1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "gc/g1/g1ConcurrentMarkBitMap.hpp"
  29 #include "gc/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/taskqueue.hpp"
  32 
  33 class ConcurrentGCTimer;
  34 class ConcurrentMarkThread;
  35 class G1CollectedHeap;
  36 class G1CMTask;
  37 class G1ConcurrentMark;
  38 class G1OldTracer;
  39 class G1RegionToSpaceMapper;
  40 class G1SurvivorRegions;
  41 
  42 #ifdef _MSC_VER
  43 #pragma warning(push)
  44 // warning C4522: multiple assignment operators specified
  45 #pragma warning(disable:4522)
  46 #endif
  47 
  48 // This is a container class for either an oop or a continuation address for
  49 // mark stack entries. Both are pushed onto the mark stack.
  50 class G1TaskQueueEntry VALUE_OBJ_CLASS_SPEC {
  51 private:
  52   void* _holder;
  53 
  54   static const uintptr_t ArraySliceBit = 1;
  55 
  56   G1TaskQueueEntry(oop obj) : _holder(obj) {
  57     assert(_holder != NULL, "Not allowed to set NULL task queue element");
  58   }
  59   G1TaskQueueEntry(HeapWord* addr) : _holder((void*)((uintptr_t)addr | ArraySliceBit)) { }
  60 public:
  61   G1TaskQueueEntry(const G1TaskQueueEntry& other) { _holder = other._holder; }
  62   G1TaskQueueEntry() : _holder(NULL) { }
  63 
  64   static G1TaskQueueEntry from_slice(HeapWord* what) { return G1TaskQueueEntry(what); }
  65   static G1TaskQueueEntry from_oop(oop obj) { return G1TaskQueueEntry(obj); }
  66 
  67   G1TaskQueueEntry& operator=(const G1TaskQueueEntry& t) {
  68     _holder = t._holder;
  69     return *this;
  70   }
  71 
  72   volatile G1TaskQueueEntry& operator=(const volatile G1TaskQueueEntry& t) volatile {
  73     _holder = t._holder;
  74     return *this;
  75   }
  76 
  77   oop obj() const {
  78     assert(!is_array_slice(), "Trying to read array slice " PTR_FORMAT " as oop", p2i(_holder));
  79     return (oop)_holder;
  80   }
  81 
  82   HeapWord* slice() const {
  83     assert(is_array_slice(), "Trying to read oop " PTR_FORMAT " as array slice", p2i(_holder));
  84     return (HeapWord*)((uintptr_t)_holder & ~ArraySliceBit);
  85   }
  86 
  87   bool is_oop() const { return !is_array_slice(); }
  88   bool is_array_slice() const { return ((uintptr_t)_holder & ArraySliceBit) != 0; }
  89   bool is_null() const { return _holder == NULL; }
  90 };
  91 
  92 #ifdef _MSC_VER
  93 #pragma warning(pop)
  94 #endif
  95 
  96 typedef GenericTaskQueue<G1TaskQueueEntry, mtGC> G1CMTaskQueue;
  97 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  98 
  99 // Closure used by CM during concurrent reference discovery
 100 // and reference processing (during remarking) to determine
 101 // if a particular object is alive. It is primarily used
 102 // to determine if referents of discovered reference objects
 103 // are alive. An instance is also embedded into the
 104 // reference processor as the _is_alive_non_header field
 105 class G1CMIsAliveClosure: public BoolObjectClosure {
 106   G1CollectedHeap* _g1;
 107  public:
 108   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
 109 
 110   bool do_object_b(oop obj);
 111 };
 112 
 113 // Represents the overflow mark stack used by concurrent marking.
 114 //
 115 // Stores oops in a huge buffer in virtual memory that is always fully committed.
 116 // Resizing may only happen during a STW pause when the stack is empty.
 117 //
 118 // Memory is allocated on a "chunk" basis, i.e. a set of oops. For this, the mark
 119 // stack memory is split into evenly sized chunks of oops. Users can only
 120 // add or remove entries on that basis.
 121 // Chunks are filled in increasing address order. Not completely filled chunks
 122 // have a NULL element as a terminating element.
 123 //
 124 // Every chunk has a header containing a single pointer element used for memory
 125 // management. This wastes some space, but is negligible (< .1% with current sizing).
