1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/serial/serialHeap.inline.hpp"
  28 #include "gc/serial/tenuredGeneration.hpp"
  29 #include "gc/shared/adaptiveSizePolicy.hpp"
  30 #include "gc/shared/ageTable.inline.hpp"
  31 #include "gc/shared/cardTableRS.hpp"
  32 #include "gc/shared/collectorCounters.hpp"
  33 #include "gc/shared/gcArguments.hpp"
  34 #include "gc/shared/gcHeapSummary.hpp"
  35 #include "gc/shared/gcLocker.hpp"
  36 #include "gc/shared/gcPolicyCounters.hpp"
  37 #include "gc/shared/gcTimer.hpp"
  38 #include "gc/shared/gcTrace.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "gc/shared/genOopClosures.inline.hpp"
  41 #include "gc/shared/generationSpec.hpp"
  42 #include "gc/shared/preservedMarks.inline.hpp"
  43 #include "gc/shared/referencePolicy.hpp"
  44 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  45 #include "gc/shared/space.inline.hpp"
  46 #include "gc/shared/spaceDecorator.inline.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/weakProcessor.hpp"
  49 #include "logging/log.hpp"
  50 #include "memory/iterator.inline.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "oops/instanceRefKlass.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/prefetch.inline.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "utilities/align.hpp"
  59 #include "utilities/copy.hpp"
  60 #include "utilities/globalDefinitions.hpp"
  61 #include "utilities/stack.inline.hpp"
  62 
  63 //
  64 // DefNewGeneration functions.
  65 
  66 // Methods of protected closure types.
  67 
  68 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  69   assert(_young_gen->kind() == Generation::ParNew ||
  70          _young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  71 }
  72 
  73 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  74   return (HeapWord*)p >= _young_gen->reserved().end() || p->is_forwarded();
  75 }
  76 
  77 DefNewGeneration::KeepAliveClosure::
  78 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  79   _rs = GenCollectedHeap::heap()->rem_set();
  80 }
  81 
  82 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  83 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  84 
  85 
  86 DefNewGeneration::FastKeepAliveClosure::
  87 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  88   DefNewGeneration::KeepAliveClosure(cl) {
  89   _boundary = g->reserved().end();
  90 }
  91 
  92 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  93 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  94 
  95 DefNewGeneration::FastEvacuateFollowersClosure::
  96 FastEvacuateFollowersClosure(SerialHeap* heap,
  97                              FastScanClosure* cur,
  98                              FastScanClosure* older) :
  99   _heap(heap), _scan_cur_or_nonheap(cur), _scan_older(older)
 100 {
 101 }
 102 
 103 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 104   do {
 105     _heap->oop_since_save_marks_iterate(_scan_cur_or_nonheap, _scan_older);
 106   } while (!_heap->no_allocs_since_save_marks());
 107   guarantee(_heap->young_gen()->promo_failure_scan_is_complete(), "Failed to finish scan");
 108 }
 109 
 110 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 111     OopsInClassLoaderDataOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 112 {
 113   _boundary = _g->reserved().end();
 114 }
 115 
 116 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 117     OopsInClassLoaderDataOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 118 {
 119   _boundary = _g->reserved().end();
 120 }
 121 
 122 void CLDScanClosure::do_cld(ClassLoaderData* cld) {
 123   NOT_PRODUCT(ResourceMark rm);
 124   log_develop_trace(gc, scavenge)("CLDScanClosure::do_cld " PTR_FORMAT ", %s, dirty: %s",
 125                                   p2i(cld),
 126                                   cld->loader_name_and_id(),
 127                                   cld->has_modified_oops() ? "true" : "false");
 128 
 129   // If the cld has not been dirtied we know that there's
 130   // no references into  the young gen and we can skip it.
 131   if (cld->has_modified_oops()) {
 132     if (_accumulate_modified_oops) {
 133       cld->accumulate_modified_oops();
 134     }
 135 
 136     // Tell the closure which CLD is being scanned so that it can be dirtied
 137     // if oops are left pointing into the young gen.
 138     _scavenge_closure->set_scanned_cld(cld);
 139 
 140     // Clean the cld since we're going to scavenge all the metadata.
