //
4253     // Other implementation considerations:
4254     // - never consider object arrays at this time because they would pose
4255     // considerable effort for cleaning up the the remembered sets. This is
4256     // required because stale remembered sets might reference locations that
4257     // are currently allocated into.
4258     uint region_idx = r->hrm_index();
4259     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4260         !r->rem_set()->is_empty()) {
4261       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4262                                region_idx,
4263                                (size_t)obj->size() * HeapWordSize,
4264                                p2i(r->bottom()),
4265                                r->rem_set()->occupied(),
4266                                r->rem_set()->strong_code_roots_list_length(),
4267                                next_bitmap->is_marked(r->bottom()),
4268                                g1h->is_humongous_reclaim_candidate(region_idx),
4269                                obj->is_typeArray()
4270                               );
4271       return false;
4272     }
4273 
4274     guarantee(obj->is_typeArray(),
4275               "Only eagerly reclaiming type arrays is supported, but the object "
4276               PTR_FORMAT " is not.", p2i(r->bottom()));
4277 
4278     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4279                              region_idx,
4280                              (size_t)obj->size() * HeapWordSize,
4281                              p2i(r->bottom()),
4282                              r->rem_set()->occupied(),
4283                              r->rem_set()->strong_code_roots_list_length(),
4284                              next_bitmap->is_marked(r->bottom()),
4285                              g1h->is_humongous_reclaim_candidate(region_idx),
4286                              obj->is_typeArray()
4287                             );
4288 
4289     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4290     cm->humongous_object_eagerly_reclaimed(r);
4291     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4292            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4293            region_idx,
4294            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4295            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4296     _humongous_objects_reclaimed++;
4297     do {
4298       HeapRegion* next = g1h->next_region_in_humongous(r);
4299       _freed_bytes += r->used();
4300       r->set_containing_set(NULL);
4301       _humongous_regions_reclaimed++;
4302       g1h->free_humongous_region(r, _free_region_list);
4303       r = next;
4304     } while (r != NULL);
4305 
4306     return false;
4307   }
4308 
4309   uint humongous_objects_reclaimed() {
4310     return _humongous_objects_reclaimed;
4311   }
4312 
4313   uint humongous_regions_reclaimed() {
4314     return _humongous_regions_reclaimed;
4315   }
4316 
4317   size_t bytes_freed() const {
4318     return _freed_bytes;
4319   }
4320 };
4321 
4322 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4323   assert_at_safepoint_on_vm_thread();
4324 
4325   if (!G1EagerReclaimHumongousObjects ||
4326       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4327     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4328     return;
4329   }
4330 
4331   double start_time = os::elapsedTime();
4332 
4333   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4334 
4335   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4336   heap_region_iterate(&cl);
4337 
4338   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4339 
4340   G1HRPrinter* hrp = hr_printer();
4341   if (hrp->is_active()) {
4342     FreeRegionListIterator iter(&local_cleanup_list);
4343     while (iter.more_available()) {
4344       HeapRegion* hr = iter.get_next();
4345       hrp->cleanup(hr);
4346     }
4347   }
4348 
4349   prepend_to_freelist(&local_cleanup_list);
4350   decrement_summary_bytes(cl.bytes_freed());
4351 
4352   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4353                                                        cl.humongous_objects_reclaimed());
4354 }
4355 
4356 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4357 public:
4358   virtual bool do_heap_region(HeapRegion* r) {
4359     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4360     G1CollectedHeap::heap()->clear_region_attr(r);