 126 //
 127 // Memory management is done using a mix of tracking a high water-mark indicating
 128 // that all chunks at a lower address are valid chunks, and a singly linked free
 129 // list connecting all empty chunks.
 130 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 131 public:
 132   // Number of TaskQueueEntries that can fit in a single chunk.
 133   static const size_t EntriesPerChunk = 1024 - 1 /* One reference for the next pointer */;
 134 private:
 135   struct TaskQueueEntryChunk {
 136     TaskQueueEntryChunk* next;
 137     G1TaskQueueEntry data[EntriesPerChunk];
 138   };
 139 
 140   size_t _max_chunk_capacity;    // Maximum number of TaskQueueEntryChunk elements on the stack.
 141 
 142   TaskQueueEntryChunk* _base;    // Bottom address of allocated memory area.
 143   size_t _chunk_capacity;        // Current maximum number of TaskQueueEntryChunk elements.
 144 
 145   char _pad0[DEFAULT_CACHE_LINE_SIZE];
 146   TaskQueueEntryChunk* volatile _free_list;  // Linked list of free chunks that can be allocated by users.
 147   char _pad1[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*)];
 148   TaskQueueEntryChunk* volatile _chunk_list; // List of chunks currently containing data.
 149   volatile size_t _chunks_in_chunk_list;
 150   char _pad2[DEFAULT_CACHE_LINE_SIZE - sizeof(TaskQueueEntryChunk*) - sizeof(size_t)];
 151 
 152   volatile size_t _hwm;          // High water mark within the reserved space.
 153   char _pad4[DEFAULT_CACHE_LINE_SIZE - sizeof(size_t)];
 154 
 155   // Allocate a new chunk from the reserved memory, using the high water mark. Returns
 156   // NULL if out of memory.
 157   TaskQueueEntryChunk* allocate_new_chunk();
 158 
 159   // Atomically add the given chunk to the list.
 160   void add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem);
 161   // Atomically remove and return a chunk from the given list. Returns NULL if the
 162   // list is empty.
 163   TaskQueueEntryChunk* remove_chunk_from_list(TaskQueueEntryChunk* volatile* list);
 164 
 165   void add_chunk_to_chunk_list(TaskQueueEntryChunk* elem);
 166   void add_chunk_to_free_list(TaskQueueEntryChunk* elem);
 167 
 168   TaskQueueEntryChunk* remove_chunk_from_chunk_list();
 169   TaskQueueEntryChunk* remove_chunk_from_free_list();
 170 
 171   // Resizes the mark stack to the given new capacity. Releases any previous
 172   // memory if successful.
 173   bool resize(size_t new_capacity);
 174 
 175  public:
 176   G1CMMarkStack();
 177   ~G1CMMarkStack();
 178 
 179   // Alignment and minimum capacity of this mark stack in number of oops.
 180   static size_t capacity_alignment();
 181 
 182   // Allocate and initialize the mark stack with the given number of oops.
 183   bool initialize(size_t initial_capacity, size_t max_capacity);
 184 
 185   // Pushes the given buffer containing at most EntriesPerChunk elements on the mark
 186   // stack. If less than EntriesPerChunk elements are to be pushed, the array must
 187   // be terminated with a NULL.
 188   // Returns whether the buffer contents were successfully pushed to the global mark
 189   // stack.
 190   bool par_push_chunk(G1TaskQueueEntry* buffer);
 191 
 192   // Pops a chunk from this mark stack, copying them into the given buffer. This
 193   // chunk may contain up to EntriesPerChunk elements. If there are less, the last
 194   // element in the array is a NULL pointer.
 195   bool par_pop_chunk(G1TaskQueueEntry* buffer);
 196 
 197   // Return whether the chunk list is empty. Racy due to unsynchronized access to
 198   // _chunk_list.
 199   bool is_empty() const { return _chunk_list == NULL; }
 200 
 201   size_t capacity() const  { return _chunk_capacity; }
 202 
 203   // Expand the stack, typically in response to an overflow condition
 204   void expand();
 205 
 206   // Return the approximate number of oops on this mark stack. Racy due to
 207   // unsynchronized access to _chunks_in_chunk_list.
 208   size_t size() const { return _chunks_in_chunk_list * EntriesPerChunk; }
 209 
 210   void set_empty();
 211 
 212   // Apply Fn to every oop on the mark stack. The mark stack must not
 213   // be modified while iterating.