 141     cld->oops_do(_scavenge_closure, ClassLoaderData::_claim_none, /*clear_modified_oops*/true);
 142 
 143     _scavenge_closure->set_scanned_cld(NULL);
 144   }
 145 }
 146 
 147 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 148   _g(g)
 149 {
 150   _boundary = _g->reserved().end();
 151 }
 152 
 153 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 154                                    size_t initial_size,
 155                                    size_t min_size,
 156                                    size_t max_size,
 157                                    const char* policy)
 158   : Generation(rs, initial_size),
 159     _preserved_marks_set(false /* in_c_heap */),
 160     _promo_failure_drain_in_progress(false),
 161     _should_allocate_from_space(false)
 162 {
 163   MemRegion cmr((HeapWord*)_virtual_space.low(),
 164                 (HeapWord*)_virtual_space.high());
 165   GenCollectedHeap* gch = GenCollectedHeap::heap();
 166 
 167   gch->rem_set()->resize_covered_region(cmr);
 168 
 169   _eden_space = new ContiguousSpace();
 170   _from_space = new ContiguousSpace();
 171   _to_space   = new ContiguousSpace();
 172 
 173   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
 174     vm_exit_during_initialization("Could not allocate a new gen space");
 175   }
 176 
 177   // Compute the maximum eden and survivor space sizes. These sizes
 178   // are computed assuming the entire reserved space is committed.
 179   // These values are exported as performance counters.
 180   uintx size = _virtual_space.reserved_size();
 181   _max_survivor_size = compute_survivor_size(size, SpaceAlignment);
 182   _max_eden_size = size - (2*_max_survivor_size);
 183 
 184   // allocate the performance counters
 185 
 186   // Generation counters -- generation 0, 3 subspaces
 187   _gen_counters = new GenerationCounters("new", 0, 3,
 188       min_size, max_size, &_virtual_space);
 189   _gc_counters = new CollectorCounters(policy, 0);
 190 
 191   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 192                                       _gen_counters);
 193   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 194                                       _gen_counters);
 195   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 196                                     _gen_counters);
 197 
 198   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 199   update_counters();
 200   _old_gen = NULL;
 201   _tenuring_threshold = MaxTenuringThreshold;
 202   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 203 
 204   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 205 }
 206 
 207 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 208                                                 bool clear_space,
 209                                                 bool mangle_space) {
 210   // If the spaces are being cleared (only done at heap initialization
 211   // currently), the survivor spaces need not be empty.
 212   // Otherwise, no care is taken for used areas in the survivor spaces
 213   // so check.
 214   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 215     "Initialization of the survivor spaces assumes these are empty");
 216 
 217   // Compute sizes
 218   uintx size = _virtual_space.committed_size();
 219   uintx survivor_size = compute_survivor_size(size, SpaceAlignment);
 220   uintx eden_size = size - (2*survivor_size);
 221   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 222 
 223   if (eden_size < minimum_eden_size) {
 224     // May happen due to 64Kb rounding, if so adjust eden size back up
 225     minimum_eden_size = align_up(minimum_eden_size, SpaceAlignment);
 226     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 227     uintx unaligned_survivor_size =
 228       align_down(maximum_survivor_size, SpaceAlignment);
 229     survivor_size = MAX2(unaligned_survivor_size, SpaceAlignment);
 230     eden_size = size - (2*survivor_size);
 231     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 232     assert(eden_size >= minimum_eden_size, "just checking");
 233   }
 234 
 235   char *eden_start = _virtual_space.low();
 236   char *from_start = eden_start + eden_size;
 237   char *to_start   = from_start + survivor_size;
 238   char *to_end     = to_start   + survivor_size;
 239 
 240   assert(to_end == _virtual_space.high(), "just checking");
 241   assert(Space::is_aligned(eden_start), "checking alignment");
 242   assert(Space::is_aligned(from_start), "checking alignment");
 243   assert(Space::is_aligned(to_start),   "checking alignment");
 244 
 245   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 246   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 247   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 248 
 249   // A minimum eden size implies that there is a part of eden that
 250   // is being used and that affects the initialization of any
 251   // newly formed eden.
 252   bool live_in_eden = minimum_eden_size > 0;
 253 
 254   // If not clearing the spaces, do some checking to verify that
 255   // the space are already mangled.
 256   if (!clear_space) {
 257     // Must check mangling before the spaces are reshaped.  Otherwise,
 258     // the bottom or end of one space may have moved into another
 259     // a failure of the check may not correctly indicate which space
 260     // is not properly mangled.