4361     r->clear_young_index_in_cset();
4362     return false;
4363   }
4364 };
4365 
4366 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4367   G1AbandonCollectionSetClosure cl;
4368   collection_set_iterate_all(&cl);
4369 
4370   collection_set->clear();
4371   collection_set->stop_incremental_building();
4372 }
4373 
4374 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4375   return _allocator->is_retained_old_region(hr);
4376 }
4377 
4378 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4379   _eden.add(hr);
4380   _policy->set_region_eden(hr);
4381 }
4382 
4383 #ifdef ASSERT
4384 
4385 class NoYoungRegionsClosure: public HeapRegionClosure {
4386 private:
4387   bool _success;
4388 public:
4389   NoYoungRegionsClosure() : _success(true) { }
4390   bool do_heap_region(HeapRegion* r) {
4391     if (r->is_young()) {
4392       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4393                             p2i(r->bottom()), p2i(r->end()));
4394       _success = false;
4395     }
4396     return false;
4397   }
4398   bool success() { return _success; }
4399 };
4400 
4401 bool G1CollectedHeap::check_young_list_empty() {
4402   bool ret = (young_regions_count() == 0);
4403 
4404   NoYoungRegionsClosure closure;
4405   heap_region_iterate(&closure);
4406   ret = ret && closure.success();
4407 
4408   return ret;
4409 }
4410 
4411 #endif // ASSERT
4412 
4413 class TearDownRegionSetsClosure : public HeapRegionClosure {
4414   HeapRegionSet *_old_set;
4415 
4416 public:
4417   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4418 
4419   bool do_heap_region(HeapRegion* r) {
4420     if (r->is_old()) {
4421       _old_set->remove(r);
4422     } else if(r->is_young()) {
4423       r->uninstall_surv_rate_group();
4424     } else {
4425       // We ignore free regions, we'll empty the free list afterwards.
4426       // We ignore humongous and archive regions, we're not tearing down these
4427       // sets.
4428       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4429              "it cannot be another type");
4430     }
4431     return false;
4432   }
4433 
4434   ~TearDownRegionSetsClosure() {
4435     assert(_old_set->is_empty(), "post-condition");
4436   }
4437 };
4438 
4439 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4440   assert_at_safepoint_on_vm_thread();
4441 
4442   if (!free_list_only) {
4443     TearDownRegionSetsClosure cl(&_old_set);
4444     heap_region_iterate(&cl);
4445 
4446     // Note that emptying the _young_list is postponed and instead done as
4447     // the first step when rebuilding the regions sets again. The reason for
4448     // this is that during a full GC string deduplication needs to know if
4449     // a collected region was young or old when the full GC was initiated.
4450   }
4451   _hrm->remove_all_free_regions();
4452 }
4453 
4454 void G1CollectedHeap::increase_used(size_t bytes) {
4455   _summary_bytes_used += bytes;
4456 }
4457 
4458 void G1CollectedHeap::decrease_used(size_t bytes) {
4459   assert(_summary_bytes_used >= bytes,
4460          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4461          _summary_bytes_used, bytes);
4462   _summary_bytes_used -= bytes;
4463 }
4464 
4465 void G1CollectedHeap::set_used(size_t bytes) {
4466   _summary_bytes_used = bytes;
4467 }
4468 
4469 class RebuildRegionSetsClosure : public HeapRegionClosure {
4470 private:
4471   bool _free_list_only;
4472 
4473   HeapRegionSet* _old_set;
4474   HeapRegionManager* _hrm;
4475 
4476   size_t _total_used;
4477 
4478 public:
4479   RebuildRegionSetsClosure(bool free_list_only,
4480                            HeapRegionSet* old_set,
4481                            HeapRegionManager* hrm) :
4482     _free_list_only(free_list_only),
4483     _old_set(old_set), _hrm(hrm), _total_used(0) {
4484     assert(_hrm->num_free_regions() == 0, "pre-condition");
4485     if (!free_list_only) {
4486       assert(_old_set->is_empty(), "pre-condition");
4487     }
4488   }
4489 
4490   bool do_heap_region(HeapRegion* r) {
4491     if (r->is_empty()) {
4492       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4493       // Add free regions to the free list
4494       r->set_free();
4495       _hrm->insert_into_free_list(r);
4496     } else if (!_free_list_only) {
4497       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4498 
4499       if (r->is_archive() || r->is_humongous()) {
4500         // We ignore archive and humongous regions. We left these sets unchanged.