 214   template<typename Fn> void iterate(Fn fn) const PRODUCT_RETURN;
 215 };
 216 
 217 // Root Regions are regions that are not empty at the beginning of a
 218 // marking cycle and which we might collect during an evacuation pause
 219 // while the cycle is active. Given that, during evacuation pauses, we
 220 // do not copy objects that are explicitly marked, what we have to do
 221 // for the root regions is to scan them and mark all objects reachable
 222 // from them. According to the SATB assumptions, we only need to visit
 223 // each object once during marking. So, as long as we finish this scan
 224 // before the next evacuation pause, we can copy the objects from the
 225 // root regions without having to mark them or do anything else to them.
 226 //
 227 // Currently, we only support root region scanning once (at the start
 228 // of the marking cycle) and the root regions are all the survivor
 229 // regions populated during the initial-mark pause.
 230 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 231 private:
 232   const G1SurvivorRegions* _survivors;
 233   G1ConcurrentMark*        _cm;
 234 
 235   volatile bool            _scan_in_progress;
 236   volatile bool            _should_abort;
 237   volatile int             _claimed_survivor_index;
 238 
 239   void notify_scan_done();
 240 
 241 public:
 242   G1CMRootRegions();
 243   // We actually do most of the initialization in this method.
 244   void init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm);
 245 
 246   // Reset the claiming / scanning of the root regions.
 247   void prepare_for_scan();
 248 
 249   // Forces get_next() to return NULL so that the iteration aborts early.
 250   void abort() { _should_abort = true; }
 251 
 252   // Return true if the CM thread are actively scanning root regions,
 253   // false otherwise.
 254   bool scan_in_progress() { return _scan_in_progress; }
 255 
 256   // Claim the next root region to scan atomically, or return NULL if
 257   // all have been claimed.
 258   HeapRegion* claim_next();
 259 
 260   // The number of root regions to scan.
 261   uint num_root_regions() const;
 262 
 263   void cancel_scan();
 264 
 265   // Flag that we're done with root region scanning and notify anyone
 266   // who's waiting on it. If aborted is false, assume that all regions
 267   // have been claimed.
 268   void scan_finished();
 269 
 270   // If CM threads are still scanning root regions, wait until they
 271   // are done. Return true if we had to wait, false otherwise.
 272   bool wait_until_scan_finished();
 273 };
 274 
 275 // This class manages data structures and methods for doing liveness analysis in
 276 // G1's concurrent cycle.
 277 class G1ConcurrentMark: public CHeapObj<mtGC> {
 278   friend class ConcurrentMarkThread;
 279   friend class G1CMRefProcTaskProxy;
 280   friend class G1CMRefProcTaskExecutor;
 281   friend class G1CMKeepAliveAndDrainClosure;
 282   friend class G1CMDrainMarkingStackClosure;
 283   friend class G1CMBitMapClosure;
 284   friend class G1CMConcurrentMarkingTask;
 285   friend class G1CMRemarkTask;
 286   friend class G1CMTask;
 287 
 288   ConcurrentMarkThread*  _cm_thread;     // The thread doing the work
 289   G1CollectedHeap*       _g1h;           // The heap
 290   bool                   _completed_initialization; // Set to true when initialization is complete
 291 
 292   FreeRegionList         _cleanup_list;
 293 
 294   // Concurrent marking support structures
 295   G1CMBitMap             _mark_bitmap_1;
 296   G1CMBitMap             _mark_bitmap_2;
 297   G1CMBitMap*            _prev_mark_bitmap; // Completed mark bitmap
 298   G1CMBitMap*            _next_mark_bitmap; // Under-construction mark bitmap
 299 
 300   // Heap bounds
 301   HeapWord*              _heap_start;
 302   HeapWord*              _heap_end;
 303 
 304   // Root region tracking and claiming
 305   G1CMRootRegions        _root_regions;
 306 
 307   // For grey objects
 308   G1CMMarkStack          _global_mark_stack; // Grey objects behind global finger
 309   HeapWord* volatile     _finger;            // The global finger, region aligned,
 310                                              // always pointing to the end of the
 311                                              // last claimed region
 312 
 313   uint                   _max_num_tasks;    // Maximum number of marking tasks
 314   uint                   _num_active_tasks; // Number of tasks currently active
 315   G1CMTask**             _tasks;            // Task queue array (max_worker_id length)
 316 
 317   G1CMTaskQueueSet*      _task_queues;      // Task queue set
 318   ParallelTaskTerminator _terminator;       // For termination
 319 
 320   // Two sync barriers that are used to synchronize tasks when an
 321   // overflow occurs. The algorithm is the following. All tasks enter
 322   // the first one to ensure that they have all stopped manipulating
 323   // the global data structures. After they exit it, they re-initialize
 324   // their data structures and task 0 re-initializes the global data
 325   // structures. Then, they enter the second sync barrier. This
 326   // ensure, that no task starts doing work before all data
 327   // structures (local and global) have been re-initialized. When they
 328   // exit it, they are free to start working again.