 261     if (ZapUnusedHeapArea) {
 262       HeapWord* limit = (HeapWord*) _virtual_space.high();
 263       eden()->check_mangled_unused_area(limit);
 264       from()->check_mangled_unused_area(limit);
 265         to()->check_mangled_unused_area(limit);
 266     }
 267   }
 268 
 269   // Reset the spaces for their new regions.
 270   eden()->initialize(edenMR,
 271                      clear_space && !live_in_eden,
 272                      SpaceDecorator::Mangle);
 273   // If clear_space and live_in_eden, we will not have cleared any
 274   // portion of eden above its top. This can cause newly
 275   // expanded space not to be mangled if using ZapUnusedHeapArea.
 276   // We explicitly do such mangling here.
 277   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 278     eden()->mangle_unused_area();
 279   }
 280   from()->initialize(fromMR, clear_space, mangle_space);
 281   to()->initialize(toMR, clear_space, mangle_space);
 282 
 283   // Set next compaction spaces.
 284   eden()->set_next_compaction_space(from());
 285   // The to-space is normally empty before a compaction so need
 286   // not be considered.  The exception is during promotion
 287   // failure handling when to-space can contain live objects.
 288   from()->set_next_compaction_space(NULL);
 289 }
 290 
 291 void DefNewGeneration::swap_spaces() {
 292   ContiguousSpace* s = from();
 293   _from_space        = to();
 294   _to_space          = s;
 295   eden()->set_next_compaction_space(from());
 296   // The to-space is normally empty before a compaction so need
 297   // not be considered.  The exception is during promotion
 298   // failure handling when to-space can contain live objects.
 299   from()->set_next_compaction_space(NULL);
 300 
 301   if (UsePerfData) {
 302     CSpaceCounters* c = _from_counters;
 303     _from_counters = _to_counters;
 304     _to_counters = c;
 305   }
 306 }
 307 
 308 bool DefNewGeneration::expand(size_t bytes) {
 309   MutexLocker x(ExpandHeap_lock);
 310   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 311   bool success = _virtual_space.expand_by(bytes);
 312   if (success && ZapUnusedHeapArea) {
 313     // Mangle newly committed space immediately because it
 314     // can be done here more simply that after the new
 315     // spaces have been computed.
 316     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 317     MemRegion mangle_region(prev_high, new_high);
 318     SpaceMangler::mangle_region(mangle_region);
 319   }
 320 
 321   // Do not attempt an expand-to-the reserve size.  The
 322   // request should properly observe the maximum size of
 323   // the generation so an expand-to-reserve should be
 324   // unnecessary.  Also a second call to expand-to-reserve
 325   // value potentially can cause an undue expansion.
 326   // For example if the first expand fail for unknown reasons,
 327   // but the second succeeds and expands the heap to its maximum
 328   // value.
 329   if (GCLocker::is_active()) {
 330     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 331   }
 332 
 333   return success;
 334 }
 335 
 336 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
 337                                                     size_t new_size_before,
 338                                                     size_t alignment) const {
 339   size_t desired_new_size = new_size_before;
 340 
 341   if (NewSizeThreadIncrease > 0) {
 342     int threads_count;
 343     size_t thread_increase_size = 0;
 344 
 345     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 346     threads_count = Threads::number_of_non_daemon_threads();
 347     if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
 348       thread_increase_size = threads_count * NewSizeThreadIncrease;
 349 
 350       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 351       if (new_size_candidate <= max_uintx - thread_increase_size) {
 352         new_size_candidate += thread_increase_size;
 353 
 354         // 3. Check an overflow at 'align_up'.
 355         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 356         if (new_size_candidate <= aligned_max) {
 357           desired_new_size = align_up(new_size_candidate, alignment);
 358         }
 359       }
 360     }
 361   }
 362 
 363   return desired_new_size;
 364 }
 365 
 366 void DefNewGeneration::compute_new_size() {
 367   // This is called after a GC that includes the old generation, so from-space
 368   // will normally be empty.
 369   // Note that we check both spaces, since if scavenge failed they revert roles.
 370   // If not we bail out (otherwise we would have to relocate the objects).