4501       } else {
4502         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4503         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4504         r->move_to_old();
4505         _old_set->add(r);
4506       }
4507       _total_used += r->used();
4508     }
4509 
4510     return false;
4511   }
4512 
4513   size_t total_used() {
4514     return _total_used;
4515   }
4516 };
4517 
4518 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4519   assert_at_safepoint_on_vm_thread();
4520 
4521   if (!free_list_only) {
4522     _eden.clear();
4523     _survivor.clear();
4524   }
4525 
4526   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4527   heap_region_iterate(&cl);
4528 
4529   if (!free_list_only) {
4530     set_used(cl.total_used());
4531     if (_archive_allocator != NULL) {
4532       _archive_allocator->clear_used();
4533     }
4534   }
4535   assert_used_and_recalculate_used_equal(this);
4536 }
4537 
4538 // Methods for the mutator alloc region
4539 
4540 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4541                                                       bool force) {
4542   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4543   bool should_allocate = policy()->should_allocate_mutator_region();
4544   if (force || should_allocate) {
4545     HeapRegion* new_alloc_region = new_region(word_size,
4546                                               HeapRegionType::Eden,
4547                                               false /* do_expand */);
4548     if (new_alloc_region != NULL) {
4549       set_region_short_lived_locked(new_alloc_region);
4550       _hr_printer.alloc(new_alloc_region, !should_allocate);
4551       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4552       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4553       return new_alloc_region;
4554     }
4555   }
4556   return NULL;
4557 }
4558 
4559 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4560                                                   size_t allocated_bytes) {
4561   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4562   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4563 
4564   collection_set()->add_eden_region(alloc_region);
4565   increase_used(allocated_bytes);
4566   _eden.add_used_bytes(allocated_bytes);
4567   _hr_printer.retire(alloc_region);
4568 
4569   // We update the eden sizes here, when the region is retired,
4570   // instead of when it's allocated, since this is the point that its
4571   // used space has been recorded in _summary_bytes_used.
4572   g1mm()->update_eden_size();
4573 }
4574 
4575 // Methods for the GC alloc regions
4576 
4577 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4578   if (dest.is_old()) {
4579     return true;
4580   } else {
4581     return survivor_regions_count() < policy()->max_survivor_regions();
4582   }
4583 }
4584 
4585 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest) {
4586   assert(FreeList_lock->owned_by_self(), "pre-condition");
4587 
4588   if (!has_more_regions(dest)) {
4589     return NULL;
4590   }
4591 
4592   HeapRegionType type;
4593   if (dest.is_young()) {
4594     type = HeapRegionType::Survivor;
4595   } else {
4596     type = HeapRegionType::Old;
4597   }
4598 
4599   HeapRegion* new_alloc_region = new_region(word_size,
4600                                             type,
4601                                             true /* do_expand */);
4602 
4603   if (new_alloc_region != NULL) {
4604     if (type.is_survivor()) {
4605       new_alloc_region->set_survivor();
4606       _survivor.add(new_alloc_region);
4607       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4608     } else {
4609       new_alloc_region->set_old();
4610       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4611     }
4612     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4613     register_region_with_region_attr(new_alloc_region);
4614     _hr_printer.alloc(new_alloc_region);
4615     return new_alloc_region;
4616   }
4617   return NULL;
4618 }
4619 
4620 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4621                                              size_t allocated_bytes,
4622                                              G1HeapRegionAttr dest) {
4623   policy()->record_bytes_copied_during_gc(allocated_bytes);
4624   if (dest.is_old()) {
4625     old_set_add(alloc_region);
4626   } else {
4627     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4628     _survivor.add_used_bytes(allocated_bytes);