 329   WorkGangBarrierSync    _first_overflow_barrier_sync;
 330   WorkGangBarrierSync    _second_overflow_barrier_sync;
 331 
 332   // This is set by any task, when an overflow on the global data
 333   // structures is detected
 334   volatile bool          _has_overflown;
 335   // True: marking is concurrent, false: we're in remark
 336   volatile bool          _concurrent;
 337   // Set at the end of a Full GC so that marking aborts
 338   volatile bool          _has_aborted;
 339 
 340   // Used when remark aborts due to an overflow to indicate that
 341   // another concurrent marking phase should start
 342   volatile bool          _restart_for_overflow;
 343 
 344   // This is true from the very start of concurrent marking until the
 345   // point when all the tasks complete their work. It is really used
 346   // to determine the points between the end of concurrent marking and
 347   // time of remark.
 348   volatile bool          _concurrent_marking_in_progress;
 349 
 350   ConcurrentGCTimer*     _gc_timer_cm;
 351 
 352   G1OldTracer*           _gc_tracer_cm;
 353 
 354   // Timing statistics. All of them are in ms
 355   NumberSeq _init_times;
 356   NumberSeq _remark_times;
 357   NumberSeq _remark_mark_times;
 358   NumberSeq _remark_weak_ref_times;
 359   NumberSeq _cleanup_times;
 360   double    _total_counting_time;
 361   double    _total_rs_scrub_time;
 362 
 363   double*   _accum_task_vtime;   // Accumulated task vtime
 364 
 365   WorkGang* _concurrent_workers;
 366   uint      _num_concurrent_workers; // The number of marking worker threads we're using
 367   uint      _max_concurrent_workers; // Maximum number of marking worker threads
 368 
 369   void weak_refs_work_parallel_part(BoolObjectClosure* is_alive, bool purged_classes);
 370   void weak_refs_work(bool clear_all_soft_refs);
 371 
 372   void swap_mark_bitmaps();
 373 
 374   // Resets the global marking data structures, as well as the
 375   // task local ones; should be called during initial mark.
 376   void reset();
 377 
 378   // Resets all the marking data structures. Called when we have to restart
 379   // marking or when marking completes (via set_non_marking_state below).
 380   void reset_marking_state();
 381 
 382   // We do this after we're done with marking so that the marking data
 383   // structures are initialized to a sensible and predictable state.
 384   void set_non_marking_state();
 385 
 386   // Called to indicate how many threads are currently active.
 387   void set_concurrency(uint active_tasks);
 388 
 389   // Should be called to indicate which phase we're in (concurrent
 390   // mark or remark) and how many threads are currently active.
 391   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 392 
 393   // Prints all gathered CM-related statistics
 394   void print_stats();
 395 
 396   bool cleanup_list_is_empty() {
 397     return _cleanup_list.is_empty();
 398   }
 399 
 400   HeapWord*               finger()          { return _finger;   }
 401   bool                    concurrent()      { return _concurrent; }
 402   uint                    active_tasks()    { return _num_active_tasks; }
 403   ParallelTaskTerminator* terminator()      { return &_terminator; }
 404 
 405   // Claims the next available region to be scanned by a marking
 406   // task/thread. It might return NULL if the next region is empty or
 407   // we have run out of regions. In the latter case, out_of_regions()
 408   // determines whether we've really run out of regions or the task
 409   // should call claim_region() again. This might seem a bit
 410   // awkward. Originally, the code was written so that claim_region()
 411   // either successfully returned with a non-empty region or there
 412   // were no more regions to be claimed. The problem with this was
 413   // that, in certain circumstances, it iterated over large chunks of
 414   // the heap finding only empty regions and, while it was working, it
 415   // was preventing the calling task to call its regular clock
 416   // method. So, this way, each task will spend very little time in
 417   // claim_region() and is allowed to call the regular clock method
 418   // frequently.