 371   if (!from()->is_empty() || !to()->is_empty()) {
 372     return;
 373   }
 374 
 375   GenCollectedHeap* gch = GenCollectedHeap::heap();
 376 
 377   size_t old_size = gch->old_gen()->capacity();
 378   size_t new_size_before = _virtual_space.committed_size();
 379   size_t min_new_size = initial_size();
 380   size_t max_new_size = reserved().byte_size();
 381   assert(min_new_size <= new_size_before &&
 382          new_size_before <= max_new_size,
 383          "just checking");
 384   // All space sizes must be multiples of Generation::GenGrain.
 385   size_t alignment = Generation::GenGrain;
 386 
 387   int threads_count = 0;
 388   size_t thread_increase_size = 0;
 389 
 390   size_t new_size_candidate = old_size / NewRatio;
 391   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 392   // and reverts to previous value if any overflow happens
 393   size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
 394 
 395   // Adjust new generation size
 396   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 397   assert(desired_new_size <= max_new_size, "just checking");
 398 
 399   bool changed = false;
 400   if (desired_new_size > new_size_before) {
 401     size_t change = desired_new_size - new_size_before;
 402     assert(change % alignment == 0, "just checking");
 403     if (expand(change)) {
 404        changed = true;
 405     }
 406     // If the heap failed to expand to the desired size,
 407     // "changed" will be false.  If the expansion failed
 408     // (and at this point it was expected to succeed),
 409     // ignore the failure (leaving "changed" as false).
 410   }
 411   if (desired_new_size < new_size_before && eden()->is_empty()) {
 412     // bail out of shrinking if objects in eden
 413     size_t change = new_size_before - desired_new_size;
 414     assert(change % alignment == 0, "just checking");
 415     _virtual_space.shrink_by(change);
 416     changed = true;
 417   }
 418   if (changed) {
 419     // The spaces have already been mangled at this point but
 420     // may not have been cleared (set top = bottom) and should be.
 421     // Mangling was done when the heap was being expanded.
 422     compute_space_boundaries(eden()->used(),
 423                              SpaceDecorator::Clear,
 424                              SpaceDecorator::DontMangle);
 425     MemRegion cmr((HeapWord*)_virtual_space.low(),
 426                   (HeapWord*)_virtual_space.high());
 427     gch->rem_set()->resize_covered_region(cmr);
 428 
 429     log_debug(gc, ergo, heap)(
 430         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 431         new_size_before/K, _virtual_space.committed_size()/K,
 432         eden()->capacity()/K, from()->capacity()/K);
 433     log_trace(gc, ergo, heap)(
 434         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 435           thread_increase_size/K, threads_count);
 436       }
 437 }
 438 
 439 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) {
 440   assert(false, "NYI -- are you sure you want to call this?");
 441 }
 442 
 443 
 444 size_t DefNewGeneration::capacity() const {
 445   return eden()->capacity()
 446        + from()->capacity();  // to() is only used during scavenge
 447 }
 448 
 449 
 450 size_t DefNewGeneration::used() const {
 451   return eden()->used()
 452        + from()->used();      // to() is only used during scavenge
 453 }
 454 
 455 
 456 size_t DefNewGeneration::free() const {
 457   return eden()->free()
 458        + from()->free();      // to() is only used during scavenge
 459 }
 460 
 461 size_t DefNewGeneration::max_capacity() const {
 462   const size_t reserved_bytes = reserved().byte_size();
 463   return reserved_bytes - compute_survivor_size(reserved_bytes, SpaceAlignment);
 464 }
 465 
 466 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 467   return eden()->free();
 468 }
 469 
 470 size_t DefNewGeneration::capacity_before_gc() const {
 471   return eden()->capacity();
 472 }
 473 
 474 size_t DefNewGeneration::contiguous_available() const {
 475   return eden()->free();
 476 }
 477 
 478 
 479 HeapWord* volatile* DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 480 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 481 
 482 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 483   eden()->object_iterate(blk);
 484   from()->object_iterate(blk);
 485 }
 486 
 487 
 488 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 489                                      bool usedOnly) {
 490   blk->do_space(eden());
 491   blk->do_space(from());
 492   blk->do_space(to());
 493 }
 494 
 495 // The last collection bailed out, we are running out of heap space,
 496 // so we try to allocate the from-space, too.
 497 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 498   bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
 499 
 500   // If the Heap_lock is not locked by this thread, this will be called
 501   // again later with the Heap_lock held.