4629   }
4630 
4631   bool const during_im = collector_state()->in_initial_mark_gc();
4632   if (during_im && allocated_bytes > 0) {
4633     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4634   }
4635   _hr_printer.retire(alloc_region);
4636 }
4637 
4638 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4639   bool expanded = false;
4640   uint index = _hrm->find_highest_free(&expanded);
4641 
4642   if (index != G1_NO_HRM_INDEX) {
4643     if (expanded) {
4644       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4645                                 HeapRegion::GrainWords * HeapWordSize);
4646     }
4647     _hrm->allocate_free_regions_starting_at(index, 1);
4648     return region_at(index);
4649   }
4650   return NULL;
4651 }
4652 
4653 // Optimized nmethod scanning
4654 
4655 class RegisterNMethodOopClosure: public OopClosure {
4656   G1CollectedHeap* _g1h;
4657   nmethod* _nm;
4658 
4659   template <class T> void do_oop_work(T* p) {
4660     T heap_oop = RawAccess<>::oop_load(p);
4661     if (!CompressedOops::is_null(heap_oop)) {
4662       oop obj = CompressedOops::decode_not_null(heap_oop);
4663       HeapRegion* hr = _g1h->heap_region_containing(obj);
4664       assert(!hr->is_continues_humongous(),
4665              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4666              " starting at " HR_FORMAT,
4667              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4668 
4669       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4670       hr->add_strong_code_root_locked(_nm);
4671     }
4672   }
4673 
4674 public:
4675   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4676     _g1h(g1h), _nm(nm) {}
4677 
4678   void do_oop(oop* p)       { do_oop_work(p); }
4679   void do_oop(narrowOop* p) { do_oop_work(p); }
4680 };
4681 
4682 class UnregisterNMethodOopClosure: public OopClosure {
4683   G1CollectedHeap* _g1h;
4684   nmethod* _nm;
4685 
4686   template <class T> void do_oop_work(T* p) {
4687     T heap_oop = RawAccess<>::oop_load(p);
4688     if (!CompressedOops::is_null(heap_oop)) {
4689       oop obj = CompressedOops::decode_not_null(heap_oop);
4690       HeapRegion* hr = _g1h->heap_region_containing(obj);
4691       assert(!hr->is_continues_humongous(),
4692              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4693              " starting at " HR_FORMAT,
4694              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4695 
4696       hr->remove_strong_code_root(_nm);
4697     }
4698   }
4699 
4700 public:
4701   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4702     _g1h(g1h), _nm(nm) {}
4703 
4704   void do_oop(oop* p)       { do_oop_work(p); }
4705   void do_oop(narrowOop* p) { do_oop_work(p); }
4706 };
4707 
4708 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4709   guarantee(nm != NULL, "sanity");
4710   RegisterNMethodOopClosure reg_cl(this, nm);
4711   nm->oops_do(&reg_cl);
4712 }
4713 
4714 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4715   guarantee(nm != NULL, "sanity");
4716   UnregisterNMethodOopClosure reg_cl(this, nm);
4717   nm->oops_do(&reg_cl, true);
4718 }
4719 
4720 void G1CollectedHeap::purge_code_root_memory() {
4721   double purge_start = os::elapsedTime();
4722   G1CodeRootSet::purge();
4723   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4724   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4725 }
4726 
4727 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4728   G1CollectedHeap* _g1h;
4729 
4730 public:
4731   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4732     _g1h(g1h) {}
4733 
4734   void do_code_blob(CodeBlob* cb) {
4735     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4736     if (nm == NULL) {
4737       return;
4738     }
4739 
4740     _g1h->register_nmethod(nm);
4741   }
4742 };
4743 
4744 void G1CollectedHeap::rebuild_strong_code_roots() {
4745   RebuildStrongCodeRootClosure blob_cl(this);
4746   CodeCache::blobs_do(&blob_cl);
4747 }
4748 
4749 void G1CollectedHeap::initialize_serviceability() {
4750   _g1mm->initialize_serviceability();
4751 }
4752 
4753 MemoryUsage G1CollectedHeap::memory_usage() {
4754   return _g1mm->memory_usage();
4755 }
4756 
4757 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4758   return _g1mm->memory_managers();
4759 }
4760 
4761 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4762   return _g1mm->memory_pools();
4763 }