 419   HeapRegion* claim_region(uint worker_id);
 420 
 421   // Determines whether we've run out of regions to scan. Note that
 422   // the finger can point past the heap end in case the heap was expanded
 423   // to satisfy an allocation without doing a GC. This is fine, because all
 424   // objects in those regions will be considered live anyway because of
 425   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 426   bool out_of_regions() { return _finger >= _heap_end; }
 427 
 428   // Returns the task with the given id
 429   G1CMTask* task(uint id) {
 430     assert(id < _num_active_tasks, "Task id %u not within active bounds up to %u", id, _num_active_tasks);
 431     return _tasks[id];
 432   }
 433 
 434   // Access / manipulation of the overflow flag which is set to
 435   // indicate that the global stack has overflown
 436   bool has_overflown()           { return _has_overflown; }
 437   void set_has_overflown()       { _has_overflown = true; }
 438   void clear_has_overflown()     { _has_overflown = false; }
 439   bool restart_for_overflow()    { return _restart_for_overflow; }
 440 
 441   // Methods to enter the two overflow sync barriers
 442   void enter_first_sync_barrier(uint worker_id);
 443   void enter_second_sync_barrier(uint worker_id);
 444 
 445   // Clear the given bitmap in parallel using the given WorkGang. If may_yield is
 446   // true, periodically insert checks to see if this method should exit prematurely.
 447   void clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield);
 448 public:
 449   // Manipulation of the global mark stack.
 450   // The push and pop operations are used by tasks for transfers
 451   // between task-local queues and the global mark stack.
 452   bool mark_stack_push(G1TaskQueueEntry* arr) {
 453     if (!_global_mark_stack.par_push_chunk(arr)) {
 454       set_has_overflown();
 455       return false;
 456     }
 457     return true;
 458   }
 459   bool mark_stack_pop(G1TaskQueueEntry* arr) {
 460     return _global_mark_stack.par_pop_chunk(arr);
 461   }
 462   size_t mark_stack_size() const                { return _global_mark_stack.size(); }
 463   size_t partial_mark_stack_size_target() const { return _global_mark_stack.capacity() / 3; }
 464   bool mark_stack_empty() const                 { return _global_mark_stack.is_empty(); }
 465 
 466   G1CMRootRegions* root_regions() { return &_root_regions; }
 467 
 468   bool concurrent_marking_in_progress() const {
 469     return _concurrent_marking_in_progress;
 470   }
 471   void set_concurrent_marking_in_progress() {
 472     _concurrent_marking_in_progress = true;
 473   }
 474   void clear_concurrent_marking_in_progress() {
 475     _concurrent_marking_in_progress = false;
 476   }
 477 
 478   void concurrent_cycle_start();
 479   void concurrent_cycle_end();
 480 
 481   void update_accum_task_vtime(int i, double vtime) {
 482     _accum_task_vtime[i] += vtime;
 483   }
 484 
 485   double all_task_accum_vtime() {
 486     double ret = 0.0;
 487     for (uint i = 0; i < _max_num_tasks; ++i)
 488       ret += _accum_task_vtime[i];
 489     return ret;
 490   }
 491 
 492   // Attempts to steal an object from the task queues of other tasks
 493   bool try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry);
 494 
 495   G1ConcurrentMark(G1CollectedHeap* g1h,
 496                    G1RegionToSpaceMapper* prev_bitmap_storage,
 497                    G1RegionToSpaceMapper* next_bitmap_storage);
 498   ~G1ConcurrentMark();
 499 
 500   ConcurrentMarkThread* cm_thread() { return _cm_thread; }
 501 
 502   const G1CMBitMap* const prev_mark_bitmap() const { return _prev_mark_bitmap; }
 503   G1CMBitMap* next_mark_bitmap() const { return _next_mark_bitmap; }
 504 
 505   // Calculates the number of concurrent GC threads to be used in the marking phase.
 506   uint calc_active_marking_workers();
 507 
 508   // Prepare internal data structures for the next mark cycle. This includes clearing
 509   // the next mark bitmap and some internal data structures. This method is intended
 510   // to be called concurrently to the mutator. It will yield to safepoint requests.