 502   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 503 
 504   HeapWord* result = NULL;
 505   if (do_alloc) {
 506     result = from()->allocate(size);
 507   }
 508 
 509   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 510                         size,
 511                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 512                           "true" : "false",
 513                         Heap_lock->is_locked() ? "locked" : "unlocked",
 514                         from()->free(),
 515                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 516                         do_alloc ? "  Heap_lock is not owned by self" : "",
 517                         result == NULL ? "NULL" : "object");
 518 
 519   return result;
 520 }
 521 
 522 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 523                                                 bool   is_tlab,
 524                                                 bool   parallel) {
 525   // We don't attempt to expand the young generation (but perhaps we should.)
 526   return allocate(size, is_tlab);
 527 }
 528 
 529 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 530   // Set the desired survivor size to half the real survivor space
 531   size_t const survivor_capacity = to()->capacity() / HeapWordSize;
 532   size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 533 
 534   _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size);
 535 
 536   if (UsePerfData) {
 537     GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->counters();
 538     gc_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 539     gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize);
 540   }
 541 
 542   age_table()->print_age_table(_tenuring_threshold);
 543 }
 544 
 545 void DefNewGeneration::collect(bool   full,
 546                                bool   clear_all_soft_refs,
 547                                size_t size,
 548                                bool   is_tlab) {
 549   assert(full || size > 0, "otherwise we don't want to collect");
 550 
 551   SerialHeap* heap = SerialHeap::heap();
 552 
 553   _gc_timer->register_gc_start();
 554   DefNewTracer gc_tracer;
 555   gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer->gc_start());
 556 
 557   _old_gen = heap->old_gen();
 558 
 559   // If the next generation is too full to accommodate promotion
 560   // from this generation, pass on collection; let the next generation
 561   // do it.
 562   if (!collection_attempt_is_safe()) {
 563     log_trace(gc)(":: Collection attempt not safe ::");
 564     heap->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 565     return;
 566   }
 567   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 568 
 569   init_assuming_no_promotion_failure();
 570 
 571   GCTraceTime(Trace, gc, phases) tm("DefNew", NULL, heap->gc_cause());
 572 
 573   heap->trace_heap_before_gc(&gc_tracer);
 574 
 575   // These can be shared for all code paths
 576   IsAliveClosure is_alive(this);
 577   ScanWeakRefClosure scan_weak_ref(this);
 578 
 579   age_table()->clear();
 580   to()->clear(SpaceDecorator::Mangle);
 581   // The preserved marks should be empty at the start of the GC.
 582   _preserved_marks_set.init(1);
 583 
 584   heap->rem_set()->prepare_for_younger_refs_iterate(false);
 585 
 586   assert(heap->no_allocs_since_save_marks(),
 587          "save marks have not been newly set.");
 588 
 589   FastScanClosure fsc_with_no_gc_barrier(this, false);
 590   FastScanClosure fsc_with_gc_barrier(this, true);
 591 
 592   CLDScanClosure cld_scan_closure(&fsc_with_no_gc_barrier,
 593                                   heap->rem_set()->cld_rem_set()->accumulate_modified_oops());
 594 
 595   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 596   FastEvacuateFollowersClosure evacuate_followers(heap,
 597                                                   &fsc_with_no_gc_barrier,
 598                                                   &fsc_with_gc_barrier);
 599 
 600   assert(heap->no_allocs_since_save_marks(),
 601          "save marks have not been newly set.");
 602 
 603   {
 604     // DefNew needs to run with n_threads == 0, to make sure the serial
 605     // version of the card table scanning code is used.
 606     // See: CardTableRS::non_clean_card_iterate_possibly_parallel.
 607     StrongRootsScope srs(0);
 608 
 609     heap->young_process_roots(&srs,
 610                               &fsc_with_no_gc_barrier,
 611                               &fsc_with_gc_barrier,
 612                               &cld_scan_closure);
 613   }
 614 
 615   // "evacuate followers".
 616   evacuate_followers.do_void();
 617 
 618   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 619   ReferenceProcessor* rp = ref_processor();
 620   rp->setup_policy(clear_all_soft_refs);
 621   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues());
 622   const ReferenceProcessorStats& stats =
 623   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 624                                     NULL, &pt);
 625   gc_tracer.report_gc_reference_stats(stats);
 626   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 627   pt.print_all_references();
 628 
 629   assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set.");
 630 
 631   WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
 632 
 633   // Verify that the usage of keep_alive didn't copy any objects.
