/* * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/g1ConcurrentRefineThread.hpp" #include "logging/log.hpp" #include "runtime/java.hpp" #include "runtime/thread.hpp" #include "utilities/debug.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/pair.hpp" #include G1ConcurrentRefineThreadControl::G1ConcurrentRefineThreadControl() : _cg1r(NULL), _threads(NULL), _num_max_threads(0) { } G1ConcurrentRefineThreadControl::~G1ConcurrentRefineThreadControl() { for (uint i = 0; i < _num_max_threads; i++) { G1ConcurrentRefineThread* t = _threads[i]; if (t != NULL) { delete t; } } FREE_C_HEAP_ARRAY(G1ConcurrentRefineThread*, _threads); } void G1ConcurrentRefineThreadControl::initialize(G1ConcurrentRefine* cg1r, uint num_max_threads) { assert(cg1r != NULL, "Passed g1ConcurrentRefine must not be NULL"); _cg1r = cg1r; _num_max_threads = num_max_threads; _threads = NEW_C_HEAP_ARRAY(G1ConcurrentRefineThread*, num_max_threads, mtGC); for (uint i = 0; i < num_max_threads; i++) { if (UseDynamicNumberOfGCThreads) { _threads[i] = NULL; } else { _threads[i] = new G1ConcurrentRefineThread(_cg1r, i); } } } void G1ConcurrentRefineThreadControl::maybe_activate_next(uint cur_worker_id) { assert(cur_worker_id < _num_max_threads, "Tried to activate from impossible thread %u", cur_worker_id); if (cur_worker_id == (_num_max_threads - 1)) { // Already the last thread, there is no more thread to activate. return; } uint worker_id = cur_worker_id + 1; G1ConcurrentRefineThread* thread_to_activate = _threads[worker_id]; if (thread_to_activate == NULL) { // Still need to create the thread... _threads[worker_id] = new G1ConcurrentRefineThread(_cg1r, worker_id); thread_to_activate = _threads[worker_id]; } thread_to_activate->activate(); } void G1ConcurrentRefineThreadControl::print_on(outputStream* st) const { for (uint i = 0; i < _num_max_threads; ++i) { if (_threads[i] != NULL) { _threads[i]->print_on(st); st->cr(); } } } void G1ConcurrentRefineThreadControl::worker_threads_do(ThreadClosure* tc) { for (uint i = 0; i < _num_max_threads; i++) { if (_threads[i] != NULL) { tc->do_thread(_threads[i]); } } } void G1ConcurrentRefineThreadControl::stop() { for (uint i = 0; i < _num_max_threads; i++) { if (_threads[i] != NULL) { _threads[i]->stop(); } } } // Arbitrary but large limits, to simplify some of the zone calculations. // The general idea is to allow expressions like // MIN2(x OP y, max_XXX_zone) // without needing to check for overflow in "x OP y", because the // ranges for x and y have been restricted. STATIC_ASSERT(sizeof(LP64_ONLY(jint) NOT_LP64(jshort)) <= (sizeof(size_t)/2)); const size_t max_yellow_zone = LP64_ONLY(max_jint) NOT_LP64(max_jshort); const size_t max_green_zone = max_yellow_zone / 2; const size_t max_red_zone = INT_MAX; // For dcqs.set_max_completed_queue. STATIC_ASSERT(max_yellow_zone <= max_red_zone); // Range check assertions for green zone values. #define assert_zone_constraints_g(green) \ do { \ size_t azc_g_green = (green); \ assert(azc_g_green <= max_green_zone, \ "green exceeds max: " SIZE_FORMAT, azc_g_green); \ } while (0) // Range check assertions for green and yellow zone values. #define assert_zone_constraints_gy(green, yellow) \ do { \ size_t azc_gy_green = (green); \ size_t azc_gy_yellow = (yellow); \ assert_zone_constraints_g(azc_gy_green); \ assert(azc_gy_yellow <= max_yellow_zone, \ "yellow exceeds max: " SIZE_FORMAT, azc_gy_yellow); \ assert(azc_gy_green <= azc_gy_yellow, \ "green (" SIZE_FORMAT ") exceeds yellow (" SIZE_FORMAT ")", \ azc_gy_green, azc_gy_yellow); \ } while (0) // Range check assertions for green, yellow, and red zone values. #define assert_zone_constraints_gyr(green, yellow, red) \ do { \ size_t azc_gyr_green = (green); \ size_t azc_gyr_yellow = (yellow); \ size_t azc_gyr_red = (red); \ assert_zone_constraints_gy(azc_gyr_green, azc_gyr_yellow); \ assert(azc_gyr_red <= max_red_zone, \ "red exceeds max: " SIZE_FORMAT, azc_gyr_red); \ assert(azc_gyr_yellow <= azc_gyr_red, \ "yellow (" SIZE_FORMAT ") exceeds red (" SIZE_FORMAT ")", \ azc_gyr_yellow, azc_gyr_red); \ } while (0) // Logging tag sequence for refinement control updates. #define CTRL_TAGS gc, ergo, refine // For logging zone values, ensuring consistency of level and tags. #define LOG_ZONES(...) log_debug( CTRL_TAGS )(__VA_ARGS__) // Package for pair of refinement thread activation and deactivation // thresholds. The activation and deactivation levels are resp. the first // and second values of the pair. typedef Pair Thresholds; inline size_t activation_level(const Thresholds& t) { return t.first; } inline size_t deactivation_level(const Thresholds& t) { return t.second; } static Thresholds calc_thresholds(size_t green_zone, size_t yellow_zone, uint worker_i) { double yellow_size = yellow_zone - green_zone; double step = yellow_size / G1ConcurrentRefine::max_num_threads(); if (worker_i == 0) { // Potentially activate worker 0 more aggressively, to keep // available buffers near green_zone value. When yellow_size is // large we don't want to allow a full step to accumulate before // doing any processing, as that might lead to significantly more // than green_zone buffers to be processed by update_rs. step = MIN2(step, ParallelGCThreads / 2.0); } size_t activate_offset = static_cast(ceil(step * (worker_i + 1))); size_t deactivate_offset = static_cast(floor(step * worker_i)); return Thresholds(green_zone + activate_offset, green_zone + deactivate_offset); } G1ConcurrentRefine::G1ConcurrentRefine(size_t green_zone, size_t yellow_zone, size_t red_zone, size_t min_yellow_zone_size) : _thread_control(), _green_zone(green_zone), _yellow_zone(yellow_zone), _red_zone(red_zone), _min_yellow_zone_size(min_yellow_zone_size) { assert_zone_constraints_gyr(green_zone, yellow_zone, red_zone); _thread_control.initialize(this, max_num_threads()); } static size_t calc_min_yellow_zone_size() { size_t step = G1ConcRefinementThresholdStep; uint n_workers = G1ConcurrentRefine::max_num_threads(); if ((max_yellow_zone / step) < n_workers) { return max_yellow_zone; } else { return step * n_workers; } } static size_t calc_init_green_zone() { size_t green = G1ConcRefinementGreenZone; if (FLAG_IS_DEFAULT(G1ConcRefinementGreenZone)) { green = ParallelGCThreads; } return MIN2(green, max_green_zone); } static size_t calc_init_yellow_zone(size_t green, size_t min_size) { size_t config = G1ConcRefinementYellowZone; size_t size = 0; if (FLAG_IS_DEFAULT(G1ConcRefinementYellowZone)) { size = green * 2; } else if (green < config) { size = config - green; } size = MAX2(size, min_size); size = MIN2(size, max_yellow_zone); return MIN2(green + size, max_yellow_zone); } static size_t calc_init_red_zone(size_t green, size_t yellow) { size_t size = yellow - green; if (!FLAG_IS_DEFAULT(G1ConcRefinementRedZone)) { size_t config = G1ConcRefinementRedZone; if (yellow < config) { size = MAX2(size, config - yellow); } } return MIN2(yellow + size, max_red_zone); } G1ConcurrentRefine* G1ConcurrentRefine::create(jint* ecode) { size_t min_yellow_zone_size = calc_min_yellow_zone_size(); size_t green_zone = calc_init_green_zone(); size_t yellow_zone = calc_init_yellow_zone(green_zone, min_yellow_zone_size); size_t red_zone = calc_init_red_zone(green_zone, yellow_zone); LOG_ZONES("Initial Refinement Zones: " "green: " SIZE_FORMAT ", " "yellow: " SIZE_FORMAT ", " "red: " SIZE_FORMAT ", " "min yellow size: " SIZE_FORMAT, green_zone, yellow_zone, red_zone, min_yellow_zone_size); G1ConcurrentRefine* cr = new G1ConcurrentRefine(green_zone, yellow_zone, red_zone, min_yellow_zone_size); if (cr == NULL) { *ecode = JNI_ENOMEM; vm_shutdown_during_initialization("Could not create G1ConcurrentRefine"); return NULL; } *ecode = JNI_OK; return cr; } void G1ConcurrentRefine::stop() { _thread_control.stop(); } G1ConcurrentRefine::~G1ConcurrentRefine() { } void G1ConcurrentRefine::threads_do(ThreadClosure *tc) { _thread_control.worker_threads_do(tc); } uint G1ConcurrentRefine::max_num_threads() { return G1ConcRefinementThreads; } void G1ConcurrentRefine::print_threads_on(outputStream* st) const { _thread_control.print_on(st); } static size_t calc_new_green_zone(size_t green, double update_rs_time, size_t update_rs_processed_buffers, double goal_ms) { // Adjust green zone based on whether we're meeting the time goal. // Limit to max_green_zone. const double inc_k = 1.1, dec_k = 0.9; if (update_rs_time > goal_ms) { if (green > 0) { green = static_cast(green * dec_k); } } else if (update_rs_time < goal_ms && update_rs_processed_buffers > green) { green = static_cast(MAX2(green * inc_k, green + 1.0)); green = MIN2(green, max_green_zone); } return green; } static size_t calc_new_yellow_zone(size_t green, size_t min_yellow_size) { size_t size = green * 2; size = MAX2(size, min_yellow_size); return MIN2(green + size, max_yellow_zone); } static size_t calc_new_red_zone(size_t green, size_t yellow) { return MIN2(yellow + (yellow - green), max_red_zone); } void G1ConcurrentRefine::update_zones(double update_rs_time, size_t update_rs_processed_buffers, double goal_ms) { log_trace( CTRL_TAGS )("Updating Refinement Zones: " "update_rs time: %.3fms, " "update_rs buffers: " SIZE_FORMAT ", " "update_rs goal time: %.3fms", update_rs_time, update_rs_processed_buffers, goal_ms); _green_zone = calc_new_green_zone(_green_zone, update_rs_time, update_rs_processed_buffers, goal_ms); _yellow_zone = calc_new_yellow_zone(_green_zone, _min_yellow_zone_size); _red_zone = calc_new_red_zone(_green_zone, _yellow_zone); assert_zone_constraints_gyr(_green_zone, _yellow_zone, _red_zone); LOG_ZONES("Updated Refinement Zones: " "green: " SIZE_FORMAT ", " "yellow: " SIZE_FORMAT ", " "red: " SIZE_FORMAT, _green_zone, _yellow_zone, _red_zone); } void G1ConcurrentRefine::adjust(double update_rs_time, size_t update_rs_processed_buffers, double goal_ms) { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); if (G1UseAdaptiveConcRefinement) { update_zones(update_rs_time, update_rs_processed_buffers, goal_ms); // Change the barrier params if (max_num_threads() == 0) { // Disable dcqs notification when there are no threads to notify. dcqs.set_process_completed_threshold(INT_MAX); } else { // Worker 0 is the primary; wakeup is via dcqs notification. STATIC_ASSERT(max_yellow_zone <= INT_MAX); size_t activate = activation_threshold(0); dcqs.set_process_completed_threshold((int)activate); } dcqs.set_max_completed_queue((int)red_zone()); } size_t curr_queue_size = dcqs.completed_buffers_num(); if (curr_queue_size >= yellow_zone()) { dcqs.set_completed_queue_padding(curr_queue_size); } else { dcqs.set_completed_queue_padding(0); } dcqs.notify_if_necessary(); } size_t G1ConcurrentRefine::activation_threshold(uint worker_id) const { Thresholds thresholds = calc_thresholds(_green_zone, _yellow_zone, worker_id); return activation_level(thresholds); } size_t G1ConcurrentRefine::deactivation_threshold(uint worker_id) const { Thresholds thresholds = calc_thresholds(_green_zone, _yellow_zone, worker_id); return deactivation_level(thresholds); } uint G1ConcurrentRefine::worker_id_offset() { return DirtyCardQueueSet::num_par_ids(); } void G1ConcurrentRefine::maybe_activate_more_threads(uint worker_id, size_t num_cur_buffers) { if (activation_threshold(worker_id + 1) > num_cur_buffers) { _thread_control.maybe_activate_next(worker_id); } } bool G1ConcurrentRefine::do_refinement_step(uint worker_id) { DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set(); size_t curr_buffer_num = dcqs.completed_buffers_num(); // If the number of the buffers falls down into the yellow zone, // that means that the transition period after the evacuation pause has ended. // Since the value written to the DCQS is the same for all threads, there is no // need to synchronize. if (dcqs.completed_queue_padding() > 0 && curr_buffer_num <= yellow_zone()) { dcqs.set_completed_queue_padding(0); } maybe_activate_more_threads(worker_id, curr_buffer_num); // Process the next buffer, if there are enough left. return dcqs.refine_completed_buffer_concurrently(worker_id + worker_id_offset(), deactivation_threshold(worker_id)); }