 511   void cleanup_for_next_mark();
 512 
 513   // Clear the previous marking bitmap during safepoint.
 514   void clear_prev_bitmap(WorkGang* workers);
 515 
 516   // Return whether the next mark bitmap has no marks set. To be used for assertions
 517   // only. Will not yield to pause requests.
 518   bool next_mark_bitmap_is_clear();
 519 
 520   // These two do the work that needs to be done before and after the
 521   // initial root checkpoint. Since this checkpoint can be done at two
 522   // different points (i.e. an explicit pause or piggy-backed on a
 523   // young collection), then it's nice to be able to easily share the
 524   // pre/post code. It might be the case that we can put everything in
 525   // the post method.
 526   void checkpoint_roots_initial_pre();
 527   void checkpoint_roots_initial_post();
 528 
 529   // Scan all the root regions and mark everything reachable from
 530   // them.
 531   void scan_root_regions();
 532 
 533   // Scan a single root region and mark everything reachable from it.
 534   void scan_root_region(HeapRegion* hr);
 535 
 536   // Do concurrent phase of marking, to a tentative transitive closure.
 537   void mark_from_roots();
 538 
 539   void checkpoint_roots_final(bool clear_all_soft_refs);
 540   void checkpoint_roots_final_work();
 541 
 542   void cleanup();
 543   void complete_cleanup();
 544 
 545   // Mark in the previous bitmap. Caution: the prev bitmap is usually read-only, so use
 546   // this carefully.
 547   inline void mark_in_prev_bitmap(oop p);
 548 
 549   // Clears marks for all objects in the given range, for the prev or
 550   // next bitmaps.  Caution: the previous bitmap is usually
 551   // read-only, so use this carefully!
 552   void clear_range_in_prev_bitmap(MemRegion mr);
 553 
 554   inline bool is_marked_in_prev_bitmap(oop p) const;
 555 
 556   // Verify that there are no CSet oops on the stacks (taskqueues /
 557   // global mark stack) and fingers (global / per-task).
 558   // If marking is not in progress, it's a no-op.
 559   void verify_no_cset_oops() PRODUCT_RETURN;
 560 
 561   inline bool do_yield_check();
 562 
 563   // Abandon current marking iteration due to a Full GC.
 564   void abort();
 565 
 566   bool has_aborted()      { return _has_aborted; }
 567 
 568   void print_summary_info();
 569 
 570   void print_worker_threads_on(outputStream* st) const;
 571   void threads_do(ThreadClosure* tc) const;
 572 
 573   void print_on_error(outputStream* st) const;
 574 
 575   // Mark the given object on the next bitmap if it is below nTAMS.
 576   inline bool mark_in_next_bitmap(HeapRegion* const hr, oop const obj);
 577   inline bool mark_in_next_bitmap(oop const obj);
 578 
 579   // Returns true if initialization was successfully completed.
 580   bool completed_initialization() const {
 581     return _completed_initialization;
 582   }
 583 
 584   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 585   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
 586 
 587 private:
 588   // Clear (Reset) all liveness count data.
 589   void clear_live_data(WorkGang* workers);
 590 
 591 #ifdef ASSERT
 592   // Verify all of the above data structures that they are in initial state.
 593   void verify_live_data_clear();
 594 #endif
 595 
 596   // Aggregates the per-card liveness data based on the current marking. Also sets
 597   // the amount of marked bytes for each region.
 598   void create_live_data();
 599 
 600   void finalize_live_data();
 601 
 602   void verify_live_data();
 603 };
 604 
 605 // A class representing a marking task.