 634   assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set.");
 635 
 636   if (!_promotion_failed) {
 637     // Swap the survivor spaces.
 638     eden()->clear(SpaceDecorator::Mangle);
 639     from()->clear(SpaceDecorator::Mangle);
 640     if (ZapUnusedHeapArea) {
 641       // This is now done here because of the piece-meal mangling which
 642       // can check for valid mangling at intermediate points in the
 643       // collection(s).  When a young collection fails to collect
 644       // sufficient space resizing of the young generation can occur
 645       // an redistribute the spaces in the young generation.  Mangle
 646       // here so that unzapped regions don't get distributed to
 647       // other spaces.
 648       to()->mangle_unused_area();
 649     }
 650     swap_spaces();
 651 
 652     assert(to()->is_empty(), "to space should be empty now");
 653 
 654     adjust_desired_tenuring_threshold();
 655 
 656     // A successful scavenge should restart the GC time limit count which is
 657     // for full GC's.
 658     AdaptiveSizePolicy* size_policy = heap->size_policy();
 659     size_policy->reset_gc_overhead_limit_count();
 660     assert(!heap->incremental_collection_failed(), "Should be clear");
 661   } else {
 662     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 663     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 664 
 665     remove_forwarding_pointers();
 666     log_info(gc, promotion)("Promotion failed");
 667     // Add to-space to the list of space to compact
 668     // when a promotion failure has occurred.  In that
 669     // case there can be live objects in to-space
 670     // as a result of a partial evacuation of eden
 671     // and from-space.
 672     swap_spaces();   // For uniformity wrt ParNewGeneration.
 673     from()->set_next_compaction_space(to());
 674     heap->set_incremental_collection_failed();
 675 
 676     // Inform the next generation that a promotion failure occurred.
 677     _old_gen->promotion_failure_occurred();
 678     gc_tracer.report_promotion_failed(_promotion_failed_info);
 679 
 680     // Reset the PromotionFailureALot counters.
 681     NOT_PRODUCT(heap->reset_promotion_should_fail();)
 682   }
 683   // We should have processed and cleared all the preserved marks.
 684   _preserved_marks_set.reclaim();
 685   // set new iteration safe limit for the survivor spaces
 686   from()->set_concurrent_iteration_safe_limit(from()->top());
 687   to()->set_concurrent_iteration_safe_limit(to()->top());
 688 
 689   // We need to use a monotonically non-decreasing time in ms
 690   // or we will see time-warp warnings and os::javaTimeMillis()
 691   // does not guarantee monotonicity.
 692   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 693   update_time_of_last_gc(now);
 694 
 695   heap->trace_heap_after_gc(&gc_tracer);
 696 
 697   _gc_timer->register_gc_end();
 698 
 699   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 700 }
 701 
 702 void DefNewGeneration::init_assuming_no_promotion_failure() {
 703   _promotion_failed = false;
 704   _promotion_failed_info.reset();
 705   from()->set_next_compaction_space(NULL);
 706 }
 707 
 708 void DefNewGeneration::remove_forwarding_pointers() {
 709   RemoveForwardedPointerClosure rspc;
 710   eden()->object_iterate(&rspc);
 711   from()->object_iterate(&rspc);
 712   restore_preserved_marks();
 713 }
 714 
 715 void DefNewGeneration::restore_preserved_marks() {
 716   SharedRestorePreservedMarksTaskExecutor task_executor(NULL);
 717   _preserved_marks_set.restore(&task_executor);
 718 }
 719 
 720 void DefNewGeneration::handle_promotion_failure(oop old) {
 721   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 722 
 723   _promotion_failed = true;
 724   _promotion_failed_info.register_copy_failure(old->size());
 725   _preserved_marks_set.get()->push_if_necessary(old, old->mark_raw());
 726   // forward to self
 727   old->forward_to(old);
 728 
 729   _promo_failure_scan_stack.push(old);
 730 
 731   if (!_promo_failure_drain_in_progress) {
 732     // prevent recursion in copy_to_survivor_space()
 733     _promo_failure_drain_in_progress = true;
 734     drain_promo_failure_scan_stack();
 735     _promo_failure_drain_in_progress = false;
 736   }
 737 }
 738 
 739 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 740   assert(is_in_reserved(old) && !old->is_forwarded(),
 741          "shouldn't be scavenging this oop");
 742   size_t s = old->size();
 743   oop obj = NULL;
 744 
 745   // Try allocating obj in to-space (unless too old)
 746   if (old->age() < tenuring_threshold()) {
 747     obj = (oop) to()->allocate_aligned(s);
 748   }
 749 
 750   // Otherwise try allocating obj tenured
 751   if (obj == NULL) {
 752     obj = _old_gen->promote(old, s);
 753     if (obj == NULL) {
 754       handle_promotion_failure(old);
 755       return old;
 756     }
 757   } else {
 758     // Prefetch beyond obj
 759     const intx interval = PrefetchCopyIntervalInBytes;
 760     Prefetch::write(obj, interval);
 761 
 762     // Copy obj
 763     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 764 
 765     // Increment age if obj still in new generation
 766     obj->incr_age();
 767     age_table()->add(obj, s);
 768   }
 769 
 770   // Done, insert forward pointer to obj in this header
 771   old->forward_to(obj);
 772 
 773   return obj;
 774 }
 775 
 776 void DefNewGeneration::drain_promo_failure_scan_stack() {
 777   while (!_promo_failure_scan_stack.is_empty()) {
 778      oop obj = _promo_failure_scan_stack.pop();
 779      obj->oop_iterate(_promo_failure_scan_stack_closure);
 780   }
 781 }
 782 
 783 void DefNewGeneration::save_marks() {
 784   eden()->set_saved_mark();
 785   to()->set_saved_mark();
 786   from()->set_saved_mark();
 787 }
 788 
 789 
 790 void DefNewGeneration::reset_saved_marks() {
 791   eden()->reset_saved_mark();
 792   to()->reset_saved_mark();
 793   from()->reset_saved_mark();
 794 }
 795 
 796 
 797 bool DefNewGeneration::no_allocs_since_save_marks() {
 798   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 799   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 800   return to()->saved_mark_at_top();
 801 }
 802 
 803 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 804                                          size_t max_alloc_words) {
 805   if (requestor == this || _promotion_failed) {
 806     return;
 807   }
 808   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 809 
 810   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 811   if (to_space->top() > to_space->bottom()) {
 812     trace("to_space not empty when contribute_scratch called");
 813   }
 814   */
 815 
 816   ContiguousSpace* to_space = to();
 817   assert(to_space->end() >= to_space->top(), "pointers out of order");
 818   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 819   if (free_words >= MinFreeScratchWords) {
 820     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 821     sb->num_words = free_words;
 822     sb->next = list;
 823     list = sb;
 824   }
 825 }
 826 
 827 void DefNewGeneration::reset_scratch() {
 828   // If contributing scratch in to_space, mangle all of
 829   // to_space if ZapUnusedHeapArea.  This is needed because
 830   // top is not maintained while using to-space as scratch.
 831   if (ZapUnusedHeapArea) {
 832     to()->mangle_unused_area_complete();
 833   }
 834 }
 835 
 836 bool DefNewGeneration::collection_attempt_is_safe() {
 837   if (!to()->is_empty()) {
 838     log_trace(gc)(":: to is not empty ::");
 839     return false;
 840   }
 841   if (_old_gen == NULL) {
 842     GenCollectedHeap* gch = GenCollectedHeap::heap();
 843     _old_gen = gch->old_gen();
 844   }
 845   return _old_gen->promotion_attempt_is_safe(used());
 846 }
 847 
 848 void DefNewGeneration::gc_epilogue(bool full) {
 849   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 850 
 851   assert(!GCLocker::is_active(), "We should not be executing here");
 852   // Check if the heap is approaching full after a collection has
 853   // been done.  Generally the young generation is empty at
 854   // a minimum at the end of a collection.  If it is not, then
 855   // the heap is approaching full.