 606 class G1CMTask : public TerminatorTerminator {
 607 private:
 608   enum PrivateConstants {
 609     // The regular clock call is called once the scanned words reaches
 610     // this limit
 611     words_scanned_period          = 12*1024,
 612     // The regular clock call is called once the number of visited
 613     // references reaches this limit
 614     refs_reached_period           = 1024,
 615     // Initial value for the hash seed, used in the work stealing code
 616     init_hash_seed                = 17
 617   };
 618 
 619   G1CMObjArrayProcessor       _objArray_processor;
 620 
 621   uint                        _worker_id;
 622   G1CollectedHeap*            _g1h;
 623   G1ConcurrentMark*           _cm;
 624   G1CMBitMap*                 _next_mark_bitmap;
 625   // the task queue of this task
 626   G1CMTaskQueue*              _task_queue;
 627 
 628   // Number of calls to this task
 629   uint                        _calls;
 630 
 631   // When the virtual timer reaches this time, the marking step should exit
 632   double                      _time_target_ms;
 633   // Start time of the current marking step
 634   double                      _start_time_ms;
 635 
 636   // Oop closure used for iterations over oops
 637   G1CMOopClosure*             _cm_oop_closure;
 638 
 639   // Region this task is scanning, NULL if we're not scanning any
 640   HeapRegion*                 _curr_region;
 641   // Local finger of this task, NULL if we're not scanning a region
 642   HeapWord*                   _finger;
 643   // Limit of the region this task is scanning, NULL if we're not scanning one
 644   HeapWord*                   _region_limit;
 645 
 646   // Number of words this task has scanned
 647   size_t                      _words_scanned;
 648   // When _words_scanned reaches this limit, the regular clock is
 649   // called. Notice that this might be decreased under certain
 650   // circumstances (i.e. when we believe that we did an expensive
 651   // operation).
 652   size_t                      _words_scanned_limit;
 653   // Initial value of _words_scanned_limit (i.e. what it was
 654   // before it was decreased).
 655   size_t                      _real_words_scanned_limit;
 656 
 657   // Number of references this task has visited
 658   size_t                      _refs_reached;
 659   // When _refs_reached reaches this limit, the regular clock is
 660   // called. Notice this this might be decreased under certain
 661   // circumstances (i.e. when we believe that we did an expensive
 662   // operation).
 663   size_t                      _refs_reached_limit;
 664   // Initial value of _refs_reached_limit (i.e. what it was before
 665   // it was decreased).
 666   size_t                      _real_refs_reached_limit;
 667 
 668   // Used by the work stealing
 669   int                         _hash_seed;
 670   // If true, then the task has aborted for some reason
 671   bool                        _has_aborted;
 672   // Set when the task aborts because it has met its time quota
 673   bool                        _has_timed_out;
 674   // True when we're draining SATB buffers; this avoids the task
 675   // aborting due to SATB buffers being available (as we're already
 676   // dealing with them)
 677   bool                        _draining_satb_buffers;
 678 
 679   // Number sequence of past step times
 680   NumberSeq                   _step_times_ms;
 681   // Elapsed time of this task
 682   double                      _elapsed_time_ms;
 683   // Termination time of this task
 684   double                      _termination_time_ms;
 685   // When this task got into the termination protocol
 686   double                      _termination_start_time_ms;
 687 
 688   // True when the task is during a concurrent phase, false when it is
 689   // in the remark phase (so, in the latter case, we do not have to
 690   // check all the things that we have to check during the concurrent
 691   // phase, i.e. SATB buffer availability...)
 692   bool                        _concurrent;
 693 
 694   TruncatedSeq                _marking_step_diffs_ms;
 695 
 696   // Updates the local fields after this task has claimed
 697   // a new region to scan
 698   void setup_for_region(HeapRegion* hr);
 699   // Makes the limit of the region up-to-date
 700   void update_region_limit();
 701 
 702   // Called when either the words scanned or the refs visited limit
 703   // has been reached
 704   void reached_limit();
 705   // Recalculates the words scanned and refs visited limits
 706   void recalculate_limits();
 707   // Decreases the words scanned and refs visited limits when we reach
 708   // an expensive operation
 709   void decrease_limits();
 710   // Checks whether the words scanned or refs visited reached their
 711   // respective limit and calls reached_limit() if they have
 712   void check_limits() {
 713     if (_words_scanned >= _words_scanned_limit ||
 714         _refs_reached >= _refs_reached_limit) {
 715       reached_limit();
 716     }
 717   }
 718   // Supposed to be called regularly during a marking step as
 719   // it checks a bunch of conditions that might cause the marking step
 720   // to abort
 721   void regular_clock_call();
 722 
 723   // Test whether obj might have already been passed over by the
 724   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 725   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 726 
 727   template<bool scan> void process_grey_task_entry(G1TaskQueueEntry task_entry);
 728 public:
 729   // Apply the closure on the given area of the objArray. Return the number of words
 730   // scanned.
 731   inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
 732   // Resets the task; should be called right at the beginning of a marking phase.
 733   void reset(G1CMBitMap* next_mark_bitmap);
 734   // Clears all the fields that correspond to a claimed region.