 856   GenCollectedHeap* gch = GenCollectedHeap::heap();
 857   if (full) {
 858     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 859     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 860       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 861                             GCCause::to_string(gch->gc_cause()));
 862       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 863       set_should_allocate_from_space(); // we seem to be running out of space
 864     } else {
 865       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 866                             GCCause::to_string(gch->gc_cause()));
 867       gch->clear_incremental_collection_failed(); // We just did a full collection
 868       clear_should_allocate_from_space(); // if set
 869     }
 870   } else {
 871 #ifdef ASSERT
 872     // It is possible that incremental_collection_failed() == true
 873     // here, because an attempted scavenge did not succeed. The policy
 874     // is normally expected to cause a full collection which should
 875     // clear that condition, so we should not be here twice in a row
 876     // with incremental_collection_failed() == true without having done
 877     // a full collection in between.
 878     if (!seen_incremental_collection_failed &&
 879         gch->incremental_collection_failed()) {
 880       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 881                             GCCause::to_string(gch->gc_cause()));
 882       seen_incremental_collection_failed = true;
 883     } else if (seen_incremental_collection_failed) {
 884       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 885                             GCCause::to_string(gch->gc_cause()));
 886       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 887              (GCCause::is_user_requested_gc(gch->gc_cause()) && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 888              !gch->incremental_collection_failed(),
 889              "Twice in a row");
 890       seen_incremental_collection_failed = false;
 891     }
 892 #endif // ASSERT
 893   }
 894 
 895   if (ZapUnusedHeapArea) {
 896     eden()->check_mangled_unused_area_complete();
 897     from()->check_mangled_unused_area_complete();
 898     to()->check_mangled_unused_area_complete();
 899   }
 900 
 901   if (!CleanChunkPoolAsync) {
 902     Chunk::clean_chunk_pool();
 903   }
 904 
 905   // update the generation and space performance counters
 906   update_counters();
 907   gch->counters()->update_counters();
 908 }
 909 
 910 void DefNewGeneration::record_spaces_top() {
 911   assert(ZapUnusedHeapArea, "Not mangling unused space");
 912   eden()->set_top_for_allocations();
 913   to()->set_top_for_allocations();
 914   from()->set_top_for_allocations();
 915 }
 916 
 917 void DefNewGeneration::ref_processor_init() {
 918   Generation::ref_processor_init();
 919 }
 920 
 921 
 922 void DefNewGeneration::update_counters() {
 923   if (UsePerfData) {
 924     _eden_counters->update_all();
 925     _from_counters->update_all();
 926     _to_counters->update_all();
 927     _gen_counters->update_all();
 928   }
 929 }
 930 
 931 void DefNewGeneration::verify() {
 932   eden()->verify();
 933   from()->verify();
 934     to()->verify();
 935 }
 936 
 937 void DefNewGeneration::print_on(outputStream* st) const {
 938   Generation::print_on(st);
 939   st->print("  eden");
 940   eden()->print_on(st);
 941   st->print("  from");
 942   from()->print_on(st);
 943   st->print("  to  ");
 944   to()->print_on(st);
 945 }
 946 
 947 
 948 const char* DefNewGeneration::name() const {
 949   return "def new generation";
 950 }
 951 
 952 // Moved from inline file as they are not called inline
 953 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
 954   return eden();
 955 }
 956 
 957 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
 958   // This is the slow-path allocation for the DefNewGeneration.
 959   // Most allocations are fast-path in compiled code.
 960   // We try to allocate from the eden.  If that works, we are happy.
 961   // Note that since DefNewGeneration supports lock-free allocation, we
 962   // have to use it here, as well.
 963   HeapWord* result = eden()->par_allocate(word_size);
 964   if (result != NULL) {
 965     if (_old_gen != NULL) {
 966       _old_gen->sample_eden_chunk();
 967     }
 968   } else {
 969     // If the eden is full and the last collection bailed out, we are running
 970     // out of heap space, and we try to allocate the from-space, too.
 971     // allocate_from_space can't be inlined because that would introduce a
 972     // circular dependency at compile time.
 973     result = allocate_from_space(word_size);
 974   }
 975   return result;
 976 }
 977 
 978 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
 979                                          bool is_tlab) {
 980   HeapWord* res = eden()->par_allocate(word_size);
 981   if (_old_gen != NULL) {
 982     _old_gen->sample_eden_chunk();
 983   }
 984   return res;
 985 }
 986 
 987 size_t DefNewGeneration::tlab_capacity() const {
 988   return eden()->capacity();
 989 }
 990 
 991 size_t DefNewGeneration::tlab_used() const {
 992   return eden()->used();
 993 }
 994 
 995 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
 996   return unsafe_max_alloc_nogc();
 997 }