 735   void clear_region_fields();
 736 
 737   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 738 
 739   // The main method of this class which performs a marking step
 740   // trying not to exceed the given duration. However, it might exit
 741   // prematurely, according to some conditions (i.e. SATB buffers are
 742   // available for processing).
 743   void do_marking_step(double target_ms,
 744                        bool do_termination,
 745                        bool is_serial);
 746 
 747   // These two calls start and stop the timer
 748   void record_start_time() {
 749     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 750   }
 751   void record_end_time() {
 752     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 753   }
 754 
 755   // Returns the worker ID associated with this task.
 756   uint worker_id() { return _worker_id; }
 757 
 758   // From TerminatorTerminator. It determines whether this task should
 759   // exit the termination protocol after it's entered it.
 760   virtual bool should_exit_termination();
 761 
 762   // Resets the local region fields after a task has finished scanning a
 763   // region; or when they have become stale as a result of the region
 764   // being evacuated.
 765   void giveup_current_region();
 766 
 767   HeapWord* finger()            { return _finger; }
 768 
 769   bool has_aborted()            { return _has_aborted; }
 770   void set_has_aborted()        { _has_aborted = true; }
 771   void clear_has_aborted()      { _has_aborted = false; }
 772 
 773   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 774 
 775   // Increment the number of references this task has visited.
 776   void increment_refs_reached() { ++_refs_reached; }
 777 
 778   // Grey the object by marking it.  If not already marked, push it on
 779   // the local queue if below the finger.
 780   // obj is below its region's NTAMS.
 781   inline void make_reference_grey(oop obj);
 782 
 783   // Grey the object (by calling make_grey_reference) if required,
 784   // e.g. obj is below its containing region's NTAMS.
 785   // Precondition: obj is a valid heap object.
 786   inline void deal_with_reference(oop obj);
 787 
 788   // Scans an object and visits its children.
 789   inline void scan_task_entry(G1TaskQueueEntry task_entry);
 790 
 791   // Pushes an object on the local queue.
 792   inline void push(G1TaskQueueEntry task_entry);
 793 
 794   // Move entries to the global stack.
 795   void move_entries_to_global_stack();
 796   // Move entries from the global stack, return true if we were successful to do so.
 797   bool get_entries_from_global_stack();
 798 
 799   // Pops and scans objects from the local queue. If partially is
 800   // true, then it stops when the queue size is of a given limit. If
 801   // partially is false, then it stops when the queue is empty.
 802   void drain_local_queue(bool partially);
 803   // Moves entries from the global stack to the local queue and
 804   // drains the local queue. If partially is true, then it stops when
 805   // both the global stack and the local queue reach a given size. If
 806   // partially if false, it tries to empty them totally.
 807   void drain_global_stack(bool partially);
 808   // Keeps picking SATB buffers and processing them until no SATB
 809   // buffers are available.
 810   void drain_satb_buffers();
 811 
 812   // Moves the local finger to a new location
 813   inline void move_finger_to(HeapWord* new_finger) {
 814     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 815     _finger = new_finger;
 816   }
 817 
 818   G1CMTask(uint worker_id,
 819            G1ConcurrentMark *cm,
 820            G1CMTaskQueue* task_queue);
 821 
 822   // Prints statistics associated with this task
 823   void print_stats();
 824 };
 825 
 826 // Class that's used to to print out per-region liveness
 827 // information. It's currently used at the end of marking and also
 828 // after we sort the old regions at the end of the cleanup operation.
 829 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 830 private:
 831   // Accumulators for these values.
 832   size_t _total_used_bytes;
 833   size_t _total_capacity_bytes;
 834   size_t _total_prev_live_bytes;
 835   size_t _total_next_live_bytes;
 836 
 837   // Accumulator for the remembered set size
 838   size_t _total_remset_bytes;
 839 
 840   // Accumulator for strong code roots memory size
 841   size_t _total_strong_code_roots_bytes;
 842 
 843   static double bytes_to_mb(size_t val) {
 844     return (double) val / (double) M;
 845   }
 846 
 847 public:
 848   // The header and footer are printed in the constructor and
 849   // destructor respectively.
 850   G1PrintRegionLivenessInfoClosure(const char* phase_name);
 851   virtual bool doHeapRegion(HeapRegion* r);
 852   ~G1PrintRegionLivenessInfoClosure();
 853 };
 854 
 855 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP